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ABSTRACT Approximate computing techniques, such as precision tuning, are widely recognized as key
enablers for the next generation of computing systems, where computation quality metrics play an important
role. In precision tuning, a trade-off between the accuracy of computations and latency (and/or energy) is
established, but identifying the opportunities for applying this approximate computing technique is often
challenging. In this article, we compare two different approaches—worst-case static annotation and profile-
guided annotation — and their implications when used in a precision tuning framework. To ensure a fair
comparison, we implement the profile-guided approach in an existing tool, TAFFO, and experimentally
compare it to the original static approach used by the tool. We validate our considerations using the well-
known PolyBench/C benchmark suite, and two real-world application case studies. Our findings demonstrate
that the profile-guided approach, fed with reasonable profiling data, in addition to needing less expertise to
employ, delivers comparable speedup and better accuracy than the static approach.

INDEX TERMS Approximate computing, compiler, embedded systems, performance evaluation, precision
tuning.

I. INTRODUCTION
Approximate computing is an emerging solution to address
the increasing energy and time requirements of compute-
intensive applications, particularly in embedded systems, but
also in HPC scenarios [1], [2]. Several techniques have
been developed to trade off the computation accuracy for
energy and latency reductions [3], both at the hardware and
software levels. Among them, precision tuning is notable
for its wide applicability [4]. In a nutshell, the technique
consists of reducing the precision of the individual operations
on real numbers in a given kernel, for instance, from double-
precision floating-point to single precision. As an alternative,
precision tuning may change the representation format of
real numbers, such as transforming floating-point values into
fixed-point ones. While it can be done manually, the effort
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required grows quickly with the complexity of the program
being tuned, giving rise to automated precision tuning tools.

Precision tuning tools employ several different strategies
ranging from brute-force trial-and-error to sophisticated code
analyses to find the optimal precision allocation. Brute-force
approaches struggle with scalability as they have worst-case
combinatorial complexity with the number of optimized
variables. More interesting are the approaches following
the code analysis path. Two general strategies dominate
this area: static analysis and profiling. On one hand, static
analysis typically requires some initial annotation from an
application-domain expert, and it searches for the optimal
precision allocation without running the program, employing
dataflow analysis and symbolic execution. Profiling, on the
other hand, only requires some representative datasets, from
which it derives the precision allocation by instrumenting
and running the program being tuned with the goal of
observing the values assumed by each variable throughout the
execution.
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There is an argument that the static analysis approach is
superior to profiling because it can assert desirable properties
such as error boundaries or the absence of overflow. However,
in complex real-world software, static analysis often finds
solutions that are not practically useful because, for example,
too wide worst-case value ranges do not satisfy guarantees
in lower precision configurations. Some common obstacles
leading to that problem are loops and conditional statements,
transcendental functions, or operations that may significantly
expand the result range, such as multiplication or division.
Because of this problem, the expert involvement needed to
annotate the program to be tuned with static approaches
tends to be much more significant than just indicating the
input ranges. As such, it is common practice to override the
results of the static analysis in some areas of the program to
arrive at a useful result, to an extent that can undermine the
presumed benefit of statically-asserted guarantees. Finally,
the assumed expertise in precision tuning may just be
absent as reasoning about the effect of lowering precision
of complex mathematical calculations is often beyond the
typical skill set of an average programmer. If tasked with the
problem of annotating a program for precision tuning, such
a programmer may resort to some inefficient combination of
trial-and-error and manual profiling approaches, potentially
erasing some benefits of static analysis.

The analysis approach based on profiling presents its
own sets of advantages and challenges. It does not require
any expert knowledge from the programmer and is more
automated, which makes it easier to use. However, the
representativeness of the dataset used for profiling determines
the robustness of the found precision allocation. Even if
multiple representative datasets are available, profiling may
still not cover all the possible corner cases in a complex
code base. The found solution can formally guarantee little
more than that the precision-tuned program will work with
the inputs observed in the profiling stage. At the same time,
the profiling approach is unlikely to arrive at the impractically
over-generalized solutions that static approaches are prone to.
This means that the approximations found with profiling may
offer more attractive trade-offs, albeit with fewer guarantees.
There is also an argument that profiling may be slower than
static analysis for larger programs and datasets. While it
may be the case, expert annotation requires human time
and attention, which is usually a scarcer resource than pure
computation time that can be reduced by using a more
powerful computer. In any case, faced with an unfamiliar
program to tune, an average programmer is more likely to
succeed with a tool based on profiling rather than static
analysis, as representative datasets are usually more readily
available than expertise in precision analysis.

Based on the discussion above, it comes to concrete
experiments to evaluate which approach is likely to be more
applicable for precision tuning of real-world applications.
Of course, these experiments need to limit the effect to
one dimension, in this case, the code analysis approach,
keeping other things equal. There is no shortage of precision

tuning tools implementing either of the approaches, but,
to our knowledge, none of them consistently implements
both. For that reason, we needed to choose a tool that already
implements one of the approaches, and that is modular
enough to allow for the incremental support of the other. Our
choice falls on the state-of-the-art tool called TAFFO [5].
It is implemented as a set of compiler transformations
for the industry-standard LLVM compiler framework, and
it operates on its intermediate representation (LLVM IR),
ensuring modularity, possibility of extension, and a degree
of language independence. It also comes with the full set of
PolyBench/C benchmarks [6] that are annotated by domain
experts. These facts give us a fair common ground for the
comparison.

In this article, we provide in-depth analysis and compari-
son between static and profile-based approaches to precision
tuning on a well-known benchmark suite. We observe
and report the relative error of the computation as the
quality metric, and time-to-solution speedup as the main
performance indicator. For the less tangible property of
usability, we propose the annotation complexity metric and
examine the effect of the approaches on program build
time. Additionally, We contribute an implementation of the
profile-guided approach within a state-of-the-art framework
previously based only on static analyses and compare it to
an independent state-of-the-art hybrid static precision-tuning
tool. Finally, we present as complex case studies the process
of precision tuning applied to two real-world applications,
Field-Oriented Control (FOC) for electric motors and Image
scaling with bicubic interpolation.

We conclude that while both approaches result in essen-
tially the same speedup, profile-based analysis may result
in smaller error in some cases, given that the profiling data
is within the order of magnitude of the production data.
Because of the complexity of the required expert intervention
in the static approach, we also conclude that the profile-based
approach is more likely to be adopted in an industrial scenario
due to its lower annotation complexity. However, the static
approach shows more robust performance in certain cases,
leading to the conjecture that the best way forward is the
integration of the two approaches, such as using profiling as
a support tool for the static expert annotation.

The rest of this article is organized as follows. In Section II,
we discuss related work and the existing precision tun-
ing tools. Section III discusses the theoretical differences
between the profile-guided and static approaches. We dis-
cuss the concrete implementation of both approaches in
Section IV. In Section V, we set up the experimental
framework and discuss the experimental results. The case
studies are discussed in Section VI. Section VII concludes
the article.

II. RELATED WORKS
Precision tuning enables the trade-off between data
representation and computation accuracy, with a wide
range of other quality metrics — such as data size,
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time-to-solution, energy-to-solution, and hardware complex-
ity — that could be accounted for in such trade-off. A recent
effort to compare a diverse set of products has been presented
in HPC MixPBench [7], whose focus is on source-level
rewriting precision tuning targeting only IEEE-754 binary64
and binary32 data representations [8]. A less detailed yet
more comprehensive overview of such approaches already
exists in the literature [4]. Most notable ones among the
proposed solutions are FloatSmith [9], TAFFO [5], and
the Transprecision approach [10]. Each of these efforts
approaches the problem of precision tuning starting from
different assumptions about the application to be tuned.
FloatSmith adopts a trial-and-error methodology to test the
impact of a data type alteration on the source code, coupled
with static analysis approaches — such as algorithmic
differentiation — to reduce the search space. As such,
it evaluates solution candidates on a representative test set.
TAFFO relies on annotations from the user to provide domain
knowledge about the deployment and runtime conditions
of the application and then performs a static data-flow
analysis to derive a conservative worst-case scenario. Such
a worst-case scenario may be orders of magnitude more
conservative than the actual values being computed at
runtime. Recent works presented on Transprecision [10],
[11], [12] assume the compiler to be able to adjust the
machine precision level. This toolchain-oriented tuning is
often driven by the programmer via a set of compiler
intrinsics instructions to be manually included in the machine
code.

The main issue with static analysis approaches is their
pessimistic nature. Small numeric errors often compensate
each other when chained together in a sequence of approx-
imated arithmetic operations, keeping the distribution of the
overall absolute error distance in the shape of a Gaussian bell
whose central value is orders of magnitude far from the worst
case [13]. It follows that static analyses may produce results
that are too conservative to be considered helpful in some
application domains.

On the contrary, the approaches such as trial and error
are limited to operating at a coarse granularity by the
fact that finer granularity leads to the explosive growth of
the application configurations to evaluate (up to 2n − 1
combinations in the worst case, given n variables [9]). This
leads to the choice between over- or under-allocation of
precision and limiting the precision tuning opportunities.

Profiling of floating-point values in a program has
been previously proposed in the literature in the form of
platform-specific binary instrumentation [14], and of data-
type emulation [15]. In this work, we present profiling of
individual floating-point values for precision tuning purposes
performed via compiler plugins in a modern toolchain and
compare it to the static approach implemented in the same
tool.

Comparison of the profiled-guided and static approaches
is complicated by the fact that most of the static precision-
tuning tools discussed in the literature present a very limited

set of scenarios on which they can operate, preventing their
application to realistic programs. Rosa [16] and the related
project Daisy [17] optimize programs written in a Scala
domain-specific language and only optimize programs with-
out loops and conditional statements. The work presented in
Angerd et al. [18] focuses on precision tuning for the GPU
applications that struggle with register pressure bottlenecks.
Although the principles presented in the paper are still
actual and relevant, this work has been made obsolete by
modern-day GPU architectures with native register support
for shorter data types. Salsa [19] and Herbie [20] make their
goal the improvement of precision without regard for the
performance. PrecTuner [21] is a hybrid precision tuning
tool that uses static analysis for precision optimization and
profiling for building the performance model. Its scope is,
however, limited to the transformation from double to float,
making it narrowly applicable.

III. THEORETICAL BACKGROUND
Code analyses in precision tuning provide insights into
the distribution of values that are being processed at any
time within the program. It is possible to use Distribution
Arithmetic [22] to analyze the evolution of such distributions
over time. However, due to memory and time constraints,
such distribution of values is often approximated with an
interval [min;max] representing the minimum and maximum
value seen within the distribution. Static code analyses are
often based on interval arithmetic [23], which provides
a framework to conservatively propagate this piece of
information through intermediate values. This is often the
most computationally intensive analysis in the precision
tuning process, and it is fundamental to guarantee the absence
of overflow and underflow errors in the computation. Similar,
yet simpler, analyses may enforce the absence of cancellation
errors. In this work, we focus on the more intensive value
range discovery analysis.

One limitation of the static approach to this analysis
lies in the conservative propagation of the distribution.
Approximating a distribution with its interval does not
imply — and rarely corresponds to — having a uniform
distribution of values within that interval. As such, static
analyses falsely include in the derived internals some values
that the computation never reaches. The reasons behind the
non-uniformity of the distribution are multiple. The input
values can themselves be non-uniform, or it can be the
program computation itself that gathers or scatters the data
points within the distribution via nonlinear functions.

In case of complex distributions influenced by multiple
factors, worst-case analyses in other application domains —
such as worst-case execution time studies — recommend
a more coarse-grained approach that limits the information
granularity to its observable components [24]. Indeed,
probabilistic approaches base their decision on the observable
events after a sufficiently large number of executions.

Profiling a program can be viewed as a way to sample the
probability distributions of its variables and output. While
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FIGURE 1. Compilation flow with TAFFO in profile-guided mode.

sampling does not guarantee that all the possible values
will be observed, by increasing the number of samples,
it is possible to increase the likelihood of the observed
probability distributions approximating well enough the
actual distribution of the program. This approach can give
tighter intervals, and it works for any program, making it a
good alternative to the static methods.

IV. STATIC AND PROFILE-GUIDED ANALYSES
IMPLEMENTATION
To compare the static and the profile-guided approaches to
precision tuning we need to have a tool that is capable of
doing both and working with realistically complex programs.
Unfortunately, the tools discussed in the literature do not suit
this requirement. Because of that, we chose a state-of-the-art
static precision tuning framework TAFFO and implemented
within it the profile-guided approach. This way, we were able
to isolate the effect of the dynamic range analysis models
while keeping the rest of the pipeline the same.

A. PREEXISTING STATIC ANALYSIS
As shown in Fig. 1, static TAFFO is composed of five LLVM
analyses and transformations, namely: Initializer (INIT),
Value Range Analysis (VRA), Data Type Allocation (DTA),
Conversion (CONV), and Feedback Estimator (FE). The
INIT pass is responsible for reading the annotations and
determining the amount of code affected by the tuning. The
VRA pass computes numerical intervals for all annotated
variables and any other variables that depend on them. The
DTA pass decides the new data type for each intermediate
value and variable employing one of two different algorithms:
either a greedy algorithm that always selects the fixed point
type with the highest valid fractional point position or an
algorithm based on a mathematical model that emits mixed
precision results. CONV modifies the LLVM IR accordingly
to the data type picked by DTA. Finally, FE statically
estimates the error.

As initial input to its static analyses, TAFFO requires the
programmer to insert annotations into the code, which appear
as Clangannotate attributes. Annotations provide initial value
range information for variables, and as a side-effect, they
restrict the scope of the precision tuning optimization.

FIGURE 2. BNF grammar of user annotations according to the TAFFO
precision tuning tool.

LISTING 1. Original LLVM IR code.

LISTING 2. Instrumented LLVM IR code.

TAFFO annotations follow the formal grammar shown in
Fig. 2. On scalar variables or arrays that need to be converted,
the annotation contains a scalar declaration. Within this
declaration, additional optional attributes provide the initial
range of the annotated variable (the range attribute), and if
that range shall be assumed immutable (the final keyword).
In addition, the target declaration may used to create a new
VRA and FE analysis entry point.

B. A NEW PROFILE-GUIDED ANALYSIS
Profile-guided TAFFO is an extension for TAFFO that
expands its capabilities to precision-tuning based on profiling
of the program.

Fig. 1 illustrates the compilation flow for TAFFO in
profile-guided mode. The flow is described in the following
steps:

1) TAFFO instruments the LLVM IR code to output
the values of all floating-point variables (or virtual
registers) and compiles a binary.

2) The binary is run by the user, providing the input data
if necessary. During its execution, which otherwise
proceeds normally, the binary outputs profiling data to
a separate file. The binary can be executed an indefinite
number of times with different inputs.

3) TAFFO uses the profiling data collected from all
previous executions of the binary to determine the value
ranges of the aforementioned variables.
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4) TAFFO uses the ranges to statically allocate data types
in the program.

5) The program goes through optimization and backend
compilation; the resulting assembly code is in mixed-
precision.

Profile-guided TAFFO is based on the instrumentation
of the LLVM IR code. The code changes done by the
instrumentation are shown on listing 1 (original) and
listing 2 (instrumented), the changes are highlighted in red.
The LLVM IR file is first prepared by assigning unique
names to all floating-point LLVM IR registers and these
names are saved into global constants. The logging function
is also inserted into the LLVM IR file. This function accepts
the name of the register and its value. It performs either
logging directly into a file or updates an in-memory structure
that contains minimum and maximum values for the register
name, and this structure is flushed into the log file later. After
that the calls to the logging function are inserted for every
floating-point register, passing the global constant with the
register’s name and the value of the register. The instrumented
code is then compiled into a binary without optimization and
fused operations to preserve as much of the same structure as
the LLVM IR code (clang flags -O0 -fno-slp-vectorize -fno-
vectorize -ffp-contract= off). The user can run the binarywith
one or more datasets, collecting the logged values in trace
files, which are then used in the precision tuning process.

The goal of this step is the collection of information about
the value ranges. As such, the lack of compiler optimization
does not matter as it does not affect the correctness of the
computation. The fact that the virtual LLVM IR registers are
lowered into the physical registers during the compilation
process also does not affect the validity of the instrumentation
as what is logged is the result of the corresponding LLVM
IR operation regardless of how it is physically computed.
Indeed, since both profiling and the precision-tuning steps are
done at the LLVM IR level, this approach allows to precisely
match logged values to the corresponding instruction at the
precision-tuning step later. In case the program relies heavily
on external libraries for floating-point computations and the
source code of these libraries is not available during the
compilation, the instrumentation process will not be able
to track the value ranges through the library code. This,
however, is not a concern as the goal of collecting the intervals
is the precision-tuning step that does require type changes
during the compilation and cannot function in the absence
of the source code. A possible alternative approach is binary
instrumentation and precision tuning, which is outside of the
scope of this study as it is challenging to implement in a
generalizable and reliable way.

The performance overhead of the instrumentation was not
evaluated at this stage and is left for future work. In the case
of bigger programs, there may arise the need for optimization
of the logging procedure such as limiting its application to
the smaller parts of the code, skipping logging iterations,
and inlining the logging operations. While the performance
of this step is of interest, it is not the main concern as it is

LISTING 3. A cluster of memory operations with the same range.

performed only once per program and it can be executed on
any sufficiently powerful machine.

The process of assigning TAFFO metadata ranges from
the trace file consists of a few steps. First, a dependency
graph [25] representing memory operations is built by
analyzing the LLVM IR of the program. Initially, the graph
is seeded with one node for each instruction that allocates a
buffer in memory (alloca, malloc, etc.). Then, all the uses of
each buffer that do not change its value (load, store, usage as
an argument to a function call, pointer operations, etc.) are
added to the graph as new nodes, connected with an arc to
the node that allocated the buffer. At the end of this process,
each connected component (or node cluster) in the graph
determines a set of virtual registers that shall share the same
range. An example of such a cluster can be found in Listing 3.
After building the node clusters, the trace files are parsed
and the minimum and maximum values witnessed during
execution are extracted for every register in the trace file. If a
register belongs to a node cluster, these values are shared with
all other registers in the cluster. At this point, the pass writes
the ranges just computed into the LLVM IR. If the user passes
more than one trace file, the ranges are computed over all files
combined. After all the registers have been associated with a
range, the rest of the TAFFO pipeline proceeds through the
DTA, CONV, and FE passes, followed by the generation of
machine code and linking to produce a working executable.
The implementation of these stages is left unchanged from
the original TAFFO code [5].

V. EXPERIMENTAL COMPARISON
In this section, we compare the profile-guided and the static
approaches on the well-known PolyBench/C benchmark
suite, version 4.2.1. We evaluate both approaches in terms
of annotation complexity, robustness to input data variation,
generated code, and the speedup. In addition to the static
precision tuning implemented in TAFFO, we provide the
comparison in terms of accuracy and speedup to the state-
of-the-art tool PrecTuner [21].
PolyBench [6] features computational kernels from dis-

parate domains such as physics simulation, linear algebra,
image processing, statistics, and dynamic programming. The
particular choice of the algorithms in the benchmark suite is
not very important to our study as we are mostly interested
in the various computationally intensive kernels present in
those algorithms, such as matrix multiplication, that are
general enough to be found in almost any compute-intensive
application ranging from image processing to machine
learning, AI, etc.

For running the benchmarks, we use an embedded plat-
form, specifically an STM32L010 microcontroller with Arm
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Cortex-M0+ CPU (32 MHz), 128 Kbytes of Flash memory
and 20 Kbytes of SRAM. Since this device lacks hardware
support for floating-point, we use software implementation
of floating-point operations with the -msoft-float compilation
flag. The choice of an embedded platform for the evaluation is
explained by the fact that these are the most likely candidates
to benefit from conversion from floating-point to fixed-point
due to the slower FPU implementation or lacking hardware
support for floating-point altogether. Additionally, these
platforms are widespread and of rising importance, due to
cost, energy efficiency, and size reasons. The same approach
can be applied on desktop machines or HPC nodes, however,
the benefits on such architectures are often constrained by the
specific CPU architecture of the machine [5].

Due to the low amount of RAM available on the
microcontroller, PolyBench was configured with the dataset
size MINI_DATASET. For this same reason, an additional
adjustment was required for the deriche benchmark, where
the size arguments were reduced from W = 64,H = 64 to
W = 32,H = 32. Benchmarks floyd-warshall and nussinov
were not evaluated as they implement integer algorithms.

The time measurements were averaged over 10 executions
of the benchmark. Since the benchmarks were run on a
microcontroller without an operating system, the execution
time had essentially no variation between each execution.

For error measurements, we used Mean Relative Error,
which we calculated by the following formula (1):

MRE =
1
n

n∑
t=1

pt − at
pt

(1)

where pt is the floating-point result and at is the approximate
result, and n is the output size. For the increased resolution,
we use double precision as a reference for MRE. Speedup is
computed by the formula (2)

S =
Tfloat
Tapprox

(2)

where Tapprox is the execution time of the approximated
program and Tfloat is the execution time of the floating-point
program (float was used as the reference for speedup).

In the speedup charts, we mark the 1 value (no speedup)
as a vertical red line. Similarly, we mark with a vertical
red line the value of 1% (10−2) for the relative error
charts as a conservative estimate of the acceptable relative
error threshold. In comparison, in the previous works, the
acceptable error of approximated applications is set as high
as 10% for some applications [26].

The average value on charts is computed as geometric
mean for the error charts and build overhead and as arithmetic
mean for the rest.

A. ANNOTATION COMPLEXITY
To measure the developer effort to add the required anno-
tations to a program, we need to introduce a notion of
annotation complexity. To this end, we leverage concepts

TABLE 1. Annotation complexity for PolyBench/C.

from the well-known cognitive complexity [27], adapting
them to the declarative nature of TAFFO annotations. Much
like in cognitive complexity, we measure effort in unitary
increments, which are provided by each choice or piece of
information that the developer needs to collect to build the
annotation. As such, each annotation provides one increment,
since the developer needs to identify the need to add it. The
range attribute is the key source of effort, as it requires
the identification of the input range, thus leading to a
+2 increment. The addition of the final keyword is another
conscious choice, with a unitary increment. Finally, the
target annotation identifies an instance of the VRA process,
which can be compared to a function or method in the context
of cognitive complexity, thus leading to a further unitary
increment of annotation complexity. Therefore, we define the
annotation complexity as (3):

# annotations+ 2 × # range+ # final + # target (3)

TAFFO provides the expert annotations for the Poly-
Bench/C suite, so we calculated the annotation complexity
of these benchmarks. Table 1 reports the static annotation
complexity of the PolyBench/C suite (excluding integer
benchmarks where the annotations are not needed). It can
be seen that for each benchmark, 3 to 14 variables need
to be annotated, with an annotation complexity ranging
from 7 to 31. Even relatively simple benchmarks require a
significant developer effort to annotate, with some bench-
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FIGURE 3. Mean relative error of expert and naive static annotations.

marks requiring dozens of different items. The simplest
benchmark that can be precision-tuned with one annotation
on one input variable would score 3 points in the annotation
complexity. Thus, the benchmarks in the PolyBench/C suite
require 2× to 10× the number of annotations the simplest
benchmark needs, indicating the necessity of significant
expert involvement in the annotation process.

The profile-guided approach does not need any annotations
on the source code, so its annotation complexity is 0 for all
the benchmarks.

B. NAIVE STATIC ANNOTATION
To further evaluate how important expert knowledge is in
the static annotation process, we annotated the PolyBench
benchmarks with a naive approach and compared the
resulting accuracy of the precision-tuned programs. The naive
approach consists of only annotating the input variables with
the ranges obtained from the input dataset by finding the
minimum and maximum values. This is a reasonable attempt
to annotate the program from someone who is not an expert
in precision tuning.

Fig. 3 demonstrates the error comparison between the
expert annotation and the naive approach to annotation. As is
evident from the chart, the naive approach is not viable for
the majority of the programs. In 15 out of 28 benchmarks
the naive approach resulted in an error significantly bigger
than the 10−2 threshold, while it was the case for only
1 benchmark with expert annotations. Only in 6 benchmarks
the naive annotation resulted in an error lower or equal to

expert annotation. Lower error in these cases is likely because
the expert annotation was done with some safety margin to
allow for the input range variation.

C. ROBUSTNESS TO INPUT DATA VARIATION
Instead of expert knowledge, the profile-guided precision
tuning needs input data to be trained on. To evaluate the effect
the variation of the input data has on the tuning quality, we
profile benchmarks on the data with random noise added to
the input. The amplitude of the noise would define the range
in which the input data of the benchmark can vary from the
one used in the evaluation stage. Since benchmark trisolv
involves division by the input values, we could not reliably
randomize the data as sometimes it resulted in division by a
value close to 0 which leads to unrealistically large results.
Therefore we exclude the benchmark from this evaluation
and consider it as having a worse error for the purpose
of comparison with the static approach. This is mostly an
artifact of howwe randomize the data, and it should not affect
applications with realistic datasets.

In Fig. 4 we compare the relative error for the static
annotation by an expert and two modes of profile-guided
annotation: without the noise in the input (the best possible
case), and with the random noise ±100% of the original
values. We have chosen random noise amplitude ±100%
as an example of a situation when the profiling data is
considerably different from the production data, but is
comparable to it. Note that we explore the higher levels of
noise later in this section in Fig. 6. As an additional baseline
for the static analysis, we provide the comparison with the
PrecTuner within the same chart.

Overall, all three TAFFO-based approaches have a mean
relative error below 1% (10−2) in all benchmarks apart
from gramschmidt, as it implements a numerically unstable
algorithm that is not a good target for precision tuning
optimization. PrecTuner in most cases has the lowest error,
which is expected since it only converts programs down
to float precision, while the other approaches operate with
fixed-point mixed precision. In case of bicg and symm
PrecTuner has a significantly higher error than the alterna-
tives, indicating the possible instability of the approach. The
profile-guided approach even with the noise in the training
data has better or equal mean relative error than the static
annotation in all but 3 benchmarks: deriche, durbin, and
ludcmp.Deriche implements an image-processing algorithm,
and its input is a grayscale image with all pixel values in the
range [0, 1]. The added random noise made some values go
outside this range, leading to a suboptimal type allocation.
In the case of both durbin and ludcmp the randomization
process increased the dynamic range of the variables leading
to fewer bits being allocated to the fractional part, losing
accuracy in the result. In all these benchmarks, the difference
between the static annotation and the profile-guided without
the noise was already very small, which indicates that there
was not much room for optimization in these algorithms
for the profile-guided approach to begin with. This could
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FIGURE 4. Mean relative error of expert annotation vs profile-guided
annotation trained on input with and without noise.

mean that these algorithms were not good targets for the
profile-guided approach as most of the knowledge about the
dynamic ranges throughout the program can be captured with
only a few static annotations. In most cases, adding the noise
resulted in less than 1 order of magnitude increase in themean
relative error in comparison to the profiling without the noise,
except for durbin, lu, and ludcmp. In these benchmarks, the
noise introduced enough difference in the dynamic ranges
to significantly affect the type allocation. In 15 out of
28 benchmarks, the difference in error between the static
and profile-guided annotation is an order of magnitude or
higher. This can be explained by the profile-guided approach
achieving tighter ranges, leading to more bits being assigned
to the fractional part, making it more accurate. In heat-3d the
error is 0 for all approaches because this benchmark is very
amenable to conversion into fixed-point arithmetic. Overall,
the profile-guided approach in ideal circumstances achieves
much higher accuracy than the static approach: in more than
80% of benchmarks the error for profile-guided tuning is less

FIGURE 5. Worst-case relative error of expert annotation vs
profile-guided annotation trained on input with and without noise.

than 10−6, while static tuning is below this threshold in only
40% of benchmarks.

In addition, we include the chart showing the worst-case
relative error in Fig. 5. The worst-case relative error follows
the same general pattern as the mean relative error but
is 1–2 orders of magnitude higher. In case of fdtd-2d,
gramschmidt, and ludcmp for profile-guided approach and
3mm for static approach, the worst-case relative error exceeds
the 1% threshold. In general, however, the worst-case relative
error stays within reasonable margins and is similar between
the static and profile-guided approaches, leading to the
conclusion that it depends more on the program being
precision-tuned rather than the precision-tuning approach.

To further explore the effect of the input data variation
on the quality of profile-guided tuning, we tested the
benchmarks with the random noise added to the input during
the profiling, with an amplitude varying from 0% to±1000%.
The result can be seen in Fig. 6: most of the benchmarks are
resilient to a noise amplitude as high as ±10% − 200%. The
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FIGURE 6. Percentage of benchmarks where the profile-guided approach
has better error as a function of noise in the data used for tuning.

point at which half of the benchmarks have a worse error
with profile-guided tuning than with static tuning is about
±1000% noise amplitude, which shows that getting profiling
data within an order of magnitude of the real distribution can
be good enough for many applications. This result shows that
profile-guided tuning is applicable even in the case when the
exact distribution of the input data might be hard to determine
precisely at the tuning stage.

D. SPEEDUP
To see the effect the two approaches have on execution
time, we ran the benchmarks on an embedded platform and
compared the speedups each approach has relative to the
unmodified float version. The speedup did not significantly
change with the noise level of the training data, so we
compare directly the expert-annotated versus profile-guided
without noise. As with the error discussed in section V-C,
we additionally compare the speedup to PrecTuner.

Fig. 7 summarizes the findings. For all benchmarks, except
heat-3d, TAFFO-based approaches show speedup higher
than 1, while PrecTuner never exceeds 1. This is explained
by the fact that PrecTuner only converts programs from
double to float, and we used float as the base type (an option
in PolyBench) for calculating the speedup. This limitation
prevents PrecTuner from addressing problems that benefit
from data types other than the standard IEEE-754 ones, which
are increasingly common in modern scenarios. It can be
seen that in 26 out of 28 benchmarks, the profile-guided
approach achieves the same speedup as the static approach.
In most cases, the speedup is in the range of 2-3×, with
the occasional 5-10× speedup. There are 2 benchmarks
where speedup obtained with the profile-guided approach
is significantly better than with the static approach: deriche
and heat-3d. In the case of heat-3d profile-guided approach
achieves a 10× speedup, while the static approach slows
down the program. The slowdown can be explained by
the static approach producing overly pessimistic ranges
for the intermediate results, leading to significant parts
of the program using conversions between the fixed-point
and floating-point formats, leading to the slowdown. In
deriche static approach gives an insignificant speedup, while

FIGURE 7. Speedup of static and profile-guided approaches.

the profile-guided approach results in a speedup of more
than 3×. The reason for this is that the static approach
was not able to derive tight enough ranges amenable for
converting the storage arrays to fixed-point, leading to a cast
to floating-point being inserted every time the values were
read or stored. The profile-guided approach did not have
this problem and converted the data arrays to fixed-point
throughout the whole benchmark, reducing the total number
of floating-point operations.

E. GENERATED CODE
To better understand the difference between static and
profile-guided annotation we analysed the code generated by
each approach. We provide a per-benchmark breakdown of
the number of floating-point operations (Fig. 8) and shift
operations (Fig. 9) in the benchmark kernels. We use the
number of floating-point operations and shifts as useful
proxies for reasoning about the observed performance.
In particular, the number of floating-point operations is
a proxy for the execution time of the floating-point
executable, as is often the case on embedded platforms
without hardware support for floating-point. Instead, the shift
operations are introduced as a result of the precision-tuning
as a part of the conversion between different fixed-point
formats, and are a proxy for the execution time for the
reduced-precision executable. Indeed, a higher number of
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FIGURE 8. Number of floating-point operations in the benchmark kernels
in the original (float) code, and the code optimized with static and
profile-guided approaches.

shift operations means that the code is running on a more
diverse mix of fixed-point types, and this might also cause
a slowdown. Conversion between floating-point and fixed-
point formats itself introduces a floating-point operation,
either a multiplication or division by a constant, which
explains why in some cases the transformed code contains
more floating-point operations than the original. It needs to
be noted that the measures in figures 8 and 9 are computed
by inspecting the code, and they do not directly reflect the
number of operations being executed at runtime, which in
some cases can be significantly different due to loops or
conditional statements.

The high number of floating-point operations in heat-
3d in Fig. 8 confirms the hypothesis from Section V-D
that the slowdown in the static approach was caused by
the conversions between the fixed-point and floating-point
formats. The profile-guided approach also uses a diverse mix
of data types, but it manages to keep more of the code in
the fixed-point format, as can be seen from the high number
of shift operations. The same goes for deriche: the statically
tuned version has more floating-point operations than the
profile-guided tuned one, keeping the speedup much lower.

In general, as it can be seen from Fig. 8 and Fig. 9,
both profile-guided and static approaches generate a similar
number of floating-point and shift operations. This results
in an almost identical speedup between the two approaches,
with a small variation that can be attributed to the fact that
the profile-guided approach has a more uniform allocation of
fixed-point types, resulting in fewer conversions. Therefore,

FIGURE 9. Number of shift operations in the benchmark kernels in the
original (float) code, and the code optimized with static and
profile-guided approaches.

the significant improvements in the error obtained by
the profile-guided approach are entirely due to the better
positioning of the decimal point in the fixed-point variables.
By being able to derive tighter ranges at every step of
computation, more fractional bits are preserved, resulting in
higher accuracy computations.

F. BUILD TIME OVERHEAD
Adding precision tuning as a build step increases the
compilation time no matter the approach. Profile-guided
tuning introduces the building of an instrumented binary and
running it on a test dataset. Because of that, the profile-guided
tuning is likely to have a higher overhead than the static
approach for all but the simplest cases. PrecTuner which
uses a hybrid approach that involves both profiling and static
analysis is expected to add the most overhead. Indeed, Fig. 10
shows that for the tested benchmarks, the overhead of the
static approach is on average 4×, for the profile-guided
approach, it is 8×, and for PrecTuner it is more than 32×.
It should be noted that these numbers can only be used for a
qualitative comparison as the tool implementations were not
optimized for the build time.

The overhead of the static approach is a function of
the code complexity of the program being tuned. For
the profile-guided approach in addition to the program
complexity, the overhead not only depends on the code
complexity but also on the amount of the profiling data used.
In general, for every floating-point operation in the run time,
profiling introduces two additional operations that keep track
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FIGURE 10. Build slowdown of static and profile-guided tuning relative to
no tuning build.

of the minimum and the maximum values observed at the
code location.

For complex programs operating on large datasets, profile-
guided or hybrid tuning may lead to a significant increase
in build time, potentially making the static tuning a more
viable solution. However, build time is often less of a
concern in optimization programs for production. Since the
profile-guided tuning only uses instrumentation during the
build process and the final binary does not contain any of
the instrumentation code, it does not affect the run time of the
program in production. In addition, saving the development
time spent on the manual annotation of the program might
be a more significant factor in increasing development
productivity. Given these considerations, the difference in
build time is not likely to influence the choice between the
static and the profile-guided tuning.

VI. CASE STUDIES
To see the effect of static and profile-guided precision
tuning on real applications, we apply them to the programs
implementing Field-Oriented Control and Bicubic image
scaling.

A. FIELD-ORIENTED CONTROL
Field-Oriented Control (FOC) [28] is a widely used advanced
control method for AC induction motors. FOC proves
highly advantageous in scenarios requiring optimal motor
performance to attain a precise torque or rotation velocity.
These motors have drive coils fixed on the stator while the

TABLE 2. Experimental results on the FOC case study.

rotor rotates freely around them. The FOC control equations
output the voltage that needs to be applied to the coils at a
specific time to obtain the desired rotation rate. The FOC
algorithm is highly compute-intensive, as it relies on the use
of trigonometric functions that are not normally available as
elementary operations in microcontrollers.

The inputs of the algorithm are signals from sensors that
measure the rotor flux angle. While these are expressed as
floating-point numbers in reference implementations of FOC,
the algorithm is proven to be amenable to precision tuning,
reducing the computation to fixed point arithmetic [29], with
the reported speedup of up to 278%.

To compare static precision tuning with the profile-guided
approach, we optimized the same FOC algorithm reported
in [29] using the profile-guided approach, and tested it on the
hardware described in Section V. We used different datasets
for profiling and testing. Table 2 compares the unmodified
floating-point code and the statically and profile-guided
tuned versions. Due to the use of different hardware than what
was reported in the original study, we observed a slightly
higher speedup for the static precision tuning (293% vs
278% in the original). This, however, does not affect the
validity of our study since we use the same hardware to
test the profile-guided tuning. The profile-guided approach
achieves almost a 6× speedup while achieving a similar mean
relative error to the static approach (< 10−7). The improved
speedup in comparison to the static annotation is explained
by the profile-guided approach finding more floating-point
variables to convert that were missed in the process of expert
annotation. The annotation complexity for the static approach
is 14, while the profiling approach does not require any
annotations. This demonstrates that in real-world scenarios,
the profile-guided precision-tuning approach may be more
useful since it requires less expertise from the programmer
and in some cases provides better speedup and error.

B. BICUBIC IMAGE SCALING
Bicubic interpolation [30] in image processing is an image
scaling algorithm that determines the pixel value from the
weighted average of the 16 closest pixels. It employs cubic
polynomials to increase the quality of the scaled image, but
the algorithm is characterized by a considerable amount of
computations.

We optimized this algorithm with both static and
profile-guided approaches and the results of the comparison
are shown in Table 3. This case is difficult for the
static method because of the long chains of computations,
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TABLE 3. Experimental results on the Bicubic image scaling case study.

making the static analysis conservatively expand the potential
dynamic intervals of the intermediary results. Past the point
where they can be contained in the fixed-point format, the
variables are switched to the floating-point format for some
parts of the computation. This is inefficient, and it leads
to the slow-down relative to the reference implementation
in floating-point, with the tuned program operating at the
85% speed. The overestimation of the dynamic intervals also
leads to the under-allocation of the fractional part in the
fixed-point variables, leading to some accuracy loss. Even
though the static tuning of this programwas not a success, the
annotation still required significant effort, with the annotation
complexity of this code amounting to 31. On the other hand,
the profile-guided approach shows a significant speedup of
795% with no accuracy loss. This case study demonstrates
that there are cases where the profile-guided approach is
clearly preferable over the static analysis approach.

VII. CONCLUSION AND PERSPECTIVES
In this work, we explored the choice between static and
profile-guided analysis in the construction of automated
precision tuning tools.

We discussed the advantages and disadvantages of both
approaches, arguing that while the static approach theoreti-
cally provides more guarantees, the profile-based approach
may be more applicable in the industry due to the complexity
of the static annotation process and its tendency to favor
overly conservative solutions that do not provide enough
room for the approximation.

Starting from a static-analysis-based state-of-the-art preci-
sion tuning tool leveraging the LLVM compiler framework,
TAFFO, we extended it to implement the profile-guided
analysis. The resulting tool allows us to directly compare
static vs profile-guided analysis techniques, with all other
aspects being managed with the same effectiveness. The
experimental analysis was performed on the PolyBench/C
benchmark suite on an ARM-based embedded platform.

We started with an evaluation of the effort an expert would
need to make to annotate a program for the static analysis.
To that end, we introduced the annotation complexitymetric,
and using it showed that the annotation complexity of
PolyBench/C benchmarks is 2× to 10× higher than the
simplest program would require.

We compared the resulting accuracy of programs annotated
by an expert against those annotated with a naive approach.
The result showed that the programs annotated with the naive
approach exceeded the 1% relative error threshold in more

than 50% of benchmarks, and had higher relative error than
the programs annotated by an expert in general.

We evaluated the effect of input data variation on the
robustness of the profile-based approach by adding random
noise to the profiling inputs of the programs. We showed that
with low levels of noise, the profile-based approach has lower
relative error than the static approach. The point at which 50%
of the benchmarks perform better with the static approach
than the profile-based one is at the maximum amplitude of
random noise at about 10× the original values.
We showed that the speedup of the static and the

profile-based approaches is approximately the same, with
some variance that is explained by the tightness of the variable
ranges found by each approach. We confirm our observations
about speedup by looking at the instruction allocation of the
tuned programs, in particular the number of floating-point
operations and the number of shift operations.

We also compared our implementation to another state-
of-the-art implementation of a hybrid static approach,
PrecTuner, which showed comparable error but no speedup
because of the limitation of only using floating-point types.
We explored the effect the three tuning approaches have on
the build time of the program and concluded that although
the overhead might be significant, it is not likely to affect the
adoption of these approaches.

The case study done with the real application Field-
Oriented Control (FOC) has shown that the profile-based
approach can achieve 2× higher speedup than the static
approach at approximately the same error cost. It is
explained by the profile-based approach finding optimization
opportunities missed by the expert in the annotation process.
Another real case study, Bicubic image scaling, proved to
be challenging for the static approach, showing slowdown
relative to the baseline, but the profile-based approach still
achieved almost 8× speedup with 0 error.
Future research directions point towards the integration

of the two approaches, as specific benchmarks proved more
amenable to one or the other approach. As one of the avenues
of the integration of the two approaches, we envision using
profiling as the support in the expert annotation.
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