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ABSTRACT In this research, the DC performance of four InGaAsMOSFETs having different technology of
22nm, 14nm, 10nm, and 7nm with highly doped source and drain region is successfully examined. A high-
performance MOSFET is designed as a large current of 12mA/µm for a low Vgs of 0.25V is observed for
InGaAs MOSFET with 7nm technology. Two multiple-layer caps are designed in both the source and drain
region to reduce the parasitic capacitance. A high transconductance gain of 1.96mA/V for 7nm technology
and subthreshold slope of 76.69mV/dec are achieved for InGaAs MOSFET with 14nm technology, which
shows that high-performance InGaAs were created. An excellent off-state current of 2.5 × 10−10 A/µm is
achieved for 22nm technology. The designed InGaAs MOSFETs are also capable to operate successfully in
low voltage ranges, as a high amount of output current can be achieved under such conditions, which is a
very demanding aspect in the present scenario.

INDEX TERMS InGaAs, InAlAs, InAs, MOSFETs, nano-meter technology, DC characteristics.

I. INTRODUCTION
InGaAs and InAs are promising channel materials because of
their excellent electron transport properties for future CMOS
applications [1]. Over the last few decades, enormous efforts
have been made to produce high-performance InGaAs MOS-
FETs. The switching performance has been optimized by
using heterojunction diode with split-gate SIC trench MOS-
FET [2] which offers advantages by reducing the surface area
of the depletion layer in JFET and also by increasing the
breakdown voltage of the device. According to the analysis,
the structure provides high speed and high power devices with
effective drain voltages [3]. The integration of the hetero-
junction diode with the split-gate SiC trench MOSFET also
contributes to an increase in the breakdown voltage of the
device [4]. The technology has transformed the world rapidly
over the past few decades. Though the first transistor was
invented in 1947 [5], now-a-days transistors are part of every
human’s life. The first transistor was a point-contact diode
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that was embedded in Ge semiconductor at Bell Laboratory.
The first integrated circuit was invented by Jack Kilby in
the year 1958 at Texas Instruments [6]. From the year 1960,
remarkable improvements are seen in transistor performance
and the number of devices on a chip doubling in every
eighteen months stated by Moore’s Law has been achieved
by geometrical scaling of MOSFETs [7]. Silicon technology
has dominated the semiconductor industry for more than five
decades and the scaling of devices has been the major factor
contributing to the growth of the industry. Currently, in the
industry, 7nm technology is used and work is going for 5nm
technology. Moreover, the abundant nature of Si is another
reason to get enormous achievements in the semiconductor
industry. Silicon technology has many advantages but it has
low carrier mobility and low saturation velocity which dimin-
ishes its suitability in modern electronic applications like
mobile, satellite, and radar. Hence, research on new materials
has started to gain momentum, with the aim of substituting
the existing silicon technology. New channel materials with
high electron/hole mobility can then be needed to get higher
injection velocities and during this manner continue the
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historical trend of scaling and also the expectations of
Moore’s law. It is found that materials such as SiC, SiGe,
and group III-V semiconductors can replace Si success-
fully and among them, III-V compounds have shown to
have an outstanding electron mobility, making them promis-
ing candidates for the post-Si era. III-V electronic products
have constituted a multi-billion-dollar industry with a large
number of applications such as lasers, LEDs, wireless net-
works, radar, and smartphones. To design high-performance
MOSFET we can replace substrate with Indium Phosphide
(InP) compound because of its favorable properties. The
study gives evidence of massive efforts in this field [8],
[9], [10], [11], [12], [13], [14], [15]. Again, in the last
two decades, an explosion of interest has been witnessed
in high-speed semiconductor devices and integrated cir-
cuits suitable for ultra-high speed applications, low power
applications, and low-noise applications [1]. Indium gallium
arsenide (InGaAs) and indium aluminum arsenide (InAlAs)
are ternary alloys. Both these alloys have very high electron
mobility which helps to get high-speed devices in electronics,
photonics, and modern IC in VLSI circuits [16]. To sum-
marize, this study addresses the challenge of optimizing
InGaAs and InAs as channel materials for high-performance
MOSFETs in future CMOS applications. It investigates the
limitations of silicon technology, exploring alternative mate-
rials like InP and III-V semiconductors. The study also
highlights a surge in interest in high-speed semiconductor
devices and ternary alloys like InGaAs and InAlAs for poten-
tial applications.

Gallium and Indium compound semiconductor with direct
bandgap materials have better electron mobility than Sili-
con. But, the energy bandgaps of GaAs, GaN, and InP are
all greater than those of Silicon. However, no comparable
tendency has been found for hole mobility. When com-
paring Aluminium compound semiconductor materials, all
Aluminium compound semiconductor materials have higher
bandgap energy than Silicon. So it’s now intriguing to observe
which Gallium, Aluminum, and Indium compound semi-
conductor material(s) outperform Silicon [17]. Comparison
of various MOSFETs with similar structure to that of the
proposed structure has been given in Table 1 for a brief
overview [18].

TABLE 1. Comparision of various mosfets with different dielectric oxide.

FIGURE 1. Structure of InGaAs MOSFET using 14nm technology.

II. PROPOSED STRUCTURE
The cross-sectional view of the InGaAs MOSFET is shown
in Figure.1. The proposedMOSFET has an InP substrate over
which a 200nm In0.52Al0.48As buffer layer is placed. This
buffer layer is used to reduce defects that are present in the
substrate. A delta-doped layer or pulse doped layer with a
doping density of 2 × 1012 per cm3 is employed above the
buffer layer. This delta-doped layer supplies carriers to the
intrinsic channel of the MOSFET. On the top of this pulse
doped layer, a spacer layer of 5nm In0.52Al0.48As is placed.
A composite channel is used which consists of a 3nm thick
In0.7Ga0.3As upper sub-channel, 2nm InAs intrinsic channel,
and 5nm thick In0.7Ga0.3As lower sub-channel. A 2nm thick
InP layer is employed just above the composite channel as an
upper spacer layer.

The source and the drain cap layer are designed just
above the spacer layer. To reduce access resistance in the
source and drain region a heavily doped n-type multilayer
cap layer is employed. The multilayer cap layer consists
of a 2nm In0.52Al0.48As layer, 10nm thick InP layer, 6nm
thick In0.53Ga0.47As layer, and 6nm thick In0.7Ga0.3As layer.
In the upper two layers, high n+ Si doping of 3 × 1019

is used and for the lower two layers, slightly less doping
of 2 × 1019 is taken. This multiple-layer cap is used to
enhance various performances of theMOSFET, like mobility,
transconductance, and saturation current. An oxide layer of
1nm thickness is placed as displayed in Figure.1. Here two
alloys In0.52Ga0.48As and In0.53Ga0.47As have the same lat-
tice constant as InP with a direct band gap and trap carriers
more effectively. But the alloy In0.7Ga0.3As and InAs do
not have the same lattice constant of InP. As the thickness
of the layers is less, atoms are strained and lattices are
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FIGURE 2. Electron density profile of MOSFET for 14nm technology.

FIGURE 3. Electron current density profile of MOSFET for 14nm
technology.

matched properly, otherwise, lattice match is not possible
for the structure. Therefore, these materials are used for the
design of high-speed electronic devices. Here 4 MOSFETs
are designed with 4 different technologies (22nm, 14nm,
10nm, and 7nm). The high 70% In fraction layer offers
enhanced transport properties and the 53% In layers mitigate
impact ionization effects. In this researchwork, in the channel
region, In0.7Ga0.3As and InAs are used and those are having
high electron mobility, therefore high-performance InGaAs
MOSFET is designed successfully.

TABLE 2. Calibration of model and device parameters.

TABLE 3. Device layers, materials and dimensions.

The calibration model, device parameters, and other simu-
lation details are presented in Table 2. And details of layers,
materials and their dimension are presented in Table 3. Stan-
dard material parameters are used in the TCAD simulation
which are briefly represented in Table 4.

For the simulation a mesh grid was created that discretizes
the device structure. The doping profiles were incorporated
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TABLE 4. Material parameters used for the TCAD simulation.

into the simulation, including the delta-doped layer and the
multilayer cap layer. After that simulations were started to
predict key MOSFET characteristics such as current-voltage
(I-V) characteristics, transconductance etc. The performance
of the MOSFET at different technology nodes (22nm, 14nm,
10nm, and 7nm) was analyzed. The proposed MOSFET has
an InP substrate over which a 200nm In0.52Al0.48As buffer
layer is placed. This buffer layer is used to reduce defects
that are present in the substrate. It is critical to treat interface
defects in order to optimize MOSFET performance. In the
context of InGaAs MOSFETs, the inclusion of a buffer layer,
delta-doped layers, and careful material and doping profile
selection can all help to reduce interface defects and optimize
the subthreshold slope. In MOSFETs, a low subthreshold
slope is critical for achieving high switching efficiency.

III. RESULTS AND DISCUSSION
Based on the designed structure, different characteristics
of high-performance InGaAs MOSFET are obtained during
their operation. Those characteristics are electron density pro-
file, electron current density profile, transfer characteristics,
static characteristics, and off-state current respectively. Let us
assume the width of all MOSFETs is 1 µm.
The electron density profile and electron current density

profile of the designed MOSFET using 14nm technology are
presented in Figure.2 and Figure.3 respectively. Those two
Figures show that the channel is perfectly created as the chan-
nel region is designed in the structure. The electron density at
the intrinsic channel is approximately 5 × 1018 per cm3 and

FIGURE 4. Conduction band energy of MOSFET with 14nm technology
with Vds 0.2 volt and 0.5 volt.

FIGURE 5. Id vs Vgs curves for 22nm technology with different Vds.

the electron current density is approximately 4 A/cm2. Those
two profiles help to flow current through the MOSFET.

A cutline is taken across the channel and the conduction
energy band diagram is shown in Figure.4. It shows as Vdsis
applied positive voltage, conduction band moves downward
in drain side and a negative voltage is applied to Vgs, therefore
conduction band energy below the gate region increases. For
more Vds, conduction band energy is lesser as noticed in
Figure.4. It is also confirmed that the short channel effect
cannot affect more for the designed MOSFET. The Id Vs Vgs
transfer characteristics on a linear scale for the InGaAsMOS-
FETs with 22nm technology is shown in Figure.5. The figure
shows the ideal MOSFET characteristics. High current flows
through the MOSFET as the drain to source voltage (Vds)
of the MOSFET is increased for lower Vgs. The threshold
voltage of the MOSFET also decreases for high Vds.
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FIGURE 6. (a) Id vs Vds Characteristics For 22nm Technology (b) Id vs Vds characteristics for 14nm technology (c) Id vs Vds characteristics for 10nm
technology (d) Id Vs Vds characteristics for 7nm technology.

The current that passes through a transistor when it is off is
known as the off-state current. The inherent imperfections in
the design of the transistor are what cause this current. Off-
state current can waste power even when a circuit is not in
use, which can have a major impact on a circuit’s switching
efficiency. The term ‘‘switching efficiency’’ generally relates
to how well a switch or transistor can be turned on and off.
So, a smaller off-state current may cause better switching effi-
ciency. The threshold voltage of this MOSFET is -0.18V and
the off-state current is approximately 0.25 nA/µm for Vgs =

-0.5V. So, a negligible current is flown in the off-state which
confirms better switching efficiency. Id Vs Vds output char-
acteristics of MOSFETs with 4 different technologies (22nm,
14nm, 10nm, and 7nm) is shown in Figure.6(a), Figure.6(b),
Figure.6(c), and Figure.6(d) respectively. In Figure.6 output
characteristics of the MOSFET having 22nm technology are
shown having a different gate to source voltages with 0.05V
step from 0.1V to 0.25V. The characteristic obeys the ideal
characteristics of the MOSFET. For low voltages, it operates
in a linear region and afterward for saturation region on the
application of high Vds. For a constant voltage Vgs = 0.25 V,

a current of 5.5 mA/µm flows through the MOSFET in a
saturation region.

The output characteristic of InGaAs MOSFET with 14nm
technology is pictured in Figure.6(b). The figure shows Id
Vs Vds characteristics with different Vgs from 0.1V to 0.25V
with a step voltage of 0.05V. It shows better performance
as compared to 22nm technology. For Vgs = 0.25V a high
current of approximately 8mA/µm is passed through the
MOSFET. The Id Vs Vds output characteristic of InGaAs
MOSFET with 10nm and 7nm technology is pictured in
Figure.6(c) and Figure.6(d) respectively with a step voltage
of 0.05V for Vgs from 0 to 0.25V. Figure.6(c) shows better
performance as compared to 22nm and 14nm technology and
Figure.6(d) shows the best among all technology. A high
amount of current of 11mA/µm and 12mA/µm are noticed
for a fixed Vgs of 0.25V for 10nm and 7nm technology
respectively.

The transconductance gain and subthreshold slope of the
designed MOSFETs are shown in Table 5 (transconductance
gain and subthreshold slope for different technology with a
fixed Vds of 0.5V) and Table 6 (transconductance gain and
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subthreshold slope for 7nm technology with different Vds).
Table 5 is resulting from a fixed drain to source voltage
of 0.5V with Vgs varied from -0.4V to 0V. From technol-
ogy to new technology transconductance gain is achieved
more and an excellent subthreshold slope of 76.69mV/dec
for 14nm technology is also noticed. For a high value of
Vds high transconductance gain is also observed. The current
throughMOSFET in saturation region for various technology
nodes for a constant Vgs = 0.25V has been represented
in Table 7.
Several factors contribute to themodulation of output resis-

tance as technology nodes reduce from 22nm to 7nm, and the
relationship between them is not necessarily monotonic. The
transistor’s dimensions are larger at the 22nm node than at
smaller nodes. The channel length and width, as well as other
process factors, all have an effect on the output resistance.
Because of the bigger transistor size, the output resistance
is typically higher. With the transition to the 14nm node,
transistor dimensions shrink, resulting in reduced channel
lengths and widths.

The lower dimensions could end up in improved control
of the channel by the gate, resulting in a reduction in out-
put resistance. Further size reduction happens in the 10nm
node, and the output resistance may continue to reduce.
With a much lower transistor size, the 7nm node repre-
sents an even more advanced technology. As dimensions
decrease, quantum mechanical phenomena become more
evident, and transistor behaviour can become more com-
plex. This may result in non-monotonic output resistance
behaviors.

The influence of channel length on on-state current, sub-
threshold slope, and transconductance controls the output
resistance in MOSFETs. A shorter channel length pro-
duces a larger on-state current, a smaller sub-threshold
slope, and a higher transconductance. Furthermore, mod-
ulation effects on channel length contribute to changes in
the effective channel length, which affects output resis-
tance, particularly at higher drain-source voltages. The
complex interaction between these parameters is critical
in maximizing MOSFET performance in a wide range of
applications.

The comparison of our proposed models with previously
published results [19], [20] serves as a critical validation
of the superior device performance of the proposed models.
To ensure a fair assessment, our 14nm and 7nm devices
were compared against the highly performing devices docu-
mented in the literature [19], [20]. This comparison involved
maintaining a consistent Vgs of 0.2V across all devices,
while Vds was systematically varied from 0 to 1V. The dis-
tinct advantage of our proposed models over the published
ones is clearly evident, showcasing a substantial performance
margin. Figure 7 graphically illustrates this comparison, pro-
viding a visual representation of the superior performance
exhibited by our models. Through meticulous analysis and
rigorous testing, our models have demonstrated their effi-
cacy and reliability in enhancing device performance, thereby

FIGURE 7. Performance comparison of the proposed model with the
published results.

TABLE 5. Transconductance gain and subthreshold slope for different
technology with a fixed VDS OF 0.5V.

TABLE 6. Transconductance gain and subthreshold slope for 7nm
technology with different VDS.

contributing significantly to the advancement of the semicon-
ductor technology.

The MOSFET should have faster switching time to min-
imize the time duration of operation. Faster switching time
reduces the switching losses.Whereas, transconductance gain
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TABLE 7. Current through mosfet in saturation region for various
technology nodes for a constant VGS = 0.25V.

is a measure for an electronic component’s capacity for
amplification. By enabling faster switching speeds, lower-
ing power dissipation and requiring fewer control signals,
a larger transconductance gain can cause improved switching
efficiency.

• Faster Switching Speed: The device can switch
between the on and off states more quickly if the
transconductance gain is higher. The device works
in the intermediate states for a shorter period of
time because of the quicker switching speed, which
decreases power losses and increases efficiency.

• Lower PowerDissipation: The device can functionwith
lower voltage drop across its internal components due
to a larger transconductance gain. As a result of the
smaller voltage drop, efficiency is increased and less
power is wasted.

• Reduced Control Signal Requirements: As transcon-
ductance gain increases, the voltage or current of the
control signal required to operate the device is reduced.
This can make control circuit design simpler, use less
energy, and enhance the overall efficiency.

IV. CONCLUSION
Four high-performance InGaAs MOSFETs with different
technology nodes have been successfully modeled with ver-
ification of their better static and transfer characteristics in
comparison to the conventionally available previous con-
tenders. The output characteristics have improved more and
more from old technology to new technology. The obtained
output characteristics validate that for short channel length
MOSFET, the resultant terminal current is considerably high.
A high electron density profile and high electron current
density profile are noticed for 14nm technology, an excel-
lent off-state current of 2.5 × 10−10 A/µm is achieved for
22nm technology. With 7nm technology, InGaAs MOSFET
designed in this research, concludes a remarkable amount of
large current production in the order of 12mA/µm, a high
transconductance of 1.96mV/A, and an excellent subthresh-
old slope of 77.48mV/dec, which confirms the formation of
high-performance InGaAs MOSFET.
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