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ABSTRACT Today, common algorithms such as spline curves and triangulation methods are used in 2-and
3-dimensional modeling of objects. However, although these methods can express objects well in terms of
visuality because they treat objects as a combination ofmany small parts, they cannot reveal themathematical
expression of the whole object. The most prominent method of expressing objects with a single equation is
the implicit polynomial (IP) curves and the 3L method used to realize the more precise effects of these
curves. In this study, the 3L method was accepted as the primary method, and signomial functions using
real number powers were used to increase the fitting precision in 2D modeling. The artificial bee colony
(ABC) algorithm was used to determine signomial terms. Based on the root mean square error, peak signal-
to-noise ratio, coefficient of determination, and structural similarity values obtained in experimental studies,
modeling success can be increased. Also, due to adding the initial power expression of IP as the population
element for ABC, the sensitivity of the current IP model is increased rather than remodeled.

INDEX TERMS Signomial functions, implicit polynomial curves, 3L method, artificial bee colony,
modeling.

I. INTRODUCTION
Polynomial curves or surfaces have many advantages, allow-
ing them to be preferred in computerized vision studies.
Complex objects that do not have simple geometric shapes,
such as squares and circles, are difficult to represent with
simple ellipse curves. Such complex objects and shapes can
be better modeled with high-degree curves or surfaces. These
models are noise-resistant and capable of modeling at reason-
able levels for missing data. In addition, point classification
problems and curve-surface intersection calculations can only
be performed with a simple polynomial expression.

Although common algorithms such as spline curves and
triangulation methods are used for modeling today, these
methods do not fully express the mathematical equation that
covers the entire model. For this reason, modeling any shape
or object is among the issues that have not yet been resolved in
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the literature. Among the methods that can express objects as
a whole, the most prominent one is Implicit Polynomial (IP)
curve. This curve is also available in methods such as 3L,
which can model this curve more precisely. Besides these,
parametric curves need extra parameters besides the data’s
coordinate plane variables. Because of its advantages, such as
general shape representation of the object, smoothing noisy
data, and resistance to occlusion, IP is more suitable for data
fitting algebraic curves than parametric curves.

IP and polynomial curves fail in high-precision model-
ing because the degrees of power are integers, even though
they can mathematically express objects or shapes. Although
methods such as 3L are used to increase success with these
methods, the only option for more precise modeling is by
increasing the degree of power. The increase in the degree
of power increases the number of terms in mathematical
expression, and this is not desirable in terms of memory
savings and complexity. High memory usage and delays
occur due to excessive terms when recreating equations of
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modeled objects in various games or drawing programs. This
is undesirable for systems that operate in real-time. When it
is thought that equations of objects can be used in real-time
systems such as games or animation, it is preferable to have
better results in the number of terms available instead of
increasing the number of terms in the equation. This study
suggests that using signomial and posynomial functions with
real power degrees can increase modeling sensitivity for the
same number of terms.

When the studies carried out in the literature are analyzed,
it is seen that while IP and 3Lmethods are often used in image
processing applications, signomial functions are often used in
optimization problems. Their applications in image process-
ing are relatively limited. The advancement of IP applications
in the field of image processing was accelerated by the work
of Taubin [1], while the 3L algorithm was developed by
Lei et al. [2]. Later, Blane developed implicit surfaces using
the 3L algorithm for various two-and three-dimensional (3D)
data [3]. Among the studies conducted with implicit curves
and surfaces, there are studies, in which implicit curves are
used for ellipses modeling [4], it is checked whether perspec-
tive or parallel projection matching for rational and implicit
curves is seen or not [5], an algorithm that draws 3D graph-
ics of implicit functions of three variables is developed [6],
sampling, reconstruction and limits are designated by using
implicit polynomial curves over the binary images [7], ratio-
nal implicit polynomial are used for complex figures [8],
parabolic, ridge and sub-parabolic curves are analysed on the
implicit surfaces defined with smooth functions [9], 3D fig-
ures are reconstructed with implicit polynomial curves [10],
optimum implicit polynomial is designated with 3L method
and algebraic surface adaptation in order to model deforma-
tion on 3D surfaces [11], an implicit form is obtained for a
canal surface whose spine is a spring and radius changes as
linear according to angle [12], an algorithm that can desig-
nate the geometrical distance of a point in 3D space to the
implicit curve is proposed [13], a new compression algorithm
is proposed for coefficient tensors for implicit 3D B-spline
solids [14]. IP and 3L algorithms have been employed in other
studies in modeling [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24].

In addition to these studies, applications are carried out
with different methods for different purposes. Besides studies
based on radial basis function using offset points [25], studies
based on Hermite radial basis function not using offset points
are also available [26], [27]. In the literature, there are also
other studies in which noise is prevented on 2-dimensional
(2D) infrared images with wavelet filter and background
image is cleaned from infrared image by composing 3L+1
layered sub-images [28], the undecimated wavelet transform
and grey level co-occurrence matrix are combined in order
to obtain detailed textural specifications on the mammogram
images [29], it is shown that free-form curves with properly
defined essential functions are the solution curves of linear
differential systems [30], implicit curves and surfaces are

reconstructed from point cloud by using Gaussian Radial
basis functions [31], a new image modeling is developed by
combining boundary representation and parametrical meth-
ods [32], boundary images defined as unstable are modeled
by using parametrical integral equations system [33], the alu-
minum grain boundary of the ellipsoid and quadratic surfaces
the tessellation process is performed based on the 3D pictures
can be fabricated with [34], the exponential representation of
the curves and classical linear differential systems modeling
are compared [35].

Duffin et al. introduced signomial functions [36]. Studies
have shown that these functions using real number powers
are generally considered to be optimization problems in the
literature and to be solved by geometric programming and
global optimization techniques [37], [38], [39], [40], [41].
The application of signomial functions is quite rare in the
field of image processing and modeling; some studies ren-
ovate and reconstruct the double and grayed-out pictures
by using signomial programming [42], in which noisy pic-
tures are cleaned by using Fourier transform and signomial
functions [43], equations with real number power can be
expressed mathematically [44], signomial programming is
used for the most suitable aircraft model design [45], [46],
[47], error definitionwith non-integer exponents for the linear
axis [48], and the fractional polynomial method is used to
evaluate the system performance [49]. Additionally, studies
in which polynomial coefficients are determined by deep
learning to find the 2D image boundary line include [50] for
IPs and [51] for fractional implicit polynomials.
The studies in the literature employ implicit curves/surfaces

and optimization techniques together are minimal. Interian et
al. (2017) attempted to determine the degree of polynomials
that should be used to model 2D and 3D images with IP
through particle swarm optimization (PSO) and differential
evolution (DE) algorithms, which are heuristic methods. The
value determined in the relevant study is the degree of IP
number that should be used [52].
A comparative analysis of signomial functions in image

processing and modeling applications is given in Table 1.
In Table 1, although it can be determined by various meth-

ods that the number of IP should be used in the studies given
in the literature, the powers of each term have not been dealt
with individually. This study focused on the combination
of signomial modeling and heuristic optimization in image
modeling and increased the fitting precision in 2D model-
ing to the same degree. The 3L method was preferred as
the basic algorithm because it can successfully model 2D
shapes and 3D objects. As an experimental study, some 2D
figures in the literature were modeled with IP and signomial
functions. Modeling was carried out by incorporating the 3L
method into IP and signomial functions. Although the shapes
were modeled meaningfully using the 3L method with IP,
signomial functions were necessary to enhance sensitivity.
In this study, the expression, as much as the number of terms
formed due to the degree of power determined for IP, was
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TABLE 1. The literature comparison of signomial functions in image
processing and modeling.

modeled by the real number powers of signomial functions.
The Artificial Bee Colony (ABC) algorithm [53], a heuristic
method, was employed to determine the real power degrees
of the signomial function. As a result of adding the initial
power expression of IP as a population element for ABC, the
sensitivity of the existing model was increased rather than
undergoing remodeling.

The novelty and contribution are: (i) for the first time,
an attempt is made to increase the fitting precision of 2D
shapes by using signomial powers together with the 3L
method; (ii) with this approach, more precise modeling can
be performed without increasing the number of terms in the
mathematical model.

This study is organized as follows: the first part discusses
the importance of implicit modeling and relevant studies,
the second part mentions the materials and methods as well
as explains the dataset and methods, the third part includes
experimental studies and optimizing of signomial powers,
and the final part includes the conclusions.

II. MATERIALS AND METHODS
This study used boots, aircraft, cells, pliers, and guitars from
2D shapes included in the literature as data sets to test model-
ing success. These 2D shapes, which are mostly not publicly
available data sets [50], form the target curves of IP. In this
study, hand drawings with a curved structure were used in

modeling, where the success of fitting precision could be bet-
ter determined. Other reasons for preferring hand drawings
as a data set are that these images provide data diversity by
covering noisy examples in the real world, can improve the
model’s generalization ability, and can reduce the overfitting
problem. Draft drawings are provided in Supplementary files.

Different images in the dataset may require different poly-
nomial degrees for optimal representation due to their unique
characteristics. Complex images may require higher-degree
polynomials for accurate modeling, while lower-degree poly-
nomials may be sufficient for images with more superficial
structures. This study employed polynomial powers that
could effectively model images with diverse structures at a
visually acceptable level. For this reason, different degrees
were utilized for each image. Higher polynomial degrees
were used, especially in some complex images, because
curved structures could not be modeled at the desired level.
Since hand drawings were used in this study, the data set also
contains slight noise. The use of higher-degree polynomials
may result in overfitting, especially in less complex data sets,
and may cause noise to be included in the model.

In the field of modeling, normalization processes are
frequently employed to express the object in a standard
format. The result obtained in many normalization meth-
ods reduces the adverse effects of the implicit algebraic
curve. This usually occurs more in higher-degree polynomi-
als. In high-degree polynomials, the noise-like corresponding
impact increases in the ratio of the degree of power. The
radial distance normalization method was used in this study.
The normalized data was then divided into layers using the
3L algorithm for modeling performance. IP and signomial
functions were used to find the power values of the layered
data, and the real number powers of the signomial function
were found by ABC, one of the popular heuristic methods
in the literature. Finally, to identify the coefficients of both
IP and signomial expressions, the ridge regression method
was employed in the modeling process. This method has the
potential to distort unwanted excess curves.

A. IMPLICIT ALGEBRAIC CURVES
All linear implicit curve fitting techniques aim to converge the
given data set with the help of a polynomial by minimizing
the algebraic distances between them as much as possible.
Implicit algebraic curves and optional selected n-degree IP
models can be represented in 2D, as shown in Equation (1).
The number of coefficients for 2D of the implicit algebraic
curve is c = (n + 1)∗(n + 2)/2.

f (x, y) =

∑
i,j≥0,i+j≤n

aijxiyj= 0 (1)

Algebraic curves or surfaces model sample objects by
considering the measured geometric data and consequently
form the global expression of the object. The (x-y) pairs in
Equation (1) that result in the value of the function being
equal to zero provide the solution and thereby form the 2D
shape.
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B. 3L ALGORITHM ON 2-DIMENSIONAL OBJECTS
The 3L algorithm was developed for the first time by
Lei et al. [2], and the method is based on the constraint
principle to ensure that the fitting polynomial passes through
the data and the other two layers. In this way, the fitting
polynomial can eliminate the singularity and follow the data
environment.

Themain idea of the 3L algorithm for shapes is to represent
the entire shape by classifying each 2D point as lying outside,
inside, or precisely on the shape. Consequently, the curve to
be constructed is initially joined with the points at a distance
of ε from the inner and outer sides of the original data. The
Euclidian distance can be employed to perform this operation.
According to the implicit function, it is forced to take the
value +1 in the outer layer, −1 in the inner level, and 0 in
the middle layer. Thus, b as a vector and M as a 3-layer data
matrix are expressed in Equation (2) [16].

b = [+1 . . . + 10 . . . 0 − 1 . . . − 1]T(3Nx1) ,

M =

M+ε

M0
M−ε

 =


YT
1

YT
2

. . .

YT
3N


3Nxc

(2)

C. RIDGE REGRESSION METHOD
Recently, linear approaches to curve fitting problems have
begun to emerge. However, these techniques often fail to
provide global stabilization for many situations and are not
resistant to disturbing effects such as noise. Several methods
have been developed to address these effects, but ridge regres-
sion analysis has emerged as a prominent technique. Ridge
regression is one of the deviation estimation methods. It is
preferred in multicollinear cases because it gives estimates
with more minor variance than the variance of the least
squares method. The method allows for the inclusion of all
variables in the model.

The coefficient vector of the result curve can be obtained
by the least squares method, as demonstrated in Equation (3).

aK = (MTM)
−1

MTb (3)

Linear curve fitting techniques ensure local stability
around data points. However, they are inadequate for global
stability. The values of the single-term matrix MT,M in
the near multiple connections in the data are approximately
singular, as some eigenvalues are much smaller than others.
These eigenvalues cannot contribute to fitting the data set
around itself and contain extra open, unstable branches. The
open, unstable curves around the object are permanently
displaced as a result of the ridge regression method, so the
term kD in Equation (4) is applied by adding the least squares
method [16].

aK = (MTM + kD)
−1

MTb (4)

In the ridge regression method, the diagonal D matrix,
which has the same number of terms as the aK coefficient
vector, can be selected as the identity matrix.

D. SIGNOMIAL FUNCTIONS AND ARTIFICIAL BEE COLONY
Unlike polynomials, signomial functions are expressions
whose power degree and coefficients can be real numbers.
The function is called a posynomial if the coefficient expres-
sion is a positive real number [36]. An example signomial
expression is presented in Equation (5).

f (x1, x2, x3) = 4.6x21x
−0.3
2 x0.73 − 2x−4

1 x3.23 (5)

In terms of modeling, signomial functions contain real
number powers, which enables them to perform precise mod-
eling but may present challenges in calculation. To address
this, a heuristic optimization algorithm has been employed to
determine the optimal power degrees. In this study, the ABC
is used as a heuristic algorithm.

The ABC is based on swarm intelligence and was first
proposed by Karaboga [53]. The ABC is one of the most
popular heuristic algorithms in the literature and can model
the foraging behavior, learning, information sharing, and
memorization of bees. The ABC algorithm models the intel-
ligent decision-making behavior of a bee colony that gathers
information from an environment and adjusts its behavior
accordingly. The model of minimum forage selection that
leads to the emergence of collective intelligence consists of
three essential components: food sources, attendant worker
bees, and non-commissioned worker bees. Bees communi-
cate about the quality of their food sources in the dance
area with a waggle dance. The direction and duration of this
dance are closely related to the direction and distance of the
food source declared by the dancing bee. Worker bees share
their knowledge with a probability proportional to the food
source’s profitability. Scout bees randomly start searching for
food sources around the hive. The scout bee that discovers the
food source begins to carry nectar from the food source to the
hive [53].
To model these behaviors of bees in the computer envi-

ronment, the ABC algorithm first performs the random
determination of the starting positions of the food sources as
in Equation (6).

xij = xminj +rand(0, 1)(xmaxj − xminj ) (6)

In Equation (6), xminj is the lower bound, xmaxj is the upper
bound, xij is the solution vector (j = 1, 2, . . . , c), and i =

1, 2, . . . , SN . Here, c is the number of the parameters, and SN
is the number of solutions. Based on their assigned tasks, the
ABC algorithm divides bees into three types: worker bees,
onlooker bees, and scout bees. Each phase of the worker,
onlooker, and scout bees occurs in cycles. Each stage of
the process is reviewed to determine the best solution, and
the process continues until the stopping criterion has been
met. During the worker bee phase, new solutions are gener-
ated by examining the neighborhoods of existing solutions,
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as in Equation (7).

x′
ij = xij + 8ij(xij − xkj) (7)

In Equation (7), x′ is the new candidate solution vector,
8ij is a randomly determined number in the range of -1 to 1,
and xk corresponds to a randomly chosen neighbor solution
vector. A greedy selection method is then used to compare
this new solution to existing solutions. The new solution
is used if the new candidate solution is considered better,
otherwise the counter is increased. This counter determines
whether the food source has been exhausted. A fitness-based
probabilistic selection method determines the best solution in
the onlooker bee phase. Equation (8) is used to calculate the
probability of individuals.

Pi =
Fitnessi∑SN
i=1 Fitnessi

(8)

In Equation (8), Pi is the probability value of solution i.
After choosing a solution, a greedy selection is applied, much
as in the worker bee phase, to keep the better solution for
the population. If the solutions do not improve, the counter is
increased again. If the trial counter of a solution xi exceeds the
parameter ‘‘limit’’, the corresponding source is abandoned.
After that, the bee from that source acts as a scout bee. During
the scout bee phase, the bees perform a random search [54].

E. PROPOSED ALGORITHM FOR SEARCHING SIGNOMIAL
POWERS USING ARTIFICIAL BEE COLONY
This study employs the classical ABC algorithm to find the
real number powers of the signomial functions. In general,
the ABC algorithm begins with a random initial population,
as stated in Equation (6). In the proposed algorithm, the
initial population of the ABC algorithm is initialized with
IP powers. In this way, worse results than the classical IP
method are prevented, and the solution space is improved.
The ridge regression method determines the coefficients of
the signomial function for which real number powers are
sought and determined. The optimal values obtained by
the proposed algorithm express the signomial powers, and
these powers can be used together with the 3L method. The
algorithm for the proposed signomial function is presented in
Algorithm (1).

As shown in Algorithm (1), the initial step of the proposed
method is to determine c, which represents the number of
parameters to be optimized for the signomial function. While
the number of coefficients for n-degree IP is calculated with
(n+1)∗(n+2)/2, when the powers of the constant term are
not taken into account, there are (n+1)∗(n+2)/2-1 power-
containing coefficients. There are two powers in each 2D
IP (x-y) term containing the coefficient. For this reason, the
number c is calculated as ((n+1)∗(n+2)/2-1)∗2 and found as
(n+1)∗(n+2)-2. Then, the initial population with c parame-
ters is determined according to Equation (6). The proposed
algorithm updates the randomly generated initial popula-
tion using the known IP powers. For this, the value of x1j,
which represents the first population in the solution vector in

Algorithm 1 Searching for Signomial Powers Using ABC
Begin
Determine c, which is the number of parameters to be
optimized for the signomial function using n-
dimensional IP terms as (n+1)∗(n + 2) - 2
Create the initial population of the ABC algorithm with c
variables
Replace the value of x1 with the n-degree IP powers given in
Equation (1)
while (maximum iteration number is not reached)

Find coefficients of new populations using
Equation (4)
Calculate objective function values according to
Equation (2)
Determine new populations using the ABC
optimization algorithm

end while
Return optimal parameters
End

Equation (6), is replaced with the n-degree IP power given
in Equation (1). Then, using the ridge regression method, the
coefficients of the signomial function are found according to
Equation (4). The resulting signomial function is expressed
as M0 and calculated according to Equation (2) using the
3L algorithm. The objective function value is calculated
according to the performance metrics resulting from the 3L
algorithm and the original shape. The ABC algorithm mini-
mizes the objective function value and the xij solution vector
is improved. This process is continued for the defined number
of iterations. As a result, the optimal values obtained are the
powers of the signomial function.

F. BINARY IMAGES AND PERFORMANCE METRICS
Binary images have only two values (black and white) and
can be obtained with the help of existing point clouds or mod-
eled equations in terms of algebraic curves. Binary images
can be evaluated with criteria such as similarity and quality
with another binary image of the same size. Although IP
and ABC algorithms use the 3L method and ridge regres-
sion, unwanted branches can still appear on binary images.
To perform a performance evaluation between the original
image and the modeled image, it is necessary to eliminate the
unstable branches. This allows for comparisons to be made
on modeled objects alone. This study used Algorithm (2) to
clear unstable branches in binary images containing modeled
objects.

Performance evaluation could be done with the binary
image obtained by Algorithm (2) and the original binary
image expressed by M0 in Equation (2).

Root mean square error (RMSE), peak signal-to-noise ratio
(PSNR), coefficient of determination (R2), and structural
similarity (SSIM) metrics were used to evaluate modeling
success. These metrics are used to evaluate the similarity and
quality of images.
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Algorithm 2 Elimination of Unstable Branches on Binary
Images
Begin
Input: IP or ABC binary image, which is the sets of
(x,y) in Equation (1)
Output: more stable binary image
Labeling of every separate shape on the input image
Calculating the area of every label using their pixels
Determining the label lblmax, which has the maximum area
for i=1:number of labels

if i ̸= lblmax
Eliminate i th label by updating their pixel
values to zero

end if
end for
End

RMSE is a metric that measures the magnitude of the error
and is often used to find the distance between the generated
model values and the actual values. Equation (9) shows the
RMSE calculation of an image in mxn dimensions.

RMSE =

√
1

mxn

∑m

i=1

∑n

j=1
(I (i, j) − I′ (i, j))2 (9)

In Equation (9), I indicate the original image while I′

indicate the modeled image.
The PSNR is a metric that indicates the ratio of the maxi-

mum possible power of a sign to the power of the noise on the
sign. PSNR can be considered an approach to human quality
perception and is calculated as in Equation (10).

PSNR = 20 log10

[
1

RMSE

]
(10)

R2 is a measure that allows one to determine how certain
one canmake predictions from a certain model. Equation (11)
shows the formulation of R2.

R2= 1−

∑m
i=1

∑n
j=1

(
I (i, j) − I′ (i, j)

)2∑m
i=1

∑n
j=1

(
I (i, j) − Ī

)2 (11)

In Equation (11), Ī refers to the average of the original
image.

SSIM is used to compare the luminance, contrast, and
structure of two different images. It can be treated as a simi-
larity measure of two different images. Equation (12) shows
the formulation of SSIM.

SSIM
(
I,I′

)
=

(2µIµI′ + c1) x (2σII′ + c2)(
µ2
Iµ

2
I′ + c1

)
x

(
σ 2
I σ 2

I′ + c2
) (12)

In Equation (12), µ is the mean intensity, σ is the standard
deviation, and c is the constant to avoid instability.

III. EXPERIMENTAL STUDIES
This study modeled 2D shapes in the literature boot, air-
craft, cell, pliers, and guitar with IP and signomial functions.

In both methods, an additional two layers were created using
the 3L method to ensure that the coefficients could express
the model effectively. The expression, as well as the number
of terms formed due to the degree of power determined for
IP, was modeled by the real number of powers of signomial
functions. The ABC algorithm was employed to determine
the real power degrees of the signomial function. As ABC
parameters, the iteration number was selected as 300, the
colony size was set at 100, the food source was selected as
50, and the food limit was selected as 25. The study [55]
about the performance of the classical ABC algorithm stated
that the colony size could be 100. According to the ABC
algorithm, the number of food sources is half the colony size.
25 is preferred as the limit value because it is not desired to
do too much random search, and it is sufficient considering
the preferred value of 300 as the number of iterations. The
preferred number of iterations was deemed enough in the
preliminary studies, and no improvement was observed in
further algorithm execution. As a result of adding the initial
power expression of IP stated in Equation (1) as a popu-
lation element for ABC, thus it increased the sensitivity of
the existing model rather than remodeling. From the shapes
modeled by experimenting with various order curves: 4, 6,
and 8th-degree curves for the Boot picture, 6 and 12th-degree
curves for the Aircraft picture, 6, 8, and 10th-degree curves
for the Cell picture, 6th-degree curves for the Pliers picture,
and 6 and 8th-degree curves for the Guitar picture give better
results and these are used.

Figure 1 shows the modeling results of the Boot picture
with 4th-degree IP and the signomial function. The signomial
function’s power degrees are determined with ABC.

When Figure 1 is examined, it is seen that the sig-
nomial method with the same degree of power follows
the original model better than IP. It is seen that the
signomial function modeled with ABC presents more pre-
cise modeling success, especially in transition regions and
folds.

As shown in Figure 1, ABC could model the curvier area
in the right corner and, more precisely, represent the Boot
image’s base.

The mathematical expression created with ABC for the
Boot picture seen in Figure 1 is given in Equation (13).

0.22807 x0.77981y3.368

+ 0.22085 x2.0668y4 − 1.292 x1.6699y1.5457

− 1.3185 x2.9771y3.3706 − 2.0021 x1.1418y1.2684

+ 0.022096 x4y3.8223 − 0.15188 x1.091y4

+ 2.1766 x3.8121y0.84048 + 2.4004 x3.452y1.3631

+ 7.4518 x1.9107y0.89136 + 3.4866 x1.5416y0.4783

+ 1.1874 x3.0396y3.2271 − 3.2005 x3.8122y1.1727

− 9.0862 x2.2231y0.66466 + 0.0218415 (13)

Images of the Boot picture obtained with 6th-degree IP and
ABC methods are seen in Figure 2.
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FIGURE 1. Modeling of the Boot picture with 4th degree IP curve and
signomial function.

FIGURE 2. Modeling of Boot picture with 6th-degree IP and ABC
functions.

As shown in Figure 2, while the bottom of the boot can
be modeled at the degree of 6, ABC has again shown more
precise modeling success in the left corner, representing the
top of the boot. ABC can make more precise curve fitting
than IP in the exact order of modeling. Finally, the modeling
results and the differences between the Boot picture with 8th-
degree IP and ABC modeling are presented in Figure 3.

As shown in Figure 3, while both methods are regarded as
successful in 8th-degree modeling, ABC can dig deeper into
the curve transition in modeling the upper part of the boot.
According to the modeling results, transitions and precision
were better in signomial functions established with ABC,
especially in low-grade modeling.

The RMSE performance values of the modeling results
obtained in Figure 1-3 compared to the original model are
shown in Table 2. The RMSE values obtained in Table 2 were
calculated according to the estimates of IP and ABC models,
with the M value established according to the original model
and expressed by Equation (2).
As shown in Table 2, the ABC method has fewer RMSE

errors in the modeling performed on the Boot image than
IP. Additionally, regarding the error values obtained, the
ABC method reduced RMSE error at most at the 4th-degree
modeling.

Another image used to test methods in terms of modeling
is aircraft, and modeling results of Aircraft picture obtained
by the 6th-degree IP and ABC methods are seen in Figure 4.

FIGURE 3. The modeling result of the Boot picture was obtained with
8th-degree IP and ABC modeling.

TABLE 2. Performance results of 4th, 6th, and 8th degree IP and ABC
modeling of the Boot picture.

FIGURE 4. Modeling of Aircraft picture with 6th-degree IP and ABC.

As seen in Figure 4, modeling theAircraft imagewith ABC
at the degree of 6 gives better results than modeling with IP.
While primarily in Figure 4, the curved region of the bottom
of the aircraft in the right zone can be modeled with ABC,
the IPmethod has passed this region. The RMSE performance
values of the modeling results obtained for the Aircraft image
compared to the original model are shown in Table 3.

As seen in Table 3, ABC is also more successful in the
RMSE error. Successful results have also been obtained in
modeling the Cell picture at the degrees of 6, 8, and 10,
and modeling results of the Cell picture obtained from the
6th-degree IP and ABC methods are seen in Figure 5.
As shown in Figure 5, the ABC method has also achieved

a more successful modeling of the curves that determine the
sensitivity. While ABC can model the convoluted transitions
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TABLE 3. Performance results of Aircraft picture modeling with 6th and
12th-degree IP and ABC methods.

FIGURE 5. Modeling of cell picture with 6th-degree IP and ABC.

at the top of the Cell image well, the IP method has passed
these regions. The modeling results of the Cell picture
obtained from 8th-degree IP and ABC methods are seen in
Figure 6.

Successful modeling results were also obtained in Figure 6
using the signomial powers found by the ABC method.
Again, the areas with convoluted structures that were chal-
lenging to model were modeled more precisely with the ABC
method than with IP.

FIGURE 6. Modeling of Cell picture with 8th-degree IP and ABC.

TABLE 4. Cell picture modeling performance results with 6, 8, and
12th-degree IP and ABC methods.

The RMSE performance values of the modeling results
obtained for the Cell image compared to the original model
are shown in Table 4.

As seen in Table 4, the ABC method has less RMSE value
in modeling the Cell image, and higher degree modeling
errors with IP can be achieved in the ABC method at lower
degrees. The lower degree of modeling allows the mathemat-
ical model to be expressed with fewer terms.
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FIGURE 7. Modeling of Pliers picture with 6th degree IP and ABC.

Modeling results of Pliers picture obtained from 6th-degree
IP and ABC methods are seen in Figure 7.

As shown in Figure 7, the ABC method can give an
indented curve on the top of the Pliers picture, although it is
not entirely successful. The IP method has passed this region.

Modeling results of the Guitar picture obtained from 6th-
degree IP and ABC methods are seen in Figure 8.
As shown in Figure 8, while the protruding curves on the

right and left sides of the Guitar picture are bypassed by the IP
method, the ABC method provides the corresponding curve
on the right side of these regions. However, the model could
not be made up, although a better result was obtained on the
left side rather than IP.

Modeling results of the Guitar picture obtained from
8th-degree IP and ABC methods are seen in Figure 9.

FIGURE 8. Modeling of Guitar picture with 6th degree IP and ABC.

When Figure 9 is examined, it is seen that while the ABC
method can create a deep curve on the left side, it has suc-
cessfully been able to model the right area. Although the IP
method can form folds at the degree of 8, its results are not
seen very well.

The RMSE performance values of the modeling results
obtained for Pliers and Guitar images are shown in Table 5
in terms of the original model.

As shown in Table 5, the ABC method has less RMSE
value for modeling Pliers and Guitar images and performs
more successful modeling than the IP method. When the
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FIGURE 9. Modeling of Guitar picture with 8th degree IP and ABC.

TABLE 5. Performance results of Pliers and Guitar pictures modeling
were obtained from 6th and 8th-degree IP and ABC methods.

RMSE values obtained on Boots, Aircraft, Cells, Pliers, and
Guitar images are considered, the average RMSE values
obtained from various levels of modeling on each image are
shown in the spider graph in Figure 10.
When Figure 10 is examined, performance values of IP

and ABC methods for modeling Boot, Airplane, Cell, Pliers,

FIGURE 10. The average RMSE values of IP and ABC modeling were
obtained on the images.

FIGURE 11. Binary Pliers picture, (a) Original Image (b) 6th-degree model
with IP (c) 6th-degree model with ABC.

and Guitar images with curves of various orders are seen.
When these values are compared, the superiority of the ABC
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FIGURE 12. The average RMSE, PSNR, R2, and SSIM values of IP and ABC
modeling on the images.

method can be seen when considering the average RMSE
values compared to IP. However, another case to consider is
that the obtained RMSE values are calculated according to the
M value in Equation (2). Only M0 of the layers specified in
the 3L method should be considered when viewed visually.
Therefore, the PSNR, SSIM, R2, and RMSE values, which
are popular performance criteria in the literature, were also
examined on the images obtained by converting the modeling
results to binary images. The RMSE value evaluated in binary
images was calculated on the images as the error criterion
between the original image and the modeled image.

Even if the IP curves come to a more stable structure
with the 3L method, unstable branches can still be seen in
regions with zero equality. A simple cleaning method in
Algorithm (2) was used to eliminate these unstable branches
while obtaining binary images. This means all objects on
the binary image are evaluated separately, and all other
objects except the largest ones are deleted. The binary images
obtained in this way are in the same proportions as the original
image in size and are cleaned from the unstable branches.
The obtained pictures are now able to perform performance
analysis. The image of the Pliers shown in Figure 7 has been
transformed into a binary image in Figure 11.
As shown in Figure 11, binary images free of unstable

branches and have the same scale are comparable on perfor-
mance criteria.

The RMSE, PSNR, R2, and SSIM values obtained from
the original binary images of the Boots, Aircraft, Cell, Pliers,
and Guitar images and the binary images obtained from the
modeling are included in Table 6.

As shown in Table 6, the ABC method can achieve better
results in most image and performance criteria. While ABC
has achieved more successful modeling in visually complex
regions, it has achieved lower values than IP in some perfor-
mance criteria. However, ABC’s superiority over IP, which

TABLE 6. The RMSE, PSNR, R2, and SSIM values of various degrees of IP
and ABC modeling on the images.

can achieve better results in most criteria than IP, can be seen
more clearly when the averages of the relevant performance
criteria are considered. Accordingly, the averages of the val-
ues obtained in Table 6 are seen in the spider graph given in
Figure 12.

Figure 12 shows that the PSNR, R2, and SSIM average
values obtained from the various degrees of the ABC method
performed on five different test images are higher and better
than those obtained from the IP method. In addition, regard-
ing the RMSE value expressing the error value and expected
to be low, ABC again has the advantage over IP.

The results demonstrated that the use of signomial pow-
ers increased the modeling success of IP and 3L methods.
Furthermore, heuristic methods could be used to detect these
powers.

IV. CONCLUSION
Obtain mathematical equation of the objects and their mod-
eling with various methods used in numerical analysis,
dynamical systems, chemistry, robotics, reverse engineering
of scanned functional surfaces, computer graphics, game and
animation, computer-aided design, and modern manufactur-
ing processes. It is vital to perform the modeling accurately
and precisely depending on the areas of use. This study
attempted to increase modeling success on 2D objects by
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using signomial powers and the 3L method for the first time.
This approach led to an increase in the success of modeling
with the application of signomial functions, as well as an
increase in the success of modeling with the existing num-
ber of terms. Instead of modeling shapes with higher-order
polynomial curves, the shapes were modeled with signomial
powers, which provide more precise modeling with the same
number of terms. The images of Boots, Aircraft, Cell, Pliers,
and Guitar were used in this study. The ABC algorithm
was employed to determine these powers, and the average
RMSE, PSNR, R2, and SSIM values were obtained in the
order of 0.1354, 17.4145, 0.2863, and 0.9663. These values
obtained by the ABC algorithm are more successful than
those obtained by the classical IP with the 3L method. It can
be seen that modeling success can be increased with signo-
mial powers.

The proposed algorithm is limited in its current form to
2D objects. Its performance should therefore be evaluated ini-
tially in the context of modeling and unstable branch removal
in 3D objects.

In future work, the signomial powers-based modeling pro-
posed in this study will be employed to enhance the detection
of border regions in 3D segmentation of computed tomogra-
phy images of congenital heart diseases using a deep learning
approach such as U-Net. Additionally, a new regression
algorithm based on these curves using signomial powers
(as well as a binary classification algorithm as in logistic
regression) will also be developed.
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