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ABSTRACT Wearable devices have gained significant popularity for continuous Electrocardiogram (ECG)
monitoring due to their compactness and convenience. Day-by-day and 24/7 monitoring without gaps is
demanded to promptly detect unusual symptoms that are short-term warning signs of dangerous diseases.
Cost-saving criteria are the highest priority to extend the use time of devices and maintain the system opera-
tion. However, not all measured signals are useful because the signal quality will be affected by many things
such as motion artifacts and muscle noise. Demands on classifying and sending only the usable signal is a
requirement, it can save the battery on wearable devices and the expense on the server side (i.e., cloud-based
processing), such as storage and processing resources. Therefore, Signal Quality Indices (SQIs) have been
developed and researched to determine signal quality to meet the above requirements. This study introduces
a novel SQI approach to classify signals. The proposed method has three contributions: 1) exponentially
Weighted Mean-Variance (EWMV), a lightweight equation, to identify peaks, followed by applying an
adaptive threshold to define peaks that have the same shape as R-peaks; 2) outlier elimination process
is proposed to enhance the accuracy; and 3) maximal Overlap Discrete Wavelet Transform (MODWT) is
employed to categorize ECG signals into a new class, potentially containing signals relevant to pathological
analysis. Experimental results demonstrate that our algorithm achieves the highest sensitivity for both noisy
and noiseless data sets. Specifically, it achieved a sensitivity of 99.31% for clean signals and 97.69% for
noisy signals. In the case of the PhysioNet challenge data set, while our sensitivity of 96.37% may not be
the highest, our accuracy stands out at 95.10%, surpassing other methods recently reviewed. Additionally,
our approach demonstrates the lowest trade-off between sensitivity and accuracy among the surveyed SQI
techniques.

INDEX TERMS Electrocardiogram (ECG), exponentially weighted mean-variance (EWMV), maximal
overlap discrete wavelet transform (MODWT), signal quality indices (SQIs), wearable devices.

I. INTRODUCTION
According to World Health Organization (WHO), ischaemic
heart disease is the leading cause of death globally, respon-
sible for 16% of the world’s total deaths and resulting in
8.9 million deaths in 2019 [1]. However, the good news is
that 80% of heart attacks are preventable [2], and an Elec-
trocardiogram (ECG) signal is a noninvasive method that

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

can be used for early diagnosis of heart-related diseases.
However, traditional hospital devices measuring ECG sig-
nals have certain disadvantages. Firstly, they require multi-
ple sensors all over the body, which may cause discomfort.
Moreover, hospital ECG measuring devices cannot function
24/7 because ECG measurement can only be done when the
patient goes to the hospital. Therefore, wearable and com-
pact healthcare devices for continuous ECG recording are
essential for early diagnosis. Thanks to the development of
wearable devices and Internet of Things (IoT) technologies,
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making the wearable ECG device was developed [3], [4], [5].
In [5], Tiago Rodrigues et al. presented a method that can
detect R-peaks of ECG signals to calculate heart rate with
high accuracy. Those ECG signals are measured by a device
worn like a shirt, and users could have worn 24/7. Those
wearable devices are lightweight and comfortable to wear,
so the 24/7 measurement problems are resolved.

On the other hand, ECG signals measured from those
devices are not always good for many reasons, such as
poor electrode connection, user movement, Electromyogram
(EMG) artifacts, Power Line Interference (PLI), Baseline
Wander (BW), Muscle Artifact (MA) [6]. Figure 1 describes
various types of noise. In Fig. 1a, the ECG signal is affected
by BW, and the signal tends to vary along the low-frequency
noise. However, this signal is considered a good signal
because the PQRST complex shape is still visible. When
the ECG signal is affected by electrode motion artifacts like
Fig. 1b, due to electrode placement rapidly changing so the
shape of the PQRST complex is destroyed, it can be seen that
the small amplitude waves like P and T waves are covered by
the large amplitude. Figure 1c shows the ECG signal affected
by muscle artifact. Since muscle movement also interferes
with the ECG signal, it can be seen that the ECG signal has
many segments that are affected, leading to a complete loss of
characteristics of the ECG signal. Sometimes, the disconnect
between the electrode and the skin will cause a signal like
a flat line like Fig. 1d. The filtering methods are usually
used to remove the effect of noise and are usually embedded
in the devices [4], [7]. However, the filtering approach has
some weaknesses, including phase shifting and selection of
optimized filter order. In reality, ECG signals are sensitive to
filters because that could affect the quality of ECG signals,
and it might cause misdiagnosis for clinical applications.

In addition to the challenges outlined, poor signals cap-
tured by ECGwearable devices can lead to a cascade of issues
including misdiagnosis, false alerts, and wasted healthcare
professionals’ time. Moreover, in the context of cloud-based
processing where all data is typically uploaded and ana-
lyzed remotely, inefficient utilization of server resources
exacerbates these challenges. Sending the entirety of ECG
signals from devices to servers or healthcare providers
is unnecessary and inefficient. Instead, it’s more practical
and resource-efficient to transmit only high-quality signals,
thereby reducing processing requirements on the server side.
Furthermore, considering the limited battery capacity of com-
pact wearable devices, it’s essential to optimize energy usage
by minimizing unnecessary data transmission. Transmitting
only the requisite, high-quality signals helps prolong battery
life, enhancing the usability and practicality of these devices
for users. To address these issues, Signal Quality Indices
(SQIs) serve as a crucial tool. By implementing SQIs, wear-
able devices can evaluate the quality of signals in real-time
and selectively transmit only high-quality data to servers or
healthcare professionals. This approach not only reduces the
burden on server resources but also improves the efficiency
of wearable devices by conserving battery power.

FIGURE 1. Types of noise and artifact.

This paper presents a novel SQI method for assessing the
quality of ECG signals based on skewness and Maximal
Overlap Discrete Wavelet Transform (MODWT). In contrast
to conventional approaches relying on fiducial features, tem-
plate matching, or machine learning, the proposed method
introduces a streamlined algorithm for isolating and identi-
fying peaks resembling R-peaks. Subsequently, it calculates
the skewness of peak-peak intervals to categorize signals as
either ‘‘GOOD’’ or ‘‘BAD’’. Moreover, the method incorpo-
rates theMODWT,1 a frequency domain approach commonly
employed in processing various types of bio-electrical sig-
nals [8], [9], [10]. Typically utilized for feature extraction in
disease classification or detection. In this study, MODWT

1MODWT is a highly redundant and non-orthogonal transformation,
offers comprehensive signal information independent of sample size, unlike
conventional orthogonal transformations.
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is used to categorize signals into a distinct class labeled
‘‘CONSIDER’’, potentially containing signals pertinent for
pathological analysis.

By implementing this method, we aim to improve the
efficiency of wearable devices. Our primary goal is to extend
the battery life of these devices, thereby enhancing their
efficiency and user experience. By filtering out unusable sig-
nals, we can significantly reduce power consumption while
still maintaining the reliability of the data. Additionally, our
method is designed to optimize the use of health-related
signals. Even signals that may seem unusual at first glance are
not discarded, as they could indicate a health condition. This
approach allows us to capture valuable health information
that might otherwise be overlooked.

According to the above motivations, this paper has made
the following contributions:
• Proposed using Exponentially Weighted Mean Variance
(EWMV), a lightweight algorithm to isolate rapidly
changed signals and eliminate the low-frequency effect.
The detail will be presented in section III-A1.

• Added an outlier elimination process to enhance the
method’s accuracy. In the previous work [11], cer-
tain health-related data were categorized as ‘‘BAD’’.
This paper introduces the outlier elimination method
to reduce the effect of outliers, making the possibil-
ity of delimiting the threshold to eliminate bad signal
cases accurately clear. Thus moving these anomalous
instances to an additional level, termed ‘‘CONSIDER’’.
This will be covered in the section from III-A2 to III-A5.

• Utilize MODWT to categorize the ‘‘CONSIDER’’ level
using frequency domain features, which exhibit charac-
teristics related to anomalies in the heart. This will be
shown in section III-B.

This paper is organized into six sections. Section II intro-
duces SQI types and their methods with pros and cons.
Section III outlines the proposed method. Section IV presents
performance results. Section V discusses the results and
future works, and section VI is the conclusion.

II. SQI OVERVIEW
SQIs are indices used to assess the quality of signal and
usually grade the ECG signal into two groups: good and
bad. SQIs are usually computed based on the morphology of
signals or based on feature extraction so that those indices
can eradicate the limitation of ECG signal filtration. SQIs
are divided into two categories: fiducial and non-fiducial.
In the fiducial type, various morphological and interval fea-
tures, including the duration of P-wave, QRS complex and
T-wave [12], PR and ST segment, and intervals, QT and RR
intervals [13] are extracted to predict whether the signal is
good or bad. Moreover, the amplitude of R-peak or noise
amplitude [14] is also used to assess the quality of the ECG
signal. In [13], Orphanidou et al present an SQI method based
on the PQRST shapes. This method recognizes R-peaks and
uses them as coordinates to calculate the QRS template. The
template is computed by getting the mean value of the set

FIGURE 2. Flowchart of the proposed skewness method.

QRS complexes. Then, the correlation values between each
QRS complex and the template are used to assess the quality
of the ECG signal.

In non-fiducial type, can divide into three common
approaches: SQI based on statistical [15], [16], [17], [18],
[19], [20], SQI based on transformations, such as SQI in time
domain [21], the frequency domain [22], or combining both
time and frequency domain [23], and SQI based on machine
learning [24], [25], [26]. In [22], Liping Li introduced an SQI
method that transferred the ECG signal into the frequency
domain to calculate the ratio between the power spectrum of
0.05-30 and 30-60 [Hz].

Existing fiducial SQI methods highly demand robust for
accurate R-peak detection algorithms. If the algorithm gives
wrong results, the assessment will also be wrong. In addition,
this method is only suitable for regular heartbeats. It does not
have the presence of various heart rhythms, such as normal
(N-type) and premature ventricular contraction beats (V-type)
in the signal segment. In the non-fiducial type, both statistical
and transformation approaches have shown promising results
in noise-free ECG signals. However, the accuracy of those
methods is significantly decreased when the ECG signals are
affected by noises or artifacts. Because when noise or artifacts
interfere with the power spectrum from 0.05 [Hz] to 30 [Hz],
the ratio used to assess the signal quality gives the same
results as when the signal is good. Machine learning SQI
approaches demand large ECG recordings and the balance
among the number of ECG signals, types of ECG, and noise
signals to build an accurate prediction model. In practice, this
is very difficult because the amount of unique ECG signal and
noise occupied is meager compared to the standard signal.

III. PROPOSED METHODOLOGY
This section elucidates the process of categorizing signal
quality into three distinct levels. The initial phase designates
signals as ‘‘BAD’’ utilizing the skewness technique. Subse-
quently, the remaining signals undergo processing through
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Algorithm 1 Algorithm of Peak Detection
Require: Set of boundary Bo, set of exponentially weighted variance VarEW
1: for i = 1→ N do ▷ N is the number of elements in VarEW
2: if VarEW[i] > Bo[i] then
3: if VarEW[i]− Bo[i] > 2× Bo[i] and VarEW[i] ≥ VarEW[i− 1] then
4: C← i ▷ Set C contains the coordinate of peaks
5: end if
6: end if
7: end for

theMODWT to classify them into the categories of ‘‘GOOD’’
and ‘‘CONSIDER’’.

A. SKEWNESS METHOD
Figure 2 describes the proposed skewness method. The input
ECG signal first goes through a peak isolation step to isolate
peaks similar to the R-peak. Then, an adaptive boundary is
calculated to eliminate the non-QRS area from the processed
signal by isolation step, and peaks similar to the R-peak are
detected. After that, the distance between adjacent peaks will
be used to calculate skewness, which is the crucial SQI to
decide if the signal is diagnosed as ‘‘BAD’’.

1) PEAKS ISOLATION
This step isolates peaks that have a shape that is similar to
R-peak, and the EWMV is chosen to satisfy two purposes:
first is making the peaks that are similar to R-peak stand out
more and minimize the effect of low-frequency noise and
artifacts, and second, is to make sure that the algorithm will
be low complexity. The EWMV is explained in (1)

VarEW[n] = (1− α)[VarEW[n− 1]

+ α(x[n]− µEW[n− 1])2], (1)

where µEW[n] and α computed in (1a) and (1b)

µEW[n] = (1− α)x[n]+ αµEW[n− 1], (1a)

α = 1−
2

N − 1
. (1b)

Where x[n] is the input ECG signal and (1) shows the
signal’s variance. This value will be big when there is a signif-
icant change from the signal and vice versa. Moreover, (1a)
calculates the signal’s mean contains α, which is the influence
factor of the previous sample on the current sample, with the
N as the number of samples that corresponds with half of the
QRS interval and half of the QRS interval chosen to isolate
the R peak. In [27], the QRS interval in adults is between
80 to 110 milliseconds, so 50 milliseconds are chosen as half
of the QRS interval in this paper. This is a crucial first step
as it provides a peak isolation process. Without this step, the
remaining components would have to deal with a noisy and
potentially misleading signal.

2) THRESHOLD CALCULATION
This step generates a boundary that covers a high percentage
of data. This boundary is used as the adaptive threshold to

FIGURE 3. Effect of upper outlier elimination on noisy and noiseless data.

eliminate most of the non-QRS area and is calculated using
the following

Bo[n] = (1− α)Thr[n]+ αBo[n− 1], (2)

where Thr[n] is computed by three times b[n] from a[n] with

b[n] =
√
(1−α)[b[n− 1]+α(VarEW[n]−a[n− 1])2], (2a)

a[n] = (1− α)VarEW[n]+ αa[n− 1], (2b)

and α is the influence factor like (1b).

3) PEAKS DETECTION
After acquiring the boundary, we will use it like the threshold
to detect the peaks by checking the difference between values
in setVarEW and Bo. If the variance is greater than two times
the boundary’s value, the coordinate ofVarEW will be defined
as a peak. SetC contains the coordinate of detected peaks, and
the detail of this step is explained in Algorithm 1.

4) OUTLIER ELIMINATION
The set of R peaks obtained above is similar to that of the
previous research [11], but this set can be inaccurate as it is
affected by outliers, which may cause it to be classified as
‘‘BAD’’ and then be discarded. To solve this problem, this
paper implements an outlier elimination process to reduce the
impact of outliers on the data.
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First, the set of peak-peak intervals is calculated in (3) and
contained in set P

P[k] = C[k + 1]− C[k], (3)

where C[k] is the coordinate of k th peaks which is defined in
Algorithm 1. However, an upper outlier elimination process
is deployed to control the skewness value. The upper outlier
elimination plays an important role, and it changes the sign
of the skewness value if the good signal is positive skewness
and converges the skew values if the value is bad. The upper
outlier points are defined as elements in set P that have values
more than three scaled Median Absolute Deviation (MAD)
from the median. The scaled MAD is defined as

MADscaled = C.median (|A−median (A)|) , (4)

where C is constant and is calculated by

C =
−1

√
2 erfcinv (1.5)

, (5)

which erfcinv is the inverse complementary error function.
This function is defined as the functional inverse of erfc, and
the erfc(x) function has form

erfc(x) = 1−

 2
√
π

x∫
0

e−t
2
dt

 . (6)

Figure 3 shows the impact of upper outlier elimination on
Skewness value when applied to noisy and noiseless data.
Figure 3a and Fig. 3b show the Skewness value with and
without the upper outlier, respectively. It’s clear that the vari-
ance of the noise set has significantly decreased. Meanwhile,
the sinus set remains almost unchanged, making it easier to
determine the threshold.

Algorithm 2 Algorithm of Signal Quality Assessment
Require: ECG signal, Fs

1: No.Segment =
⌊
length(ECG signal)

10× Fs

⌋
2: for i = 1→ No.Segnent do
3: if Skew[i] ≥ 0 then
4: if Skew[i] ≤ 2 and Per[i] < 0.7 then
5: BAD← BAD + 1
6: else
7: W̃ =MODWT(ECG[i])
8: r[i]=(11)
9: if r[i] ≥ 50% then
10: GOOD← GOOD + 1
11: else
12: CONSIDER← CONSIDER + 1
13: end if
14: end if
15: end if
16: end for

If the skewness is calculated at the previous stage, even
though the ‘‘BAD’’ signal has a positive skewness value, the

FIGURE 4. Flowchart of the Algorithm 2.

range of skewness values is still large even if there are a few
cases of the ‘‘GOOD’’ signals that are positive because of the
appearance of several long heartbeats. So by removing the
upper outlier, we can narrow the value range of ‘‘BAD’’ sig-
nals and even change the value of ‘‘GOOD’’ signals that have
a long heart duration to become negative, thereby making it
easier to determine the threshold ‘‘GOOD’’ and ‘‘BAD’’.

5) SKEWNESS CALCULATION
In statistic theory, skewness is a measure of the asymmetry
of the probability distribution, and the skewness value can
be positive, zero, or negative. This paper uses the skewness
parameter to assess the quality of the ECG signal. The skew-
ness of peak-peak interval has form

Skew =
1
K

K∑
k=1

(X[k]− X)3

σ 3 , (7)

where K is the number of elements in set X, X is the mean
value, and σ is the standard deviation of set X. Set X con-
tains the value of peak-peak intervals that applied the outlier
elimination process.

The ‘‘BAD’’ signals are defined when skewness is positive
skew or greater than 2. Thanks to the outlier elimination
process, the skewness threshold for ‘‘BAD’’ signals can be
defined in line 4 of Algorithm 2.
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B. MAXIMAL OVERLAP DISCRETE WAVELET TRANSFORM
Until now, we have classified signals into ‘‘BAD’’ and
‘‘GOOD’’ categories. However, there is a potential risk of
misclassifying anomalous heart signals containing useful
information about abnormal heart activities such as ‘‘BAD’’.
To address this, we have utilized the frequency domain,
specifically MODWT. It decomposes signal into different
sub-bands, and the ratio between these sub-bands can used to
establish the ‘‘CONSIDER’’ class. Additionally, MODWT is
suitable for our needs due to its low complexity when imple-
mented on hardware, as evidenced in [28] and further exem-
plified in [29]. Besides, MODWT has several advantages
when compared with Discrete Wavelet Transform (DWT)
• MODWT is a highly redundant, non-orthogonal trans-
form. Unlike DWT which discards down-sampled data
at each level of decomposition, MODWT retains this
data, making it distinctive.

• DWT is typically employed for samples of size
2N , ∀ N > 1, whereas MODWT can be utilized for
sample sizes of any value.

• Both transforms feature Multi-Resolution Analysis
(MRA), butMODWT offers the advantage of transform-
ing invariant. This means it can capture both the details
and approximate coefficients of a signal, which shift
along with the signal itself.

DWT of the signal x[n] is decomposed into one approxi-
mate component and detailed components like (8), (9) withN
is the number of samples, ϕj0,k (n) and ψj,k (n) are functions
of discrete variable x, respectively

Wϕ(j0, k) =
1
√
N

∑
n

x[n]ϕj0,k (n), (8)

Wψ (j, k) =
1
√
N

∑
n

x[n]ψj,k (n). (9)

Nevertheless, the partial DWT of the jth level imposes a
constraint on the sample size, necessitating it to be an integer
multiple of 2j

th
, which can lead to information loss in the

signal. But MODWT would not, the MODWT at the jth level
is applicable to any sample size N and is created by eliminat-
ing reused values from the DWT through downsampling. The
J0 level comprises J0 + 1 vectors:

[W̃1, W̃2, . . . , W̃J0 ] and ṼJ0 , (10)

each of which has length N . Where, W̃j (j = 1, 2, . . . , J0)
represents the detail components, and ṼJ0 corresponds to the
approximate component. In this study, with a signal sampling
rate of 250 Hz, a power ratio as expressed in (11) is computed
to categorize the ECG signal’s quality into distinct classes.
This ratio is derived from the detail components to mitigate
the influence of low-frequency noise that may appear in the
approximate components.

This paper proposed a process that classifies signal quality
into three levels: ‘‘BAD’’, ‘‘GOOD’’, and ‘‘CONSIDER’’.
Algorithm 2 outlines the implementation of this process
with a sampling rate of Fs = 250 [Hz] and a value of

J0 = 7. Figure 4 provides a more intuitive visualization of
Algorithm 2.

r =

4∑
j=2

Var(W̃j)

J0∑
j=1

Var(W̃j)

. (11)

MODWT and skewness component work together on the
refined ECG signal. The Skewness component simultane-
ously analyzes the asymmetry of the signal distribution to
classify signals, while the MODWTmethod further classifies
the signal quality based on frequency domain features. The
combination of these two processes allows for a comprehen-
sive understanding of the signal. The classification provided
by MODWT and Skewness component together contribute to
a robust detailed signal analysis and categorization.

IV. EXPERIMENT RESULTS
A. DATABASES
Various ECG signals with different PQRST complexes and
rhythms were collected to test the robustness of the pro-
posed algorithm. The MIT-BIH Arrhythmia Database (MIT-
BIHA) [30] is chosen to test the accuracy of the proposed
SQI method and its independence from the type of ECG
beat. The MIT-BIH Arrhythmia Database contains 48 half-
hour excerpts of two-channel ambulatory ECG recordings;
the recordings were digitized at 360 samples per second per
channel with 11-bit resolution over a 10 [mV] range. The
MIT-BIH Noise Stress Test Database (NST) [31] is used to
evaluate the ability to detect the noise of the algorithm, which
contains three different kinds of noise, which are Baseline
Wander (BW), Motion Artifact and EMG artifact. The sig-
nals that added noise were taken from the MIT-BIHA. The
noisy signal is generated by adding NST noise, beginning
with ten seconds segments alternating with ten-second clean
segments; the power of noise has the Signal-to-Noise Ratio
(SNR) SNR=−6, 0, 6, 12, and 18 [dB]. In the NST database,
signals at SNR = 12 [dB] and SNR = 18 [dB] were consid-
ered noise-free because the contribution of noise’s power is
extremely smaller than the signal’s power. In contrast, signals
at SNR = 6, 0, and −6 [dB] were considered noise.
Furthermore, to test the algorithm’s ability for wearable

ECG devices, the Physionet Challenge Database-2011 (C-
2011) [32] is used. This database consisted of 1000 twelve-
lead ECGs, and ECG signals were collected from a mobile
phone, each lasting ten seconds and having a sampling rate of
500 samples per second and 16-bit resolution. The Physionet
challenge was classified into acceptable and unacceptable
quality ECG signals with 983 labels.

Additionally, this study incorporates the PhysioNet Chal-
lengeDatabase-2014 (C-2014) [33], which encompasses con-
tinuous, extended-term recordings obtained from bedside
monitors or comparable apparatus. The intent of utilizing this
database is to appraise the algorithm’s precision in scenarios
where ECG signals are captured during periods of sleep,
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FIGURE 5. Results of proposed Skewness method.

extending the evaluation beyond signals derived solely from
daytime activities.

Conversely, the MIT-BIH Atrial Fibrillation Database
(MIT-BIHAFib) [34] is harnessed to assess the algorithm’s
performance in scenarios involving ECG signals indicative
of Atrial Fibrillation (AFib). AFib refers to an irregular and
frequently accelerated heart rhythm, which can potentially
result in severe consequences such as stroke, blood clots, and
heart failure. Given the potential gravity of misdiagnosing
this condition, accurate identification is paramount for safe-
guarding the patient’s well-being.

Brno University of Technology ECG Signal Database with
Annotations of P Wave (BUT-PDB) [35], this database was
created by the cardiology team at the Department of Biomedi-
cal Engineering, Brno University of Technology, the database
consists of fifty 2-lead ECG recordings, each recording is
2 minutes long with various types of pathology with anno-
tated P waves. This database is useful to check the possibility
of the algorithm with various P wave types, and this database
is chosen because P-wave detection or PR interval is one of
the essential things in the ECG analysis field. Furthermore,

in a very noisy ECG signal, it may be highly challenging to
detect P waves reliably and to measure PR intervals.

The Brno University of Technology ECGQuality Database
(BUT-QDB) [36] serves as a resource to assess the robustness
of our proposedmethodwhen applied to ECG recordings cap-
tured during routine daily activities. Those ECG signals were
annotated into three class as follow: Class 1 indicates that
ECG significant waveform (P wave, T wave, and QRS com-
plex) are visible and their onsets and offsets can be detected
reliably; Class 2 indicates that the noise level is increased and
ECG significant points cannot be reliably detected, but the
signal enables reliable QRS detection; Class 3 indicates that
QRS complexes cannot be detected reliably and the signal is
unsuitable for any further analysis. This database suitable for
the purpose of evaluating the robustness of the algorithm to
continuously recordings from wearable devices.

In the experimentation process, the WFDB toolbox [37]
in Python is employed to resample the sampling rate of all
databases to 250 samples per second. This resampling of the
sample rate ensures equitable conditions for evaluating the
efficacy of the proposed method across diverse databases.

70190 VOLUME 12, 2024



T. V. Tai et al.: Novel ECG Signal Quality Index Method Based on Skewness-MODWT Analysis

TABLE 1. Performance of proposed SQI method.

B. PEAKS ISOLATION, THRESHOLD CALCULATION AND
PEAKS DETECTION RESULTS
Figure 5 provides a comprehensive overview of the results
generated by the proposed Skewness method. The step-by-
step progression of the method’s application to ‘‘GOOD’’
ECG signals is detailed in Fig. 5a. Within this, Fig. 5a1 dis-
plays the ‘‘GOOD’’ ECG signal, while Fig. 5a2 showcases
the outcomes of the peak isolation, boundary calculation, and
peak detection steps.

In Fig. 5a2, particular attention is drawn to the VarEW
values, which exhibit high values at the R peak locations. The
core concept of the proposed method hinges on the analysis
of peak-peak intervals to assess the ECG signal. However, the
challenge lies in precisely defining what constitutes a peak.
If peaks are solely defined as samples with values exceed-
ing those of their adjacent samples, this criterion is met by
numerous points, particularly in the non-QRS regions. Conse-
quently, the peak-peak intervals exhibit significant variability,
rendering signal assessment arduous. Alternatively, assigning
a fixed constant value to define peaks is problematic due to
the dependence of ECG signal amplitude on multiple factors.
Such a constant value might suit one ECG signal but prove
unsuitable for another.

An adaptive boundary is introduced to address these issues
to distinguish the impact of peaks in non-QRS regions while
effectively identifying the R peaks in ‘‘GOOD’’ signal cases.
The orange dashed line in Fig. 5a2 represents this adap-
tive boundary, computed using (2). This boundary effec-
tively demarcates areas where VarEW values in non-QRS
regions fall below the specified threshold. The utilization of
Algorithm 1 with VarEW and the adaptive boundary as inputs
yields the peaks represented by red circles in Fig. 5a2.
Furthermore, analogous processes are applied to ‘‘BAD’’

signals, exemplified in Fig. 5b1. These signals are crafted
through a combination of ‘‘GOOD’’ ECG signals and noise
signals sourced from the NST database with a signal-to-noise
ratio (SNR) of−6 [dB]. Employing the samemethodology as

with ‘‘GOOD’’ signals, Fig. 5b2 illustrates the outcomes for
the ‘‘BAD’’ signals.

C. SKEWNESS RESULTS
Drawing inspiration from the inherent randomness of
noise, a notable observation arises: the occurrence of short
peak-peak intervals tends to surpass that of more extended
intervals. Leveraging this insight, the skewness of the
peak-peak interval distribution emerges as a pivotal metric
for defining signal quality.

This concept is visually demonstrated in Fig. 5a3 and
Fig. 5b3, illustrating the distribution of peak-peak intervals
for ‘‘GOOD’’ and ‘‘BAD’’ signals, respectively. The distribu-
tion shapes in these two scenarios exhibit skewed tails, albeit
in opposite directions. Consequently, negative and positive
skewness values serve as effective indicators for assessing
‘‘GOOD’’ and ‘‘BAD’’ signals.

D. PERFORMANCE OF PROPOSED SQI METHODS
The performance of the proposed method is evaluated by
sensitivity (Se), precision (Pre) and accuracy (Acc), which
were calculated as

Se =
TP

TP+ FN
× 100%, (12)

Pre =
TP

TP+ FP
× 100%. (13)

Acc =
TP+ TN

TP+ TN + FN + FP
× 100%. (14)

where TP is the true positive that represents the correctly pre-
dicted segments. FN denotes the false negative, which means
the signals were predicted to be ‘‘BAD’’ but were actually
‘‘GOOD’’. FP denotes the false positive, which means the
signals were predicted to be ‘‘GOOD’’ but were ‘‘BAD’’.

The TABLE 1 shows the performance of the proposed SQI
method on different databases of ECG signals with various

VOLUME 12, 2024 70191



T. V. Tai et al.: Novel ECG Signal Quality Index Method Based on Skewness-MODWT Analysis

FIGURE 6. ‘‘GOOD’’ prediction results.

noise types and levels. All of the databases prove the robust-
ness of this method under different conditions.

FIGURE 7. ‘‘BAD’’ prediction results.

• MIT-BIHA [30] and C-2014 [33] are suitable to evaluate
when ECG signals are measured by hospital devices,
bedside monitoring, or similar devices. It can be seen
that the proposed method reaches a high sensitivity
when ECG signals are collected from standard devices,
Se= 99.31% and Se= 100% forMIT-BIHA and C-2014
database, respectively. This suggests that the method can
achieve optimal performance when the signal quality is
high, and the noise level is low.

• The MIT-BIHAFib [34], and BUT-PDB [35] databases
are used to evaluate the robustness of the proposed
method when ECG signals are particular types. This
paper focuses on AFib and P waves because in the
ECG analysis area, AFib and P waves are the hot
research topic, and it has the ability to diagnose
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TABLE 2. Percentage of GOOD and CONSIDER.

dangerous diseases. It can be seen that the sensitiv-
ity under special ECG-type conditions still achieves
high values with Se = 99.59% and Se = 99.24% for
MIT-BIHAFib and BUT-PDB database, respectively.

• The NST [31], C-2011 [32], and BUT-QDB [36]
databases are used to evaluate this method under
noise-free and noisy conditions. The Se and Pre in
the NST database reached 94.32% and 99.58%. Eval-
uating this method under daytime activities condi-
tions, the C-2011 and BUT-QDB databases are used,
Se= 96.37% and Pre= 97.28% for the C-2011 database
and Se = 95.89% and Pre = 99.32% for BUT-QDB
database. Besides, the Acc of all 3 data sets reached
94.91%, 94.50%, and 95.99% respectively.

Figure 6 shows the ‘‘GOOD’’ prediction results of the
proposed method on various signal types. Figure 6a shows
the signal of the MIT-BIHA database measured using con-
ventional hospital devices, despite having multiple types of
beat in the same signal, in this case, normal beat (N-type) and
ventricular beat (V-type), the proposed method still predicts
correctly. This result proves the proposed method’s indepen-
dence from various types of ECG beat, unlike the template
matching method [13]. On the other hand, Fig. 6b shows the
signal from C-2011 collected using mobile phones, which
was labeled ‘‘GOOD’’ by qualified health experts, and the
proposed method also predicts it to be ‘‘GOOD’’. In Fig. 6c,
an ECG signal with a high heart rate is shown, which means
that our method is also compatible with tachycardia signals.
In Fig. 6d and Fig. 6e, is the signal measured while the patient
is doing their casual activity, the proposed method can predict
correctly despite the baseline wander and random noise, this
is an important characteristic as we are aiming to apply our
algorithm to wearable devices.

On the contrary, Fig. 7 provides a comprehensive view of
the prediction outcomes for ‘‘BAD’’ signals achieved through
the proposed method across various signal types. Fig. 7a
demonstrates a signal affected by both MA and BW noise,
characterized by an SNR of approximately −6 [dB]. This
result serves as compelling evidence of the method’s capabil-
ity to identify signals influenced by diverse forms of noise.
A similar outcome is depicted in Fig. 7b, where the proposed

FIGURE 8. ‘‘CONSIDER’’ prediction results.

method accurately detects a ‘‘BAD’’ signal. It’s worth noting
that this algorithm consistently predicts results with 100%
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accuracy when the signal represents a flat line, exemplified
in Fig. 7c. Finally, in Fig. 7d, the signal collected during a
patient’s routine activities is heavily overshadowed by noise,
resulting in the method categorizing it as ‘‘BAD’’ due to the
pronounced dominance of noise over the ECG signal.

TABLE 2 provides a comprehensive overview of the per-
centages attributed to the classifications of ‘‘GOOD’’ and
‘‘CONSIDER’’ when applying MODWT. A notable observa-
tion is the variability in the occurrence of the ‘‘CONSIDER’’
class across different databases. The ‘‘CONSIDER’’ class is
helpful for predicting whether an ECG signal is a special
rhythm, and Fig. 8 shows the ‘‘CONSIDER’’ class in different
databases. Figure 8a, b, c, d, e and f show the various of
ECG signal’s shape, these signals have in common is that
they all have T-wave signals that are louder than usual, which
usually occurs when the patient is ischemic. In addition, other
T waveforms represent different pathologies. In Fig. 8f, the T
wave of the QRS complex overlaps and disappears the Pwave
of the QRS complex immediately after it, which is highly
likely to signal a heart disease. The reason for calling this
‘‘CONSIDER’’ class is because there is still some noise in
the signal, as shown in Fig. 8b.

E. PERFORMANCE COMPARISON
To compare with the proposed algorithm, this paper performs
two frequency-domain methods, basSQI, and pSQI [38]. The
basSQI is the relative power in the baseline defined in (15).
The pSQI is the ratio of power spectral density in the QRS
energy band to that in the overall energy band defined in (16).
Where P(f ) is the power spectrum of the ECG signal.

basSQI = 1−

∫ 1
0 P(f ) df∫ 40
0 P(f ) df

, (15)

pSQI =

∫ 15
5 P(f ) df∫ 40
5 P(f ) df

. (16)

However, the values of basSQI and pSQI make it impossi-
ble to grade the quality of signals into different levels. C-2011
[32], MIT-BIHA [30], and NST [31] databases are used to
consider a threshold of basSQI and pSQI in three scenarios:
C-2011 for both noise and noise-free signals in one database,
MIT-BIHA for noise-free signals, and NST for noise signals
with SNR=−6 and 0 [dB]. Figure 9a and Fig. 9b show values
of basSQI and pSQI methods, respectively. It can be seen
that the range of values of all three scenarios is similar for
both basSQI and pSQI. Especially in MIT-BIHA and NST
databases, values of basSQI and pSQI do not have too many
differences, so it is hard to grade signals as ‘‘GOOD’’ or
‘‘BAD’’ if these methods are used.

The TABLE 3 provides a comprehensive overview of per-
formance comparisons across distinct SQI methodologies,
furnishing a visual foundation for assessing SQI algorithms;
these findings were referred from [23] and [39]. Sensitivity is
prioritized for assessment in the healthcare context because
the purpose of SQI is to minimize misprediction of good

FIGURE 9. basSQI and pSQI boxplots.

signals, which can cause loss of important information used
to diagnose disease. However, accuracy is also a metric used
to evaluate the method; a good method is when the trade-off
between Se and Acc is reasonable. The results show that when
considering the noise-free set, our method achieves the high-
est results (up to 99.31%) when considering the noisy data
set, our method also gives the best results. This demonstrates
that our method effectively distinguishes between good and
bad signals, with minimal risk of overlooking good signals.
Thus, it is well-suited for applications requiring signal qual-
ity assessment. For datasets with both types of signals, our
method does not achieve the highest results yet remains
acceptable with Se = 96.37%, compared to the top perfor-
mance by Liu et al. [40] at 97.67%. However, in terms of
accuracy (Acc), our method outperforms all others, boasting
a score of 95.10%, whereas Liu et al. achieved only 93.09%.

V. DISCUSSION AND FUTURE WORKS
The experimental outcomes underscore the efficacy of the
proposed method in terms of sensitivity and accuracy, both
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TABLE 3. Performance comparison between SQI methods.

for noise-free and noisy signals. The assessment encom-
passes diverse databases serving various purposes, includ-
ing standard devices like hospital equipment and static
devices from MIT-BIH and C-2014 databases for medical
use. The MIT-BIHAFib and BUT-PDB databases are con-
sidered for pathologies assessment, while the NST, C-2011,
and BUT-QDB databases are employed for noise evaluation.
Notably, ECG signals from wearable devices during daytime
activities in the C-2011 and BUT-QDB databases enable the
robustness evaluation of the proposed method for wearable
application.

In the context of this study, the sensitivity index takes
precedence, as the absence of accurate ‘‘GOOD’’ signals
could lead to diagnostic information loss. In contrast to alter-
native methods like Hamilton-Tompkins, R-peak and noise
amplitude temporal features, high-order statistical SQI, and
amplitude difference variance-based SQI, the newly pro-
posed method exhibits significantly heightened sensitivity
in classifying signal quality. Implementing this method can
potentially curtail server-related costs in post-processing and
extend the battery life of wearable devices in pre-processing
by exclusively transmitting signals that meet the requirement.

The ‘‘CONSIDER’’ class should be classified as ‘‘GOOD’’
and ‘‘BAD’’ in the future by a suitable algorithm.
Besides, developing prototypes onmicrocontrollers and Field

Programmable Gate Arrays (FPGA) is demanded to evaluate
feasibility and power consumption accurately. The ‘‘CON-
SIDER’’ class should be classified as ‘‘GOOD’’ and ‘‘BAD’’
in the future by a suitable algorithm. Besides, developing
prototypes onmicrocontrollers and Field Programmable Gate
Arrays (FPGA) is demanded to evaluate feasibility and power
consumption accurately.

VI. CONCLUSION
In this paper, we’ve introduced a novel method designed
for evaluating ECG signal quality by using skewness and
MODWT analysis, utilizing EWVM to mitigate the influence
of low-frequency noise alongside an adaptive threshold for
peak identification inspired by the stochastic nature of noise.
This enables signal classification into ‘‘GOOD’’, ‘‘BAD’’,
and a new ‘‘CONSIDER’’ level, which is indicative of poten-
tial heart conditions like ischemia. This method is shown to
be independent of ECG beat types, and robust against noise
and artifacts while being compatible with wearable devices.
Evaluation across various noise levels results in Se= 99.31%
on noise-free, Se= 97.69% on noisy, and Se= 96.37% on the
combination of the two signals. Evaluation of various ECG
databases results in high sensitivity and accuracy, notably,
Se= 100% for C-2014 andAcc= 99.58% forNST, this shows
its superior sensitivity and accuracy compared to methods
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like template matching or other SQIs. Beyond its immediate
benefits, this method is promising for enhancing wearable
ECG device performance, extending battery life, reducing
costs, and improving heart disease diagnosis. Additionally,
future directions encompass exploring machine learning inte-
gration to further improve its adaptability and overall perfor-
mance.
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