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ABSTRACT One of the main causes of death from cardiovascular diseases is Myocardial Infarction
(MI), which is brought on by coronary artery problems. Myocardial infarction is a pathological condition
resulting from an anatomical issue with the Left Ventricle (LV). MI is a potentially fatal cardiac disease
for which prompt medical attention can lower the fatality risk. This paper proposes a Deep Learning (DL)
based approach to robustly detect binary and multiclass myocardial infarction (MI) in two environments,
i.e., with and without data balancing. We employed a Myocardial infarction dataset that contains 1700
MI patients’ medical records. The data preprocessing step is performed, during which data balancing and
normalization are carried out. In many real-world medical datasets, class imbalance is a serious problem
since it often causes the proposed algorithms to predict the majority class. We apply a class imbalance
handling technique to solve the imbalance issue and create a balanced and trustworthy prediction approach.
To ensure the generalizability and performance comparison, we employ various deep learning algorithms
such as Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Deep Neural Network
(DNN), Long Short-Term Memory (LSTM) without data balancing first, and then after that, with data
balancing to enhance model performance. Experiments reveal that the DNN model outperformed others
by applying the class imbalance handling technique compared to the method without balancing data. The
DNN model attained a maximum test accuracy of 99.39% and a test loss of 0.0252 for the binary class
and achieved a maximum test accuracy of 99.74% and a test loss of 0.0115 for multiclass categorization.

INDEX TERMS Myocardial infraction, cardiovascular disease, deep learning, convolutional neural network,
recurrent neural network, deep neural network, long short term memory, healthcare.

I. INTRODUCTION
The heart is the body’s primary organ, providing blood
to all other organs and bones. If it stops working, vital
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organs such as the brain will stop working and will quickly
die. Cardiovascular disease has attracted much attention in
medical research due to its possible fatality. Cardiovascular
disease diagnosis and treatment provide complex problems
requiring computerized prediction to improve future medical
treatments [1]. Two coronary arteries carry oxygenated blood
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that the heart muscle cells require to remain alive and
functional. Heart cells perish if the blood supply to the heart
is interrupted by obstructed arteries or sub-branches. This
problem is known as ischemia; a myocardial infarction (MI)
occurs when heart cells die from prolonged lack of blood
flow [2].

Several factors contribute to the occurrence of Cardio-
vascular disease, which can be broadly categorized into
genetic predispositions that include an extended family
history of the disease, environmental factors such as smoking
tobacco, abusing drugs, leading a sedentary lifestyle, and
comorbidities such as uncontrolled diabetes, hypertension,
dyslipidemia, associated lung diseases, mental illnesses, and
other conditions that make a person more susceptible to
MI [3]. It is an expensive endeavor. About 735,000 people
have a heart attack in the United States alone each year,
and 71.5% of those patients are first responders [4]. The
prediction states that between 2015 and 2030, the incidence of
coronary heart disease, the primary cause of MI, will increase
by 18% [5]. The predicted cost of cardiovascular disease
management by 2035 is expected to reach 1.1 trillion USD,
up from 555 billion USD in 2015 [6]

Early detection ofMI is essential to prevent cardiac failure,
arrhythmia, or unexpected death. A variety of evaluation
modalities, including electrocardiograms (ECGs) [5], mag-
netic resonance imaging (MRI) [7] and echocardiography [8],
can be used to identify MI. The most often used technique for
supporting cardiac functions and assessing the health of the
myocardial and left ventricle is magnetic resonance imaging
(MRI) [7]. Myocardial infarction is a pathological condition
resulting from an anatomical issue with the left ventricle
(LV).

Artificial intelligence (AI) uses algorithms that constantly
learn patterns to simulate human intellect [9]. In machine
learning (ML), computers are taught to recognize patterns
using algorithms [10]. ML is an instance of AI. Since
the heart functions as a metronome and the healthcare
industry is extremely nonlinear, the literature has developed
several methods for the automatic detection and localization
of MI. The wavelet-transform-based approach [11], time-
based domain methods [2], [12], a polynomial fitting-based
approach [13], and supervised ML classifier [14], [15]
are some of these tactics. Even though these techniques
are effective, they still have certain drawbacks when
using them in clinical settings. The process of segmenting
and establishing cardiac strains is difficult and time-
consuming. Furthermore, the heart’s spatiotemporal motion
is excessively complicated and could make implementation
challenging [16].
Recent advancements in deep learning models have led

to a noteworthy trend in several research areas, including
cardiac segmentation [12], [17], [18]. However, only study
studies have deep learning systems to predict myocardial
infarctions. Numerous research studies have been done onMI
detection using deep learning approaches, but they still need
improvement. For example, prior studies ignored the need

for sufficient data preprocessing and did not employ high-
quality data. This research proposed a technique based on
DL classifiers by applying Synthetic Minority Oversampling
(SMOTE) for class imbalance problems.

The main findings of this study are outlined here.
• This study proposed a Deep Learning (DL) based
approach to robustly detect binary and multiclass
myocardial infarction (MI) in two environments, i.e.,
with data balancing and without data balancing.

• In many real-world medical datasets, class imbalance
is a serious problem since it often causes the proposed
algorithms to predict the negative class. To solve the
imbalance issue and create a trustworthy prediction
system, we applied a class imbalance technique, and
next, we applied z-score data normalization to scale the
dataset.

• To ensure the generalizability and performance compar-
ison, we employ various deep learning algorithms such
as Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), Deep Neural Network (DNN),
Long Short-Term Memory (LSTM) without data bal-
ancing first, and then after that, with data balancing to
enhance model performance. Experiments reveal that
the DNN model outperformed by applying the class
imbalance handling technique compared to the method
without balancing data. The DNN model attained a
maximum test accuracy of 99.39% and a test loss of
0.0252 for the binary class and achieved a maximum
test accuracy of 99.74% and a test loss of 0.0115 for
multiclass categorization.

The next sections of this article are meticulously orga-
nized to help readers understand the study’s framework.
Section II presents a summary of current study findings
and provides background information. The technical details
of the proposed framework, the dataset’s details, data
preprocessing methods, and DL models are all covered in
detail in Section III. The experimental results are presented
in Section IV, and a discussion of most of the study’s
findings is also presented. The study’s conclusion, included in
Section 6, provides a thorough analysis and conclusions from
the proposed work. Future directions of the current work are
also presented in this section.

II. LITERATURE REVIEW
Authors in [19] generated a model to detect chronic myocar-
dial ischemia (MIS) by validating a CT-based radiomics
machine learning. Recurrent analysis of 154 patients with
coronary artery disorders (CAD) using cardiac computed
tomography angiography (CCTA) and SPECT-myocardial
perfusion imaging (MPI) revealed 94 patients to have
suffered from MI. Features were gathered from every CCTA
cross-sectional image to determine myocardial segments.
A radiomics signature was established using multivariate
logistic regression. Lastly, the radiomics nomogram was
developed using an accurate model of MIS that was created
by combining clinically relevant variables with machine
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learning. After that, we added 18 MIS patients from a
different medical facility and used data from 49 CAD patients
to test the model. In the training, test, and validation sets, the
nomogram’s accuracy for MIS prediction was 0.839, 0.832,
and 0.816. The nomogram, signature, and vascular stenosis
had correct diagnosis values of 0.824, 0.736, and 0.708.

Authors in [20] assessed how well machine learning (ML)
performed in predicting the long-term risk of myocardial
infarction and cardiac death in asymptomatic participants by
integrating clinical parameters with coronary artery calcium
(CAC) and automating the quantification of epicardial adi-
pose tissue (EAT). A total of 1912 asymptomatic participants
from the random EISNER experiment with long-term follow-
up following CAC scoring were included in the analysis.
A fully automated deep-learning technique was used to
quantify the volume and density of EAT. ML’s AUC was
considerably higher than both the CAC score and the risk
of atherosclerotic cardiovascular disease (ASCardiovascular
disease). Higher ML scores were associated with a higher
chance of suffering events in subjects. These correlations
continued in the multivariable analysis, including CAC and
ASCardiovascular disease risk measures. Authors in [21]
used ML-based algorithms to automatically assess the degree
of MI based on physiological, clinical, and paraclinical
characteristics. To assess MI, two different kinds of machine
learning models are examined: regression models calculate
the percentage of infracted Mycordium patients assumed to
have an acute MI at the time of admission to the emergency
room, and classification algorithms categorize the presence
of infarction and persistentmicrovascular obstruction (PMO).
The associated Delayed Enhancement MRI (DE-MRI) scans
and hand annotations of the heart and scar tissues provide the
base truth labels for these supervised methodologies. Cross-
validation was used to assess the 150 instances involved in
the experiments. According to the results, the best models
produced mean errors of 0.056 and 0.012 for quantifying
the MI (PMO inclusive) and 88.67 and 77.33% for the
performances of the myocardium (infarct exclusive).

An ML method for forecasting MI incidents based on
several environmental and demographic factors is presented
in [22]. The KORA MI registry dataset for Augsburg,
Germany, between 1998 and 2015 provided the MI events
they used. The decision tree, random forest, multi-layer
perceptron, gradient boosting, and ridge regression machine
learning methods were tested. The models can accurately
forecast the overall annual number of MIs. Authors in [23]
used harmonized EHR data to forecast incident MI by com-
paring DL and ML models to a baseline logistic regression
utilizing just ‘‘known’’ risk variables. A large-scale case-
control study was conducted to determine the result of
a 6-month incident MI. They addressed the imbalance in
the dataset by comparing several over- and under-sampling
strategies. They investigated boosted gradient machines,
random forests, shallow and deep neural networks, and
regularized logistics regression. A logistic regression model

with a small list of ‘‘known’’ risk variables for MI served
as the baseline model for comparison. Ten-fold cross-
validation was used to find the hyper-parameters. There were
2.25 million patients without an MI diagnosis, compared
to 25,911 with one. A deep neural network with random
undersampling produced better classification results than
previous techniques. With an F1 Score of 0.092 and an AUC
of 0.835, the DNN demonstrated a moderate advantage over
a LR model that included just ‘‘known’’ risk variables.

Authors in [24] aimed to evaluate the predictive potential
of ML in the context of major adverse cardiovascular events
(MACEs) prediction. MACEs and 24 chosen clinical factors
were evaluated for significance using logistic regression (LR)
analysis. The training dataset was used to construct six
machine learning models using five-fold cross-validation,
and the testing dataset was used to evaluate the models’
prediction accuracy with LR. 30.6% was the MACE rate
determined after a mean monitoring of 1.42 years. The
following factors were independent predictors of MACEs:
age, creatinine, cholesterol levels, and Killip classification.
The random forest (RF) algorithm had the greatest perfor-
mance in the training dataset, with an accuracy of (0.734,
0.647-0.820) and an AUC of (0.749, 0.644-0.853). The
RF demonstrated the greatest significant survival difference
when differentiating patients with and without MACEs in the
testing dataset. Authors in [25] offers a novel method for
examining patient histories connected to cardiac conditions.
A novel feature selection and ranking method is put forward
to purify the high-preference characteristics that aid in the
earlier diagnosis of MI. After covariance analysis of the
projected feature vectors, probabilistic principal component
analysis (PPCA) determines which vectors have the largest
covariance. As a result, the dimensionality problem is
banished from the dataset. Multi-linear regression (MLR) is
used to identify the chosen salient characteristics to identify
those combinations that are closely connected. They are then
classified using support vector machines (SVM) based on the
radial basis function (RBF). Patients with and without MI
are included in the two classifications produced by SVM.
Patients’ clinical test results are used as a dataset for analysis,
and the system’s effectiveness is gauged. The system’s
performance is measured by correlating the expected patients
and the death rate. The cardiac predictions are identified
by combining these machine-learning techniques with the
selected symptoms. The findings represent that the proposed
framework is suitable for MI prediction.

Authors in [26] combined clinical characteristics with
cardiac troponin concentrations at appearance or on serial
testing to calculate the Collaboration for the Diagnosis
and Evaluation of Acute Coronary Syndrome (CoDE-ACS)
score (0-100), which represents a person’s risk of MI. The
models’ efficiency was independently evaluated using data
from 10,286 patients across seven cohorts after they had
been trained on 10,038 patients. Regarding MI, CoDE-ACS
performed exceptionally well in discriminating between
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subgroups. Compared to fixed cardiac troponin thresholds,
it determinedmore patients’ appearance as having a low prob-
ability of having an MI with an identical negative predictive
value and less as having a high probability with a higher
positive predictive value. Authors in [27] provided valuable
insights into efficient preprocessing methods that yield clean,
organized data for feature extraction and selection. In this
work, distinct characteristics are extracted from photographs
of ECG graphs. The various machine-learning techniques
improve and streamline the diagnosing process. In particular,
a heart attack will be indicated by fluctuations in the output of
electrodes two and three; the other electrodes will also exhibit
abnormalities. After applying 14 attributes to the current
classifiers, the authors got more effective results; GBC, for
example, demonstrated a test accuracy of 98.79%.Ultimately,
the gradient-boosting classifier demonstrated efficacy in
distinguishing between various heart attacks. The author of
the work [13] examined six ML models to predict heart
disease with good outcomes. The six models employed were
XGBoost, Decision Tree, Bagging, Support Vector Machine,
Logistic Regression, and LightGBM. The corresponding
accuracies of each model were 82.01%, 72.90%, 83.85%,
84.60%, and 72.80%. The LightGBM model was found to
evaluate performance better than the others.

Electrocardiogram (ECG) signals can be used to diagnose
myocardial infarction (MI) with great potential thanks to
deep learning techniques. a CNN-based system that outper-
forms conventional machine learning techniques in terms of
accuracy for automatic detection of MI using 12-lead ECG
readings. Comparably, [28] created an RNN architecture
that can identify MI from long-term ambulatory ECG data,
emphasizing the possibility for in-the-moment monitoring
and early cardiac event identification. Taken as a whole,
these findings highlight how deep learning models, such as
CNNs and RNNs, can enhance the accuracy of MI detection
and open the door to better cardiac event monitoring and
diagnosis. A sizable ECG picture dataset, including 21,801
records with 12 lead ECG time-series data from 18,869
patients, was offered from the PhysioNet PTB-XL dataset.
Using the synthetic dataset as training material, a deep ECG
image digitization model was created to turn the synthetic
images into time-series data for assessment. To evaluate
the quality of the picture digitization in comparison to
the ground truth ECG time series, the signal-to-noise ratio
(SNR) was computed. With an average signal recovery
SNR of 27±2.8 dB, the results highlight the value of the
suggested synthetic ECG image dataset for deep learning
model training.

Author in [29] worked on multi-label classification
problems that are becoming popular in the field of cardiac
abnormality detection to forecast multiple heart diseases
at once. The problem of various cardiovascular diseases
(CVDs) co-occurring has been addressed by certain models
that use attention-based CNNs and semi-supervised learn-
ing, respectively. These models improve the precision and
resilience of ECG-based diagnostic systems by utilizing

methods such as data augmentation, pseudo-label generation,
and attention mechanisms. These models show the possibility
for comprehensive cardiac risk assessment by simultaneously
recognizing several cardiac problems or comorbidities from
ECG data by using deep learning approaches, such as CNNs
and attention processes. Improved multi-label classification
and myocardial infarction (MI) detection from electrocardio-
gram (ECG) signals have been demonstrated in [30] through
deep learning models. In order to effectively classify ECG
readings into different heart diseases, research efforts have
concentrated on creating residual networks and deep learning
models. Furthermore, the incorporation of deep learning
methods such as GoogleNet, AlexNet, and ResNet has proven
to be highly accurate in the prediction and classification
of cardiac disorders, such as congestive heart failure and
arrhythmia. Moreover, the use of trained deep learning
networks such as AlexNet and ResNet-18 in conjunction
with spectrograms as input images has shown remarkable
results in terms of classification accuracy, sensitivity, and
precision, surpassing 99%when it comes to the identification
of cardiac arrhythmias. In order to overcome obstacles and
confirm the therapeutic usefulness of deep learning-based
methods for improving cardiac care and patient outcomes,
more study is necessary. A summary of the considered studies
on machine learning for cardiac disease detection is shown in
Table 1.

III. PROPOSED METHODOLOGY
This section explains in detail how the suggested approach
will be implemented using methodologies, metrics for
performance evaluation, SMOTE analysis, and dataset anal-
ysis. Figure 1 depicts the whole process used in this
investigation to estimate myocardial infarction. To fore-
cast MI and examine the data, we used the MI dataset.
We use a data-preprocessing technique that balances the
data SMOTE-wise and normalizes the data using z-score
normalization. Moreover, we used DL classifiers without
SMOTE at the beginning. The classifier was then run again
on balanced data once the data had been balanced.

A. EXPERIMENTAL DATASET
MI is one of the most difficult issues in modern medicine.
In the year following an acute myocardial infarction,
there is a substantial death rate. All nations continue to
have significant MI incidence rates. This is particularly
true for the metropolitan population in highly developed
nations, where irregular and sometimes unbalanced diets
and chronic stressors are commonplace. For instance, more
than a million Americans have MI annually, and between
200 and 300,000 of them pass away from acute MI before
reaching a hospital. A database with 1700 records was
established at the Krasnoyarsk Interdistrict Clinical Hospital
in Russia to assess and forecast the consequences of MI in
patients [31]. This work used data made available in August
2020 [32] in the UCI machine learning repository. There are
124 features in the dataset. 111 of those features include
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TABLE 1. Summary of studies on machine learning for cardiac disease
detection.

data about the demographics, medical histories, problems
at the time of hospital admission, ECG findings, and the
clinical interventions performed by the staff after the patient
was admitted. The following 12 columns show various
problems at four distinct points in time: (i) upon hospital
arrival, (ii) 24 hours after hospitalization, (iii) 48 hours after
hospitalization, and (iv) 72 hours after hospitalization. The
data also includes records about the cause of death, broken
down into seven groups. Predicting patients’ vulnerability at

FIGURE 1. Proposed model for myocardial infraction prediction.

the time of being admitted, which is crucial to their survival,
was the main focus of this research. It is vital to take the
essential preventative measures as soon as possible within the
first few hours of hospitalization since failing to do so may
have dire implications.

1) BINARY CLASSIFICATION
Binary classes are classification problems in which the
target attribute has just two potential outcomes or classes.
Another name for this is binary classification. Typically,
binary classification aims to group occurrences into one
of two groups according to input feature sets. The target
feature in binary classification is frequently encoded as
0 or 1, where 0 denotes one class (such as negative), and
1 denotes the opposite class (such as positive). This research
used a binary classification dataset to predict myocardial
infarction.
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2) MULTI-CLASSIFICATION
Multiclass classification is a problem in which the target
variable contains more than two potential outcomes or
classes. Multiclass classification entails selecting the proper
class from a set of three or more alternative classes instead
of binary classification, which aims to categorize cases
into one of two groups. In multiclass classification, every
class appears as a binary vector, and the target attribute
is usually encoded using one-hot encoding. This research
used the LET_IS column of the dataset as a categorical
multiclass column and contains the following classes: Lethal
outcome (cause) 0: unknown (alive) 1: cardiogenic shock
2: pulmonary edema 3: myocardial rupture 4: progress of
congestive heart failure 5: thromboembolism 6: asystole 7:
ventricular fibrillation.

B. DATA PREPROCESSING
Data preprocessing is essential in data assessment and
machine learning systems. It must be cleaned and trans-
formed to prepare raw data for further examination or
machine learning model training. Appropriate preprocessing
improves the caliber and efficiency of your models by resolv-
ing problems such as handling missing data, imbalanced data,
etc. Class imbalance problems are addressed in classification
problems by employing strategies like the Synthetic Minority
Over-sampling Technique (SMOTE), undersampling the
majority class, or oversampling the minority class. This
research utilized an SMOTE technique for balancing the
data, which helped improve the performance of the proposed
methodologies.

1) SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE
(SMOTE)
SMOTE is a prominent oversampling approach for unbal-
anced learning. Instead of just copying the samples, it creates
new instances of minority classes [33]. Synthetic instances
are constructed along the line segments, merging nearby
instances from the minority class. The difference between
Yi and Yj is initially computed if Yi is an instance and Yj
is its closest neighbor. The variance is then multiplied by a
lambda, a random value between zero and one. After that,
a synthetic instance Y i′ between the initial point Yi and the
closest neighbor Yj is created by adding Yi the difference
multiplied by lambda. Until the required number of minority
instances is generated, this process is repeated. The following
is the mathematical expression 1 utilized for SMOTE:

Y i′ = Yi + λ
(
Yj − Yi

)
(1)

In this case, lambda is a fictitious value between 0 and 1.
The number of instances to be produced can be manipulated
by the α variable. The mathematical expression 2 displays the
α variable working.

α =
no. of instances in minority class after resample

no. of instances in the majority class
(2)

Divide the dataset into test, validation, and training sets to
assess howwell machine learningmodels work. This prevents
overfitting and aids in evaluating the models’ capacity for
generalization. This research divides the MI dataset first
into 80% training and 20% testing sets. The following is
the mathematical expression utilized for training and testing
split:
Training Set Size

Ntrain = round(N × train ratio) (3)

Test Set Size

Ntest = N − Ntrain (4)

Equations 3 and 4 display the training and testing size. N is
the total number of instances in the dataset. Train_ratio is the
ratio of instances allocated to the training set. Test_ratio is the
ratio of instances allocated to the test set. These equations
give you the sizes of the training and test sets based on the
specified ratios. Adjusting the train_ratio will directly affect
the size of the training set, while the remaining samples
implicitly determine the size of the test set after allocating
to the training set.

2) FEATURE NORMALIZATION
Feature normalization is a data preprocessing approach
utilized to scale the values of features to a similar range.
This is done because many DL classifiers perform better
when features are on a similar scale. This work employs
a normalization approach to rescale the dataset features
between 0 and 1, which facilitates their normalization and
assembly in a comparable manner [34]. In this research,
we apply Z-score scaling, also called standardization, and
convert the features to have a mean of 0 and a standard
deviation of 1. The mathematical expression 5 utilized for
z-score scaling is:

Ystandardized =
Y − µ

σ
(5)

where Y is the actual attribute value, µ is the mean of the
attribute in the dataset, and σ is the standard deviation of the
attribute.

Algorithm 1 presented a working proposed model for pre-
dictingmyocardial infarction (MI). The required indicates the
input, a dataset Ds containing information about myocardial
infarction. The gain is the output to predict the probability of
myocardial infarction, denoted as PMI . Data Analysis func-
tion involves analyzing the dataset to understand its structure
and characteristics. First, a model on unbalanced data is
run, indicating that the initial dataset is imbalanced in the
distribution of classes related to myocardial infarction. The
data Preprocessing step involves preparing the data for mod-
eling. It includes feature normalization using Z-score scaling.
TrainDLClassifiers function is used for DL classifiers, and
Deep learning classifiers are trained using preprocessed data.
The dataset is split into training and test sets, and various
deep learning models, such as Recurrent Neural Networks
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Algorithm 1 Proposed Model for Myocardial Prediction
1: Require: Ds (MI Dataset)
2: Gain: PMI (Prediction of Myocardial Infraction)
3: function Data Analysis Da
4: function Unbalanced Data D {first model run on

unbalanced data}
5: function Data Preprocessing Dp
6: Feature Normalization applying Z-score scale Fnorm =
Ystandardized = Y−µ

σ
7: return Fnorm
8: function TrainDLClassifiers (Fnorm, Y) {Utilized Deep

Learning (DL) Classifiers }
9: Dsplit ← Dataset split into training and test set

10: RNN← Recurrent Neural Network
11: LSTM← Long Short Term Memory
12: CNN← Convolutional Neural Network
13: DNN← Deep Neural Network
14: Use Binary Cross-entropy for binary data and Categor-

ical Cross-entropy for Multiclass data
15: return TrainDLClassifiers
16: function PredictingModel (TrainDLClassifiers, test_set

(Ts)
17: YPredict = DNNmodelTrain.predict(Td )
18: return YPredict
19: function Balanced Data D {Second models run on

balanced data}
20: Applying SMOTE handle Imbalance data Sb Y i′ = Yi +

λ
(
Yj − Yi

)
21: WorkingMain
22: Fnorm, Y← preprocessed data
23: DLmodel ← TrainDLClassifiers (Fnorm, Y)
24: YPredict ← PredictingModel (DLmodel, Td )
25: Performance evaluation metrics
26: return Performance, YPredict

(RNN), Long Short-Term Memory (LSTM), Convolutional
Neural Networks (CNN), and Deep Neural Networks (DNN),
are utilized. Different loss functions, such as binary and
categorical cross-entropy, are used based on the data type.
The predictingModel function is utilized for the trained
classifiers, and they predict outcomes on the test set. The
algorithm then runs all models again on balanced data using
the SMOTE (Synthetic Minority Over-sampling Technique)
to handle data imbalance. This step ensures that both classes
(myocardial infarction and non-myocardial infarction) are
represented more evenly in the dataset. The algorithm’s main
work summarizes its main steps, including preprocessing
the data, training the deep learning classifiers, predicting
outcomes, evaluating performance metrics, and returning the
results.

C. DEEP LEARNING CLASSIFIERS
This research employs different DL classifiers, Recur-
rent Neural Networks (RNN), Convolutional Neural

Networks (CNN), Deep Neural Networks (DNN), and
Long-Short-Term Memory (LSTM), to predict myocardial
infarction. The details of every classifier are explained below.

1) RECURRENT NEURAL NETWORKS
A recurrent neural network (RNN) is an artificial neural
network that processes data sequentially. Unlike standard
feedforward neural networks, RNNs can display temporal
dynamic behavior because their connections form directed
cycles. Recurrent units or cells that preserve a hidden
state makeup RNNs [35]. The network can retain sequence
information by using the current input at every time step
combined with the hidden state from the prior one. RNNs
are incredibly deep because they retain a vector of activations
for every timestep. Their depth makes it challenging for them
to rain on because of the exploding and vanishing gradient
issues they cause. Numerous attempts have been made to
address the challenge of RNN training. The author of [36]
successfully tackled the issue of vanishing gradients by
creating the Long Short-TermMemory (LSTM) architecture,
which is impervious to the vanishing gradient problem.
Because of its ease of use, the LSTM has come to be
accepted as a valid approach for solving the vanishing
gradient problem.

2) DEEP NEURAL NETWORKS
A deep Neural Network (DNN) is an artificial neural network
where several layers of deep architecture separate the input
and output layers. A DNN is made up of layers that are made
up of linked nodes or neurons. These networks can recognize
and express intricate hierarchical patterns and characteristics
in data. Deep learning, of which DNNs are essential,
has attracted much interest and demonstrated considerable
promise in several domains, including speech recognition,
computer vision, natural language processing, and many
more. Deep neural networks (DNNs) are highly effective
in autonomously deriving hierarchical representations from
data, which allows them to capture complex characteristics
and relationships [37].

3) CONVOLUTIONAL NEURAL NETWORKS
CNNs and conventional ANNs are similar in that both are
made up of neurons that learn to optimize themselves [38].
ANNs are based on the fact that each neuron will continue
to receive an input and carry out an operation. A single-
wise scoring function (the weight) will be expressed by the
network as a whole, from the raw picture vectors that are the
input to the class score, which is the final output. The final
layer will include loss functions linked to the classes. One of
the main distinctions is that the layers of the CNN are made
up of neurons arranged in three dimensions: the input’s spatial
dimensions and depth [39]. Convolutional Neural networks
are widely used in computer vision systems. CNNs may
comprise several convolutional layers, possibly separated
by pooling and fully connected perceptron layers [40].
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Conventional CNNs use shared weights in every layer to
acquire features through convolutional layers. By decreasing
the susceptibility of the output to distortions and the resolu-
tion of the dimensionality of intermediate map features, the
feature pooling layer, also known as subsampling, broadens
the scope of the network. The collected features are fed into
a fully connected perceptron model at the last convolutional
layer for feature classification and dimensionality reduction.
A CNN architecture is created when these layers are stacked.

4) LONG-SHORT TERM MEMORY
Recurrent connections can increase neural network effi-
ciency by employing their capability to recognize sequential
reliances. However, the strategies used to train RNNs can
significantly limit the memory generated by the recurrent
connections. During the training phase, all models released
thus far have had vanishing or exploding gradients, which
has prevented the network from learning long-term sequential
reliances in the data. The most often used model to address
this issue is the long-short-term memory (LSTM) RNN.
LSTM is among the most well-liked and effective approaches
for lessening the outcomes of disappearing and bursting
gradients [41]. This approach transforms hidden units from
‘‘sigmoid’’ or ‘‘tanh’’ networks to memory cells, whose
inputs and outputs are controlled by gates. These gates main-
tain properties retrieved from earlier timesteps and regulate
the information flow to hidden neurons. The hidden layer of
LSTM has a significant degree of complexity. An ordinary
LSTM contains roughly four times more parameters than a
basic RNN for equal hidden layer sizes. Rather than trying to
determine the minimal or perfect scheme, the goal when the
LSTM technique was first proposed was to present a scheme
that could improve learning long-range dependencies [42].

IV. EXPERIMENTAL RESULT AND DISCUSSION
This section discusses the proposed model, which combines
DL classifiers to forecast myocardial infarction. Twenty
percent of the dataset is used to test the model, while
80 percent is used to train it. This model learns from
the given dataset by utilizing the power of DL classifiers.
The performance of this model is also evaluated utilizing
evaluation metrics explained in this section. This section
provides a detailed and analytical evaluation of the results.
To conduct this research, a pre-selected set of instruments
and technologies were used in experiments. Python 3.8.8,
a programming language with great influence on machine
learning, greatly speeds up the process by providing many
modules and tools to facilitate sophisticated data processing,
analysis, and visualization. The basic conductor is Jupyter
Notebook, a development platform well regarded for its
exceptional ability to provide the perfect programming
environment.

A. EVALUATION METRICS
This research estimates the efficiency of the proposed
methodology using many evaluation metrics, such as

accuracy and loss. These essential evaluation metrics provide
detailed information about the interpretation of the proposed
methodology. Accuracy is the first metric often regarded as
the cornerstone of performance assessment. It determines the
proportion of correctly identified instances using the total
number of instances. The equation 6 explains this well. Even
though the measure’s calculation is simple, it has a significant
impact.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

Loss, also known as the cost function or error function,
quantifies how well a model’s predictions match the actual
target values. The goal of training a machine learning model
is typically to minimize this loss. The choice of loss function
depends on the specific problem and the type of data.
Common loss functions include Mean Squared Error (MSE),
Cross-Entropy Loss, and Hinge Loss, among others. The
formula for loss varies depending on the specific loss function
being used. The formula for computing sparse categorical
cross-entropy loss is given below. Let N be the number of
samples, C be the number of classes, and yi be the true class
label for the ith sample. For a single sample i, the loss is
computed as:

Li = −log

(
epyi∑c
j=1 e

pi

)
(7)

where: Pj is the predicted probability of class, j for the ith
sample. yi is the true class label for the ith sample. The overall
loss for allN samples are the average of the individual losses:

L =
1
N

N∑
i=1

Li) (8)

B. FINDING AND DISCUSSION
The proposed model’s implementation result and findings for
binary and multiclass are provided in detail. Next, we assess
the performance and present an analysis of all the DL
methods and a graphical visualization of these models.

1) RESULT OF MYOCARDIAL DISEASES ON BINARY LABEL
Table 2 provides the results of different DL classifiers (RNN,
DNN, CNN, and LSTM) on classifying myocardial diseases
using binary labels. The evaluation metrics included in this
table are accuracy and loss for training and testing datasets.
RNN attained a value training accuracy of 96.76%, with
a training loss of 0.1095. DNN attained a value training
Accuracy of 96.76%, with a training loss of 0.0941. CNN
attained a value training Accuracy of 96.76%, with a training
loss of 0.1269. LSTM attained a value training accuracy of
96.76%, with a training loss of 0.1024. RNN attained a test
accuracy value of 96.76%, with a test loss of 0.1095. DNN
attained a test accuracy value of 96.76%, with a test loss of
0.0941. CNN attained a test accuracy value of 96.76%, with
a test loss of 0.1269. LSTM attained a test accuracy value of
96.76%, with a test loss of 0.1024. All four classifiers (RNN,
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DNN, CNN, LSTM) achieved the same accuracy of 96.76%
on both the training and testing datasets. The loss values for
each classifier during training and testing are also consistent.
These results indicate good generalization of the models to
unseen data, as the test accuracy is similar to the training
accuracy.

TABLE 2. Result of myocardial detection on binary label without SMOTE.

Table 3 provides the results of different classifiers
(RNN, DNN, CNN, and LSTM) on the task of classifying
myocardial diseases using binary labels, with the addition
of Synthetic Minority Over-sampling Technique (SMOTE).
SMOTE is a technique used to address class imbalance in
the dataset by generating synthetic samples for the minority
class. RNN training accuracy value increased to 98.78%,
with a training loss of 0.0424. DNN training accuracy value
increased to 99.39%, with a training loss of 0.0252. CNN
training accuracy value increased to 99.24%, with a training
loss of 0.0362. LSTM training accuracy value increased to
99.24%, with a training loss of 0.0255. RNN testing accuracy
value increased to 98.78%, with a test loss of 0.0424. DNN
testing accuracy value increased to 99.39%, with a test
loss of 0.0252. CNN testing accuracy value increased to
99.24%, with a test loss of 0.0362. LSTM testing accuracy
value increased to 99.24%, with a test loss of 0.0255.
The results indicate a notable improvement in training and
testing accuracies after applying SMOTE. The classifiers
now achieve higher accuracy, suggesting that addressing class
imbalance through oversampling has positively impacted
the models’ ability to distinguish between classes. The
reduced loss values also indicate better convergence during
training.

TABLE 3. Results of myocardial detection on binary label with SMOTE.

Figure 1 presents graphical visualizations in terms of the
Confusionmatrix (CM) and recursive operating characteristic
curve (ROC) of the Convolutional Neural Network (CNN)
model for binary label classification. Figure 2a presents the
CM for the CNNmodel applied without SMOTE. CM Check
for the distribution of True Positives(TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). This
helps in understanding where the model is making correct or
incorrect predictions. The CM typically has four quadrants:
True Positive (top-left), False Negative (bottom-left), FP (top-
right), and True Negative (bottom-right). Every quadrant

displays values in each cell and represents the count of
instances corresponding to different classification outcomes.
CM operates more effectively since the proposed approach
yields more continuous, superior true positive values and
fewer FPs.

Figure 2b presents the ROC for the CNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis represents the FP Rate (FPR), and the
y-axis represents the True Positive Rate (TPR) or Sensitivity.
The curve illustrates the trade-off between sensitivity and
specificity, showing how well the model discriminates
between classes. A performance curve that is closest to the
upper-left corner is preferable. In this scenario, two labels are
used for classification. Label 0 represents the blue line, and
label 1 represents the orange line. The blue line shows the
ROC curve with an area of 0.88, while the orange line for
Class 1 expresses the curve area with the same value of 0.88.
Figure 2c presents the CM for the CNN model applied with
SMOTE. CM operates more effectively since the proposed
approach yields more continuous, superior true positive and
negative values with fewer FPs. Figure 2d presents the ROC
for the CNN model applied with SMOTE. The blue line
shows the ROC curve with an area of 1.00, while the orange
line for Class 1 expresses the curve area with the same value
of 1.00.

Figure 3 presents graphical visualizations regarding the
CM and ROC of the Deep Neural Network (DNN) model
for binary label classification. Figure 3a presents the CM for
the DNN model applied without SMOTE. CM Check for the
distribution of TP, TN, FP and FN. This helps to understand
whether the proposed model makes correct or incorrect
predictions. The CM typically has four quadrants: TP (top-
left), FN (bottom-left), FP (top-right), and TN (bottom-right).
Every quadrant displays values in each cell and represents the
count of instances corresponding to different classification
outcomes. CM operates more effectively since the proposed
approach yields more continuous, superior true positive
values and fewer FPs.

Figure 3b presents the ROC for the DNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the False FPR, and the y-axis
shows the TPR or Sensitivity. The curve illustrates the
trade-off between sensitivity and specificity, showing how
well the model discriminates between classes. A performance
curve that is closest to the upper-left corner is preferable.
In this scenario, two labels are used for classification. The
blue line represents the ROC curve with an area of 0.88, while
the orange line for Class 1 expresses the curve area with the
same value of 0.88. Figure 3c presents the CM for the DNN
model applied with SMOTE. CM operates more effectively
since the proposed approach yields more continuous, superior
true positive and negative values with fewer FPs. Figure 3d
presents the ROC for the DNN model applied with SMOTE.
The blue line represents the ROC curve with an area of 1.00,
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FIGURE 2. Graphical visualization of CNN model for binary label.

while the orange line for Class 1 expresses the curve area with
the same value of 1.00.

Figure 4 presents graphical visualizations regarding the
CM and ROC of the Recurrent Neural Network (RNN)
model for binary label classification. Figure 4a presents the
CM for the RNNmodel applied without SMOTE. CM Check
for the distribution of TP, TN, FP and FN. This helps
in understanding where the model is making correct or
incorrect predictions. The CM typically has four quadrants:
TP (top-left), FN (bottom-left), FP (top-right), and TN
(bottom-right). Every quadrant displays values in each cell
and represents the count of instances corresponding to dif-
ferent classification outcomes. CM operates more effectively
since the proposed approach yields more continuous, superior
true positive values and fewer FPs.

Figure 4b presents the ROC for the RNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the
model discriminates between classes. A performance curve

that is closest to the upper-left corner is preferable. In this
scenario, two labels are used for classification. The blue line
represents the ROC curve with an area of 0.88, while the
orange line for Class 1 expresses the curve area with the
same value of 0.88. Figure 4c presents the CM for the RNN
model applied with SMOTE. CM operates more effectively
since the proposed approach yields more continuous, superior
true positive and negative values with fewer FPs. Figure 4d
presents the ROC for the RNN model applied with SMOTE.
The blue line represents the ROC curve with an area of 1.00,
while the orange line for Class 1 expresses the curve area with
the same value of 1.00.

Figure 5 presents graphical visualizations regarding the
CM and ROC of the Long-Short Term Memory (LSTM)
model for binary label classification. Figure 5a presents
the CM for the LSTM model applied without SMOTE.
CM Check for the distribution of TP, TN, FP and FN.
This helps in understanding where the model is making
correct or incorrect predictions. The CM typically has four
quadrants: TP (top-left), FN (bottom-left), FP (top-right), and
TN (bottom-right). Every quadrant displays values in each
cell and represents the count of instances corresponding to
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FIGURE 3. Graphical visualization of DNN model for binary label.

different classification outcomes. CM operates more effec-
tively since the proposed approach yields more continuous,
superior true positive values and fewer FPs.

Figure 5b presents the ROC for the LSTM model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the
model discriminates between classes. A performance curve
that is closest to the upper-left corner is preferable. In this
scenario, two labels are used for classification. The blue line
represents the ROC curve with an area of 0.88, while the
orange line for Class 1 expresses the curve area with the
same value of 0.88. Figure 5c presents the CM for the LSTM
model applied with SMOTE. CM operates more effectively
since the proposed approach yields more continuous, superior
true positive and negative values with fewer FPs. Figure 5d
presents the ROC for the LSTMmodel applied with SMOTE.
The blue line represents the ROC curve with an area of 1.00,
while the orange line for Class 1 expresses the curve area with
the same value of 1.00.

2) RESULTS OF MYOCARDIAL DISEASES ON MULTI-LABEL

TABLE 4. Results of myocardial diseases on multi-label without SMOTE.

Table 4 provides the results of different DL classifiers
(RNN, DNN, CNN, and LSTM) on classifying myocardial
diseases using multi-labels without applying the SMOTE
technique. The evaluation metrics included in this table are
accuracy and loss for training and testing datasets. RNN
attained a value training accuracy of 87.65%, with a training
loss of 0.4201. DNN attained a value training Accuracy of
87.65%, with a training loss of 0.4131. CNN attained a value
training Accuracy of 88.24%, with a training loss of 0.4446.
LSTM attained a value training accuracy of 87.94%, with a
training loss of 0.4142. RNN attained a test accuracy value
of 87.65%, with a test loss of 0.4201. DNN attained a test
accuracy value of 87.65%, with a test loss of 0.4131. CNN
attained a test accuracy value of 88.24%, with a test loss
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FIGURE 4. Graphical Visualization of RNN Model for Binary Classification.

of 0.4446. LSTM attained a test accuracy value of 87.94%,
with a test loss of 0.4142. All four classifiers (RNN, DNN,
CNN, LSTM) have similar accuracy values for training and
testing datasets, suggesting they are generalizing reasonably
well. The loss values for each classifier during training and
testing are also consistent. These results might indicate good
generalization of the models to unseen data, as the test
accuracy is similar to the training accuracy. The results show
that the classifiers. However, the accuracy is around 87-88%,
which might indicate a chance for improvement. The loss
values are relatively high, indicating that there might be
a chance for improvement in terms of convergence during
training.

TABLE 5. Result of myocardial diseases on multi-label with SMOTE.

Table 5 provides the results of different classifiers (RNN,
DNN, CNN, and LSTM) on classifying myocardial diseases

using multi-labels, with the addition of applying the SMOTE
technique for class imbalance problems. SMOTE is a
technique used to address class imbalance in the dataset by
generating synthetic samples for the minority class. RNN
training accuracy value increased to 99.30%, with a training
loss of 0.0242. DNN training accuracy value increased
to 99.74%, with a training loss of 0.0115. CNN training
accuracy value increased to 99.52%, with a training loss of
0.0305. LSTM training accuracy value increased to 99.56%,
with a training loss of 0.0227. RNN testing accuracy value
increased to 99.30%, with a test loss of 0.0242. DNN testing
accuracy value increased to 99.74%, with a test loss of
0.0115. CNN testing accuracy value increased to 99.52%,
with a test loss of 0.0305. LSTM testing accuracy value
increased to 99.56%, with a test loss of 0.0227. All classifiers
indicate a significant improvement in both training and
testing accuracies after applying SMOTE. The classifiers now
achieve very high accuracy, suggesting that addressing class
imbalance through oversampling has positively impacted
the models’ ability to classify myocardial diseases with
multiple labels. The reduced loss values also indicate better
convergence during training. These findings suggest that
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FIGURE 5. Graphical Visualization of LSTM Model for Binary Classification.

SMOTE has effectively addressed the challenges of class
imbalance in the multi-label classification task, resulting in
highly accurate and well-generalized models.

Figure 6 presents graphical visualizations regarding the
CM and ROC of the CNN model for multi-label classi-
fication. Figure 6a presents the CM for the CNN model
applied without SMOTE. CM Check for the distribution of
TP, TN, FP and FN. This helps in understanding where
the model is making correct or incorrect predictions. The
matrix rows show the actual class labels, while the columns
correspond to the predicted ones. The incorrect instances are
centered on the diagonal components, whereas the correctly
recognized instances are positioned along the diagonal. All
multi-labels of the dataset from class 0 to 7, class 0 predicted
284 instances, class 1 predicted 14, and the rest from 2 to
7 classes predicted 0 instances by CNN.

Figure 6b presents the ROC for the CNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the

model discriminates between classes. A performance curve
that is closest to the upper-left corner is preferable. In this
scenario, multi-labels are used for classification. Label
0 represents the blue line, label 1 represents the orange line,
label 2 shows the green line, label 3 shows the red line, label
4 represents the purple line, label 5 shows the brown line,
label 6 represents the pink line, and label 7 represent the grey
line. The blue line represents the ROC curve with an area of
0.95, the orange line for Class 1 expresses the curve area with
the same value of 0.94, the green line for Class 2 expresses
the curve area with the same value of 0.99, the red line for
Class 3 expresses the curve area with the same value of 0.94,
the purple line for Class 4 expresses the curve area with the
same value of 0.89, the brown line for Class 5 expresses the
curve area with the same value of 0.92, the pink line for Class
6 expresses the curve area with the same value of 0.94 and the
grey line for Class 7 expresses the curve area with the same
value of 0.92.

Figure 6c presents the CM for the CNN model applied
with SMOTE. CM operates more effectively after applying
SMOTE since the proposed approach yieldsmore continuous,
superior TP and TN values with fewer FP and FN values for
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FIGURE 6. Graphical Visualization of CNN Model for Multi-Label Classification.

all classes from 0 to 7. Figure 6d presents the ROC for the
CNN model applied with SMOTE. After applying SMOTE,
the ROC values of all classes 0 to 7 improve performance,
and all express the curve area with the same value of 1.00.

Figure 7 presents graphical visualizations regarding the
CM and ROC of the DNN model for multi-label classifica-
tion. Figure 7a presents the CM for the DNN model applied
without SMOTE.CM Check for the distribution of TP, TN,
FP and FN. This helps in understanding where the model
is making correct or incorrect predictions. The incorrect
instances are centered on the diagonal components, whereas
the correctly recognized instances are positioned along the
diagonal. All multi-labels of the dataset from class 0 to 7,
class 0 predicted 281 instances, class 1 predicted 17, and the
rest from 2 to 7 classes predicted 0 instances by CNN.

Figure 7b presents the ROC for the DNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the
model discriminates between classes. A performance curve

that is closest to the upper-left corner is preferable. In this
scenario, multi-labels are used for classification. The blue
line represents the ROC curve with an area of 0.95, the orange
line for Class 1 expresses the curve area with the same value
of 0.94, the green line for Class 2 expresses the curve area
with the same value of 0.99, the red line for Class 3 expresses
the curve area with the same value of 0.94, the purple line for
Class 4 expresses the curve area with the same value of 0.89,
the brown line for Class 5 expresses the curve area with the
same value of 0.92, the pink line for Class 6 expresses the
curve area with the same value of 0.94 and the grey line for
Class 7 expresses the curve area with the same value of 0.92.

Figure 7c presents the CM for the DNN model applied
with SMOTE. CM operates more effectively after applying
SMOTE since the proposed approach yieldsmore continuous,
superior TP and TN values with fewer FP and FN values for
all classes from 0 to 7. Figure 7d presents the ROC for the
DNN model applied with SMOTE. After applying SMOTE,
the ROC values of all classes 0 to 7 improve performance,
and all express the curve area with the same value of 1.00.

Figure 8 presents graphical visualizations regarding
the CM and ROC of the RNN model for multi-label
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FIGURE 7. Graphical Visualization of DNN Model for Multi-Label Classification.

classification. Figure 8a presents the CM for the RNN model
applied without SMOTE. CM Check for the distribution of
TP, TN, FP and FN. This helps in understanding where
the model is making correct or incorrect predictions. The
incorrect instances are centered on the diagonal components,
whereas the correctly recognized instances are positioned
along the diagonal. All multi-labels of the dataset from class
0 to 7, class 0 predicted 284 instances, class 1 predicted 14,
and the rest from 2 to 7 classes predicted 0 instances by CNN.

Figure 8b presents the ROC for the RNN model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the
model discriminates between classes. A performance curve
that is closest to the upper-left corner is preferable. In this
scenario, multi-labels are used for classification. The blue
line represents the ROC curve with an area of 0.95, the orange
line for Class 1 expresses the curve area with the same value
of 0.94, the green line for Class 2 expresses the curve area
with the same value of 0.99, the red line for Class 3 expresses

the curve area with the same value of 0.94, the purple line for
Class 4 expresses the curve area with the same value of 0.89,
the brown line for Class 5 expresses the curve area with the
same value of 0.92, the pink line for Class 6 expresses the
curve area with the same value of 0.94 and the grey line for
Class 7 expresses the curve area with the same value of 0.92.

Figure 8c presents the CM for the RNN model applied
with SMOTE. CM operates more effectively after applying
SMOTE since the proposed approach yieldsmore continuous,
superior TP and TN values with fewer FP and FN values for
all classes from 0 to 7. Figure 8d presents the ROC for the
RNN model applied with SMOTE. After applying SMOTE,
the ROC values of all classes 0 to 7 improve performance,
and all express the curve area with the same value of 1.00.

Figure 9 presents graphical visualizations regarding the
CM and ROC of the LSTM model for multi-label classifica-
tion. Figure 9a presents the CM for the LSTM model applied
without SMOTE. CM Check for the distribution of TP, TN,
FP and FN. This helps in understanding where the model
is making correct or incorrect predictions. The incorrect
instances are centered on the diagonal components, whereas
the correctly recognized instances are positioned along the
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FIGURE 8. Graphical Visualization of RNN Model for Multi-Label Classification.

diagonal. All multi-labels of the dataset from class 0 to 7,
class 0 predicted 285 instances, class 1 predicted 14, and the
rest from 2 to 7 classes predicted 0 instances by CNN.

Figure 9b presents the ROC for the LSTM model applied
without SMOTE. The ROC curve is a graphical visualization
of the model’s performance across different classification
thresholds. The x-axis shows the FPR and the y-axis shows
the TPR or Sensitivity. The curve illustrates the trade-off
between sensitivity and specificity, showing how well the
model discriminates between classes. A performance curve
that is closest to the upper-left corner is preferable. In this
scenario, multi-labels are used for classification. The blue
line represents the ROC curve with an area of 0.95, the orange
line for Class 1 expresses the curve area with the same value
of 0.94, the green line for Class 2 expresses the curve area
with the same value of 0.99, the red line for Class 3 expresses
the curve area with the same value of 0.94, the purple line for
Class 4 expresses the curve area with the same value of 0.89,
the brown line for Class 5 expresses the curve area with the
same value of 0.92, the pink line for Class 6 expresses the
curve area with the same value of 0.94 and the grey line for
Class 7 expresses the curve area with the same value of 0.92.

Figure 9c presents the CM for the LSTM model applied
with SMOTE. CM operates more effectively after applying
SMOTE since the proposed approach yieldsmore continuous,
superior TP and TN values with fewer FP and FN values
for all classes from 0 to 7. Figure 9d presents the ROC
for the LSTM model applied with SMOTE. After applying
SMOTE, the ROC values of all classes 0 to 7 improve per-
formance, and all express the curve area with the same value
of 1.00.

3) COMPARISON OF PROPOSED APPROACH WITH
PREVIOUS TECHNIQUES

TABLE 6. Comparison of proposed approach.

Table 6 compares the proposed approach with pre-
vious techniques regarding classifiers used, class types,
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FIGURE 9. Graphical Visualization of LSTM Model for Multi-Label.

classification, accuracy, and loss. The approach proposed
by [13] utilized the LightGBMclassifier for binary-label clas-
sification and achieved an accuracy of 84.60%. The approach
proposed by [21] used logistic regression (LR) for multi-label
classification and achieved an accuracy of 88.67%with a loss
of 0.056. The approach proposed by [27] employed gradient
boosting (GB) for binary-label classification and achieved an
accuracy of 98.79%. Ultimately, the model proposed in this
research utilized a deep neural network (DNN) for binary and
multi-label classification tasks. It achieved higher accuracies
of 99.39% and 99.74%, respectively, with lower loss values
of 0.0252 and 0.0115. The proposed model outperforms
the previous techniques in terms of both accuracy and loss
across both binary-label and multi-label classification tasks.
Additionally, the proposedmodel achieves higher accuracy in
both classification tasks than the other classifiers used in the
previous approaches.

V. CONCLUSION AND FUTURE SCOPE
MI is a leading global reason of mortality. Because of
that, thousands of people lost their lives every single day.
A patient’s life can be saved by receiving the right medical

care; failing to do so might have terrible consequences.
Considering this, we suggested a model that predicts MI
in patients using DL classifiers (RNN, CNN, DNN, and
LSTM). We used a dataset that included the medical records
of 1700 MI patients. In most statistics about medicine and
healthcare, class imbalance is a serious issue. We used
the SMOTE sampling approach to balance the data, which
performed better. Models are first trained using imbalanced
data, and then the data is balanced using a sampling strategy.
Another preprocessing technique uses z-score normalization
to normalize the data, and data is split into training and
test sets. After employing SMOTE, the proposed method
improved accuracy and loss scores. The method was evalu-
ated on unbalanced datasets to verify the proposed approach’s
effectiveness. This demonstrates the effectiveness of the
proposed approach, which is useful for handling unbalanced
classification issues. The research paper suggests a deep
learning-based technique for detecting myocardial infrac-
tions (MI), yet there are a number of noteworthy drawbacks.
First off, the diversity of real-world populations might need to
be accurately reflected by the dataset size of 1700MI patients.
Second, even though the research discusses class imbalance,
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it is worthwhile to investigate methods other than oversam-
pling and undersampling. Thirdly, model performance may
be impacted by the scant attention paid to feature selection
and preprocessing. Furthermore, a barrier to the clinical
acceptability of deep learning models is their interpretability.
Finally, for real-world applicability, comprehensive clinical
validation and deployment are essential. In the future,
we want to utilize datasets from various geographic areas,
varying preprocessing methods, and various deep-learning
classifiers for the proposed model.
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