IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 17 April 2024, accepted 11 May 2024, date of publication 16 May 2024, date of current version 23 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3401853

== RESEARCH ARTICLE

Tackling Evolving Botnet Threats: A Gradual
Self-Training Neural Network Approach

TA-CHUN LO"'!, JYH-BIAU CHANG 2, SHAO-HSUAN LO', BAI-JUN KAO',
AND CE-KUEN SHIEH ", (Senior Member, IEEE)

! Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
2Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan 33306, Taiwan

Corresponding author: Ta-Chun Lo (N28091108 @ gs.ncku.edu.tw)

ABSTRACT Botnets pose a significant challenge to network security but are difficult to detect because of
their dynamic and evolving nature, which limits the effectiveness of conventional supervised neural network
detection methods. To address this problem, the present study proposes a novel neural network-based self-
training framework for botnet detection, in which pseudo-labels are generated from unlabeled data by a
trained classifier, which is iteratively refined over time using a combined dataset containing both training
and pseudo-labeled data. Although not all of the generated pseudo-labels are applicable to every botnet, the
self-training framework can label unseen botnets with behaviors similar to those of known botnets with high
confidence. Several strategies are proposed for enhancing the robustness of the classification performance
by minimizing the number of incorrect pseudo-labels, mitigating the effects of erroneous pseudo-labels
on the overall performance of the network, and optimizing the proportion of unlabeled data for labeling.
Experiments conducted on both synthetic datasets confirm the superiority of the proposed method over the
base model, particularly when the training data constitutes only a small portion of the total amount dataset.
Subsequent experiments also demonstrate the efficacy of the framework in successfully detecting unseen
botnet variants and its commendable performance in real-world campus network traffic.

INDEX TERMS Botnet detection, NetFlow, network security.

I. INTRODUCTION

Botnets are one of the greatest threats in the cyber world
nowadays and are responsible for a wide range of mali-
cious activities, including Distributed Denial of Service
(DDoS) attacks, spam dissemination, and data breaches,
which can cause extensive havoc, risk to life, and severe
damage, both financial and physical. The identification and
mitigation of botnet attacks are thus of fundamental impor-
tance for protecting network infrastructures and preserving
user privacy. Nonetheless, the intricacy of botnet tech-
niques and the dynamic nature of their behavioral patterns
present formidable challenges to the development of effective
and resilient detection models. For example, most botnets
undergo continuous evolution in an attempt to avoid detec-
tion. Thus, conventional machine learning-based approaches
that rely on labeled data extracted from previous botnet

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin

attacks to train their models are insufficient, given that the
behavior of new bots often varies considerably from that of
previous bots.

Modern botnet detection systems generally use supervised
learning methodologies based on machine learning algo-
rithms or neural network models [1], [2], [3]. Such methods
provide an effective and efficient means of analyzing behav-
ioral changes in flow-based traffic. However, their efficacy
depends heavily on the availability of sufficient representa-
tive labeled data to achieve robust training of a generalized
model. The acquisition of labeled network traffic must be
undertaken within a controlled and simulated environment,
which incurs a significant time investment and cost, particu-
larly when simulating the complex behaviors of typical botnet
attacks.

Furthermore, as mentioned above, botnets are extremely
dynamic and constantly adapt and evolve in order to avoid
detection and continue their malicious activities. Thus, the
labeled data obtained from the analysis of previous botnet

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 69397

https://orcid.org/0000-0001-6067-9068
https://orcid.org/0000-0002-9997-6729
https://orcid.org/0000-0003-3828-9113
https://orcid.org/0000-0003-1919-3407

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

behaviors are not guaranteed to achieve a reliable detection
performance for new botnet variants. In other words, to ensure
the protection of network environments, supervised machine
learning models are no longer sufficient, and it is necessary
instead to develop more adaptive monitoring systems capa-
ble of detecting and classifying potentially malicious traffic
flows as soon as they become apparent.

The acquisition of unlabeled network traffic is far more
straightforward than that of labeled data and can be achieved
in real time using simple network monitoring systems, such
as network traffic analyzers or intrusion detection systems
(IDSs). Thus, interest has grown in the potential to utilize
this information to enhance the performance of traditional
supervised machine learning-based detection methods. It is
impractical to use all of the collected unlabeled data to
enhance the performance of the model. Instead, it is necessary
to consider only the unlabeled data that appear to be poten-
tially associated with a new abnormal behavior. To achieve
this goal, the data distribution must be classified in some
way. In the present study, this is performed using a binary
classification method, as illustrated in Fig. 1.

A Class A
= Class B
Unlabeled data
—— current boundary
ideal boundary

FIGURE 1. Data shift diagram.

Figure 1 shows four illustrative data distributions observed
in the network at four distinct temporal instances. The
binary classification scheme comprises two classes, A and B,
denoted by the blue triangles and red squares, respectively.
The blue solid line indicates the decision boundary of the cur-
rent model, while the green dashed line represents the optimal
decision boundary at the specified time point. Initially, all the
data points are labeled, and the classification model is trained
using these labeled data, resulting in the decision boundary
illustrated by the blue vertical line at T = 0. At T = 1, the data
distribution includes a new set of unlabeled data, represented
by the gray circles. Owing to an underlying data shift, the
distribution of these unlabeled data points is not perfectly
aligned with that of the pre-existing labeled data.

As a result, the original decision boundary is no longer
appropriate for classification purposes but must be adapted
on the basis of the new knowledge contained by the unlabeled
data and replaced with a more optimal boundary (shown by
the green dashed line at T = 1). Furthermore, the decision
boundary must continue to be adapted in this way as the
data distribution evolves over time, as shown at T = 2 and
T = 3. The adaption of the decision boundary should ideally
be performed autonomously without the intervention of a

69398

human operator and should be based on the data points that
have undergone shifts from the previous interval, as opposed
to the data points that adhere to the same distribution as the
extant data.

Accordingly, the present study proposes an innova-
tive self-training framework for botnet detection in which
pseudo-labels are generated from unlabeled data by a trained
classifier, which is iteratively updated over time using a
dataset containing both labeled and pseudo-labeled data. Intu-
itively, the classifier trained in this manner should provide
a high level of confidence in detecting unseen botnets with
a behavior similar to that of known botnets. However, for
new botnets with different behavioral characteristics, the
pseudo-labels derived from previous data distributions may
be unreliable or even inapplicable. Thus, the robustness and
cost-effectiveness of the proposed self-learning framework
are enhanced through the incorporation of several strategies
aimed at minimizing the effects of erroneous pseudo-labels
on the overall network performance and determining the
optimal percentage of unlabeled data to be labeled in each
training epoch.

Previous studies on the use of self-training methods to
overcome the challenge of insufficient labeled data pre-
dominantly rely on synthetic datasets for experimental
purposes [10], [27]. Moreover, in these studies, the train-
ing data are typically randomly sampled from the entire
dataset, thereby ensuring that the distribution of the train-
ing set accurately reflects that of the complete dataset.
However, while this approach is conducive to the appli-
cation of self-training, it is less suitable for the realm of
real-world traffic, in which the labeled data employed for
model training are inherently derived from historical data,
and the distribution of these data points often diverges
from that of future encounters. Thus, the framework pro-
posed in this study is further optimized for the detection
of botnets in real-world networks through a specialized
pseudo-labeling technique, wherein only high-confidence
data points are selected for training to ensure the efficacy
of the derived pseudo-labels in improving the detection per-
formance for future data or previously unobserved botnet
types.

In this work, we build a semi-supervised botnet detection
framework to learn from both labeled and unlabeled traffic.
The main contributions of this study can be summarized as
follows:

1. Improve the performance when the labeled training data
is relatively small.

2. Significantly improve the performance of unseen botnet
detection.

3. Mitigate the effects of erroneous pseudo-labels, i.e., the
error amplification issue.

4. Instead of training directly with the whole dataset, this
study gradually adapts the model over time to achieve higher
performance in real-world traffic

5. Improve the performance and reduce the computation
cost in large real-world traffic data.

VOLUME 12, 2024

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

Il. BACKGROUND AND RELATED WORK

Recent years have witnessed a surge in machine learning
research focused on botnet detection. Many studies [5], [6],
[71, [8] have used features extracted from network flow data
to train machine learning models. Broadly speaking, these
training methods can be categorized into three main types:
supervised learning, semi-supervised learning, and unsuper-
vised learning.

Supervised learning [7], [8] involves training models using
labeled data, i.e., data points that are already classified
as either botnets or non-botnets. However, although super-
vised learning provides accurate predictions, its performance
depends on the availability of precisely labeled data in large
quantities. Moreover, supervised models have only a lim-
ited ability to detect novel or evolving botnets with unseen
characteristics.

Semi-supervised learning approaches [5] extend the super-
vised learning paradigm by incorporating both labeled and
unlabeled data. In such methods, the model is initially trained
using labeled data and is then refined using pseudo-labels
created from the information extracted from unlabeled data.
Semi-supervised learning leverages a broader pool of avail-
able data, thereby potentially enhancing the model perfor-
mance compared with that obtained using limited labeled
data alone. However, its effectiveness is heavily dependent
on the quality of the pseudo-labeling method employed, and
its performance is sensitive to noisy or mislabeled unlabeled
data. Finally, unsupervised learning approaches [6] aim to
make decisions autonomously based on the observed patterns
and structures within the unlabeled dataset. In particular, they
group similar samples based on their extracted features and
then define rules for future decision-making.

Unsupervised learning methods can reveal hidden patterns
and insights without the need for labeled samples and, there-
fore, offer the potential for novel discoveries and eliminate
the annotation burden. However, their outcomes are highly
dependent on the quality of the algorithms used to perform
feature extraction and clustering. Moreover, the absence of
labeled data can limit the interpretability and validation of
the results. In addition, the significant accumulation of data
over time makes real-time detection extremely challeng-
ing. Accordingly, the present study proposes a self-training
approach based on the semi-supervised learning paradigm,
in which the model is gradually adapted over time based
on the information gathered from new unlabeled data in
the evolving dataset. The remainder of this section reviews
related work in the self-training field and explains the strate-
gies adopted in the present study inspired by these studies.

Lee et al. [9] proposed a self-training method incorporating
pre-training and error-forgetting techniques aimed at mitigat-
ing the error amplification challenge in self-training. Error
forgetting involves two strategies: weight resetting and re-
evaluation. The former strategy updates the model weights
in each self-training epoch to prevent stagnation, while the
latter strategy re-evaluates the pseudo-labels assigned to the

VOLUME 12, 2024

unlabeled samples in each epoch. The results in [9] showed
that the two strategies effectively mitigate the impact of
incorrect pseudo-labels on the model performance. Thus, the
framework proposed in the present study also adopts both
strategies to enhance the overall performance of the model.

Kumar et al. [11] considered the problem of adapting a
machine learning system to an evolving data distribution
over time in the image recognition field. In particular, the
authors addressed the problem of gradual domain adaptation,
in which an initial classifier was trained on a source domain
and was then gradually adapted using only unlabeled data
that gradually shifted toward the target domain. The authors
provided the first non-trivial upper bound on the error of
self-training in the presence of gradual shifts. In addition,
theoretical analyses were performed that demonstrated the
importance of regularization and label sharpening even in the
presence of infinite data. The experimental results obtained
on rotating MNIST dataset and realistic portrait datasets
demonstrated the improved accuracy obtained by leveraging
a gradual shift structure in adapting the source domain to
the target domain rather than directly adapting to the target
domain. Accordingly, the present framework also adopts a
gradual self-training approach to deal with the real-world
problem of botnet detection.

Koza et al. [10] compared the performance of two
semi-supervised deep neural network algorithms on a large
real-world malware dataset. The first algorithm utilized unla-
beled samples and took the high-confidence classification
results as pseudo-labels in subsequent classification rounds.
The second algorithm aimed to enhance the prediction con-
sistency of the network under altered circumstances (e.g.,
different data augmentation strategies and/or dropout set-
tings). For reference purposes, the results obtained using
the two algorithms were compared with those obtained
from the same deep network trained in a fully supervised
mode using only labeled data. The results showed that both
semi-supervised learning methods achieved only a marginal
improvement over the baseline model when the proportion of
labeled data within the entire dataset exceeded 10%. In other
words, the randomly sampled training subset was sufficient
to properly represent the distribution of the entire dataset,
thereby allowing the baseline model to achieve a reasonable
performance even with only a small proportion of labeled
data. However, when training was performed using data
acquired over an initial five-week period, and testing was
then conducted on new data collected several weeks later, all
three models showed a marked degradation in performance,
thereby confirming the challenge posed by the data shift
problem.

Mahdavifar et al. [12] presented a pseudo-label stacked
auto-encoder approach for the Android malware classifi-
cation. To minimize the annotation burden, the proposed
method adopted a semi-supervised learning method in which
both dynamic and static analyses were used to craft fea-
ture vectors. The experimental results obtained on the

69399

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

CICMalDroid2020 dataset showed that the proposed model
was more accurate and efficient than other state-of-
the-art techniques. Zhang et al. [5] proposed an active
semi-supervised learning approach for network instruc-
tion detection, in which pseudo-labels were assigned to
unlabeled data using a minimum class-distance threshold
for active learning and a high classification threshold for
semi-supervised learning and then selecting the high con-
fidence unlabeled samples for labeling and addition to the
training set. Gelian et al. [14] proposed a self-learning botnet
detection system utilizing an ensemble classifier. The classi-
fier updates the model continuously based on the knowledge
derived from new unlabeled traffic flows to enhance the gen-
eralization capacity. The results demonstrated the system’s
success in adapting to dynamic environments containing data
generated by new botnet types.

Along with the rise of the botnet threat, researchers have
proposed several solutions in the botnet detection field. M.
A. Setitra et al. proposed several works [33], [34], [35] to
detect DDoS attacks, a typical attack type held by botnet
attackers. In [33], the authors proposed a pre-processing
model to extract features in proper representation based on
the Total of Possible Unique Values (TPUV). Eight differ-
ent machine learning algorithms are then used to evaluate
the proposed method. In [34], the authors build a botnet
detection system using the SHapley Additive exPlanations
(SHAP) feature selection method, multilayer perception, and
convolution neural network model. The system proves its
performance on the CICDDo0S-2019 and the InSDN dataset.
In [35], the authors proposed another DDoS detection system
by combining the AutoEncoder and the XGBoost algorithm.
The system achieves a 99.992% accuracy in the experiment
result.

Hossain et al. [36] amalgamates common algorithms,
including categorical analysis, mutual information, and prin-
cipal component analysis, to extract representative features
from the dataset. The extracted features are then used to
train an ML model. The experiment result achieves an
accuracy exceeding 99.99% when using Extra Trees as the
classifier. On the other side, Zhou et al. [37] focus on
energy efficiency and resource conservation. The authors
proposed an ML-based lightweight ensemble-based model to
detect botnet activities in the IoT environment. The proposed
model integrates two machine learning algorithms, namely
XGBoost and LightGBM. The experiment shows an out-
standing performance of the proposed method.

Velasco-Mata et al. [38], in the other way, focus on the
Time-to-Detection (TTD) issue in the botnet detection field.
TTD refers to the time window between a network attack and
the detection of the threat. Faster TTD can effectively limit
the attacker’s operating space and reduce the damage caused
by intrusions. In [38], the authors propose an approach that
works on the time windows of one second, with a processing
time of 0.007 milliseconds per sample.

The state-of-the-art solves the various issues in the bot-
net detection field with outstanding performance in each

69400

experiment. However, in this work, we attempt to solve the
relatively small training data issue and the data shift problem,
which real-world applications may encounter.

lil. METHODOLOGY

A. OVERVIEW

The proposed self-training process comprises three discrete
stages, as illustrated in Fig. 2. The first stage encompasses
the initialization phase, in which the accumulated labeled
data are used to train a foundational model. The second
stage comprises the model inference phase, during which the
model undergoes continual refinement by processing incom-
ing unlabeled data and generating predictions accordingly.
The prediction outcomes are treated as pseudo-labeled data
and are incorporated into the dataset for subsequent self-
training. However, not all the pseudo-labeled data are used
for training. Instead, the proposed framework selects only the
pseudo-labels with the highest confidence for addition to the
training set (as described in Section III-E). The third stage
consists of the model update stage, wherein the dataset con-
taining the original labeled training data and pseudo-labeled
data derived from the model inference phase is processed
using a self-training algorithm. Upon completion of the
model update, the process cycles back to the second stage,
where new unlabeled data are received for further inference.

!
Phase 1 Phase 2 Phase 3

Initialization Model Inference Model Update

Model Training Predicting Self-training

Data
Base Model Pseudo-labeled
o Data -

FIGURE 2. Gradual self-training workflow.

Figure 3 presents a more detailed view of the gradual
self-training process. The initial foundation model is denoted
as My. After a period of model inference, self-training is
performed using the accumulated pseudo-labeled data, result-
ing in an updated model, M;. At the end of this stage, the
high-confidence data selected in the final epoch are per-
manently added to the training set and undergo no further
reevaluation in subsequent self-training iterations. Typically,

———

) + |) v |
' H

Model Training }—-| Predicting H Self-training }—-| Predicting H Self-training }—‘

¥ i

T
Unlabeled | | [Pseudo-labeled Unlabeled | | [Pseudo-labeled
Data - Data -1 Data - Data -

Training Training |- Training |-
Data L_Dﬂ‘l Data

FIGURE 3. Gradual self-training timeline.

VOLUME 12, 2024

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

around 40-60% of the unlabeled data are chosen as high-
confidence data. Thus, the pseudo-labeled data is expanded,
as shown by the multiple document input of the second self-
training process. The larger dataset potentially leads to an
improved performance and generalization ability in subse-
quent iterations of the self-training process.

B. DATA PREPROCESSING

Since NetFlow contains only unidirectional information, it is
unable to retrieve the entire communication pattern between
two hosts in NetFlow-based detection. Thus, in the present
study, the NetFlow data are merged into bidirectional sessions
using the method described in [6]. In particular, a NetFlow log
is defined as follows:

F; = (SIP;, SP;, DIP;, DP;, P;, T}) , (D

where SIP is the source IP address, SP is the source port num-
ber, DIP is the destination IP address, DP is the destination
port number, P is the protocol, and T is the timestamp. Each
session, S, comprises a series of NetFlow logs with a time
interval between consecutive logs less than a certain threshold
T (21 seconds for TCP and 22 seconds for UDP by default.).
The threshold is set as the default connection timeout of the
Microsoft Windows operating system, i.e.,

Si = Zj F; (SIP;, SP;, DIP;, DP;, P;, Tj) (2)
VF;, Fiy1€8i,Tir1 = T; < Ty, 3

Given that each session comprises multiple NetFlow logs,
it is necessary to extract a set of novel features from these
logs that properly encapsulate the characteristics of the entire
session. Notably, the extracted features should be carefully
defined such that they are capable of distinguishing potential
botnet communications from normal activities. The present

TABLE 1. Session features.

Features Description
Forward Pkts Number of packets forward to destination IP
Forward Bytes Number of bytes forward to destination IP
Forward MaxBytes Max size of packet forward to destination IP
Forward MinBytes Min size of packet forward to destination IP
Forward MeanByte Mean size of packets forward to destination IP
Backward Pkts Number of packets backward to source IP
Backward Bytes Number of bytes backward to source IP
Backward MaxBytes Max size of packet backward to source IP
Backward MinBytes Min size of packet backward to source IP
Backward MeanByte Mean size of packets backward to source IP
Flow Pkts Number of total packets
Flow Bytes Number of total bytes
Flow MaxBytes Max size of total packets
Flow MinBytes Min size of total packets
Flow MeanByte Mean size of total packets
Flow STDByte Standard deviation of total packet size
Flow BytesRate Proportion Of total bytes to duration
Flow Pkts Rate Proportion Of total packets to duration
Flow IORatio Proportion of total incoming packet size to

total outgoing packet size

Duration Duration of session

VOLUME 12, 2024

self-training framework employs the 20 representative fea-
tures listed in Table 1 [6].

Having consolidated the NetFlow logs into sessions, the
initialization stage is activated. During this stage, the training
dataset is divided into two distinct parts: the labeled data and
the unlabeled data. The labeled data plays a pivotal role in
both the model pretraining stage and the self-training stage
(see Fig. 3). Here, the labeled data serves as the ground truth,
ensuring the correctness of the labels. Conversely, the unla-
beled data exclusively contributes to the self-training stage,
during which the unlabeled data undergoes pseudo-labeling,
and the resulting pseudo-labeled data is amalgamated with
the labeled data for subsequent model retraining.

C. INITIALIZATION STAGE

Before commencing the self-training process, it is neces-
sary to establish a reliable foundational model to ensure the
accuracy of the pseudo-labeling outcomes. Therefore, in the
initialization stage, the model is pre-trained using the labeled
data generated during the data partitioning phase of the prior
data preprocessing stage. In general, the architecture of a
deep learning model depends on its intended purpose. In the
present study, the model output should indicate the probabil-
ities of each output class. Thus, the activation function of the
final layer of the deep learning model uses SoftMax. Beyond
this requirement, however, the proposed framework imposes
no additional constraints on the model architecture.

D. MODEL INFERENCE STAGE

The Model Inference Stage is positioned between the Ini-
tialization Stage and the subsequent Model Update Stage (or
another subsequent Model Update Stage in the later model
refinement process). During the Model Inference Stage, the
detection model is deployed to identify potentially mali-
cious network traffic in the operational environment, and
real-time network traffic is collected as unlabeled data. Once
the unlabeled dataset has accumulated sufficient data, the
framework advances to the Model Update Stage and initiates
the self-training process. Upon completion of the self-training
process, the framework reverts to the Model Inference Stage
and repeats the deployment and detection activities.

E. SELF-TRAINING STAGE

1) SELF-TRAINING WORKFLOW

Figure 4 illustrates the basic workflow of the self-training
framework. Initially, the unlabeled data collected in the pre-
ceding stage are labeled using the pseudo-labeling method
described in the following section. The pseudo-labeled data
are combined with the original training data, and a new
model, termed the re-trained model, is constructed. This
re-trained model mirrors the architecture of the pseudo-
labeling model and undergoes training with the pseudo-
labeled data. After training, the performance of the re-trained
model is evaluated on validation data. If the re-trained
model outperforms the pseudo-labeling model, the weights
of the re-trained model are transferred to the pseudo-labeling
model; otherwise, the original weights are retained. This

69401

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

Pseudo-labeling Data Combining Re'\tllr(a)?r:Lg
Model Update Model
Validation

Yes

Output

FIGURE 4. Self-training framework.

process continues iteratively until the designated number of
self-training epochs have been performed. The latest version
of the pseudo-labeling model is then taken as the final model
since it possesses the optimal weights obtained over the entire
self-training procedure.

Although the iterative process described above is designed
to continue until all the self-training epochs are completed,
an early-stop mechanism is incorporated into the self-training
process, wherein the training process is terminated if the
unlabeled data are very different from the labeled data and
thus prevents the pseudo-labeling model from being fur-
ther improved. The mechanism thus not only improves the
training efficiency but also safeguards the robustness and
performance of the final model.

Figure 5 presents the pseudocode of the self-training
framework, and Table 2 defines the parameters used in the
pseudocode. Refer to Fig. 5, the self-training framework
starts by generating pseudo-labels for all the unlabeled data
in each self-training epoch and adds the high-confidence
data to the pseudo-labeled data by referencing the proportion
of the current self-training epoch. The pseudo-labeled data
are then combined with the training data (i.e., the labeled
data) to create so-called dynamic training data. These data
are used to build a new model with the same architecture
as the pseudo-labeling model called the re-trained model.
The re-trained model is trained on the validation data, and
the F1-score is determined. If the F1-score is higher than the
previous best Fl-score, the weights of the re-trained model
are transferred to the pseudo-labeling model, and the best
F1-score is updated. Otherwise, the proportion of unlabeled
data used for pseudo-labeling (P) increases in the next self-
training epoch.

Note that P is deliberately not increased when the F1-score
improves in order to understand whether the same (or better)
performance is consistently obtained as the training process
proceeds using the same value of P (i.e., P represents the
optimal labeling proportion). Conversely, P is increased when
the F1-score fails to improve because the unlabeled data are

69402

Algorithm 1 Self-training Framework
Input: Labeled, Unlabeled

Output: Final Model

. // Configuration

Train, Valid « Split(Labeled)
PM « BuildAndTrain(Train)

BS « Evaulate(PM, Valid)

P < GetProportion()

// Self-training

CurrP « First(P)

Cepoch <~ 0

while CurrP not end of P and Cepoch < 3 do
PD « Pseudolabel(PM, Unlabeled, CurrP)
DT « Train U PD
RM « BuildAndTrain(DT)
Score < Evaluate(RM, Valid)
if Score > BS then

O ONDYEBNR

P
o s whbheRo

16: PM < RM

17: BS « Score

18: Cepoch < 0

19: else

20: CurrP < Next(CurrP)
21: Cepoch < Cepoch +1
22: end if

23: end while
24: return PM

FIGURE 5. Implementation of self-training framework.

TABLE 2. Parameters of pseudo-code.

Parameter Description
Train, Valid Training Data, Validation Data
Labeled, Unlabeled | Labeled Data, Unlabeled Data
PM, RM Pseudo-Labeling Model, Re-Trained Model
PD, DT Pseudo-Labeled Data, Dynamic Training Data
P An increasing array indicates the target of the
pseudo-labeling proportion in the unlabeled data
CurrP Current Value of P
BS Best F1-Score during self-training
B Base Proportion
Range The value of proportion to be increased
RSort Sort the array from high to low
Cepoch Consecutive self-training epoch since last BS

deemed to be insufficient to fully represent the characteristics
of the dynamic training data. The process continues until all
possible values of P have been explored or no improvement in
the F1-score is observed over three consecutive self-training
epochs, which indicates that the remaining unlabeled data are
low-confidence samples and do not contribute to enhancing
the learning performance of the model.

2) PSEUDO-LABELING METHOD

Figure 6 shows the workflow of the proposed pseudo-labeling
algorithm. As shown, the pseudo-labeling model first pre-
dicts the class of all the unlabeled data in every self-training
epoch. As described above, the classifier applies the Soft-
Max activation function in the final layer. Thus, for each
unlabeled data point, the classifier determines the probability
prediction of each class (i.e., normal or botnet), and the class
with the highest probability is chosen as the model output
for the sample. If the probability exceeds a certain threshold,
the sample is designated as a high-confidence sample and

VOLUME 12, 2024

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

is added to the pool of pseudo-labeled data. Otherwise, the
sample is dropped.

In implementing the pseudo-labeling algorithm described
above, a straightforward solution is to simply assign the
threshold a fixed value. However, in practical applications,
the highest probability of the predicted class may differ in
each self-training epoch, and hence, while a threshold of 80%
(for example) may be suitable for evaluating samples with
high confidence in epoch 1, a value of 90% may be more
appropriate in epoch 2. Furthermore, the characteristics of
the input data may vary significantly over time. Thus, the
optimal threshold value for one set of input data may not
be the optimal value for a second set of data collected at a
different time.

Add to pseudo-
labeled data

Yes (high confidence)

icti Predicted Data Probability >
Data Prediction A
/' *

No (low confidence)

Unlabeled Data Discard current
L)
sample

Pseudo-labeling
Model

FIGURE 6. Pseudo-labeling workflow.

Accordingly, in the present study, the pseudo-labeling
algorithm is implemented using a dynamic threshold strategy.
Notably, the threshold is set based on the concept of gradu-
ally increasing the number of samples to be labeled during
the self-training process to approach the optimal percentage.
In particular, the threshold is implemented not by adjusting
the threshold value (a percentage) each time but by incremen-
tally increasing the proportion of unlabeled data to be labeled
in every self-training epoch from one epoch to the next. Once
the proportion of unlabeled data to be labeled has been set,
the unlabeled data are sorted from high to low in order of the
probability of their predicted class. The threshold value in the
corresponding epoch is then taken as the lowest probability
of the predicted class of the sample within the corresponding
epoch’s percentile.

It should be noted that the upper bound percentage of the
unlabeled data to be labeled cannot be directly assigned a
specific value because its value depends on the distribution
characteristics of the unlabeled data, which may vary signif-
icantly in different epochs. For example, if the distribution
of the unlabeled data differs greatly from that of the train-
ing data, it is nonsensical to process all the unlabeled data
because this may degrade the performance of the base model
(particularly if the model already has a high performance).
Conversely, if the unlabeled data are closely aligned with
the training data, assigning pseudo-labels to most of the
unlabeled data is likely to improve the performance of the
base model (particularly if the present model has a low perfor-
mance). Accordingly, in the present framework, the entirety

VOLUME 12, 2024

of the unlabeled data is taken as the maximum percentage
to be labeled, and two variables, namely the base proportion
and the range, are introduced to govern the increment in the
pseudo-labeling proportion in each epoch.

The base proportion indicates the proportion of unlabeled
data to be labeled in the first self-training epoch. It is delib-
erately assigned a low value to minimize the training time
by using only a small percentage of pseudo-labeled data.
However, if all the unlabeled data have high confidence,
the model learns nearly nothing new in the subsequent self-
training rounds. Accordingly, the range parameter is used
to specify an increment in the labeling proportion in each
epoch. If the range is small, the optimal labeling proportion
can be determined more precisely. However, the learning
performance of the model is likely to increase very slowly,
if at all, and hence the training time is increased. Conversely,
if the labeling proportion grows too rapidly, the training time
is reduced; however, the precision of the optimal labeling
proportion is most likely degraded. Thus, the two parameters
should be set under different usage. In the present experi-
ments, the base proportion was set as 0.15, and the range was
set as 0.05.

Figure 7 presents the pseudocode for the pseudo-labeling
method. As discussed above, the method commences by
predicting the class probabilities of all the unlabeled data
using the pseudo-labeling model. For each sample, a prob-
ability prediction is obtained for each class, and the sample is
assigned to the class with the highest probability. The samples
are then sorted from high to low according to their predicted
class probabilities. The threshold of the current self-training
epoch is taken as the probability of the predicted class of the
current percentile P. Finally, the algorithm iterates through
all the samples and adds the samples with a predicted class
probability equal to, or greater than, the threshold to the pool
of pseudo-labeled data for the following pre-training epoch.

Algorithm 2 Pseudo-labeling Algorithm
Input: PM, Unlabeled, CurrP

Output: PD

1: procedure Pseudolabel(PM, Unlabeled, CurrP)

2 // Variables

3 DLen < Len(Unlabeled)

4 Confidence «~ EmptyArray(DLen) of DOUBLE

5:

6 // Pseudo-labeling

7 Predictions « Predict(PM, Unlabeled)

8 fori < each data in Predictions do

9 Confidence[i] < ProbabilityOfHighestClass(Predictionsl[i])
10: end for

11: Confidence < Rsort(Confidence)

12: Threshold «+ Confidence[DLen * CurrP]

13: for p € Predictions do

14: if ProbabilityOfHighestClass(p) = Threshold then
15: PD < PD U GetData(p)

16: end if

17: end for

18: return PD

19: return procedure

FIGURE 7. Implementation of pseudo-labeling method.

69403

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

3) ERROR-AMPLIFICATION ISSUE

Error amplification occurs when the model inference stage
assigns an incorrect label to an unlabeled data point, and
the model then conducts training using the mislabeled data.
In this situation, the training process enters a vicious circle
in which the model learns the misinformation falsely gener-
ated in previous epochs. Consequently, the confidence value
of the data increases (albeit incorrectly), thereby ultimately
destroying the performance of the model. For mitigating the
effects of erroneous pseudo-labels, the proposed framework
uses the weight reset and re-evaluation mechanisms proposed
by Lee et al. [9].

The weight reset mechanism initializes the model weights
at the onset of each Model Update Stage. This ensures
that the model starts training anew after the completion of
each pseudo-labeling phase, thereby preventing the propaga-
tion of undesirable weights from the preceding self-training
epoch. Given that the original training data contributes to
each epoch in the Model Update Stage, frequent model
updates may cause the model to become excessively attuned
to the training data. Thus, the weight reset mechanism
also serves the purpose of suppressing model overfitting.
Meanwhile, the re-evaluation mechanism performs pseudo-
labeling of all the unlabeled data during the Model Inference
stage, not just the newly arrived unlabeled data. Thus, it pre-
vents mislabeled data from enduring indefinitely in the
training set without the opportunity for correction.

4) REAL-WORLD DATA IMPROVEMENT

Due to the substantial size disparity between real-world
network traffic and synthetic data, conducting training on
real-world data incurs significantly greater time and com-
putational resources. Thus, employing the weight reset
mechanism described above in this context may result in
notable resource inefficiencies because each epoch entails
training the model from scratch. Therefore, in this study,
when performing model training with real-world data, the
weight reset mechanism is omitted, and the risk of overfitting
is mitigated instead by simply omitting data with exception-
ally high confidence from the pseudo-labeled dataset.

This exclusion strategy is motivated by two factors. First,
the self-training methodology adopted in botnet detection
should possess the capability to identify variant botnets, that
is, botnets that are similar to, but not identical to, the original
botnet. If the pseudo-labeling process results in an exception-
ally high confidence level for the unlabeled data, there is a
strong likelihood that the data corresponds to a botnet already
present in the training data. Training the pseudo-labeled
data alongside the training data may thus induce overfitting
to the original data rather than facilitating the assimilation
of new behaviors characteristic of variant botnets. Second,
the pseudo-labeled dataset is prone to contain inaccuracies,
thereby increasing the relative contribution of the labeled
training dataset. Thus, to prevent overfitting while still pre-
serving sufficient accurate information to improve the model

69404

performance during the model update stage, it is intuitive
to discard the pseudo-labeled data with excessively high
confidence rather than the original training data, which are
presumed to be entirely accurate.

IV. EXPERIMENTS

A. ENVIRONMENT

The experiments were conducted on a personal computer with
an Intel(R) Core(TM) i7-7700 CPU running at 3.60 GHz,
16 GB of RAM, 10 TB of storage capacity, and an NVIDIA
GeForce RTX 2080 Ti GPU.

B. DATASETS
Two datasets were employed: a synthetic dataset and a
real-world traffic dataset.

TABLE 3. CTU-13 dataset.

1D Sessions Bot

1 9,463 Neris

2 5,376 Neris

3 1,634 Robt

4 629 Rbot

5 430 Virut

6 286 Menti
7 44 Sogou
8 392 Murlo
9 41,984 Neris
10 946 Rbot

11 225 Rbot
12 2,804 NSIS.ay
13 7,634 Virut

TABLE 4. N-BaloT dataset.

Class Flows
Benign | 555,932
Mirai 3,668,402
Gafgyt | 2,838,272

1) SYNTHETIC DATASET
The experiments involving synthetic data commenced by
using the CTU-13 dataset [26], which encompasses 13 unique
scenarios, inclusive of seven botnet traffic types and benign
traffic and the N-BaloT dataset [32]. The details of the dataset
and considered scenarios are shown in Table 3 and Table 4.
Note that the two datasets have different flow types and
features. However, the proposed framework focuses only on
improving the detection model. The input data format differ-
ence doesn’t matter. The two datasets were used to validate
the proposed self-training framework for well-known botnets.
The ability of the framework to detect botnet variants was
then investigated using two further categories of botnet data.
The first category comprised the data generated by banking
Trojan botnets [15]. The most widespread banking Trojan is
Zeus; however, there are also many variants or descendants
of Zeus. A synthetic dataset was obtained by simulating the

VOLUME 12, 2024

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

TABLE 5. Banking botnet dataset.

Class Source Sessions
Benign Malware Capture Facility Project 500,000
Zeus Malware Capture Facility Project 250,000
Tinba Malware Capture Facility Project 50,000
Vawtrak Malware Capture Facility Project 50,000
Emotet Malware Capture Facility Project 50,000
TrickBot Malware Capture Facility Project 50,000
Dridex Malware Capture Facility Project 50,000

TABLE 6. Email spam botnet dataset.

Class Source Sessions
Benign Malware Capture Facility Project 500,000
Storm PeerRush [25] 150,000
Waledac PeerRush [25] 50,000
Kehlios Malware Capture Facility Project 50,000
Pushdo Malware Capture Facility Project 50,000

real-world traffic behaviors published by the Malware Cap-
ture Facility Project [28]. Seven scenarios were constructed,
as shown in Table 5. The second category simulated the botnet
data produced by four common email spam botnets: Storm,
Waledac, Kehlios, and Pushdo [16]. Table 6 shows the details
of the related dataset.

2) REAL-WORLD DATASET

The real-world dataset was collected from the National Cheng
Kung University (NCKU) on the Taiwan Advanced Research
and Education Network (TWAREN) between May and July
2019. The dataset was divided into three datasets (a training,
an unlabeled, and a testing dataset) by time rather than by
mixing and shuffling the entire dataset. The division between
the three datasets is shown in Fig. 8, in which the data col-
lected in the second week of May are considered as training
data, the data collected between the third week of May and
the end of June are taken as unlabeled data, and the remaining
data are taken as testing data.

Week-based Data distribution

week2 299623
May ez 566051
weekd. 209250
I —
weekl 198863
weel2 312164)
June wese 201235
weekd 402554)
weel 3 .y
= 42568) O Training data
week2 66320
July wees 143152 O Unlabeled data
wetid L0 O Testing data

FIGURE 8. Real-world week-based data distribution.

C. EVALUATION CRITERIA

The performance of the proposed self-training framework
was evaluated using four common metrics: Recall, Precision,
Accuracy, and Fl-score. In binary classification problems
such as that considered in the present study (i.e., botnet vs.
benign), the prediction outcomes are generally categorized as
follows:

VOLUME 12, 2024

o True Positive (TP): The number of samples predicted as
a botnet and actually belonging to the botnet class.

o True Negative (TN): The number of samples predicted
as benign and actually belonging to the benign class.

« False Positive (FP): The number of samples predicted as
botnet but actually belonging to the benign class.

« False Negative (FN): The number of samples predicted
as benign but actually belonging to the botnet class.

The recall metric refers to the proportion of correctly pre-
dicted positive samples among all the actual positive samples
and is calculated as Recall = TP / (TP + FN). Thus, a high
recall value indicates that the model can effectively capture
positive samples.

The precision metric refers to the proportion of correctly
predicted positive samples among all the predicted positive
samples and is calculated as Precision = TP / (TP + FP).
A high precision value indicates that the positive predictions
of the model are reliable.

The accuracy metric evaluates the proportion of correctly
predicted samples among all the samples and is calculated as
Accuracy = (TP + TN) / (TP + TN + FP + FN). A high
accuracy value indicates that the overall predictions of the
model are accurate.

Finally, the Fl-score combines the precision and recall
metrics and is calculated as Fl-score = 2 * (Precision *
Recall) / (Precision + Recall). Thus, the F1-score provides
a balanced measure of the model performance by simultane-
ously considering both the precision and the recall.

In this study, the evaluation of the proposed framework
focused primarily on the F1-score since, as mentioned above,
the Fl-score provides a balanced measure of precision and
recall, which are both crucial factors in assessing the effec-
tiveness of the model.

D. NEURAL NETWORK ARCHITECTURE

As mentioned in section III-C, the proposed framework
accommodates classifier output in the form of probability
distributions for each class. The neural network architecture
utilized in the subsequent experiments is detailed in this
section.

A stable architecture is constructed within a fully con-
nected neural network to validate the proposed framework.
Following experimentation with various hyperparameters,
encompassing the number of hidden layers, neurons, filters,
sizes, optimizers, activation functions, weight initializers, and
techniques to prevent overfitting, the finalized model com-
prises six hidden layers. Each layer consists of 4096 neurons,
employing the Rectified Linear Unit (Relu) activation func-
tion [29], He Normalization [30], and Adam optimizer [31].
Additionally, three dropout layers [21] are incorporated from
the bottom with a dropout rate of 0.4.

E. EXP.1 - SMALL PROPORTION OF LABELED DATA
Labeling network traffic is a high-cost activity in real-world
environments. Thus, compared to unlabeled traffic, which

69405

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

TABLE 7. Small proportion of labeled data test on CTU-13 dataset.

Proportion | Model Prec. | Recall Acc Fl

Base 72.69 | 97.92 | 80.64 | 83.44
0.05 Final 79.51 | 96.48 | 85.87 | 87.18 374

01 Base 7448 | 96.55 | 81.99 | 84.09 7920
) Final 88.16 | 94.64 | 91.09 | 91.29)

02 Base 80.62 | 95.10 | 85.81 | 87.26 412
) Final 88.60 | 94.35 | 9091 | 91.38)

Base 80.53 | 95.87 | 86.21 | 87.53
03 Final 89.49 | 94.13 | 91.46 | 91.75 4.22

05 Base 80.90 | 96.00 | 86.40 | 87.80 431
) Final 89.45 | 9493 | 91.71 | 92.11)

0.7 Base 87.20 | 9491 | 90.26 | 90.89 1.25
) Final 89.73 | 94.69 | 91.73 | 92.14)

Improved

TABLE 8. Small proportion of labeled data test on N-BaloT dataset.

Proportion | Model Prec. | Recall Acc Fl

Base 99.74 | 99.81 | 99.70 | 99.78
0-05 Final 99.91 99.96 | 99.91 | 99.93 015

01 Base 99.62 | 99.86 | 99.65 | 99.74 0.20
) Final 99.92 | 99.95 | 99.91 | 99.94)

Base 99.71 99.79 | 99.67 | 99.75
02 Final 99.93 | 99.96 | 99.93 | 99.95 0-20

03 Base 99.74 | 99.74 | 99.65 | 99.74 023
) Final 99.98 | 99.96 | 99.96 | 99.97)

05 Base 99.67 | 99.79 | 99.64 | 99.73 024
) Final 99.96 | 99.97 | 99.95 | 99.97)

Improved

07 Base 99.66 | 99.86 | 99.68 | 99.76 021
) Final 99.98 | 99.96 | 99.96 | 99.97)

may increase significantly day by day and is possibly accu-
mulated for years, well-labeled real traffic may span a period
of only a few months, especially for large companies or orga-
nizations. Thus, the performance of the proposed framework
was first validated using different proportions of training
data. The results presented in Table 7 indicate that the
framework improved the base model performance for all con-
sidered proportions tests on the CTU-13 dataset. However, for
larger quantities of labeled data (e.g., 0.7), the performance
improvement was reduced because the model was already
able to learn sufficient information from the training data
and thus gained less benefit from the pseudo-labeled data.
The result of the N-BaloT dataset is shown in Table 8. The
performance of each proportion has improved after using the
proposed framework. However, the improvement is limited
since the base model can already achieve 99% in each perfor-
mance matrix.

F. EXP.2 - UNLABELED VARIANT OR UNSEEN BOTNETS

The second experiment validated the performance of the
proposed framework in dealing with unseen or variant botnets
in unlabeled data. As described above, two categories of data
were collected: banking Trojans and email spam botnets. The
base classifier was trained with labeled Zeus data, while the
data generated by its variants or related botnets were used as
unlabeled data. In the email spam category, the base classifier
was trained with labeled data from Storm, and the data pro-
duced by its variants or related botnets were again considered
as unlabeled data. For both categories, the data generated by

69406

the botnets were labeled as malicious in the experiments to
ensure the existence of a binary class classification task.

Figure 9 presents the results obtained for the banking
botnets. The proposed self-training framework improved the
F1 score from 68.46% to 74.75% and the accuracy from
73.29% to 77.93%. Figure 10 presents the equivalent results
for the email spam botnets. As shown, the proposed frame-
work improved the F1-score from 50.62% to 69.36% and the
accuracy from 68.44% to 77.51%.

For both sets of experiments, the performance of the model
after self-training is still relatively low. This finding is rea-
sonable because the unlabeled data are all different from the
labeled data. In other words, no labeled data exist for any
of the botnet variants or unseen botnets used to generate the
unlabeled data, and hence, the F1-score of the base classi-
fier following self-training using the unlabeled data is still
rather modest. By contrast, for both categories of data, the
F1-score of the base model for the validation data is relatively
high. In other words, the base models show a good ability
to detect the botnets on which they were trained. However,
they have a low ability to detect variants or unseen botnets
with behaviors similar to those of the labeled data. Thus, even
high-performance models well-trained on labeled data are not
necessarily helpful for detecting variants or unseen botnets,
indicating the importance of leveraging unlabeled data.

Banking Botnet Results

96.91 96.84

100 93.92 94.13

77.93
20 74.75 73.29
68.46

Performance
o
3]

]

F1-Score Accuracy
Metrics

m Base = Base + Self-Training Validation: Base Validation: Base + Self-Training

FIGURE 9. Banking botnets results.

Email Spam Botnet Results

98.66 997 9884 997

77.51
69.36 68.44 7

50.62

Performance
a
3

F1-Score Accuracy
Metrics

®Base ™ Base + Self-Training Validation: Base Validation: Base + Self-Training

FIGURE 10. Email spam botnets results.

VOLUME 12, 2024

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

TABLE 9. F1-score improvement on CTU-13 dataset with different
frameworks.

TABLE 10. Results of obtained for one-week training data and
two-month data shift.

Proportion | Proposed | Fixed Threshold II-model [10]
0.05 3.74 3.22 3.67
0.1 7.20 3.44 2.99
0.2 4.12 1.83 1.68
0.3 4.22 1.67 3.44
0.5 431 1.11 3.94
0.7 1.25 0.88 0.67

G. EXP.3 - COMPARISON WITH RELATED WORK

The performance of the proposed framework on synthetic
datasets was compared with that of a traditional self-training
framework based on a fixed threshold during retraining and
the semi-supervised [T-model proposed in [10]. All frame-
works aim to improve the model performance using unlabeled
data. Thus, the comparison experiments focused on the
degree of performance improvement achieved by the frame-
works rather than the exact performance of each model. The
F1 score was again used as the evaluation metric for all three
frameworks. The results presented in Table 9 show that the
proposed framework outperformed both comparison methods
for all considered values of the training data proportion.
However, the performance improvement was reduced with an
increasing proportion of training data because, as the amount
of labeled data increased, the base model was better able to
learn the characteristics of the data and hence had higher
initial performance. Consequently, the self-training process
had only a limited ability to further improve the performance
of the model.

H. EXP.4 - REAL WORLD DATA EVALUATION

The real-world data experiments evaluated the performance
of the proposed framework in a scenario in which only a
small number of labeled data were available, and a data
shift occurred over time. As described in Section IV-B, the
dataset was partitioned into training data for the base model,
unlabeled data for pre-training purposes, and testing data
for performance evaluation purposes. The real-world exper-
iments aimed to assess the ability of the proposed gradual
self-training approach to leverage the information learned
from the unlabeled data after undergoing a two-month data
shift.

Instead of using all the unlabeled data for self-training
directly, the proposed framework allows the model to gradu-
ally acquire new knowledge, thereby avoiding the significant
performance degradation caused by sudden large data shifts.
The essence of gradual self-training lies in the use of a grad-
ual learning process. In particular, during each self-training
iteration, a proportion of high-confidence data was selected
in the range of 25-60%, where the selected proportion was
increased by 5% per epoch. All of the unlabeled data were
re-evaluated in each epoch by re-predicting their labels.

The results in Table 10 indicate that the proposed approach
achieved a consistent performance improvement over the
base model in all four weeks of July (corresponding to the

VOLUME 12, 2024

Dataset Model Acc. Prec. Recall Fl1
Base | 90.49 | 93.26 | 8531 | 89.11
July Weekl 19322 | 9432 | 90.58 | 9241 3.30

Base | 84.03 | 87.25 | 80.51 | 83.74
July Week2 T 87.84 | 91.86 | 83.62 | 87.55 3.80

Base | 69.97 | 7549 | 53.92 | 6291
July Week3 T 75.06 | 81.45 | 61.10 | 69.82 6.91

Base | 79.88 | 88.62 | 67.61 | 76.70
July Weekd 178334 | 91.97 | 72.29 | 80.95 4.25

Base | 81.79 | 88.11 | 72.30 | 79.43
July All Final | 85.62 | 91.99 | 77.13 | 83.91 4.48

Improved

Week-based Algorithm Comparison
86.00
85.00
84.00
83.00

84.94
83.91
83.13

81.87
82.00

81.00
80.00 79.43

| [
79.00 i L
78.00 ‘. ‘
77.00 I }
76.00 R

mBase m DirectST Gradual ST Direct ST + imporoved PL m Gradual ST +improved PL m Topline

July F1-score

FIGURE 11. Week-based algorithm comparison.

TABLE 11. Performance detail of week-based algorithm comparison.

Model Type Acc. Prec. Recall F1

Base Model 81.79 88.11 72.30 79.43
Direct ST 82.23 85.59 76.27 80.66

Gradual ST 83.59 88.43 76.22 81.87

Direct ST + improved PL 84.80 90.29 77.02 83.13
Gradual ST + improved PL | 85.62 | 91.99 77.13 83.91
Topline 86.04 | 89.26 81.02 84.94

test data period). The Fl-score improvement varied from
3.3% to 6.91%. Overall, utilizing only one week of train-
ing data (the second week in May) and accounting for a
two-month data shift, the base model achieved an F1-score
of 79.43% in the whole July data. However, through the
gradual self-training approach and improved pseudo-labeling
method, the proposed framework improved the model perfor-
mance to 83.91%.

The performance of the proposed framework was also
compared with that of several other algorithms, as shown
in Fig. 11 and Table 11. The Gradual Self-Training (Grad-
ual ST) algorithm showed a 1% improvement in the F1 score
compared to the Direct Self-Training method on all the unla-
beled data (Direct ST). The Direct ST method is a traditional
approach in which self-training on all the pseudo-labeled
data is performed only once. Combining the Direct ST
method with the Improved Pseudo-Labeling (Improved PL)
method further improved the F1 score by 2.5%. Using
the Gradual ST method, the proposed Pseudo-Labeling
approach outperformed the conventional Dynamic Threshold
Pseudo-Labeling method by an additional 0.8%. Overall, the
results confirm the effectiveness and advantages of both the

69407

IEEE Access

T.-C. Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

Gradual Self-Training and the Improved Pseudo-Labeling
Method.

I. EXP.5 - WEIGHT RESET MECHANISM IN REAL-WORLD
DATA

The results presented in Figs. 12 and 13 provide further
insights into the reasons for omitting the re-weighting tech-
nique when using real-world data. When utilizing the Gradual
ST method + improved PL with the re-weighting method, the
F1-score on the July dataset had a value of 82.31% and a time
cost of 6339.83 s. However, when the re-weighting technique
was not employed, the performance improved to 83.91%,
while the time cost was reduced to 4493.95 s. In other
words, the non-re-weighted approach not only yielded a bet-
ter performance but also reduced the time required by nearly
30%. Consequently, in the related experiments result with
improved PL, the re-weighting technique was not employed.

Re-weight vs. Non-re-weight Performance Comparison
85.00
83.91
84.00

83.00

82.31

82.00
81.00

80.00 79.43
79.00
78.00
77.00

mBase mre-weight

July F1-score

non-re-weight

FIGURE 12. Re-weight vs. Non-re-weight performance comparison.

Re-weight vs. vs. Non-re-weight Time Cost Comparison

7000 6339.83
4493.95

Runtime(s)

Wre-weight ™ non-re-weight

FIGURE 13. Re-weight vs. vs. Non-re-weight time cost comparison.

V. CONCLUSION

Botnets pose a significant threat to network security
by enabling various malicious activities, such as DDoS
attacks, spamming, and data breaches. However, detecting
and mitigating these threats is challenging owing to their
ever-evolving nature. Recent machine-learning-based bot-
net detection research has primarily focused on supervised
learning methods, necessitating the extensive collection and
labeling of data obtained from controlled environments.
However, the collection and labeling process is extremely

69408

time-consuming, and hence, such methods are impractical
for real-time detection applications, particularly when the
testing data undergoes a data shift compared with the training
data. The use of unlabeled network traffic can improve the
performance of supervised learning methods for the detection
of new botnets and/or botnet variants. However, the data shift
problem, which occurs when malicious actors deliberately
adapt their attack strategies to distance the new botnet data
distributions from previous distributions, still poses a chal-
lenge to the model performance if the classifier is trained only
one time using the unlabeled data.

To address these challenges, the present study has pro-
posed a novel neural network-based self-training framework
for botnet detection. In the proposed framework, the initial
classifier is trained on labeled data and used to generate
pseudo-labels from the unlabeled data. The combined dataset,
consisting of both labeled data and pseudo-labeled data,
is then used to iteratively refine the classifier, with the aim
of improving the model performance in each successive
epoch. The performance of the model is further improved
through the introduction of specific strategies aimed at mini-
mizing the number of incorrect pseudo-labels, mitigating the
effects of erroneous pseudo-labels on the overall performance
of the network, and determining an appropriate percentage of
unlabeled data for labeling purposes.

The performance of the proposed framework has been
evaluated using both public synthetic datasets and a real-
world dataset. The results have shown that the framework
significantly improves the base model when the training data
accounts for only a low portion of the total dataset. The
framework also demonstrates the ability to detect unseen
botnet variants and shows a good performance in real-world
campus network traffic.

In the future, the team will continue to improve the botnet
detection framework performance. We will further try to
combine the framework with unsupervised algorithms, which
may effectively reduce the detection system’s dependence on
synthetic datasets.

REFERENCES

[1] R.U.Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab,
“An adaptive multi-layer botnet detection technique using machine learn-
ing classifiers,” Appl. Sci., vol. 9, no. 11, p. 2375, Jun. 2019.

[2] A. Feizollah, N. B. Anuar, R. Salleh, and F. Amalina, “A study of
machine learning classifiers for anomaly-based mobile botnet detection,”
Malaysian J. Comput. Sci., vol. 26, no. 4, pp. 1-18, 2013.

[3] A.Bansal and S. Mahapatra, “A comparative analysis of machine learning
techniques for botnet detection,” in Proc. 10th Int. Conf. Secur. Inf. Netw.,
Oct. 2017, pp. 91-98.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026-1034.

[5] Y.Zhang,J. Niu, G. He, L. Zhu, and D. Guo, “Network intrusion detection
based on active semi-supervised learning,” in Proc. 51st Annual IEEE/IFIP
Int. Conf. Dependable Syst. Netw. Workshops, 2021, pp. 129-135.

[6] C.-Y. Wang, C.-L. Ou, Y.-E. Zhang, F.-M. Cho, P.-H. Chen, J.-B. Chang,
and C.-K. Shieh, “BotCluster: A session-based P2P botnet clustering
system on net flow,” Comput. Netw., vol. 145, pp. 175-189, Nov. 2018.

[7]1 A.Delplace, S. Hermoso, and K. Anandita, “‘Cyber attack detection thanks
to machine learning algorithms,” 2020, arXiv:2001.06309.

VOLUME 12, 2024

T-C.

Lo et al.: Tackling Evolving Botnet Threats: A Gradual Self-Training Neural Network Approach

IEEE Access

[8]

[91

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

C.-T. Yang, J.-C. Liu, E. Kristiani, M.-L. Liu, I. You, and G. Pau, *“NetFlow
monitoring and cyberattack detection using deep learning with ceph,”
IEEE Access, vol. 8, pp. 78427850, 2020.

H.-W. Lee, N.-R. Kim, and J.-H. Lee, “Deep neural network self-training
based on unsupervised learning and dropout,” Int. J. Fuzzy Log. Intell.
Syst., vol. 17, no. 1, pp. 1-9, Mar. 2017.

J. Koza, M. Krcal, and M. Holena, “Two semi-supervised approaches
to malware detection with neural networks,” in Proc. ITAT, 2020,
pp. 176-185.

A. Kumar, T. Ma, and P. Liang, “Understanding self-training for
gradual domain adaptation,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 5468-5479.

S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, ‘“Effective and efficient
hybrid Android malware classification using pseudo-label stacked auto-
encoder,” J. Netw. Syst. Manage., vol. 30, no. 1, pp. 1-34, Jan. 2022.

Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through stacking
dilated convolutional autoencoders,” in Proc. Inf. Netw. Int. Conf., 2017,
pp. 712-717.

M. Nazemi Gelian, H. Mashayekhi, and Y. Mashayekhi, “A self-learning
stream classifier for flow-based botnet detection,” Int. J. Commun. Syst.,
vol. 32, no. 16, pp. 991-1004, Nov. 2019.

F. Labs. (2024). Banking Trojans: A Reference Guide to the
Malware Family Tree. Accessed: Mar. 4, 2024. [Online]. Available:
https://www.f5.com/labs/articles/education/banking-trojans-a-reference-
guide-to-the-malware-family-tree

W. Z. Khan, M. K. Khan, F. T. Bin Muhaya, M. Y. Aalsalem, and
H.-C. Chao, “A comprehensive study of email spam botnet detec-
tion,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp.2271-2295,
4th Quart., 2015.

W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “BotMark: Automated
botnet detection with hybrid analysis of flow-based and graph-based traffic
behaviors,” Inf. Sci., vol. 511, pp. 284-296, Feb. 2020.

Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, “Survey on botnet detec-
tion techniques: Classification, methods, and evaluation,” Math. Problems
Eng., vol. 2021, pp. 1-24, Apr. 2021.

R. Vinayakumar, M. Alazab, S. Srinivasan, Q.-V. Pham, S. K. Padannayil,
and K. Simran, ““A visualized botnet detection system based deep learning
for the Internet of Things networks of smart cities,” IEEE Trans. Ind. Appl.,
vol. 56, no. 4, pp. 44364456, Jul. 2020.

D. Yarowsky, “Unsupervised word sense disambiguation rivaling super-
vised methods,” in Proc. 33rd Annu. Meeting Assoc. Comput. Linguistics,
1995, pp. 189-196.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929-1958,
2014,

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy
student improves ImageNet classification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 10684-10695.

R. Kozik, “Distributed system for botnet traffic analysis and anomaly
detection,” in Proc. IEEE Int. Conf. Internet Things, Jun. 2017,
pp. 330-335.

A. E. Medina Paredes, Y.-Y. Su, W. Wu, and H.-M. Sun, “Using unsuper-
vised machine learning to detect peer-to-peer botnet flows,” Proc. Eng.
Technol. Innov., vol. 3, pp. 28-30, 2016.

B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “PeerRush: Mining for
unwanted P2P traffic,” in Proc. Int. Conf. Detection Intrusions Malware,
Vulnerability Assessment, Jul. 2013, pp. 62-82.

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compari-
son of botnet detection methods,” Comput. Secur., vol. 45, pp. 100-123,
Sep. 2014, doi: 10.1016/j.cose.2014.05.011.

Y. Hou, S. G. Teo, Z. Chen, M. Wu, C.-K. Kwoh, and T. Truong-Huu,
“Handling labeled data insufficiency: Semi-supervised learning with self-
training mixup decision tree for classification of network attacking traffic,”
IEEE Trans. Dependable Secur. Comput., early access, Aug. 1, 2022, doi:
10.1109/TDSC.2022.3195534.

Malware Capture Facility Project. Accessed: Mar. 4, 2024. [Online].
Auvailable: https://mcfp.weebly.com/

A. F. Agarap, “Deep learning using rectified linear units (ReLU),” 2018,
arXiv:1803.08375.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp.770-778, doi:
10.1109/CVPR.2016.90.

VOLUME 12, 2024

[31] D.P. Kingma and J. Ba, ““Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[32] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai,
D. Breitenbacher, and Y. Elovici, “N-BaloT——Network-Based detection
of IoT botnet attacks using deep autoencoders,” IEEE Pervasive Comput.,
vol. 17, no. 3, pp. 12-22, Jul. 2018.

[33] M. A. Setitra, I. Benkhaddra, Z. E. Abidine Bensalem, and M. Fan, ‘‘Fea-
ture modeling and dimensionality reduction to improve ML-based DDOS
detection systems in SDN environment,” in Proc. 19th Int. Comput. Conf.
Wavelet Act. Media Technol. Inf. Process. (ICCWAMTIP), Chengdu, China,
Dec. 2022, pp. 1-7.

[34] M. A. Setitra, M. Fan, B. L. Y. Agbley, and Z. E. A. Bensalem, “Optimized
MLP-CNN model to enhance detecting DDoS attacks in SDN environ-
ment,” Network, vol. 3, no. 4, pp. 538-562, Dec. 2023.

[35] M. A. Setitra, M. Fan, and Z. E. A. Bensalem, “An efficient approach to
detect distributed denial of service attacks for software defined Internet
of Things combining autoencoder and extreme gradient boosting with
feature selection and hyperparameter tuning optimization,” Trans. Emerg.
Telecommun. Technol., vol. 34, no. 9, p. e4827, Sep. 2023.

[36] M. A. Hossain and M. S. Islam, “A novel hybrid feature selection and
ensemble-based machine learning approach for botnet detection,” Sci.
Rep., vol. 13, no. 1, p. 21207, Dec. 2023.

[37]1 J. Zhou, T. Hai, D. N. A. Jawawi, D. Wang, K. Lakshmanna,
P. K. R. Maddikunta, and M. Iwendi, ““A lightweight energy consumption
ensemble-based botnet detection model for 10T/6G networks,” Sustain.
Energy Technol. Assessments, vol. 60, Dec. 2023, Art. no. 103454.

[38] J. Velasco-Mata, V. Gonzalez-Castro, E. Fidalgo, and E. Alegre, “Real-
time botnet detection on large network bandwidths using machine
learning,” Sci. Rep., vol. 13, no. 1, p. 4282, Mar. 2023.

TA-CHUN LO received the B.S. degree in physics and the M.S. degree from
the Institute of Computer and Communication Engineering, National Cheng
Kung University, Tainan, Taiwan, in 2018 and 2020, respectively, where he
is currently pursuing the Ph.D. degree with the Department of Electrical
Engineering. His current research interests include botnet detection, cloud
computing, big data, and artificial intelligence.

JYH-BIAU CHANG received the B.S., M.S., and Ph.D. degrees from
National Cheng Kung University, in 1994, 1996, and 2005, respectively.
He is currently an Associate Professor with the Department of Electronic
Engineering, Lunghwa University of Science and Technology, Taoyuan,
Taiwan. His research interests include botnet detection, parallel processing,
and computer networks.

SHAO-HSUAN LO received the B.S. degree from the Department of Com-
puter Science and Engineering, National Sun Yat-sen University, in 2019,
and the M.S. degree from the Department of Electrical Engineering, National
Cheng Kung University, Tainan, Taiwan, in 2021. His research interests
include botnet detection, big data, and artificial intelligence.

BAI-JUN KAO received the B.S. degree from the Department of Computer
Science and Engineering, National Sun Yat-sen University, in 2020, and the
M.S. degree from the Department of Electrical Engineering, National Cheng
Kung University, Tainan, Taiwan, in 2022. His research interests include
botnet detection, big data, and artificial intelligence.

CE-KUEN SHIEH (Senior Member, IEEE) received the B.S. and Ph.D.
degrees in electrical engineering from National Cheng-Kung University,
Tainan, Taiwan, in 1977 and 1988, respectively.

He joined as a Faculty Member of the EE Department, National Cheng-
Kung University, in 1983, and was promoted to a Full Professor, in 1998.
From 1989 to 1990, he had visited the Bell Laboratory, Murry Hill, NJ,
USA, as a Postdoctoral Member of Technical Staff (PMTS). He had chaired
the Department of Electrical Engineering, National Cheng-Kung University,
from 2002 to 2005, where he was the Director of the Computer and Network
Center, from 2005 to 2011. He was also the General Director of the National
Center for High-Performance Computing, National Applied Research Lab-
oratory, Taiwan, from 2013 to 2019. His current research interests include
distributed and parallel processing systems, cloud computing, network secu-
rity, and big data.

69409

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1109/TDSC.2022.3195534
http://dx.doi.org/10.1109/CVPR.2016.90

