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ABSTRACT With the increasing aging of the population, exoskeleton robots, gait assistance in the medical
field, and condition monitoring in the rehabilitation field have been widely concerned by scholars. Accurate
recognition of human gait and the perception of behavioral intention are essential for understanding the
human motion state. Addressing issues of intricate sensor layout, low resolution of the plantar pressure
sensor, and inaccurate gait classification, this paper presents a wearable sensor-based method for perceiving
human behavior intentions. Firstly, a foot motion data acquisition system is built, and the foot motion feature
data are obtained by combining the self-designed tactile pressure sensor and the Inertial Measurement Unit.
Secondly, the rule of humanmovement is analyzed and the phase of gait in different motion modes is divided.
Then, considering the temporal characteristics of human motion, the behavior pattern recognition algorithm
is constructed by combining a Convolutional Neural Network and a Long Short-Term Memory network.
Simultaneously, a Convolutional Neural network is established to recognize gait information and enhance
the recognition accuracy of human behavior. Finally, the experiment of human motion intention recognition
is carried out. The experimental results show that the proposed method has an average recognition accuracy
of 96% for human motion patterns, and an average recognition accuracy of 93.38%, 94.57%, and 92.57%
for the gait phase in various modes, respectively. The experimental results show that this method can meet
the requirements of common human behavior recognition.

INDEX TERMS Intention perception, gait recognition, foot motion data, wearable sensors.

I. INTRODUCTION
At present, society is gradually entering the aging stage,
the proportion of the elderly population is increasing year
by year, and the concern about the health monitoring of
the elderly and the shortage of social labor is increasing.
With the advancement of robotics technology, exoskeleton
robots can not only provide assistance to the main labor
force, but also help stroke patients to walk normally, improve
movement ability, and help rehabilitation treatment. The
exoskeleton robot is composed of human wearable devices
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and human-robot interaction systems, which can provide help
for the human, enhance strength, withstand the load, and
assist the human to move, overcome movement obstacles
caused by disease or age, and complete various actions [1],
[2], [3]. In the field of medical rehabilitation, the exoskeleton
robot can assist patients with body movement incoordination
and muscle atrophy, impacting their mobility. It can facili-
tate repetitive rehabilitation exercise training, replacing the
manual rehabilitation training provided by rehabilitators [4],
[5]. A complete exoskeleton robot system includes four parts:
mechanical structure, sensing system, control system, and
actuator [6]. When working, the sensing system captures the
real-time motion state and intention of the human. It then
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sends control signals to the actuator through the control sys-
tem to achieve the corresponding motion. For the assisted
lower limb exoskeleton robot, the study of human gait char-
acteristics and the accurate perception of human intention
are crucial for achieving precise control and human-robot
collaborative movement.

Researchers employ a range of sensors to collect human
motion data, enabling real-time recognition of human motion
gait and accurate perception of motion intention. This infor-
mation is then utilized to determine walking state and motion
intention, offering an effective control strategy for the system.
The brain-computer interface bypasses the nervous system
and muscles to process Electroencephalogram (EEG) sig-
nals, using external devices to directly acquire human EEG
signals and detect movement intentions in patients with
mobility disorders caused by conditions such as stroke [7],
[8]. Despite its high recognition accuracy, electrodes require
implantation into the brain, posing risks of surgical compli-
cations and infection. Moreover, implanted electrodes must
address biocompatibility and high performance, leading to
increased costs; Surface Electromyography (sEMG) uses a
non-invasive sensor electrodes attached to the skin on the
surface of the human to analyze the correlation between
neuromuscular and gait phase or movement patterns [9], [10].
Leveraging the mechanism where EMG signals are generated
before movement enables the sensing of human motion. Nev-
ertheless, EMG signals are weak and complex. Furthermore,
electrode connections are vulnerable to skin surface factors,
and the presence of wires may hinder human movement.
The Kinect camera captures the human gait by acquiring
point cloud data on the human surface and a model of the
human skeleton [11], [12]; The optical motion capture sys-
tem can dynamically capture high-precision 3D position and
motion posture information of the human to detect and iden-
tify gait [13]. Nonetheless, the method of collecting human
motion data through visual detection has great limitations in
its application scenario and may intrude upon individuals’
privacy.

The aforementioned sensors may disrupt normal human
activities, thereby limiting practical applications. Conversely,
Wearable sensors [14], [15] like pressure sensors and Iner-
tial Measurement Units (IMU) offer greater comfort and
portability, seamlessly integrating with users’ daily activi-
ties to capture more realistic and reliable data. IMU [16],
[17] comprise acceleration sensors and gyroscopes, enabling
the measurement of human movement acceleration and joint
angle changes. Plantar pressure data are crucial biome-
chanical information in human motion, reflecting various
motion states [18], [19], [20], [21]. Plantar data acquisition
using pressure sensors is non-invasive and unaffected by
the surface state of the human skin. Currently, there are
two methods for collecting plantar pressure: one is to use a
plantar pressure measurement platform [22], but this plat-
form lacks mobility and is mainly used for laboratory and
hospital tests. Another method is to use pressure measur-
ing insoles for measurement: these insoles are placed inside

the shoe, allowing the wearer to perform various move-
ments without scene restrictions. Under different motion
states, the force output needed for the collaborative move-
ment of an exoskeleton robot and the human varies, and
gait recognition can supply fundamental information for the
perception and control system of an exoskeleton robot [23].
Lou [24] developed a flexible pressure sensor with a com-
plex fabrication process based on the piezoresistive effect of
multi-layer graphene films on polyester textiles. This sen-
sor was utilized for real-time plantar pressure distribution
and quantitative gait analysis. However, the sensor consisted
of eight layers of materials, making the fabrication process
complex. Zhang et al. [25] manufactured piezoresistive com-
posite insoles by uniformly dispersing multi-walled carbon
nanotubes into a polydimethylsiloxane matrix. The sensor
consists of eight sensing elements with a laminated structure,
the upper layer is a piezoresistive composite sensing layer,
and the lower layer is a flexible printed circuit board as an
electrode. However, the sensor’s sensitivity and resolution
are relatively low. Han et al. [26] proposed a sandwich-like
capacitive pressure sensor with electrodes and dielectric
layers made of carbon nanotube-polydimethylsiloxane and
porous polymer, respectively. This design aimed to enhance
the sensor’s sensitivity, albeit with a complicated production
process. Although the plantar pressure sensor utilized in the
aforementioned method can recognize human motion states,
the preparation process of the sensor is complex, overlooking
the wearer’s comfort. Furthermore, the resolution of col-
lected plantar pressure data is insufficient, hindering a clearer
depiction of the distribution and changes in plantar pressure
data. Addressing issues of wearable comfort, simplicity in
manufacturing process, and precision in pressure data, the
flexible capacitive pressure sensor employed in this paper is
easy to produce and capable of measuring pressure data from
512 points on the sole, thereby presenting abundant plan-
tar pressure information. Moreover, when coupled with foot
movement data obtained through IMU, it can attain accurate
recognition of high-precision human movement patterns and
gait phases, thereby effectively discerning human behavioral
intentions.

The rest of this paper is as follows: Section II intro-
duces the foot motion data acquisition system, which obtains
high-resolution plantar pressure data and foot kinematics
characteristics; section III analyzes the laws of human move-
ment and categorizes the gait phase under different movement
modes; in section IV, different models are set up to recognize
human motion patterns and sense human motion intentions;
in section V, gait recognition experiments are used to prove
the effectiveness of the proposed method; Finally, it is sum-
marized in section VI.

II. FOOT MOTION DATA ACQUISITION SYSTEM
Gait data forms the foundation of gait recognition, and a
system capable of efficiently and accurately collecting gait
data is pivotal for successful gait recognition. As shown in
Fig.1, this paper builds a foot motion data acquisition system,
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FIGURE 1. Foot motion data acquisition system.

including a plantar pressure sensor, data acquisition card,
IMU, and upper computer data acquisition program. Among
them, the plantar pressure sensor adopts flexible capacitance
technology, and the upper and lower electrodes are distributed
in array mode, which can form multiple capacitance sens-
ing units in a limited area and be arranged on the sole to
achieve high-resolution pressure data acquisition. The data
acquisition card collects the capacitance signal of the flex-
ible pressure sensor, converts the capacitance signal into a
voltage signal through the signal conditioning circuit, and
then transmits it to the PC through Bluetooth for subsequent
data processing. The IMU is set above the toe bone to col-
lect foot motion characteristics. It integrates 3 single-axis
accelerometers, 3 single-axis gyroscopes, and 3 single-axis
magnetometers, and communicates with the upper computer
through Bluetooth. The acquisition system is easy to wear,
highly portable, and capable of efficiently acquiring, storing,
and processing foot movement data to fulfill the requirements
of intention perception.

Capacitive sensors are highly favored by researchers for
their high sensitivity, temperature independence, and suitabil-
ity for large areas. They are extensively employed in detecting
human physiological information and developing artificial
skin [27], [28]. The structure of the capacitive pressure sen-
sor designed in this paper is illustrated in Fig.2. Utilizing
Thermoplastic polyurethane (TPU) film, the electrode mate-
rial consists of nickel-plated conductive cloth with excellent
electrical conductivity, whereas the intermediate dielectric
layer is composed of a soft polyurethane sponge with good
resilience. On the TPU substrate, the upper electrode layer
consists of 32 rows of conductive cloth pasted parallel to
each other, and the lower electrode layer consists of 16 rows
of conductive cloth pasted in the same manner. One side of
the conductive cloth from the two electrode layers is posi-
tioned opposite to the two sides of the dielectric layer. The
upper and lower layers of conductive cloth are perpendicular
to each other in space, creating a total of 512 cross-point
array distributions, with each electrode cross-point serving
as a capacitor unit. When the capacitor unit is subjected
to stress, the capacitance value changes due to variations
in the dielectric layer thickness. The capacitance value of
each capacitor unit reflects the pressure changes in the corre-
sponding region. Thus, distributed pressure detection can be

FIGURE 2. Working principle and structure of capacitive flexible pressure
sensor.

FIGURE 3. Capacitive pressure sensor performance.

achieved by collecting the capacitance value of each capacitor
unit on the sensing element. Each capacitor unit resembles a
parallel plate capacitor and can be expressed as:

C = εs/d (1)

where s is the area of a single capacitor unit, d is the distance
between two electrodes, the dielectric constant ε = ε0 ·

εr ,ε0 = 8.85 × 10−12F /m and εr is the relative dielectric
constant.

To evaluate the performance of the capacitive pressure sen-
sor in this paper, the ZQ-990A pressure testing machine was
employed. Ten capacitive units were randomly chosen from
various positions on the pressure sensor, and a range of 0 to
60N pressure was continuously applied. Subsequently, the
output capacitance value of each unit was determined. Fig.3
illustrates the test results of the pressure sensor, depicted in a
box plot with a fitted curve. With the pressure incrementally
rising from 0 to 60N, there was a corresponding gradual
increase in the output capacitance, displaying a quasi-linear
trend. Under identical pressure conditions, the maximum dis-
parity in output capacitance among different capacitor units
was 1.1nF, indicating favorable capacitance uniformity, thus
satisfying the requirements for gait recognition and intention
perception.

III. ANALYSIS OF HUMAN MOVEMENT GAIT
INFORMATION
Human walking is a periodic event, where two consecutive
heel touches of the same leg make up a complete gait cycle.

70280 VOLUME 12, 2024



F. Yang et al.: Research on Human Behavior Intention Perception Method Based on Wearable Sensors

The proper division of the gait period is essential for recog-
nizing the walking state. Based on the characteristics of leg
movement, the gait cycle can be divided into the supporting
phase and the swinging phase. The support phase refers to
the process from heel contact to toe off the ground, where
the sole contacts the ground and bears the weight of the
human, constituting about 60% of the entire gait cycle; The
swinging phase refers to the process from the toe leaving
the ground to the next heel touching the ground, constituting
about 40% of the total gait cycle [29]. The division of the gait
period should be adjusted based on the requirements of sys-
tem recognition. Inadequate division of gait phases leads to
insufficient captured motion information, making later-stage
gait recognition challenging and impacting the overall system
accuracy. Throughout the support phase, the pressure sensor
can capture the contact details between the human foot and
the ground. Conversely, during the swing phase, the pressure
dissipates. Thus, integrating gait information from the swing
phase, identified by the IMU sensor, enables the acquisition
of motion characteristics for the complete gait cycle.

To accurately identify human gait information, three com-
mon motion modes are categorized based on the actual
scenario: flat walking, up stairs and down stairs. The char-
acteristics of human gait in different motion modes are
analyzed, and the gait phases in each mode are defined,
providing the foundation for human gait recognition. The gait
cycle is calculated from the moment the right calcaneal bone
makes contact with the ground until it touches the ground
again. To enhance the accuracy of the acquisition system,
phase division was conducted based on the plantar pressure
distribution characteristics and IMU characteristics. The time
interval between each landmark event and the subsequent
landmark event was defined as a gait phase, named after the
landmark event at the phase’s initiation.

During walking, based on plantar pressure characteristics
and IMU characteristics, gait phases were subdivided into
Heel Contact (HC), Arch Contact (AC), Stance (ST), Heel
Off (HO), and Forefoot Support (FS), Initial Swing (IS), Mid
Swing (MS), and Terminal Swing (TS). Each phase is named
after the foot state in the initial phase. The following is the
definition of gait phases during walking. The division of gait
phases in walking mode is depicted in Fig.4.

Heel Contact (HC): The right foot makes contact with the
ground, and the right heel bone touches the ground. Simulta-
neously, the left heel bone starts to lift off the ground, entering
the Heel Off phase.

Arch Contact (AC): The right foot continues to make con-
tact with the ground, the ball of the foot starts to bear pressure,
and the left arch lifts off the ground, entering the Forefoot
Support phase.

Stance (ST): The right foot fully touches the ground,
the sole is in contact with the ground, and the right
foot alone supports the weight of the human, creating a
single-support process during the gait cycle, during which the
left foot completely lifts off the ground and enters the Swing
phase.

FIGURE 4. Gait division of flat walking mode.

FIGURE 5. Gait division of flat walking up stairs mode.

Heel Off (HO): The right heel bone starts to lift off the
ground, the weight of the human shifts forward, the front foot
experiences increased pressure, and the left heel bone begins
to make contact with the ground, entering the Heel Contact
phase.

Forefoot Support (FS): The heel bone of the right foot
is entirely lifted off the ground, and the forefoot exerts a
force on the ground to propel the lower limb forward, while
the forefoot of the left foot makes contact with the ground,
entering the Arch Contact phase.

Initial Swing (IS): The right foot is entirely off the ground,
the right thigh starts swinging forward, and the left foot is
fully in contact with the ground, entering the Stance phase.

Mid Swing (MS): The right calf starts to swing with the
knee as the center, while the left foot remains in the Stance
phase.

Terminal Swing (TS): The right calf swings, causing the
right foot to reach the lowest point of the swing arc until the
heel bone of the right foot touches the ground, while the left
foot remains in the Stance phase.

The foot support phase during walking up stairs is similar
to that of flat walking. The support phase during the gait cycle
can be divided into Heel Contact, Arch Contact, Stance, Heel
Off, and Stance phase. The main movement of the foot in the
process of walking up stairs is to step forward and upward,
without the complicated swing of walking. Therefore, the
swing phase is divided into the Initial Swing, where the pres-
sure data disappears, and the Terminal Swing, where the foot
begins to fall. Due to the limited size of the stairs and the
short swing distance of the lower limbs during walking up
stairs, the left foot remains in the Stance phase when the right
foot contacts and lifts off the ground. The phase division of
gait in walking up stairs mode is shown in Fig.5.
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FIGURE 6. Gait division of flat walking down stairs mode.

When walking down stairs, the foot movement is that the
toe bone area first contacts the surface of the stairs, so the
gait phase is quite different from the walking and walking up
stairs mode. Two gait phases are added to the gait phase: Toes
Contact (TC) and Mid Contact (MC). The following is the
definition of the gait phase during stair descent. The division
of the gait phase in walking down stairs mode is shown in
Fig.6.

Toes Contact (TC): The toe bone of the right foot begins to
touch the surface of the next stair, while the heel bone of the
left foot begins to move away from the surface and into the
Heel Off phase.

Mid Contact (MC): The right foot continues to descend to
the arch of the foot and makes contact with the surface of
the staircase, while the left foot only makes contact with the
surface of the staircase and enters the Forefoot Support phase.

Stance (ST): The right foot fully touches the surface of the
stairs, supporting the weight of the human, while the left foot
begins to Swing phase.

Heel Off (HO): The heel bone of the right foot begins to
leave the surface of the staircase and the right knee begins
to bend. At the same time, the toe bone of the left foot begins
to contact with the surface of the next stair and enters the Toe
Contact phase.

Forefoot Support (FS): The heel is completely removed
from the surface of the staircase, the pressure on the ball of
the foot is increased, and the left full arch begins to contact
the surface of the staircase and enters the Arch Contact phase.

Initial Swing (IS): The foot completely leaves the surface
of the stairs and begins to swing, while the human relies on
the support of the left foot and enters the Stance phase.

Terminal Swing (TS): Foot swing begins to slow down
until the toe bone area touches the surface of the staircase
again, while the left foot remains Stance phase.

IV. HUMAN MOTION INTENTION RECOGNITION METHOD
In this paper, a pattern recognition and intention perception
method are designed using a deep learning network. Con-
volutional neural network (CNN)-Long Short-Term Memory
(LSTM) model is used to identify human movement patterns,
and the CNNmodel is used to identify the gait phase to further
identify human behavior intention.

A. CONVOLUTIONAL NEURAL NETWORKS
The convolutional neural network represents a highly parallel
technique renowned for its capability to autonomously extract

feature information from images [30], [31]. It operates on
the principles of forward and backpropagation algorithms,
rendering it the predominant model in visual-related domains
encompassing tasks like image classification, object detec-
tion, and semantic segmentation. A complete CNN consists
of an input layer, a convolutional layer, a downsampling layer,
a fully connected layer, and an output layer. First, the image
data to be learned are input in the input layer, and the input
layer is connected with the convolution layer. The image
features are extracted through the convolution operation to
obtain the feature map.

The calculation process of the convolution operation can
be expressed by the following:

xkj = f (
∑
i∈Mj

xk−1
i × ωk

ij + bkj ) (2)

where xkj is the j neuron of the k layer; f(·) is the activation
function; Mj is the set of input graphs; wkij is the convolution
kernel parameter; bkj is a biased value.
The convolutional layer operation completes the reduction

and feature extraction of the input image. Considering that
the dimension of the feature image is still high, the down-
sampling operation is needed to reduce the dimension of the
feature to reduce the complexity of the model. The specific
calculation process is as follows:

xkj = f (βkj down(x
k−1
j ) + bkj ) (3)

where xkj is the j neuron of the k layer; βkj is the weighting
coefficient; down(·) indicates the maximum downsampling
operation; bkj is a biased value.
After multiple convolution layers and downsampling lay-

ers, one or more fully connected layers are connected at last,
all the features are connected, and the signals are summarized
into one output signal, which is classified and processed.
Softmax logistic regression is usually used for classification.
This layer is called the output layer. The expression of the
Softmax logistic regression function is as follows:

y(xi) =
exp(xi)∑M
i (exp(xi))

(4)

where xi is the confidence degree of the Class i target, and
y(xi) is the probability of the class i target.
The network training process is to keep looking for the

minimum parameters of the loss function, the loss function
of the network is:

E =
1
2

l∑
j

(ŷkjmax − ykjmax)
2 (5)

where ŷnjmax is the identification result of batch j, ynjmax is the
expected identification result of batch j, and l is the number
of batches.

The backpropagation algorithm is adopted for optimiza-
tion, and the optimal parameters are found based on the
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gradient descent method to minimize the cost function:

ωk
hi = ωk−1

hi − η
∂E

∂ωk−1
hi

(6)

bki = bk−1
i − η

∂E

∂bk−1
i

(7)

where η is the learning rate, the most critical part above is
to solve the partial derivative of the loss function, the back-
propagation algorithm is a very effective calculation method,
the whole calculation process is: (1) First set the weight w
and the initial value of the bias b; (2) Train the sample data
(x, y), input the sample data into the multi-layer perceptron,
and all the weights w and bias b can be obtained. This process
is forward propagation; (3) Calculate partial derivatives of
ownership weightw and bias b under the loss function ∂E

∂w ,
∂E
∂b

according to the chain rule; (4) The gradient descent method
was used to update the weight w and offset b.

B. LONG SHORT-TERM MEMORY NETWORK
Neural networks excel in processing spatial data but strug-
gle with time series data; Recurrent Neural Network (RNN)
emerges as a prominent solution for such challenges. Nev-
ertheless, RNN encounters issues like gradient explosion
and vanishing gradients, both of which LSTM [32], [33]
effectively mitigates. LSTM employs various gate units to
selectively update relevant information, thereby preventing
the accumulation of irrelevant data in long-term memory.
LSTM consists of a cell state and a ‘‘gate’’ mechanism (input
gate ft , forgetting gate it , output gate ot ), where ct represents
cell state, representing long-termmemory. Adding or deleting
state information at time t through the gate structure allows
the control to pass the modified state information to the next
time step. The activation of each LSTM unit is as follows:

(1) Initially, determine if the unit state should be retained
in the subsequent calculation process via the forgetting gate:

ft = σ (Wf [ht−1, xt ] + bf ) (8)

where σ is the Sigmoid function;Wf is the weight; bf is offset.
(2) The input gate determines which signals to update

based on ht−1 and xt :

it = σ (Wi[ht−1, xt ] + bi) (9)

(3) Next, acquire the candidate cell state C̃t through the
tanh layer, update the cell state based on the forgetting gate
and the input gate, resulting in the new cell state Ct :

C̃t = tanh(WC [ht−1, xt ] + bC ) (10)

Ct = ft × Ct−1 + it × C̃t (11)

(4) Once the unit status update is complete, it’s essential to
identify the characteristics of the output unit status. Obtain the
judgment conditions through the Sigmoid layer of the output
gate and calculate with the tanh layer to determine the actual
output signal:

ot = σ (Wo[ht−1, xt ] + bo) (12)

TABLE 1. CNN-LSTM network parameters.

FIGURE 7. CNN-LSTM network structure.

ht = ot × tanh(Ct ) (13)

C. ESTABLISHING A CNN-LSTM NETWORK FOR MOTION
PATTERN RECOGNITION
Humanmotion is a cohesive sequence of movements, exhibit-
ing more pronounced motion characteristics compared to
isolated frame data. While CNN excels in image recognition
and classification tasks, it faces challenges in recognizing and
processing time series data correlations. Conversely, LSTM
networks can retain past recognition outcomes and merge
them with present data, thereby providing benefits in recog-
nizing time series data. Therefore, to better capture temporal
changes, this paper proposes a method that combines CNN
and LSTM to construct a human behavior recognition model.
It extracts image features from foot movement data using a
CNN and then feeds them into the LSTM to recognize human
movement patterns. The network performance is significantly
influenced by the number of layers and the combination
mode. This paper establishes the network model structure
through multiple tests. The parameters of each layer are
presented in Table 1, and the specific network structure is
illustrated in Fig.7. Additionally, a dropout layer is inserted
between the LSTM layer, randomly deactivating 30% of
neurons to prevent overfitting during model training.

As seen above, the phase combination of bipedal
gait varies significantly under different movement modes.
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TABLE 2. Convolution neural network parameters.

FIGURE 8. Convolutional neural network structure.

Consequently, the input layer data for the movement pat-
tern recognition network consists of images representing the
movement of the left and right feet. Consequently, the input
layer data for the movement pattern recognition network
consists of images representing the movement of the left and
right feet. Max pooling is chosen for the pooling layer, and
the ReLU function is selected as the activation function. The
expression is as follows:

f (x) =

{
0, x < 0
x, x ≥ 0

(14)

The extracted features are input into the LSTM network.
The activation function of the LSTM layer is the tanh func-
tion. The expression is as follows:

f (x) =
ex − e−x

ex + e−x
(15)

The fully connected layer and Softmax function serve as
network classifiers. The output layer has 3 nodes, with output
values 1 to 3 representing different motion modes: 1 for
flat walking mode, 2 for walking up stairs mode, and 3 for
walking down stairs mode.

D. ESTABLISHING THE GAIT RECOGNITION CNN
NETWORK
The CNN-LSTM network is utilized to identify the human
movement pattern, followed by the design of a gait phase

FIGURE 9. Foot motion data collection system device wearing schematic
diagram.

intention perception model based on the gait information in
the motion pattern. The CNN is employed to identify the
human movement gait phase, enabling more accurate iden-
tification of human gait information. The parameters of each
layer in the CNN are presented in Table 2, and the specific
structure of the CNN is depicted in Fig.8.

The CNN structure comprises eight layers: Input layer,
convolutional layer C1, downsampling layer S2, convolu-
tional layer C3, downsampling layer S4, convolutional layer
C5, fully connected layer F6, and Output layer output.
The input layer encompasses the entire motion data image.
Effective features of the image are extracted through the
convolution layer, with the pooling layer utilizing max-
imum pooling. The activation function adopts the ReLU
function, and the fully connected layer and output layer
act as network classifiers, mapping the features extracted
through convolution downsampling to the marker space.
Subsequently, the probability value of each category is calcu-
lated for classification. The output layer is assigned numbers
from 1 to 10, representing the states of the gait phase. Specif-
ically, 1 denotes Heel Contact, 2 is Arch Contact, 3 is Stance,
4 is Heel Off, 5 is Forefoot Support, 6 is Toes Contact, 7 is
Mid Contact, 8 is Initial Swing, 9 is Mid Swing, and 10 is l
Terminal Swing.

V. GAIT RECOGNITION EXPERIMENT
In this paper, threemovementmodes of flat walking, up stairs,
and down stairs, and their gait phases are identified. The
movement data for walking, up stairs, and down stairs
are recorded using a foot motion data acquisition system.
To ensure the reliability of the sample data, 20 volunteers,
comprising 10 men and 10 women, were enlisted to par-
take in the experiment. Subsequently, movement data for flat
walking, up stairs, and down stairs were collected. The stairs
utilized in the experiment measured 20cm in height and 30cm
in width each. Fig.9 illustrates the device setup for the foot
motion data acquisition system, comprising a sole pressure
measurement insole, a data acquisition card, and an IMU.
Plantar pressure sensors are arranged in the shoe. To prevent
IMU installation errors caused by vamp deformation during
walking, rigid shoes are selected, and the IMU is installed in
the toe position of the vamp. The X direction points to the
right side of the human, the Y direction points forward, and
the Z direction is determined by the right-hand coordinate
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FIGURE 10. Actual motion pattern test diagram.

FIGURE 11. Foot motion data image.

system. The pressure sensor has a sampling interval of 150ms,
and the IMU has a sampling interval of 10ms. The data
acquisition card and IMU transmit data to the gait recognition
and acquisition control system of the upper computer through
the Bluetooth module. Upon receiving data from the plantar
pressure data acquisition system, the system preprocesses and
assesses the current human gait and intention.

A. MOTION PATTERN RECOGNITION EXPERIMENT
The foot motion data acquisition system was utilized to col-
lect data for flat walking, walking up stairs, andwalking down
stairs. 10 gait cycles were collected for each mode. For flat
walking, as shown in Fig.10, 6460 frames were collected,
for walking up stairs, 7060 frames were collected, and for
walking down stairs, 6521 frames were collected. To more
clearly observe changes in plantar pressure data, the data are
displayed as a color image. However, color images have large
storage requirements and relatively slow processing speeds.
Therefore, this paper opts for grayscale images to create
the dataset. The segmented plantar pressure data and foot
motion data are combined to form a foot motion data image.
The pressure sensor in this paper has a sampling interval
of 150ms, and the IMU has a sampling interval of 10ms.
Therefore, 1 frame of plantar pressure data corresponds to
15 frames of foot position shift data. The 15 frames of foot
movement data corresponding to every 1 frame of pressure

FIGURE 12. CNN-LSTM network training loss function.

FIGURE 13. Motion pattern recognition accuracy.

data are normalized. The data are then enlarged by 60 times to
align with the pressure data range, resulting in an image size
of 2 × 15. Among them, the first set of behaviors is Y-axis
displacement data, and the second set is Z-axis displacement
data. The pressure data image was combined with the foot
movement data image to form the foot movement data image.
The combined image size is 34 × 16, comprising plantar
pressure images from the 1st to the 32nd, and foot movement
data images on the 33rd and 34th lines. The foot motion data
image data for different gait phases is displayed in Fig.11.

The flat walking data were labeled as 1, the up stairs data
as 2, and the down stairs data as 3. Subsequently, the human
movement data were collected and divided into the training
set and validation set. Foot motion data images were input
into the network for learning, and the network’s hyperparam-
eters were adjusted to minimize the loss function and achieve
optimal recognition. It was found that setting the learning
rate to 0.001, employing a batch size of 32, and conducting
training for 11 epochs results in the network’s loss function
reaching its minimum value. Fig.12 and Fig.13 depict the
loss function and recognition accuracy of the training set
and validation set, respectively, for different activities. The
outcome indicates that the average recognition accuracy of
the training set is 0.97, and that of the validation set is 0.96.
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FIGURE 14. ROC curves of different algorithm models.

FIGURE 15. CNN training loss function.

Receiver Operating Characteristic (ROC) curves are com-
monly utilized to evaluate the performance of deep learning
models. The horizontal axis of the ROC curve represents
the false positive rate (FPR), while the vertical axis denotes
the true positive rate (TPR). The closer the ROC curve
approaches the top left corner, the better the model’s perfor-
mance. The Area Under the Curve (AUC) signifies the area
beneath the ROC curve, with higher values indicating supe-
rior model performance. Fig.14 illustrates the application
of three methods (CNN, CNN-RNN, and CNN-LSTM) for
identifying human behavioral motion patterns in the dataset
presented in this paper, with corresponding ROC curves plot-
ted. The findings demonstrate that the CNN-LSTM algorithm
utilized in this paper surpasses the other two algorithm
models, positioning closer to the upper-left corner of the
ROC plot, and yielding a larger AUC value compared to
the other two algorithms. Thus, indicating the superiority of
the algorithm proposed in this paper.

B. GAIT RECOGNITION EXPERIMENT
Labels were added to foot data images of walking, climbing,
and descending steps based on their gait phase. CNN under
different movement modes was trained separately, and model

FIGURE 16. Flat walking recognition accuracy.

FIGURE 17. Up stairs recognition accuracy.

FIGURE 18. Down stairs recognition accuracy.

parameters were saved. It is found that when the learning rate
is set to 0.005, the batch size is 64, and the training period
is 20, the loss function of the gait recognition network is
minimized, and the error between the recognition result and
the data label is relatively small. At this point, the training
loss function of the network is displayed in Fig.15.
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TABLE 3. Comparison of recognition accuracy for different recognition
methods.

Real-time gait phase recognition tests were performed,
collecting ten gait cycles each for flat walking, up stairs, and
down stairs. The trained CNN gait recognition model was uti-
lized for testing, and the recognition results were depicted in
a confusion matrix to assess confusion levels among different
states. Fig.16-Fig.18 display the gait recognition accuracy for
flat walking, up stairs, and down stairs, respectively.

Based on the aforementioned experimental findings, the
overall intention recognition accuracy is as follows: the gait
recognition accuracy for flat walking is 93.38%, while for
walking up and down stairs, it is 94.57% and 92.57%,
respectively. In Fig.16, recognition errors during flat walking
primarily occur during the transition between adjacent gaits
due to the similarity in foot movement data images. In Fig.17,
the short duration of arch contact during up stairs leads to less
prominent features in the plantar pressure image, resulting
in a recognition accuracy of approximately 0.91. In contrast
to flat walking, the swing phase gait recognition accuracy
is higher during up stairs, attributed to the distinct charac-
teristics of swing phase initiation and termination involving
increased and decreased displacements. In Fig.18, during
down stairs, pressure nephrograph characteristics of the toe
and mid-contact states during ground contact resemble those
of forefoot support and heel-off states during takeoff, primar-
ily distinguished by foot movement characteristics, resulting
in a recognition accuracy of approximately 0.89 for the foot
touch phase.

To assess the effectiveness of the CNN network employed
in this paper for gait phase recognition, the backpropagation
(BP) neural network and support vector machine (SVM) was
utilized to compare and identify the gait phases during flat
walking, up stairs, and down stairs. In the BP neural network,
the number of hidden layer neurons was set to 25, with the
activation function tanh and transfer function purelin. The
maximum number of iterations was 200, the learning rate was
0.01, and the training error target was 0.00001. For SVM,
the Radial Basis Function (RBF) was selected as the ker-
nel function, and optimal parameter values were determined
through grid search. Ultimately, the optimal parameter values
obtained were penalty factor C = 2.3265 and kernel function
parameter gamma = 0.0247. The experimental results are
presented in Table 3.

Upon inspection of Table 3, it is evident that the recognition
accuracy achieved by the CNN in this paper is significantly

superior to that of the other two methods. The average recog-
nition accuracy of gait phases across the three motion modes
is 93.51%, demonstrating the CNN network’s capability to
accurately identify human motion gait phases and achieve
commendable outcomes in gait recognition and intention
perception.

VI. CONCLUSION
This paper focuses on investigating human behavioral inten-
tions. It proposes a wearable system for acquiring foot
movement data to capture high-resolution plantar pressure
and foot movement characteristics. it analyzes common
human movement patterns and gait phases. A CNN-LSTM
network is constructed for recognizing human movement
patterns, including identifying states such as flat walking and
walking up and down stairs. Additionally, a CNN network is
constructed to recognize gait phases during motion. Finally,
the test of flat walking, walking up and down stairs was
carried out. The results indicate that the proposed intention
perception method effectively perceives intentions during
various humanmovements with good outcomes. This method
can offer fundamental information for the control system of
exoskeleton robots and can also detect the motion state of the
human.
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