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ABSTRACT Human brain and behavior provide a rich venue that can inspire novel control and learning
methods for robotics. In an attempt to exemplify such a development by inspiring how humans acquire
knowledge and transfer skills among tasks, we introduce a novel multi-task reinforcement learning
framework named Episodic Return Progress with Bidirectional Progressive Neural Networks (ERP-BPNN).
The proposed ERP-BPNN model 1) learns in a human-like interleaved manner by 2) autonomous task
switching based on a novel intrinsic motivation signal and, in contrast to existing methods, 3) allows
bidirectional skill transfer among tasks. ERP-BPNN is a general architecture applicable to several multi-task
learning settings; in this paper, we present the details of its neural architecture and show its ability to enable
effective learning and skill transfer amongmorphologically different robots in a reaching task. The developed
Bidirectional Progressive Neural Network (BPNN) architecture enables bidirectional skill transfer without
requiring incremental training and seamlessly integrates with online task arbitration. The task arbitration
mechanism developed is based on soft Episodic Return progress (ERP), a novel intrinsic motivation (IM)
signal. To evaluate our method, we use quantifiable robotics metrics such as ‘expected distance to goal’ and
‘path straightness’ in addition to the usual reward-basedmeasure of episodic return common in reinforcement
learning. With simulation experiments, we show that ERP-BPNN achieves faster cumulative convergence
and improves performance in all metrics considered among morphologically different robots compared to
the baselines. Overall, our method provides a human-inspired and efficient multi-task reinforcement learning
approach with interleaved learning, making it highly suitable for lifelong learning applications.

INDEX TERMS Multi-task learning, reinforcement learning, robot learning, intrinsicmotivation, knowledge
transfer, deep learning, cognitive robotics, transfer learning.

I. INTRODUCTION
Developing robots capable of autonomous and continual
learning effectively requires the exploitation of acquired
knowledge without human intervention, which could be
described as the main goal of lifelong robot learning [1],
[2], [3]. A key feature of human learning is autonomous task
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switching and interleaved learning, which is not addressed
in mainstream machine learning and robotics research [4].
Deep reinforcement learning (RL) is an area of machine
learning that leverages deep learning to make decisions
by learning from real-time or recorded interactions with
the environment. Traditional deep RL methods often do
not include mechanisms to exploit the potential benefits of
interleaved learning and bidirectional skill transfer based on
partial learning. In contrast to prior works, our proposed
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model integrates human-like interleaved learning, leverages
intrinsic motivation for autonomous task-switching, and
includes a novel bidirectional progressive architecture tai-
lored for deep multitask reinforcement learning. In sum,
we aim to help fill this gap by developing a multi-task
reinforcement learning framework that can sustain and,
importantly, benefit from interleaved task learning and allow
bidirectional skill transfer among tasks.

In humans, it is shown that interleaved learning yields
improved recall of information and better memory retention
in the long run rather than blocked learning [5], [6], [7].
Supporting this behavioral data, the human brain is endowed
with mechanisms against task interference and forgetting,
such as internal rehearsal of experiences and memory
consolidation [8], [9]. To enable interleaved learning, the
question of when and which task to engage during multi-task
learning must be answered. Developmental learning offers
some inspiration: during learning, an infant autonomously
decides what to do or play without external directions
dictating what task (s)he needs to engage in. This behavior
of infants is usually associated with the notion of intrinsic
motivation (IM), which guides behavior through a putative
internal reward system [10]. IM can be based on curiosity,
novelty, learning progress (LP), or even challenge; as such,
it is also used in robotics as LP [11], curiosity [12], and in
machine learning as novelty [13], or surprise [14]. In the
current study, we adopt an IM approach and propose a
novel learning progress (LP) signal for RL tasks that guides
task switching. Overall, inspired by the above discussion,
we aim to develop a multi-task reinforcement learning (RL)
framework with autonomous task switching, which can
benefit from interleaved task learning without suffering from
task interference. We argue that such a learning system may
benefit a wide range of robot learning scenarios ranging
from human-like learning for a social robot to skill transfer
applications among morphologically different robots.

While significant progress has been made in deep RL for
robotics, most approaches [15] have focused on transferring
skills between robots with identical action spaces [16],
[17] and tasks with pixel-level state inputs [18], [19], [20].
Nevertheless, achieving multi-task reinforcement learning
between robots with different physical structures provides
insights for human-inspired reinforcement learning and acts
as a critical driving force for machine learning research [21].
This is particularly significant due to the different state and
action spaces, providing a unique perspective on knowledge
generalization. In light of this, we choose learning and
transferring skills among morphologically different robots as
the target to address with the the developed framework.

One of the key challenges in lifelong learning is catas-
trophic interference/forgetting, which needs to be considered
if a robot is to learn continually. When novel instances to be
learned diverge greatly from previously observed ones, new
information may overwrite the already acquired knowledge
by modifying the representations shared among multiple
tasks, leading to catastrophic forgetting. To minimize the

interference while learning a novel task, in the literature,
several techniques have been proposed, such as restricting
the probable update(s) on the network parameters, dynamic
resource allocation, or rehearsing the old task samples
while learning the new ones [1]. In this study, similar to
the Progressive Neural Networks (PNN) [22], we utilize
task-specific resources while learning to prevent possible
task interference but also allow bidirectional inter-task
connectivity to support positive skill transfer.

In sum, to enable human-like interleaved multi-task
learning while avoiding task interference, we develop a
multi-task reinforcement learning system composed of (1) a
novel architecture called BPNN that improves the PNN [22],
[23] and (2) a novel Intrinsic Motivation signal, Episodic
Return Progress (ERP), for task-switching. Unlike the PNN
architecture, which restricts skill transfer to the forward
direction and requires learning previous tasks until con-
vergence before transferring to the next task, our BPNN
method enables bidirectional skill transfer during training.
This means that skill transfer can happen in midway along
multi-task learning among all tasks without the necessity
of one task waiting for another to finish. The ERP signal
evaluates task progress based on episodic return values,
detecting the task that significantly contributes to enhancing
overall performance across multiple tasks. The efficacy
of the proposed multi-task learning framework is shown
by its application to the learning of reaching skill by
morphologically different robots, namely two degrees of
freedom (2-DoF), 3-DoF, and 4-DoFmanipulators (Figure 1).
The conducted systemic experiments show that synergistic
multi-task learning is possible due to bidirectional inter-task
skill transfer provided by the proposed BPNN architecture
and the ERP-based task switching.

The rest of the paper is organized as follows. In Section II,
we present an overview of the related studies present in
the literature. Then, we describe our method in detail
in Section III, providing metrics used to evaluate the
performance of our proposed method. Section IV details
the experiments and presents the results for skill transfer
between morphologically different reacher robots. Finally,
we discuss the broader impact of our method and future
research directions in Section V.

FIGURE 1. (a) 2-DoF, (b) 3-DoF, (c) 4-DoF reacher robot arm environments.

II. RELATED WORK
A. HUMAN LEARNING
Numerous examples demonstrate how neuroscience and
artificial intelligence have paved the way for each other [24],
[25], [26]. In this vein, the ability of humans to acquire
multiple skills with ease throughout their lives may guide
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machine learning research in multi-task learning and lifelong
learning fronts. Human learning, especially during infancy
and childhood, is characterized by autonomous engagement
in play, i.e., exploration, where no task is learned completely
in one sitting. Besides being ecologically unreasonable to
focus on learning a single task until mastery, interleaved
learning may allow positive skill transfer among tasks from
partial learning if adequate mechanisms are engaged. This
notion is supported by the contextual-interference (CI) effect
studies showing that practicing tasks in an interleaved regime
often results in improved learning compared to practicing
in a block order [27]. Benefits of CI have been linked
to increased brain activity during interleaved practice as
opposed to repetitive practice [28], [29]. In addition, the CI
effect not only improves information retention but also skill
transfer between similar tasks [30].
On the other hand, machine learning settings usually prefer

blocked learning to interleaved learning. Multi-task learning
settings generally assume that either a random task (or a
subset of tasks) is chosen for each training trial or that training
proceeds to the next task after one task is mastered with a
few exceptions [31], [32]. In the case of continual learning,
tasks are learned sequentially as each task arrives [33].
This is in contrast with how humans learn. It is clearly
seen that the beneficial impacts of interleaved learning have
not been thoroughly examined within the machine learning
literature thus far. Investigating these effects has the potential
to enhance the alignment of artificial intelligence with the
underlying mechanisms of the human brain.

B. INTRINSIC MOTIVATION
Intrinsic motivation (IM) is a significant topic in infant cog-
nitive development and learning, which refers to motivation
originating from innate satisfaction instead of the extrinsic
reward gained from the environment [34], [35]. IM has been
adopted for enabling open-ended robot learning [36], and
improving self-supervised exploration [37], [38]. Intrinsic
rewards can arise from exploring novel states, satisfying
an ingrained curiosity, or the rate of acquiring skills and
knowledge in an environment. Inclusion of intrinsic rewards
to the extrinsic rewards from the environment is one
way of solving challenging exploration problems [39] and
discovering a diverse set of skills [40] in deep reinforcement
learning. In our approach, unlike the existing uses of IM in
reinforcement learning, we propose to utilize episodic return
progress (ERP) as a higher-level IM signal to dynamically
switch tasks for learning in an online manner instead of
modulating the reward signal guiding RL. Consequently, the
dynamic task switching carried out by the task selection
mechanism leads to an emergent interleaved multi-task
learning regime.

C. CURRICULUM REINFORCEMENT LEARNING
Curriculum learning methods focus on discovering a goal
or task sequencing procedure that can lead to a faster
convergence during training or improved performance

compared to random sequencing [41]. Most curriculum
learning techniques require a priori domain knowledge of
tasks to distinguish task levels to train from easier tasks
to more difficult tasks [42], [43], [44]. For example, for
predicting the output of a short Python code with Long
Short Term Memory (LSTM) networks, the task levels can
be identified by the number of nestings and the number
of digits in the integers [45]. After manually identifying
these task difficulty measures, it can be demonstrated that
while training, a combination of a random curriculum and
a naive curriculum where tasks are selected in ascending
order of difficulty performs better than using only a random
or a naive curriculum [45]. However, the difficulty of each
task might not be readily available a priori in the robotics
domain, and thus an automatic or emergent curriculum
formation can be desirable. Deep Q-Networks (DQN) with
prioritized experience replay [46] assigns importance to
transitions based on their associated temporal difference
error, thereby selecting data for more frequent replay in
single-task reinforcement learning. On the other hand, our
method prioritizes which task network is allowed to learn
in an online manner. Hence, it operates at a higher level
than DQN with prioritized experience replay’s prioritization
scheme and creates emergent interleaved task-switching
patterns on the fly. As such, the learning scheduling obtained
is quite different from what can be obtained through a
transition-level curriculum or a usual task curriculum where
each task is learned to completion.

D. MULTI-TASK REINFORCEMENT LEARNING
Multi-task learning involves sharing skills and knowledge
between multiple tasks, where each task is identified as
either a source or a target task during training. Typically,
tasks share a part of the neural network model, and the
model integrates a task conditioning parameter that defines
the task during training. PathNet is a technique that uses a
tournament selection genetic algorithm to evolve pathways of
a neural network for multi-task, lifelong, and forward transfer
learning [47]. However, Pathnet is trained consecutively for
reinforcement learning tasks, meaning that the source task
needs to be trained until convergence before moving on to the
target task. This procedure does not allow backward transfer
of tasks. Similarly, in PNN [22], training the source task
until convergence is required to transfer skills to other tasks
connected to the trained task.

Current state-of-the-art methods do not consider human-
inspired interleaved learning as a viable approach for multi-
task learning, yet there are potential benefits of adopting
a human-like learning strategy. In this vein, ERP-BPNN
supports bidirectional transfer and does not require conver-
gence in one task to use previously learned representations in
other tasks. Hence, ERP-BPNN fits better into the multi-task
learning framework where all tasks are source and target
tasks throughout training. This is essential because the BPNN
architecture allows for the integration of learning progress
and bidirectional transfer.
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III. METHOD
We propose a novel multi-task reinforcement learning
framework that integrates a bidirectional progressive neu-
ral network (BPNN) with a unique architecture and soft
task-switching mechanism crafted for RL, inspired by our
previous work [4]. The BPNN architecture consists of
bidirectional lateral connections among the hidden layers of
each fully connected task network to allow skill transfer.
By allocating a separate network module for each task, the
model avoids negative task transfer at the core level but
allows potential positive transfer to take place due to the
bidirectional lateral connections among networks.

FIGURE 2. A high-level (a,b) ERP-BPNN architecture demonstrates ERP
selecting Task 1 (a) then Task 2 (b), showcasing bidirectional flow for skill
transfer in a many-to-many fashion among three tasks. Graphical
representation of ERP-BPNN framework with ERP task switching, wherein
(c) Task 1 is selected to learn. Weight updates are denoted by red (Task 1)
arrows. Dashed gray arrows indicate no gradient flow during the learning
update. In the current report, Task 1, 2, and 3 refer to RL tasks for 2-Dof,
3-DoF, and 4-DoF Reacher Robot arms as illustrated in Fig. 1 (a), (b), (c)
respectively.

A. BIDIRECTIONAL PROGRESSIVE NEURAL NETWORKS
We initialize a fully connected neural network module
m ∈ M with task parameters θm for each task Ti with index i.
As each task corresponds to a module, we will use ‘‘network
module’’ and ‘‘task’’ terms interchangeably. Since each robot
controls different numbers of joints, each networkmodule has

task-specific output layers with a different number of neurons
nm
{l=L} where l ∈ {1..L} refers to the layer index.
During training, each network module receives the input

of the task selected for training. In this way, the lateral
activations can receive representations of other tasks for skill
transfer. Subsequently, we compute the hidden activations
h(m)l ∈ Rnml

h(m)l =f
(
W (m)
l h(m)(l−1)+b

(m)
l +

∑
t ̸=m U

(m:t)
l h(t)l−1+b

(m:t)
l

)
(1)

where, U (m:t)
l , b(m:t)l denote the weight matrix and the bias

vector corresponding to the lateral connections of the ordered
pair of modules (m, t) from the previous layer h(t)l−1 of the
module t to the l th layer of module m. W (m)

l ∈ Rnml ×n
m
l−1 and

b(m)l are the weight matrix and bias vector, respectively, for
layer l ofmodulem, and f is the element-wise activation func-
tion. In the BPNN architecture, linear layers are utilized to
potentially transmit information from other tasks, represented
by 6 in Fig. 2(c), functioning as a module for summation.
The linear transformations applied to the previous layers of
other tasks allow the tuning of the incoming lateral signals.
In particular, a negative transfer can be suppressed, and a
positive transfer can be enhanced by the tuning of lateral
weights through gradient descent-based learning. In this
work, we use the activation function tanh(x) = ex−e−x

ex+e−x
following the suggested hyperparameters for Proximal Policy
Optimization (PPO) [48] for continuous control. In the
initial phase, the lateral connections of each module are
frozen, and all tasks are individually trained to jumpstart
task-specific learning for a predetermined number of Kinit
training iterations. In the experiments reported in Section IV,
we set Kinit = 20. In the subsequent learning steps, the
parameters of the task modules that are not selected for
training are frozen to avoid negative transfer between tasks.
This prevents the gradient flow into the networks associated
with the remaining tasks. On the other hand, the parameters
of and the lateral connections incoming to the task module
selected for training are unfrozen to facilitate task-specific
learning as well as the skill transfer from other tasks. At a
high level, this training mechanism and architecture enables
bidirectional information transfer by allowing gradient flow
through a subset of neural network parameters associated
with the task and integrating information from other tasks.
How the dynamic task selection takes place is described next.

B. TASK SWITCHING BY A NOVEL INTRINSIC MOTIVATION
SIGNAL: AVERAGE SOFT EPISODIC RETURN PROGRESS
We propose a task-switching mechanism for multi-task rein-
forcement learning based on a novel IntrinsicMotivation (IM)
signal, namely Average Soft Episodic Return Progress (ERP),
that captures the learning progress of an agent in the RL
context. At each optimization iteration k , for each task
network module m, we record the expected discounted
cumulative reward or average episodic return denoted by
Rm(k). To compute Rm(k), we first normalize the immediate
rewards to ensure the exponential moving average of the
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rewards has a constant variance and clip them between
(-10,10) to stabilize training [49]. Then we compute the mean
of the returns over P ∗ κ trajectories where P = 8 is
the number of parallel RL environments, and κ = 2 is
the number of episodes completed in each RL environment.
Then, we take ERP for task m at step k , ERPm(k), as the
slope of the line that is fitted to Rm(k − w+ 1),Rm(k − w+
2), . . . ,Rm(k) using least squares, wherew is a predetermined
window size (w = 5 in the experiments reported in this
paper). The least squares solution is given by

ERPm(k)=
w
(∑w−1

i=0 Xk [i]Ym(k)[i]
)
−
∑w−1
i=0 Xk [i]

∑w−1
i=0 Ym(k)[i]

w
(∑w−1

i=0 (Xk [i])
2
)
−

(∑w−1
i=0 Xk [i]

)2 (2)

where Xk = [k − w + 1, k − w + 2, . . . .., k] and Ym(k) =
[Rm(k − w+ 1),Rm(k − w+ 2), . . . ..,Rm(k)].

For bootstrapping ERP computation for each task, at the
beginning of a multi-task learning session, each task is given
an initial ERP bootstrapping run of Kinit > w iterations.
Then, we compute the ERP for each module individually for
the initial run and subsequently at each iteration to select
the task that has made the highest recent progress. The
objective of the ERP procedure is to select tasks dynamically
by identifying the task with the highest recent progress
so that the selected task can continue its rapid progress.
Selecting the most efficient task for training is particularly
important as it can facilitate skill transfer to the other tasks,
utilizing the bidirectional lateral connections of BPNN. For
instance, the tasks that have made less progress can benefit
from the steeper improvement of the selected task. Since
ERP is computed for all tasks at each iteration, other tasks
can benefit from the top-performing task and increase their
chances of getting selected. The window size should be
chosen to balance the reduction of noise and the tracking
of recent updates. A large window size, w, can lead to
selecting the initially top-performing task for an extended
number of iterations. Correspondingly, a small window size
can introduce noise during training. Thus, to monitor the
recent changes in the progress of all tasks, we empirically
selected the window size as five based on a grid search.
Consecutive selection of the same task will eventually reach
a plateau during training either due to the fact that the task is
learned or a local minimum is encountered, where learning
in other tasks may help the plateaued task to jumpstart as
the reduction in progress of the current task allows other
tasks with more progress to be selected. This dynamic task
selection regime can be considered analogous to the flow
state theory [50], which strives to maintain a balance between
challenging and effortless tasks.

C. MULTI-TASK REINFORCEMENT LEARNING
We initialize two separate BPNN architectures for critic and
policy networks to integrate our method into the actor-critic
reinforcement learning framework. In this manner, the policy
network receives the state for the corresponding task as input
and outputs the mean of a diagonal multivariate Gaussian
distribution with a learned log standard deviation parameter

independent of the state. Correspondingly, the critic network
receives the state and learns the value function. Hence, only
the parameters of the training task’s actor-critic modules and
their corresponding lateral connections are updated using
Adam optimizer [51] during task learning. We use the tuned
hyperparameters in [52] for the reacher task as there are
multiple extensions of PPO [53]. This extended PPO loss
LTiPPO with a clipped value function loss and a value function
entropy bonus can be formulated [48] as

LTiPPO = Et [L
CLIPTi
t (θ )− c1L

VFTi
t (θ )+ c2STi (θ (π )(st )] (3)

where L
CLIPTi
t (θ ) is the clipped PPO surrogate objective,

c1L
VFTi (θ ) is the clipped value loss with coefficient c1,

c2STi (θ (π ))(st ) is the entropy bonus for the actor network
with coefficient c2. Although the actor and critic neural
networks are separate, we can denote them collectively as θ as
in previousworks [48] for brevity. For instance, θ (π ) and θ(φ)
refer to the actor-network and critic-networks parameters,
respectively.

D. EVALUATION METRICS
Designing a reward function is crucial and challenging in
deep reinforcement learning, primarily because the reward
function may not fully encapsulate all attributes expected
from a learning agent. One example is in the Reacher
environment, where the need often arises to tune the reward
function coefficients or introduce additional parameters.
However, this requires significant time and resources to
adhere to the predetermined metrics and careful tuning of the
parameters. In this sense, evaluating how a straightforward,
uninformed reward function performs in terms of metrics
meaningful for the task domain at hand is important. There-
fore, in this section, in addition to the classical RL metric of
episodic return, we also present task domain metrics used
to evaluate the collective performance of morphologically
different agents. To account for early stopping introduced
in [54], we evaluate all tasks after each iteration, save the
best policies obtained up to that iteration, and use them in
our evaluations. Notably, saving the best policy based on the
cumulative performance of all tasks for all methods ensures
an accurate comparison of the proposed method against
baselines and enhances performance across all methods after
training is completed.

1) EPISODIC RETURN
Maximum episodic return tracks the best expected discounted
cumulative reward achieved across all tasks in an iteration.
We report the best expected discounted cumulative reward
after each training iteration to ensure a fair comparison
with baselines. Crucially, the ERP task-switching procedure
provides an inherent early-stopping procedure, provided that
we allow a fixed number of cumulative training iterations
under resource constraints. Since the task is to reach a given
point in space with minimum effort, we follow the reward
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Algorithm 1 ERP-BPNN
Require: Ti: Task with index i, T : set of tasks, mTi : network

module of Ti
1: Constants: κ = 2 (#episodes), P = 8 (#parallel tasks),
Kinit = 20 (#jumpstart training iterations)

2: for all Ti do
3: Unfreeze module mTi
4: for k ∈ {1, . . . ,Kinit } do
5: for p ∈ {1, . . . ,P} do
6: Sample κ episodes by running policy πθoldTi
7: ∀t, Compute Advantage estimates Ât
8: end for
9: Record average episodic return RmTi (k)

10: Optimize LTiPPO w.r.t. θTi by Equation 3
11: θoldTi ← θTi
12: end for
13: Freeze module mTi
14: end for
15: while not done do
16: Calculate progress for all tasks using ERP
17: Choose task Ti with maximum ERP
18: Unfreeze module mTi
19: for p ∈ {1, . . . ,P} do
20: Sample κ episodes by running policy πθoldTi
21: ∀t, Compute Advantage estimates Ât
22: end for
23: Record average episodic return RmTi (k)

24: Optimize LTiPPO w.r.t. θTi by Equation 3
25: θoldTi ← θTi
26: Freeze module mTi
27: for all Tj ∈ T − {Ti} do
28: for p ∈ {1, . . . ,P} do
29: Sample κ episodes by running policy πθoldTj
30: end for
31: Record average episodic return RmTj (k)
32: end for
33: end while

function definition in [55]

r = −∥pfingertip − ptarget∥2 −
∑

a2 (4)

where a is the action, −
∑

a2 is the control cost, pfingertip,
and ptarget are the positions of the fingertip and the target,
respectively.

2) DISTANCE TO THE GOAL
Distance to the goal is the minimum expected L2-norm
distance between the final end-effector position and the goal
position obtained over all tasks. The Reacher environment
only terminates after 50 timesteps, which is equal to the
episode length. Hence, we expect the end-effector of the
reacher to stay in the immediate vicinity of the goal until
episode termination.

3) DEVIATION FROM SHORTEST PATH TO THE GOAL
At a high level, we expect an efficient learning agent to
follow the shortest feasible path to the goal, which is also
desirable for many robotic applications. Thus, we introduce
a straightness metric that measures the minimum expected
deviation from the shortest path to the goal taken by the
manipulator’s end-effector over all tasks. We define the
deviation metric, D across tasks as

D = ET

[(∑
t=1

L2(xT (t), xT (t − 1))

)
− L2(g, xT (0))

]
where T is a task, xT (t) is the position of the end-effector
for task T at timestep t , g is the goal and xT (0) is the
initial end-effector position. Here, we first compute the
length of the spatial trajectory by summing the L2-norm
of the distance between the current and the previous end-
effector position. Subsequently, we subtract the L2-norm
of the distance between the goal position and the initial
end-effector position to obtain the deviation from the shortest
path to the goal for task T . After each iteration, we calculate
the path length traveled by all agents for every task and record
the smallest expected deviation from the optimal path to the
goal as obtained by the learning algorithm.

E. IMPLEMENTATION DETAILS
Given the morphological diversity among robots results in
different state space dimensions, and our BPNN architecture
has a static input layer; we have standardized the state
input dimensions for robots with 2-DoF and 3-DoF to match
the maximum state space dimension, which of the 4-DoF
robot, across all tasks. Hence, we apply zero-padding to the
dimensions corresponding to the angular velocity and the
angle of each missing link. To encourage skill transfer among
networks, we limit the available computational resources to
the task network modules by setting the number of hidden
layers as three and the hidden layer size as two.

For the Reacher tasks, we use PPO [48] as the RL
algorithm and adopt the hyperparameter set from [52] for
the remaining hyperparameters. After each training iteration,
we sample trajectories from each task, excluding the task
trained most recently, using the latest BPNN actor and critic
parameters. Then, we compute the ERP, maximum episodic
return, minimum expected distance to the goal, and minimum
expected deviation from the shortest path to the goal for
each task. Additionally, we run eight parallel environments
per task to reduce simulation time. Each environment runs
two episodes, with each episode lasting 50 steps, thereby
accumulating a total of 800 timesteps per task.

IV. EXPERIMENTS
In this section, we first present the environment used
for benchmarking multi-task learning for morphologically
different robots illustrated in Fig. 1. Then, we elaborate on
ERP-based task switching and present results obtained with
the evaluation metrics introduced in Section III-D.
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A. SINGLE GOAL MULTI-TASK LEARNING BETWEEN
MORPHOLOGICALLY DIFFERENT ROBOTS
To demonstrate skill transfer betweenmorphologically differ-
ent robots, we modified the Reacher-v2 environment, simu-
lated inMuJoCo [56] using Gymnasium framework [55]. The
learning experiments have been conducted on a modern com-
puter equipped with an NVIDIA 3090 GPU and 10-core Intel
i9 CPU at 3.7GHz. The experiment setup consists of three
different reacher environments, each having distinct action
spaces, specifically featuring 2-DoF, 3-DoF, and 4-DoF robot
arms. Although each environment has unique environmental
dynamics due to its distinct morphologies, it shares the
same reward functions. The reward function defined in Eq.
4 comprises a control cost, the negative vector norm of
the end-effector of the reacher, and a predetermined goal.
We consider the baselines RANDOM-BPNN and random
Multi-Layer Perceptron (RANDOM-MLP) to evaluate the
performance of our ERP-BPNN approach across various
metrics. RANDOM-BPNN abides by random task selection
while featuring the same underlying BPNN architecture as
ERP-BPNN. Similarly, RANDOM-MLP follows the same
random task selection procedure as RANDOM-BPNN but
utilizes a separate actor-critic network pair for each task with
no lateral connections among different tasks. Accordingly,
RANDOM-MLP can be regarded as training a PPO algorithm
for each task separately.

B. RESULTS
In this section, we report the results of our method
ERP-BPNN compared to the baselines of RANDOM-BPNN
and RANDOM-MLP, based on the evaluation metrics
presented in Section III-D. Table 1 shows each method’s
mean and standard deviation results obtained during 100K
episodes across five random seeds for eachmetric. The results
indicate that ERP-BPNN can obtain superior performance
compared to the baselines across all metrics with the lowest
standard deviation. More importantly, as seen from the
Episodic Return plot in Fig. 3 (a), the proposed model, ERP-
BPNN, achieves faster convergence than the baselines.

Since the combination of BPNN architecture with
ERP-based task selection (ERP-BPNN) yields the best results

TABLE 1. Episodic return, distance to goal, and deviation from shortest
path to goal results across 5 random seeds using ERP-BPNN,
RANDOM-BPNN, and RANDOM-MLP.

surpassing the random task selection strategy (RANDOM-
BPNN), it can be argued that the ERP task selection
procedure is essential for successful multi-task learning
with positive transfer among tasks. Note that interestingly,
the random task selection strategy (RANDOM-BPNN),
although inferior to ERP-BPNN, performs better than the
RANDOM-MLP baseline in terms of Episodic Return and
yields better endpoint accuracy measured as Distance to
Goal at the end of the training (Table 1). This indicates
the lateral connections among task networks may facilitate
limited positive skill transfer evenwith random task selection.
However, this picture is not reflected in the Deviation
from the Shortest Path to the Goal measure as random
task selection leads to negative transfer for the Deviation
from the Shortest Path to the Goal measure (see Fig 3(c),
episodes > 55K). In the early stages of learning, the
performance of ERP-BPNN and RANDOM-BPNN are better
than RANDOM-MLP (episodes < 55K ); however, while
the proposed ERP-BPNN enjoys positive skill transfer and
thus continues to improve its progress, RANDOM-BPNN
suffers from negative interference degrading to a performance
worse than RANDOM-MLP in this metric (Fig 3(c),
episodes > 55K).

In order to get an intuitive understanding of the learned
policy performances, we illustrate typical trajectories fol-
lowed by the end-effector of the Reacher robot in Fig. 4(a)
when controlled by policies acquired by the 1750th learning
iteration, corresponding to approximately 80K episodes,
i.e., when approximately 80% of the training is completed.
Observe that at this training stage, the proposed ERP-BPNN
has already acquired the skill to reach the target accurately
through a less curved path compared to the baselines.
In particular, the RANDOM-BPNN diverges from the
shortest path to the goal for the 4-DoF robot arm, whereas
the RANDOM-MLP diverges from the shortest path to the
goal for both 3-DoF and 4-DoF Reacher Robot arms.

FIGURE 3. Performances of the proposed model, ERP-BPNN, and the two
baselines of RANDOM-BPNN and RANDOM-MLP across five random
seeds are shown in terms of (a) maximum episodic return, (b) minimum
expected final end-effector distance to goal, and (c) minimum expected
deviation from the shortest path to the goal.

To have an intuitive grasp of the reaching ability obtained
on morphologically different robots by the proposed model
and the baselines, a typical goal position and the final
end-effector positions reached for each robot are shown in
Fig. 4(b). Final end-effector positions reached using each
method indicate that the agent trained using ERP-BPNN
is consistently closest to the goal across all environments
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FIGURE 4. The policies obtained by our model and the baselines during multi-task learning in terms of
straightness (a) and endpoint accuracy (b) are demonstrated (at 1750th policy update).

FIGURE 5. Selection frequency plot of task switching by average episodic
return progress with an iteration window size of ν = 35.

compared to the baselines. Likewise, the results for Deviation
from Shortest Path to Goal in Fig. 4(a) show that the agent
trained with ERP-BPNN can reach the goal by taking a
shorter path than the baselines in the 4-DoF reacher robot
arm environment. Importantly, accurate reaching using a
straighter path can be learned significantly faster by our
proposed method ERP-BPNN compared to the baselines as
evidenced by the distance plots given in Fig. 3(b).

C. ERP-BASED DYNAMIC TASK SELECTION
To examine the task engagement patterns that emerge with
the ERP-based task selection mechanism, we record the
selection frequency of each task over a moving learning
window, i.e., a fixed number of learning iterations. By using
this scheme, the selection frequencies of the tasks are plotted
against training iteration counts in Fig. 5. As can be seen,
although ERP primarily selects the more straightforward
2-DoF Reacher Robot Arm as the one to learn initially
(Fig. 5, time range: 0-10), it gradually starts selecting more
complex tasks with 3-DoF and 4-DoF Reacher Robots,
respectively (Fig. 5 time range: 10-150). Then, we observe
that ERP continues selecting the 4-DoF Reacher Robot
for skill transfer more frequently (Fig. 5, time range:
250-500). This task selection behavior suggests that the
4-DoF Reacher Robot has benefited from the skill transfer

of the other tasks and started to learn more rapidly later in
the training. Upon further elaboration of the episodic return
plots for all tasks in Fig. 3 (a), and standard deviations across
iterations in Table 1, ERP-BPNN exhibits a consistent overall
improvement across training iterations, achieving a faster
convergence with lower standard deviation compared to the
baselines. In line with this, faster convergence of ERP-BPNN
indicates that consecutive selections of the 4-DoF Reacher
task have collectively increased the maximum episodic
return.

V. CONCLUSION
This paper introduces Episodic Return Progress with Bidi-
rectional Progressive Neural Networks (ERP-BPNN), a novel
multi-task reinforcement learning approach incorporating a
human-like interleaved learning mechanism, and shows its
application to skill transfer across morphologically different
robots. ERP-BPNN comprises a Bidirectional Progressive
Neural Network (BPNN) that enables efficient, bidirectional
skill transfer and a soft Episodic Return Progress (ERP)
mechanism for dynamic task selection. The BPNN architec-
ture is specifically designed to enable skill transfer through
bidirectional lateral connections, drawing inspiration from
the human brain’s adeptness at retaining existing knowledge
while acquiring new skills. Episodic return progress-based
(ERP) task selection complements BPNN by autonomously
selecting the tasks to engage in learning during training,
eliminating the need for prior domain knowledge to evaluate
difficulty levels of tasks.We demonstrate that soft ERP-based
task selection, with BPNN, achieves higher performance
and faster convergence than the baselines across all the
tested metrics of Episodic Return, Distance To the Goal, and
Deviation from Shortest Path to Goal.

The insights presented in this work are closely related
to the field of human brain-inspired reinforcement learning
(RL) research. By implementing an Intrinsic Motivation (IM)
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signal and leveraging curiosity-driven exploration within the
context of multi-task RL, ERP-BPNN framework closely
aligns with biological processes observed in the human brain.
Specifically, the behavior of dopaminergic neurons, known
for their critical role in reward-based learning, mirrors the
temporal difference (TD) prediction errors utilized in RL
algorithms [24], [57], [58]. BPNN provides a mechanism for
a shared multi-task RL architecture that prevents task inter-
ference during skill transfer by adjusting knowledge transfer
from other tasks during training. In addition, the ERP-guided
freezing of lateral connections among task modules pre-
vents interference in the previously acquired knowledge.
Furthermore, the bidirectional lateral connections augment
noise in the task-specific computational flow akin to noisy
computations in the brain [26], alleviating catastrophic
forgetting [59] while amplifying plasticity [60]. Analogous
to the modular control architecture in cerebellum [61],
as corroborated by Functional Magnetic Resonance Imaging
studies [62], [63], BPNN adopts a modular architecture. This
architecture choice is instrumental in decreasing catastrophic
forgetting via instantiating a module for each task.

Overall, we have designed a cognitive architecture appli-
cable to a wide range of lifelong learning scenarios. Yet,
an important future work that remains is to extend our
architecture to support heterogeneous learning, where each
task may require a different type of learning mechanism.
For instance, one module may support supervised learning
while others may handle reinforcement and unsupervised
learning tasks. Other future work involves enhancing the
framework to accommodate more complex lifelong RL
scenarios, including real-world applications. This can be
achieved by increasing the number of tasks and improving the
bidirectional skill transfer mechanisms to enhance learning
capacity and generalization ability.
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