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ABSTRACT The diagnosis and treatment of brain diseases represent the forefront of brain science
research, with EEG-related research occupying a uniquely significant position. In recent years, deep learning
technology has been widely applied to the study of EEG signals, yet the integration of information from
multiple EEG channels remains a challenging task. Based on the dynamic routing algorithm, this study
established a deep neural network. Subsequently, leveraging this network, an epileptic seizure recognition
method, VarChanNet, was proposed. Seizure recognition experiments were conducted using the Bonn and
CHB-MIT databases. The experimental results demonstrate that the proposed VarChanNet methodmaintains
high recognition accuracy even when the number of channels involved in the recognition process changes.
It reliably functions on both the Bonn and CHB-MIT databases, indicating its potential for generalization.
Furthermore, the method provides recommendations for channel selection during the recognition process.
For instance, in the case of CHB-MIT, Channel 21 can be selected for single-channel recognition, Channels
2 and 3 for dual-channel, and Channels 1, 2, and 3 for triple-channel epileptic seizure recognition. In a word,
the proposed VarChanNet method enables the fusion of information from different EEG channels, supporting
recognition tasks even when the number of channels varies. It offers a new perspective for EEG analysis and
holds the potential for generalization.

INDEX TERMS Electroencephalography, capsule neural network, dynamic routing algorithm, brain
connectivity, seizure detection.

I. INTRODUCTION
In order to accurately diagnose whether a patient is suffering
from epilepsy, it is imperative to recognize epileptic seizures
through the meticulous analysis of EEG signals. The
objective of epileptic EEG signal recognition lies in precisely
identifying epileptic seizure states by thoroughly examining
these signals. Epileptic seizures are brain disorders that result
from excessive firing of brain neurons, and this aberrant
neuronal discharge is referred to as epileptic discharge.
This epileptic discharge manifests as ‘‘abnormal waves’’
within EEG signals, primarily encompassing spike waves,
sharp waves, spike-slow waves, sharp-slow waves, and other
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similar patterns. Essentially, epileptic EEG signal recognition
involves the detection of these ‘‘abnormal waves’’. Therefore,
to accurately assess whether a patient has epilepsy, it is crucial
to observe their clinical manifestations and perform epileptic
seizure recognition [1] based on the analysis of EEG signals.

The primary techniques for extracting features from EEG
signals encompass time domain analysis [2], frequency
domain analysis [3], time-frequency domain analysis, and
nonlinear dynamics methods. These techniques involve
extracting features from the EEG signals in the time
domain [4], frequency domain, time-frequency domain [5],
or nonlinear dynamics [6]. Subsequently, classical classi-
fiers are employed to categorize these extracted features,
enabling recognition. The approach involves a combination
of ‘‘feature extraction’’ and ‘‘classical classifier’’. Initially,
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features are extracted from EEG signals across various
domains, including time, frequency, time-frequency, and
nonlinear dynamics. These features are then characterized
and used as input data for classical classifiers to facilitate
recognition. Commonly used classical classifiers include
linear discriminant analysis [7], decision tree [8], support
vector machine [9], K-nearest neighbor [10], and Naive
Bayes [11], [12].
In recent years, deep neural networks [13] have yielded

promising results in the analysis of time series signals, such
as in signal detection tasks [14]. Consequently, some studies
have leveraged deep neural networks [15] to analyze EEG
signals and detect epileptic seizures. Raw data from EEG
segments or manually extracted features can serve as input
data for these deep neural networks. However, it’s worth
noting that the dimensionality of the input data impacts
the dimensionality of the convolutional units employed by
the deep neural network. Typically, since the input data
has a relatively low dimension, the convolutional units also
tend to have a lower dimension. Currently, when deep
neural networks are utilized to recognize epileptic EEG
signals, the convolutional units are often one-dimensional
(1D) [16], [17], two-dimensional (2D) [18], [19], or even
three-dimensional (3D).

Various deep neural networks, such as convolutional neural
networks (CNN) [20], recurrent neural networks (RNN) [21],
[22], autoencoders (AE), deep belief networks (DBN) [23],
and innovative hybrids jointly constructed by multiple neural
networks, have been extensively employed in the field of
seizure recognition research.

The number of EEG channels used in different studies
of seizure recognition varies. Some studies use only data
from a single channel, which requires less computation but
also obtains less effective information from EEG signals.
At the same time, there are also studies that use data from
all EEG channels, which requires more computation but also
obtains more information from EEG signals. In addition,
some studies select a subset of all EEG channels for
epilepsy seizure recognition, which requires selecting the
most appropriate channel subset. Currently, most studies use
fixed EEG channels, and information can only be extracted
from pre-selected channels and fused to achieve recognition.
In order to better find the appropriate channel combination,
when the number of involved channels needs to be changed,
most existing studies are unable to cope with it. Therefore,
in order to ensure that the EEG recognition method can still
operate effectively when the number of channels involved in
the recognition operation changes, it is crucial to solve the
problem of fusing variable-sized channel data.

In the context of epilepsy seizure detection based on
deep learning technology, it is important to effectively
cope with changes in the number of channels. This is the
motivation of this paper. In order to effectively extract
recognition information from the data of each channel when
the number of channels changes, this paper proposes a deep
neural network-based VarChanNet method. In addition, this

study uses the Bonn database and CHB-MIT database for
experiments, and based on the experimental results, the
performance of VarChanNet method under different channel
numbers is analyzed. VarChanNet provides a new research
direction for epilepsy seizure detection in scenarios with
varying channel numbers.

II. METHOD DESCRIPTION
In this paper, a thorough exposition is presented of
VarChanNet, a cutting-edge recognition method for seizures.
This comprehensive description encompasses the dynamic
routing algorithm, the intricate structure of the deep neural
network that relies on this algorithm, and the loss function.
Within the framework of VarChanNet, a method for seizure
recognition through EEG signals is established, grounded in
the innovative 1D-capsule approach that is built upon the
dynamic routing algorithm. The intricate network structure
is clearly depicted in Figure 1, revealing its sophisticated
composition of five layers.

The first layer is to extract the EEG channel data involved
in the recognition operation from the EEG segment named
Segment i (1 ≤ i ≤ n) as the input data of the 1D-
Capsule, where n is the total number of EEG segments.
In Figure 1, the 1D-capsule has three channels participating
in the recognition operation: Channel A (1 ≤ A ≤ m),
Channel B (1 ≤ B ≤ m) and Channel C (1 ≤ C ≤ m)
as the channels participating in the recognition operation,
where m is the total number of channels contained in the
EEG segment. The data of the three channels involved in the
recognition operation at the first layer were convolved and
ReLU was performed to obtain the characteristic matrix of
the second layer. Convolved the feature matrix of the second
layer again to obtain the feature matrix of the third layer,
that is, the feature matrix in the PrimaryCaps layer;. The
feature matrix in the PrimaryCaps layer is encapsulated into
capsules containing 16 values(16D), and the fourth layer is
obtained, that is, 1952 in the capsules layer × Three 16D
capsules, of which 1952 capsules are obtained from the input
data of each EEG channel after calculation; The fifth layer
is DigitCaps layer, capsules in Capsules layer are used as
the input of dynamic routing algorithm, and two capsules
are obtained after operation. The vector lengths of the two
capsules correspond to the prediction probability of Seizure
or Non-Seizure type of current EEG segment respectively.
The class with the highest probability is the recognition result
of the current EEG segment, and the operation process of each
layer in the 1D-Capsule is as follows:

(1) In the first layer, each EEG channel contains 256 values,
and the convolution operation for each channel is set as
kernelsize =9,stride = 1,outchannels = 64. ReLU operation is
performed after Convolution. Each channel can obtain data
of 64 × 248 dimensions in ReLU layer of Convolution.

(2) In the second layer, the corresponding data dimension
of each channel is 64 × 248 , and the convolution operation
is set as kernelsize = 5, stride = 2, outchannels = 256.
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FIGURE 1. The network structure of 1D-capsule.

After completing the convolution, each channel can obtain
256×122 data in the PrimaryCaps layer.

(3) In the third layer, the data dimension corresponding
to each channel is 256 × 122 , which is first converted into
one-dimensional data with a dimension of 1 × 31232 , and
then again into data with a dimension of 1952×16 , and a total
of 1,952 16-bit (16D) data are obtained, which is called 1,952
16D capsules. In Figure 1, as the data of three channels were
used as input of the 1D-capsule, a total of 1, 952×3 = 5, 856
16D capsules were obtained.

(4) The fourth layer contains 5856 16D capsules, these
capsules can be obtained through the dynamic routing
algorithm, 2 16D capsules in DigitCaps layer, the specific
implementation details are as follows:

The capsules of DigitCaps layer in 1D-capsule are
obtained by the capsules in Capsules layer through dynamic
routing algorithm. Dynamic routing algorithm specific cal-
culation process such as Algorithm 1. As shown, each
capsule in the Capsules layer corresponds to a vector ui,
and the vector vj corresponding to each capsule in the
DigitCaps layer is obtained through the dynamic routing
algorithm.

The dynamic routing algorithm used to generate the
capsules in DigitCaps layer with capsules in Capsules layer
is described as follows:

Algorithm 1 describes how to generate high-level capsules
from low-level capsules. Firstly, ui (i = 1, 2, . . . , n) mul-
tiply by weight matrix Wij ( j is the number of capsules in
DigitCaps layer), as shown in Formula 1:

ûj|i = Wijui (1)

Among them, Wijis the transformation matrix between ui
and ûj|i with a dimension of 16×16, which is used to describe
the relative spatial relationship between low-level features
and high-level features, which is maintained by 1D-Capsule
during training renew.

Then, line 7 to 10 is iterated T times to obtain vj. Which
ûj|i sum after multiplied by their weights, the result is stored
in the sj. The calculation method is shown in Formula 2:

sj =

∑
i

cijûj|i (2)

where cij is the coupling coefficient of ui and the jth (jth)
capsule in DigitCaps layer, and cij satisfies the conditions
shown in Formula 3: ∑

i

cij = 1 (3)

The calculation method of cij is shown in Formula 4:

cij =
exp

(
bij

)∑
k exp (bik)

(4)

Among them, the initial logit (initial logit) bij is the log
prior probability (Log prior probability) of the combination
of ui and the jth capsule in DigitCaps layer.
In Algorithm 1, the nonlinear function named squash is

used to compress sj to ensure that the vector length of
vj corresponding to jth capsule is between 0 and 1. Its
calculation method is shown in Formula 5:

vj =

∣∣∣∣sj∣∣∣∣2
1 +

∣∣∣∣sj∣∣∣∣2 sj∣∣∣∣sj∣∣∣∣ (5)
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Algorithm 1 Dynamic Routing Algorithm
Require: The vector ui corresponding to the capsule in the

Capsules layer, the number of iterations is T

Ensure: Capsule vj in DigitCaps layer

1: for j = 1; j ≤ m; j+ + do

2: for i = 1; i ≤ n; i+ + do

3: bij = 0 //Initialize variables

4: ûj|i = Wijui

5: end for

6: for r = 1; r ≤ T ; r + + do

7: cij = softmax(bij)

8: sj =
∑

i cijû(j|i)

9: vj = squash(sj)

10: bij = bij + ûj|i × vj

11: end for

return vi

12: end for

The 1D-capsule automatically changes the network struc-
ture based on the number of channels involved in the
recognition operation. Although the change of the number of
channels would lead to the change of the number of capsules
in the Capsules layer, the dynamic routing algorithm could
still calculate the capsules in the DigitCaps layer.

The loss function designed in 1D-Capsule is shown in
Formula 6:

Loss = L1 + L2 (6)

Loss is the total loss function, L1 is the loss when the 1D-
Capsule predicts the EEG segment as a Seizure class, and L2
is the loss when the 1D-Capsule predicts the EEG segment as
a Non-Seizure class. The calculation method of Lk is shown
in Formula 7:

Lk = Tkmax(0, 0.9 − ||vk ||)2

+ λ
(
1 − Tk max (0, ||vk || − 0.1)2

)
(7)

where max is the largest set element, and its calculation
method is shown in formula 8.{

max(x, y) = x, x ≥ y
max(x, y) = y, x < y

(8)

k in Formula 7 is the number of categories in the Digitcaps
layer. There are two values of K. when k = 1, Lk represents
the loss when the EEG segment is predicted to be seizure
class. When k = 2,Lk represents the loss when the EEG
segment is predicted to be non seizure.

Algorithm 2 Pseudocode of VarChanNet
Require: EEG data EEGdata, ‘‘Sliding time window length’’

windowlen, number of channels involved in the recogni-

tion operation channumber

Ensure: identificationresults of all EEG fragments in the test

set

1: // Get all EEG segments

2: data = EEGsplit (EEGdata,windowlen)

3: // Split into training and test set

4: sampletrain, sampletest , = split(data)

5: // Building a deep neural network

6: network = net(channumber )

7: // If using existing weights

8: if Trained weights is used then

9: // Load trained weights

10: loadweights(network, The trained weights)

11: end if

12: // Train the network

13: trainnetwork (network, sampletrain)

14: // Identify with the network

15: identificationresults = testnetwork (network, sampletest )

return

When training 1D-Capsule with EEG segments, when the
category of EEG segment is accurately predicted to be i(i ≤

k): Ti‘‘ = 1′′, if the category of EEG segment is predicted to
be i and the prediction result is wrong: Ti‘‘ = 0′′.

λ in Formula 7 represents the specific gravity of FP and
FN on Lk . λ = 0.5 is set, that is, FP increases the loss
function twice as fast as FN. ||vk || is a vector length, including
vk is calculated by using dynamic routing algorithm, also
corresponds to the capsule of the first category k vector.

(5) The fifth layer consists of two 16D capsules. The
vector lengths of the two capsules correspond to the predicted
probability of Seizure or Non-Seizure of the current EEG
segment, and the category with the highest probability is the
result of the recognition of the current EEG segment.

When VarChanNet method is used for recognition of
epileptic seizures, the internal data stream is shown in
Figure 2, which needs to be processed by four modules,
which are acquisition of original EEG data, preprocessing,
segmentation, and recognition.

The process of VarChanNet method for recognition
is shown in Algorithm 2. Firstly, EEG segments were
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FIGURE 2. The data flow of EEG recognition using VarChanNet.

segmented from EEG data by sliding time window, and the
EEG segments were divided into training set and test set as the
input data of the 1D-Capsule. Secondly, the network structure
of the 1D-Capsule was determined according to the number
of channels participating in the recognition operation. Finally,
the network trained can be used to recognize seizures.

III. EXPERIMENTAL SCHEME
This section introduces performance evaluation metrics,
describes the publicly available epileptic EEG database used
in the experiment, and clarifies the experimental design.

A. EXPERIMENTAL DATABASE AND PERFORMANCE
EVALUATION INDEX
1) DATABASE
In the experiment, the Bonn database and the CHB-MIT
database were employed, both of which are frequently
utilized public EEG databases in epileptic research. Notably,
the Bonn database comprises single-channel EEG recordings,
whereas the CHB-MIT database features multi-channel
EEG data. All EEG recordings in the CHB-MIT database
were gathered using the internationally standardized 10-20
electrode placement system, with lead information detailed
in Table 1.

It should be pointed out that FT9 and FT10 channels
do not belong to the 10-20 international system. In order
to explain the problem, we use the 10-10 system when
necessary. Besides, due to the naming modification of the
10-20 international standard system, the middle temporal
electrode markers changes from T3/T4 to T7/T8, T5/T6 to
P7/P8. Synthesizing information of CHB-MIT database, the
electrode positions of CHB-MIT database (Figure 3-a) and
Channel 23 (Figure 3-b) are obtained. The midpoint of each
channel is taken as the channel position marker, as shown
is Figure 3-c (According to the table, it can be seen that

electrodes of Channel 3 and Channel 9 are the same but
directions are different, and electrodes of Channel 15 and
Channel 23 are the same but directions are different).

2) EVALUATION INDEX
In order to evaluate VarChanNet, Accuracy is taken as the
evaluation index. The calculation method is as follows:

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(9)

TP: The prediction of a certain EEG segment belonging to
the status of epileptic seizure and the prediction is correct;
FP: The prediction of a certain EEG segment belonging to
the status of epileptic seizure, but the prediction is incorrect;
TN: The prediction of a certain EEG segment not belonging
to the status of epileptic seizure and the prediction is correct;
FN: The prediction of a certain EEG segment not belonging to
the status of epileptic seizure, but the prediction is incorrect.

3) INSPECTION OF RESULTS
Based on EEG experiments, when changing the number of
channels, we can obtain a large amount of data from single-
channel, dual-channel, and triple-channel combinations. For
23-channel EEG, there are 253 combinations of two channels
and 1771 combinations of three channels. In order to
more clearly illustrate the algorithm, this section uses
single-channel data for experiments, selecting data from
channels 1 to 23. When using dual-channel and triple-
channel experiments, we select channels 1 to 5 and obtain
10 sets of dual-channel combinations and 10 sets of triple-
channel combinations. In most cases in nature, when the
amount of data is large enough, these data tend to be
approximately normal distributed. Therefore, although the
experiment selects some combinations for testing, their
results are representative.
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TABLE 1. Lead information table.

FIGURE 3. CHB-MIT database electrode and channel schematic.

Therefore, in this study, a normality test was conducted on
the experimental results. If the recognition accuracy follows
a normal distribution, then they are representative. If it does
not follow a normal distribution, then additional data needs
to be added for further analysis.

B. EXPERIMENTAL DESIGN
The experiment was conducted based on the Bonn database
and the CHB-MIT database, with the following details:

(1) Experiment 1: Conducting experiments on the Bonn
database.

The first experiment was conducted on the Bonn database,
with a channel number of 1 for VarChanNet recognition
operation. All EEG segments generated from Set D and Set
E were mixed together, with 80% randomly assigned to the
training set and 20% assigned to the test set. The experiment
was tested using a dichotomy method to determine whether
each EEG segment was during a seizure or not. The
1D-Capsule training was performed for 50 rounds, and the
evaluation metric values were obtained using the test set after
each round of training. The evaluation metric statistics were
divided into two parts: the first part calculated the average
value of the metrics for the last 10 rounds of network training,
which was the Accuracy Ave; the second part calculated
the maximum value of the metrics during the 50 rounds of
training, which was the Accuracy Best.

TABLE 2. The results of experiment 1.

Experiment 1 objective: On the Bonn database, when the
number of channels involved in recognition operations is 1,
perform seizure recognition.

(2) Experiment 2: Conducting experiments on the
CHB-MIT database.

Experiment 2 was conducted on the CHB-MIT database,
with the number of channels participating in the recognition
operation being 1, 2, and 3. When the number of channels
was 2, there were two experimental schemes: one was
to select two channels from channel 1 to channel 5 for
experimentation, and the other was to select the two
channels with the highest Accuracy Ave from channel 1 to
channel 5 based on the single-channel test results. Similarly,
when the number of channels was 3, there were also two
experimental schemes. The data of each participant was
divided into training data and test data. In order to more
concisely present the experimental results, the experiments
of participants chb01 and chb10 were taken as examples for
explanation.
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TABLE 3. Experiment results for single-channel.

Experiment 2 objective: To analyze the effects of varying
the number of channels and combinations of channels
involved in seizure recognition.

IV. EXPERIMENT RESULTS AND ANALYSIS
A. EXPERIMENT RESULTS
(1) Experiment 1: The results of experiments carried out on
Bonn database: as shown in Table 2.

(2) Experiment 2: The results of experiments carried out
on CHBMIT database.

1⃝ Experiment results when the number of channels
involved in recognition operation is 1(single-channel)

As shown in Table 3, the experiment results show the
recognition results of VarChanNet based on chb01 and chb10
in single-channel mode.

2⃝ Experiment results when the number of channels
involved in recognition operation is 2(two-channel)

As shown in Table 4, the experiment results show the
recognition results of VarChanNet based on chb01 and chb10
in two-channel mode.

3⃝ Experiment results when the number of channels
involved in recognition operation is
3(three-channel)

As shown in Table 5, the experiment results show the EEG
signal recognition results of VarChanNet based on chb01 and
chb10 in three-channel mode.

B. RESULT ANALYSIS
(1) Analysis of experiment results when the number of
channels involved in recognition operation is 1(single-
channel).

The recognition results are statistically analyzed and
Shaprio-Wilk is used to test the normal distribution. The
results are shown in Table 6 and Figure 4. It can be seen
that Acc indexes obtained from chb01 and chb10 obey
normal distribution, and the data obtained are reliable. The
statistical average of the recognition results of chb01 and
chb10 shows that the result of chb01 is better than that of
chb10. Rank the experiment results of chb01 single-channel
in order of Accuracy Ave for top 5, and it can be obtained that
Channel 21>Channel 22>Channel 13>Channel 1>Channel
5. Rank the experiment results of chb10 single-channel in
order of Accuracy Ave for top 5, and it can be obtained that
Channel 3>Channel 19>Channel 20>Channel 1>Channel 4.
It is indicated that the change of channels can affect the
accuracy of the recognition results and the optimal single
channel is different for different patient samples.

Take the midpoint of Channel 23 as the channel coordinate
(the electrodes of Channel 3 and Channel 9 are the same but
directions are different, and average to assign the midpoint
coordinate; the electrodes of Channel 15 and Channel 23 are
the same but directions are different, and average to assign
the midpoint coordinate), assign the channel coordinate
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TABLE 4. Experiment results of two-channel.

TABLE 5. Experiment results of three-channel.

TABLE 6. Single-Channel and intra-patient mode normal distribution test of experiment results for chb01 and chb10.
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FIGURE 4. Statistical chart of recognition results for single-channel chb01 and chb10.

with the accuracy of Channel 23, and the recognition
accuracy distribution of Channel 23 is obtained, as shown
in Figure 5. It can be seen that although chb01 and chb10
show different recognition accuracy on different channels,
they both show high accuracy on some channels, such as
21,2,3, corresponding to electrodes FT9 and FT10, F7 and
T7, T7 and P7. T7 appears twice in high-precision channels,
whichmay suggest that collecting EEG information in certain
brain areas for different patients can improve the recognition
accuracy of epilepsy.

(2) Analysis of experiment results when the number of
channels involved in recognition operation is 2(two-channel).

The recognition results are statistically analyzed and
Shaprio-Wilk is used to test the normal distribution. The
results are shown in Table 7 and Figure 6. It can be seen
that Acc indexes obtained from chb01 and chb10 obey
normal distribution, and the data obtained are reliable. The
statistical average of the recognition results of chb01 and
chb10 shows that, the result of chb01 is better than that of
chb10 in terms of Acc Ave index but the result of chb10

is better than that of chb01 in terms of Acc Best index.
Rank the experiment results of chb01 two-channel in order of
Accuracy Ave, and it can be obtained that Channel 1,2>Chan-
nel 2,3>Channel 1,5>Channel 2,5>Channel 1,3>Channel
1,4>Channel 2,4>Channel 3,5>Channel 4,5>Channel 3,4.
Rank the experiment results of chb10 two-channel in order of
Accuracy Ave, and it can be obtained that Channel 2,3>Chan-
nel 1,3>Channel 3,5>Channel 3,4>Channel 2,4>Channel
1,2>Channel 2,5>Channel 1,4>Channel 1,5>Channel 4,5.
It is indicated that different combinations of two-channel
can affect the accuracy of the recognition results and the
optimal two-channel combination is different for different
patient samples.

(3) Analysis of experiment results when the number
of channels involved in recognition operation is 3(three-
channel).

The EEG signal recognition results are statistically ana-
lyzed and Shaprio-Wilk is used to test the normal distribution.
The results are shown in Table 8 and Figure 7. It can
be seen that Acc Best indexes of chb01 disobeys normal
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FIGURE 5. Distribution maps of recognition effect of Channel 23.

TABLE 7. Normal distribution test of experiment results for chb01 and chb10 in two-channel and intra-patient mode.

distribution, which need more data for further analysis. The
analysis of Acc Best indexes of chb01 can only be used
as reference. Rank the experiment results of chb01 three-
channel in order of Accuracy Ave, and it can be obtained
that Channel 1,2,3>Channel 1,2,5>Channel 1,4,5>Channel
1,3,4>Channel 1,3,5>Channel 3,4,5>Channel 2,3,5>Channel
2,3,4>Channel 1,2,4>Channel 2,4,5. Rank the experiment
results of chb10 three-channel in order of Accuracy Ave, and
it can be obtained that Channel 1,3,5>Channel 1,2,3>Channel
3,4,5>Channel 1,4,5>Channel 2,3,4>Channel 2,4,5>Channel
1,3,4>Channel 1,2,4>Channel 1,2,5>Channel 2,3,5. It is

indicated that different combinations of three-channel can
affect the accuracy of the recognition results and the optimal
three-channel combination is different for different chb
samples.

(4) Contrastive analysis of single-channel, two-channel
and three-channel.

The averages of Acc Ave and Acc Best of chb01 and
chb10 on single-channel, two-channel and three-channel are
statistically analyzed. 23, 10 and 10 values of Average of
chb01 and chb10 Acc Ave and Average of chb01 and chb10
Acc Best are obtained respectively, as shown in Figure 8.
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FIGURE 6. Statistical chart of recognition results for two-channel chb01 and chb10.

TABLE 8. Normal distribution test of experiment results for chb01 and chb10 in three-channel and Intra-Patient mode.
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FIGURE 7. Statistical chart of recognition results for three-channel chb01 and chb10.

According to the Accuracy index of chb01 and chb10, chb01
and chb10 both own high Accuracy Ave on Channel 21, and
chb01 and chb10 both own high Accuracy Best on Channel
2. Although the maximum recognition accuracy of Channel
2 is optimal on single-channel, the accuracy average is lower
than that of Channel 21. If a channel is needed to recognize
epileptic EEG signals of chb01 and chb10, relatively high
and stable recognition accuracy can be obtained by choosing
Channel 21 (Figure 8-a). According to the Accuracy index
of chb01 and chb10, chb01 and chb10 own high Accuracy
Ave and Accuracy Best when using Channel 2,3, indicating
that the combination of Channel 2 and Channel 3 can obtain
high and stable recognition accuracy if two channels are
needed to recognize epileptic EEG signals of chb01 and
chb10 (Figure 8-b). According to the Accuracy index of
chb01 and chb10, chb01 and chb10 own high Accuracy Best
when using Channel 1, Channel 3 and Channel 5, but the
accuracy average is lower than that of Channel 1, Channel
2 and Channel 3. If three channels are needed to recognize
epileptic EEG signals of chb01 and chb10, the combination

of Channel 1, Channel 2 and Channel 3 can obtain relatively
high and stable recognition accuracy (Figure 8-c).

According to the analysis above, the channel combinations
with the maximum Acc Ave value of chb01 and chb10
on single-channel, two-channel and three-channel are
respectively Channel 21, Channel 2,3 and Channel 1,2,3, the
average Acc Ave corresponding to 0.95095,0.967518 and
0.9617245, that is, two-channel>three-channel>single-
channel. The channel combinations with the maximum
Acc Best value of chb01 and chb10 on single-channel,
two-channel and three-channel are respectively Channel 2,
Channel 2,3 and Channel 1,3,5, Acc Best corresponding to
0.9645,0.9762595 and 0.973422, that is, two-channel>three-
channel>single-channel (Figure 9-a). The averages of 23,
10 and 10 values of Average of chb01 and chb10 Acc
Ave and Average of chb01 and chb10 Acc Best obtained
are calculated ( Figure 9-b). The results of the averages
of Acc Ave and Acc best are both multi-channel>single-
channel. In conclusion, the increase in the number of
channels can tap potential for EEG signal recognition and
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FIGURE 8. Comparison of multi-channel recognition results.

FIGURE 9. Comparison of multi-channel recognition results.

TABLE 9. Results based on bonn.

TABLE 10. Results based on CHB-MIT.

improve the accuracy of EEG signal recognition to a certain
extent.

V. DISCUSSION
Most researches are carried out on a single EEG sig-
nal database. The comparison results of VarChanNet and
comparative methods are shown in Table 9-10 and Fig-
ure 10. Table 9 compares VarChanNet with the method
that carries out experiments based on Bonn database and

Table 10 compares VarChanNet with that based on CHB-
MIT database. Although the two groups of experiments
are carried out based on the same EEG signal database,
the EEG signal segmentation algorithms of different EEG
signal recognition methods are different. As a result, the
input data of these recognition methods are difficult to be
consistent. Themethods for EEG signal recognition that carry
out experiments based on Bonn database are grouped and
their precision of seizure recognition, such as VarScaleNet,

74066 VOLUME 12, 2024



Z. Xiong et al.: EEG-Based Seizure Recognition Method Using Dynamic Routing

FIGURE 10. Results of comparison.

can reach 0.975, which is superior to the recognition results
of the Ahmedt-Aristizabal D et al. group. The methods
for seizure recognition that carry out experiments based on
CHB-MIT database are grouped andVarScaleNet can achieve
a precision of 0.9763, which is better than the Ammar S et
al. and Yuan Y et al. groups. At present, most algorithms
carry out experiments and tests on one database. Compared
with existing studies, the VarScaleNet can realize seizure
recognition on both Bonn database and CHB-MIT database
on the premise of ensuring the accuracy of recognition result,
which has a broader application prospect.

VI. CONCLUSION AND FUTURE WORK
In this study, a deep neural network is established based
on dynamic routing algorithm and a recognition method for
seizure, VarChanNet, is proposed based on this network. This
method can change the structure of deep neural network
according to the number of channels involved in recognition
operation, obtain effective information from the channels
and fuse the acquired effective information to realize EEG
recognition of epileptic seizures. In this study, experiments
are carried out on two different open epileptic EEG database
to evaluate the performance of VarScaleNet. The important
conclusions of the study are as follows:

1) The change of channel will affect the accuracy of the
recognition result. On CHB-MIT database, Channel
21 can be selected on single- channel mode, Channel
2,3 can be selected on two-channel, and Channel 1,2,3
can be selected on three-channel.

2) The results of single-channel, two-channel and
three-channel experiments show that the increase in the
number of channels can tap potential for EEG signal
recognition.

3) VarScaleNet conducted experiments on the Bonn
and CHB-MIT databases and achieved impressive
performance, indicating that the proposed method has
generalization potential.

In future research, we will focus on exploring the fusion of
multimodal data, aiming to extract recognition information
contained in different modal data and achieve accurate
recognition of epilepsy and other brain diseases.
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