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ABSTRACT Digital Precision Agriculture (DPA) is a comprehensive approach to agronomic management
that utilizes advanced technologies, such as sensor data analysis and automation, to optimize crop
productivity, enhance farm income, and minimize environmental impacts. DPA encompasses various
agricultural domains, including pest control, pest management, fertilization, irrigation management, sowing,
transplanting, crop health monitoring, yield forecasting, harvesting, and post-harvest stages. Among the
enabling technologies for DPA, Unmanned Aerial Vehicles (UAVs) have gained significant attention and
market growth. The advancements in control systems, robotics, electronics, and artificial intelligence have
led to the development of sophisticated agricultural drones. UAVs offer advantages such as versatility, quick
and accurate remote sensing capabilities, and high-quality imaging at affordable prices. Furthermore, the
miniaturization of sensors and advancements in nanotechnology enable UAVs to performmultiple operations
simultaneously without compromising flight autonomy. However, various variables, including aircraft mass,
payload capacity, size, battery characteristics, flight autonomy, cost, and environmental conditions, impact
the performance and applicability of UAV systems in agriculture. The economic considerations involve the
purchase of drones, equipment, and the expertise of trained pilots for flight management and data processing.
Payload capacity, flight range, and financial factors influence agriculture’s choice and implementation of
UAVs. The research and patent trends show the growing interest in UAVs for agricultural applications. This
paper provides a general review of UAV types, construction architectures, and their diverse applications in
agriculture until 2022.

INDEX TERMS Imaging techniques, remote sensing, smart farming.

I. INTRODUCTION
DPA represents a set of strategic agronomic management
methods for agroecosystems based on innovative technolo-
gies that acquire, analyze, and interpolate data from the latest
generation of sensors. The aim is to implement automated
management information systems to carry out agronomic
interventions weighted according to real crop needs and the
chemical, physical, and biological characteristics of the soil.
This optimization seeks to increase crop productivity, boost
farm income, and minimize environmental impacts. It is a
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broad field covering diverse agricultural contexts such as
insect and pest control [1], pest management [2], fertiliza-
tion [3], irrigation management [4], sowing [5], crop health
mapping and monitoring [6], yield forecasting, harvesting
and post-harvest stages [7]. UAVs are among the leading
enabling technologies for DPA and are widely researched
and discussed topics and the subjects of research [8]. They
are characterized by a significantly growing market trend [9],
[10]. Consumer attention has also increased, as observed by
monitoring the trends in offers and sales of major online
retailers [11], [12]. Figure 1 displays the strongly increasing
market trend of commercial UAVs in different sectors in
North America.
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FIGURE 1. North america commercial UAV market [13].

The progress in control systems, robotics, electronics, and
artificial intelligence has spurred significant advancements in
drone technology. Reference [14]. This progress has led to
the development of highly sophisticated and capable drones
with enhanced design and functionality. Notably, agricultural
drones were acknowledged as pioneering technology by the
Massachusetts Institute of Technology in 2014, positioning
them among the top ten breakthrough technologies [15].
Several studies [16], [17], [18] have concluded that UAVs
are one of the most successful technologies in preci-
sion agriculture, where they are now widely used and
deployed [19]. Being, particularly versatile instruments and
capable of carrying out remote sensing operations quickly
and accurately, even in unfavorable weather conditions (such
as in the presence of fog), UAVs offer spatial and temporal
resolutions that other systems, such as satellite systems,
do not guarantee [20]. UAVs can obtain high-quality images
at low prices, whereas satellites and aircraft require high
altitudes, cloud penetration, and other capabilities for clear
photography [21]. Furthermore, thanks to advancements in
nanotechnology [22], [23] and sensor miniaturization [24]
used in Precision Agriculture (PA), it is now possible
to mount multiple instruments on board UAVs, enabling
them to perform multiple operations simultaneously [25],
[26], without compromising flight autonomy. However,
there are considerable variables that affect the performance
and applicability of these systems: aircraft mass, payload
capacity, size, battery characteristics, flight autonomy under
different conditions, purchase cost, environmental condi-
tions, configurations, etc. From an economic point of view,
the use of UAVs systems in agriculture requires investment
linked to the purchase of the drone, the equipment to be
mounted on it (laser scanner, thermal, multispectral, or hyper-
spectral cameras), and the professionalism of a trained
pilot, both for flight management and for the subsequent
phases of processing the acquired data. In the case, on the
other hand, of UAVs for crop treatments, again from an
economic point of view, the main cost items are related to the
purchase of the suitable drone, the purchase of the product
to be administered, and finally, the professionalism of a
trained pilot. The payload capacity, flight range, and financial
factors are the three essential parameters that influence the
choice and implementation of unmanned aerial vehicles in

agriculture [17]. Moreover, in recent years, these systems
have seen increasing interest from researchers around the
world. Table 1 below shows an analysis we carried out on
Scopus data to identify the trend of interest from the world
of scientific research concerning applications of UAVs in
agriculture. A study was conducted to quantify the dynamics
of the number of indexed scientific contributions and patents
realized. From the analysis of the data in Table 1, it is clear
that the trend of interest is highly positive and assumes,
as shown in Figure 2, a strongly increasing trend starting
in 2014 when it takes on exponential characteristics. The
analysis also reveals that a significant percentage of articles
(>70%) address the topic of drones in agriculture, even if
not the primary focus. This demonstrates the coordinated
nature of this dynamic with various other subsectors of
agriculture, such as environmental sustainability, IoT, AI,
etc. It is challenging to provide up-to-date, comprehensive,
and exhaustive information on all technologies related to
UAVs, such as various types of imaging cameras, distribution
systems, flight systems, new prototypes, market novelties,
etc. This paper aims to provide a comprehensive review of
the primary types of UAVs used in the agricultural sector
up to 2022, accomplished through a systematic analysis
of pertinent scientific contributions in the literature. In the
present landscape of production, agricultural enterprises are
increasingly pursuing more effective solutions to increase the
effectiveness of their production processes.

After a thorough examination of UAV platform architec-
tures used in PA, extensive exploration has been conducted
into various contributions concerning their agricultural
applications. These applications encompass soil monitoring,
vegetation assessment, weed and pest detection, insect
monitoring, precision treatments, and beyond. The aim is to
provide a comprehensive overview of UAV innovations and
applications within the agricultural domain, drawing upon the
most recent scientific research available.

II. ARCHITECTURE
The classification of drone platforms for civil, scientific, and
military uses, based on characteristics such as size, flight
endurance, and capabilities, was conducted by [27]. They
categorized them asMicro orMiniatureAir Vehicles (MAVs),
Nano Air Vehicles (NAVs), Vertical Take-Off & Landing
(VTOL), Low Altitude, Short-Endurance (LASE), LASE
Close, Low Altitude, Long Endurance (LALE), Medium
Altitude, Long Endurance (MALE), and High Altitude, Long
Endurance (HALE). UAVs can be electric or fuel-powered;
the former in addition to being more prevalent in agricultural
applications, is also more interesting concerning the issue of
pollutant emissions. In this paper, we will focus our attention
precisely on this construction solution.

A. PLATFORMS
For the purposes of this paper, UAV construction types
can be simplified and essentially traced back to two
distinct platforms: fixed-wing and rotary-wing (Figure 3).

VOLUME 12, 2024 69189



F. Toscano et al.: Unmanned Aerial Vehicle for Precision Agriculture: A Review

TABLE 1. Scopus data analysis.

FIGURE 2. Scopus data analysis bar chart.

Fixed-wing UAVs are characterized by the presence of
stationary airfoil-shaped wings that generate lift, enabling the
craft to take off from the ground [28]. These drones have
a greater flying capacity, relying on aerodynamic lift, and
can cover large areas in a single flight, making them suitable
for large-scale one-off operations [29]. However, they require

skilled pilots, proper training, and suitable take-off and
landing areas. Rotor-wing UAVs can be differentiated based
on weight and the number of rotors. Generally, they are
more affordable and easier to handle [30], suitable for daily
operations on small to medium scales. They are further
classified into helicopters and multicopters. Helicopter UAVs
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feature a single set of blades connected to a central shaft,
which rotates at a specific speed to generate lift for take-
off. Additionally, a counter-rotor is located at the tail to
control yaw. Multicopter UAVs, on the other hand, have
multiple sets of rotors where blades are attached and rotated
to achieve lift for take-off. The same set of blades is used
for controlling movement in terms of yaw, roll, and pitch.
Unlike single-rotor systems, multi-rotor vehicles have greater
‘‘thrust capabilities’’, as single-rotor designs have obvious
limitations related to structural mechanics, rotor sizing, and
the resulting achievable peak angular speed. Today, many
configurations are available, including customizable ones,
starting with 2 and even up to more than 8 rotors.

Helicopters and multicopters have the advantage of flying
in any direction, both horizontally and vertically, and
hovering in a fixed position [31], resulting in stable flight
conditions, including low speed and stationary flight if
needed, which appear to be recommendable when precision
data sensing or precision product delivery is expected by the
flying systems [17]. Their rotary-wing configurations gain a
particular relevance due to their hovering, vertical take-off,
and landing capabilities [32]. Regarding the issue of flight
autonomy, the technical data sheets analyzed and the various
scientific contributions on the subject [33], [34], [35], [36]
agree that fixed-wing systems provide greater autonomy than
rotary-wing systems. This is determined both by the fact that
rotary-wing systems have higher masses and lower aerody-
namic profiles than fixed-wing models. Among rotary-wing
systems, helicopters also exhibit higher flight autonomies
than multicopters. Certain manufacturers, such as Yamaha
and DJI, have designed customized UAVs to meet agri-
cultural needs. Yamaha’s remotely piloted helicopters have
been utilized in agricultural operations since 1991. While
these helicopters are not directly available for purchase,
the manufacturer offers comprehensive services, including
maintenance and qualified pilot provision. Conversely, DJI
has developed specialized drone models tailored for crop
protection, integrating advanced sensors like multispectral
sensors, high-precision Real-Time Kinematic (RTK) Global
Positioning System (GPS), and high-resolution cameras.
Another notable solution is the Parrot Bluegrass Fields, which
provides a comprehensive drone system for crop analysis,
consisting of a drone, multispectral sensor, and dedicated
processing software [37]. Figure 3 below schematizes the
most important platform types and characteristics of UAVs.

The most prominent platform types and characteristics of
the professional drones most commonly used in DPA are
shown in 2 below.
UAVs can also be categorized based on their flight altitude,

distinguishing between low-altitude platforms (< 3, 000 m
a.s.l.), medium-altitude platforms (3, 000 ÷ 9, 000 m a.s.l.),
and high-altitude platforms (> 9, 000 m a.s.l.).In general,
high-altitude platforms are characterized by greater mass
and flight autonomy. Drones are used to transport various
types of instrumentation, including GPS, infrared cameras,
batteries, and sensors. These drones are often equipped with

FIGURE 3. The most important platform types and features of UAVs.

high-energy lithium batteries, which allow a flight time of
approximately 20−40 minutes. However, the limited battery
capacity poses a challenge for the range and endurance of
UAVs. Increasing the size of the battery is not a feasible
solution, as it would increase the weight of the drone, which
is another critical concern. Several research studies have
focused on UAV battery charging but still require further
investigation by the scientific community [38], [39].

B. HARDWARE
There is a wide variety of UAVs on the market, and
depending on the applications they can perform, they will
be equipped with different hardware. Hardware denotes the
set of immutable physical components of a system, such as
power supplies, circuits, and memory units. In the case of
UAVs used in DPA, we can find elements such as chambers of
various types [21], Brushless Direct Current [40], Electronic
Speed Controller [41], Global Position System [42], Wireless
Sensor Network [43], Altimeter [44], Accelerometer [45],
Gyroscopes [46], Magnetometer [47] and, obviously, battery.
Both sensors and computer platforms are indispensable to
ensure the proper functioning of UAVs. Typically, sensors
are installed on integrated computing platforms such as
Arduino, Raspberry Pi, Orange Pi, Odroid, andNvidia Jetson.
Control platforms such as Pixhawk, Ardupilot, Multiwii,
and Naza are also connected to the computing platforms.
However, in some cases, certain sensors like GPS receivers
and IMUs can be directly installed or connected to the
control platforms [21]. Figure 4 below schematizes the
basic infrastructure of UAVs used in DPA. Recently, several
commercial drones have integrated RTK technology, which
represents a significant leap in enhancing the accuracy
of positional data. The RTK system in drones comprises
two main components: a mobile station (or rover) situated
on the drone and a stationary base station with a known
position. The base station plays a pivotal role in this
setup; it continually measures satellite signals and calculates
correction data based on its established location. This
correction data, which compensates for errors due to atmo-
spheric disturbances, satellite and receiver discrepancies,

VOLUME 12, 2024 69191



F. Toscano et al.: Unmanned Aerial Vehicle for Precision Agriculture: A Review

TABLE 2. Platform types and salient features of professional drones used in Digital Precision Agriculture (DPA).

and orbital inaccuracies, is then transmitted to the mobile
station in real-time. Consequently, the drone adjusts its
positional calculations, achieving a remarkable centimetre-
level accuracy. This heightened precision has noteworthy
implications, especially in applications like mapping and
surveying. For instance, imagery captured by the drone can
be tagged with highly precise geospatial data, drastically
reducing or eliminating the need for Ground Control Points
(GCPs). Beyond mapping, the stable flight facilitated by
RTK proves invaluable, particularly in low-altitude flights
or areas with potential GPS interferences. One domain
reaping substantial benefits from RTK drones is precision
agriculture. Here, farmers acquire accurate fieldmaps that are
instrumental in optimizing irrigation, monitoring crop health,
and applying farm inputs. Interestingly, while RTK provides
instantaneous corrections, there’s also an option for Post-
Processed Kinematic (PPK), where corrections are integrated
during the data processing phase post-flight. When combined
with other drone systems, such as multispectral sensors or
high-resolution cameras, RTK’s precise positioning yields
comprehensive and detailed data sets tailored for specialized
applications. However, to ensure optimal RTK performance,
it’s imperative to maintain a clear line of sight between
the drone and the base station and understand conditions
that might affect GPS signal quality. When the use of a
base station is impractical due to several restrictions, another
approach to enhance the accuracy of positional data based
on RTK is through the Networked Transport of RTCM via
Internet Protocol (NTRIP). NTRIP streams this differential
Global Navigation Satellite System (GNSS) data over the
internet. Instead of a dedicated base station, NTRIP uses a
network of reference stations to provide corrections. Drones
with RTK and cellular connectivity can access real-time
corrections via NTRIP without a nearby base station (in some
nations, there are free NTRIP servers based on open source
and open data stuff). This is especially useful in large-scale
operations or challenging terrains, offering flexible and
precise mapping solutions over vast areas.

C. SOFTWARE
The use of UAVs in Drone-Assisted Precision Agriculture
(DPA) is closely tied to the development of dedicated soft-
ware capable of processing, even in real-time, the valuable
information captured by onboard sensors. The essence of
UAVs in this context is often linked with image analysis,

FIGURE 4. Accurate landing of unmanned aerial vehicles using ground
pattern recognition [48].

necessitating the correction and processing of photos cap-
tured during overflight activities. The sector is so significant
that [49] estimates its market value at around USD 32 billion.
It plays a crucial role in collecting and processing essential
UAV data, which enhances the overall system’s effectiveness.
Unlike its hardware components, UAV software comprises
a comprehensive set of specialized programs, methods, and
operations that perform specific functions. The proper func-
tioning of UAVs relies on the unique interplay of hardware
and software components. Themost commonly used software
for data processing includes Geographic Information System
(GIS) programs like QGIS and ArcGIS, and Python, Matlab,
Pix4D, and R [50]. Beyond dedicated software available
on the market today, drones can be programmed with new
features using their manufacturers’ Software Development
Kit (SDK). The SDK offers developers a powerful toolkit
to craft custom applications, extending the drone’s native
capabilities. With this SDK, developers can tailor flight
paths, design unique maneuvers, and automate data capture.
For instance, they can programmatically fine-tune camera
settings to execute advanced photography routines such as
time-lapses or panoramas. Integration capabilities are broad,
from syncing drone data to cloud platforms to embedding
control components in third-party applications. Furthermore,
the SDK facilitates granular control of additional payloads or
sensors mounted on drones, ensuring diverse data acquisition
needs are met. Some commercial drones have a USB port
that enables a custom payload that can communicate on the
ground. Developers can also implement advanced safety and
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FIGURE 5. Schematization of UAV flight control system [51].

geofencing rules, which are crucial for adhering to regulatory
standards or ensuring drone operations within designated
areas. Moreover, they can harness telemetry data to analyze
intricate details like flight patterns and drone health. Even
more intriguing is the potential to control multiple drones
simultaneously, enabling synchronized operations for tasks
like swarm displays.

III. FLIGHT CONTROL SYSTEMS
UAVs have six degrees of freedom, enabling movement
in three spatial directions: x, y, and z, with corresponding
linear velocities U , V , and W . Furthermore, they can rotate
around three axes - roll (φ), pitch (θ), and yaw (ψ), with
corresponding angular velocities P, Q, and R (refer to
Figure 5).
Previous research has extensively focused on controlling

this intricate nonlinear system, as exemplified by the works
of [52] and [53]. UAVs are controlled by an embedded
computer known as the Flight Control System (FCS) or flight
controller, which consists of control software loaded into
a suitable microcontroller, as discussed by [54] and [55].
According to [56], the flight control system comprises two
main components: a reference generator (outer loop) that
records the desired position and flight altitude to generate
command signals, and an on-board control system (inner
loop) that utilizes these commands as output to regulatemotor
speed, as investigated by [57]. These components operate
within a cascade control structure, where the inner loop
operates at a higher speed than the outer loop, typically
during ground operations. The reference generator calculates
control signals based on the drone’s position and orientation
along the z-axis, while the positioning measurement system
determines the drone’s position and speed. Various control
strategies and approaches exist to regulate the reference gen-
erator’s operation, ranging from basic heuristic techniques to
advanced dynamic models. Examples include Fuzzy logic,
Linear Quadratic Controller (LQG), Sliding Mode Control
(SC), Proportional Integral Derivative (PID) control, and
Neural Network (NN) methods. The fundamental assumption
underlying themodel derivation is that the aircraft’s dynamics
can be described through rigid body motion. Thus, the
dynamicmodel of the aircraft can be derived by incorporating

inertial and body reference systems, as explained by [19].
The inertial reference systems include an Inertial Measure-
ment Unit (IMU) and a navigation computer, as detailed
by [58]. The IMU typically includes three orthogonal rate-
gyroscopes, three orthogonal accelerometers, and, in some
cases, a 3-axis magnetometer to respectively measure angular
velocity, linear acceleration, and orientation, as described
by [59]. Additionally, an inertial reference system is often
integrated with a GPS receiver to provide the drone’s position
information The PID controller functions as a closed-loop
system wherein a sensor measures the process variable and
provides feedback to the control system. The discrepancy
between the process variable and the desired setpoint is
utilized by the PID controller to regulate the motor speed
accordingly. Consequently, the reference generator aims to
acquire position coordinates, determining the desired atti-
tude, directional speed, and thrust of the drone, which serve as
references for the onboard control system. However, classical
PID controllers have limitations when operating in harsh
and unpredictable environments, such as wind disturbances
affecting trajectory tracking by impairing the performance of
the attitude controller. This issue has prompted researchers
to develop model-based nonlinear controllers, including
Nonlinear Model Predictive Control (NMPC), which has
gained popularity as a control algorithm in numerous recent
research papers. To address this challenge, some studies
have focused on leveraging learning algorithms such as the
Gaussian process or Neural Networks, to actively estimate the
robot’s dynamic parameters and update the prediction model
in real-time [60]. An interesting approach proposed by [61]
involves an intelligent flight control system built using
neural networks to learn the dynamics of quadcopters. This
method enables real-time adaptation to external disturbances
and unmodeled dynamics. Consequently, these models can
be further refined by integrating increasingly sophisticated
algorithms, as recommended by [19]. Similarly, the on-board
control system consists of two components: the attitude
controller and the rate controller. These components enable
the estimation of the drone’s attitude and angular velocities,
which are subsequently utilized by the on-board control
loop. It is worth noting that such a control architecture
is considered ‘‘closed’’, meaning that modifications to the
control gains or the control loop are not feasible. These
limitations become particularly crucial when designing flight
control systems for precision agriculture scenarios, where
the aircraft must maintain its position effectively despite
severe weather conditions. Due to these considerations, it is
imperative to pay close attention to ensure the safety of
operators during UAV flights. Therefore, scientific research
plays a pivotal role in implementing novel solutions and
innovations that prioritize enhanced safety and flight control
within this specific field.

IV. USE IN PRECISE AGRICULTURE
UAVs have witnessed significant advancements in the
last two decades in technology and various applications.
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In particular, in agriculture, remote sensing by drones has
proven to be the most efficient way to monitor crops, soil,
weeds, and pathogens through spatial imaging techniques.
Below, we delve into the primary applications of UAVs in
precision agriculture.

A. SOIL MONITORING
Soil is a matrix of organic and inorganic materials that serves
as the substrate for the growth of field crops. The study
of its characteristics is crucial for the preparation of any
management strategy. Soil monitoring encompasses various
techniques, classified into three primary categories:

• Soil sampling and laboratory study;
• Use of proximate sensors;
• Use of remote sensors.
Soil sampling represents a destructive, costly, and

time-consuming method of analysis [62] and is often unsuit-
able for investigating dynamic phenomena, such as those
affecting agricultural soils across three-dimensional space
and time. Presently, it mainly serves to corroborate results
obtained through proximal and remote sensing methods [63].
Proximity sensors for the study of soil properties have seen
significant technological and commercial development over
recent decades; however, they exhibit several limitations
in monitoring large areas [64] and also require constant
maintenance or replacement, obliging operators to enter
the field even when unnecessary [65]. The most widely
used remote sensors for monitoring soil properties are
satellites [66] and drones, the latter of which are becoming
increasingly popular on the market as they offer great
advantages in terms of both data quality and flexibility of use
(spatial and temporal). However, not all soil properties can
be effectively examined using these instruments. A review of
scientific literature highlights the parameters most commonly
investigated:

1) Soil moisture;
2) Soil salinity;
3) Gas detection;
4) Organic matter.

1) SOIL MOISTURE
Soil moisture content (SMC) is a critical physical parameter
that impact not only soil aggregate structure but also
influences nutrient availability, hydrological processes, and
soil degradation [67], [68], [69], [70]. Advancements in
hyperspectral technology in remote sensing have facilitated
the acquisition of SMC information over larger areas and
with improved efficiency compared to conventional thermo-
gravimetric methods [71], [72]. Reference [73] proposed a
UAV radar system for monitoring soil moisture, while [74]
demonstrated a significant correlation between soil moisture
and the brightness of UAV visible images. They successfully
estimated surface soil moisture by combining the brightness
of UAV visible images with vegetation coverage. Commonly
investigated indices for soil moisture estimation include
Superficial Soil Moisture (SSM) and Soil Water Index

(SWI). Remote sensing techniques offer various domains
for soil moisture estimation, with visible and thermal
infrared sensing providing excellent spatial resolution and
microwave sensing being less affected by adverse weather
conditions [75]. Hyperspectral technology integrates the
benefits of spectroscopy and digital imaging [76]. Leveraging
drones introduces new possibilities in terms of spatial and
temporal resolution, enhancing outcomes obtained through
other remote sensing methods. Furthermore, [77] success-
fully combined hyperspectral imagery and machine learning
algorithms, achieving a high level of accuracy (R2 = 0.907)
in estimating SMC.

2) SOIL SALINITY
Soil salinization poses a significant environmental threat,
contributing to soil degradation, loss of arable land, and
ecological deterioration. While multispectral and hyper-
spectral satellite remote sensing are commonly used for
monitoring salinized soils, they suffer from limitations
like reduced spatial and temporal resolution. In contrast,
the use of hyperspectral sensors mounted on UAVs show
promising potential for estimating and mapping soil salinity.
However, the full potential of this technology in this area
remains largely unexplored; indeed, standardized operational
methodologies for these surveys are not yet available [78].
Currently, the main scientific references are based on the
use and reworking of vegetation indices of crops in the
soil [79] or, alternatively, on estimates based on canopy
temperature [80], [81]. All methodologies used report high
levels of correlation; however, strong operational limitations
in terms of repeatability and accuracy in other study areas
are noted. Reference [82] investigated the impact of saline
reclaimed waters and deficit irrigation on Citrus physiology
assessed by UAV remote sensing, suggesting that statistical
analyses of field and remote sensing data, derived from
multispectral imagery using a UAV, confirm the feasibility of
applications to assess physiological and structural properties
of Citrus under water and salt stress. Combining field
geophysical prospecting techniques with remotely acquired
measurements emerges as the most efficient solution to
address these limitations [83]. Finally, among the new
research frontiers in the field, we highlight the work produced
by [84], who proposed a methodology to estimate soil
salinity through the combined analysis of hyperspectral and
multispectral images acquired from UAVs, obtaining very
significant and accurate results.

3) GAS DETECTION
Measuring gases in soils intended for agricultural crops
can be a very effective solution for both defining the
right management strategies and monitoring the impacts
of agronomic activities. A 2019 study [85], explored the
combination of miniaturized sensors mounted on UAVs to
understand the potential related to ethylene surveying in an
apple orchard, obtaining interesting results on the intensity
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of gas dispersion in response to wind action determined by
the drone’s rotors . This severely limits the system’s capacity
for gas monitoring. More encouraging results were obtained
by [86], who accurately described the design and flight
tests of a UAV equipped with an on-board camera and CO2
sensor, demonstrating the infrastructure’s ability to analyze
air quality through a real-time processing system and offering
important perspectives for applications in emissions from
agricultural biomass combustion and detection of chemical
and biological agents in agriculture. However, it is currently
emphasized that there is a lack of standardized, effective, and
accurate methodologies in this area, which is certainly one of
the most interesting to investigate in the future.

4) SOIL ORGANIC MATTER DETECTION
Soil Organic Carbon (SOC) is certainly one of the most
crucial indicators of soil fertility [87]. Estimating it can be
accomplished through various methods and technologies.
The emergence of UAVs equipped with high-resolution, both
spatially and spectrally cameras has facilitated the rapid
advancement of remote sensing methodologies. Drone-based
surveys can overcome the limitations imposed by weather
conditions and resolution, which are often encountered in
satellite surveys [88]. Reference [89] investigated the utiliza-
tion of UAV imagery of bare soil combined with auxiliary
datasets to map the distribution of SOC in an erosion-affected
agricultural field, achieving reliability indices close to 0.85.
However, there exist numerous research approaches in this
domain, including those employing predictive systems and
neural networks capable not only of estimating the content of
SOC in the soil but also of forecasting its temporal changes
[90], [91], [92].

B. CROP MONITORING
In this work, more than 30 articles were analyzed concerning
the use of drones for monitoring crops in agriculture
and the study of different vegetation indices. It was found
that the most frequently monitored crops through remote
sensing are cereals. The main applications related to crop
monitoring include defining the health and vigor status of the
crop and the use of remote sensing for crop phenotyping, i.e.,
the evaluation of the physical characteristics of a crop based
on environmental variations to select plants or seeds with
favorable genotypes and phenotypes. The type of UAV most
commonly used in these fields is the multirotor equipped
with RGB and multispectral sensors. The characterization of
agricultural crops necessitates evaluating and measuring their
observable physical traits, which define the phenotypes of a
species across multiple generations and growth stages [93],
[94]. However, the traditional approach to phenotyping, based
on direct observation in the field, is extremely time and
resource-consuming [95]. Consequently, the adoption of
drones for non-invasive phenotyping is gaining popularity
due to their capacity to capture high-resolution images with
both temporal and spatial precision. These images allow the

acquisition of various models representing the phenotypic
characteristics of crops [96]. The authors agree that pheno-
typing is a widely used process to select plants or seeds with a
‘‘favorable phenotype’’, capable of conferring advantageous
properties to cultivars such as higher productivity, better
response to fertilizers [94], and better resistance to pests and
diseases [97]. Crop monitoring via UAVs typically employs
imaging techniques aimed at defining vegetation indices,
quantitative indicators enabling the monitoring of crop
conditions, as well as other entities, such as soil, weeds, pests,
etc.- providing information on growth, biomass content,
vigor, health status, andwater content in plant tissue, etc.Data
from red or infrared bands can provide important information
regarding biomass content, canopy structure, and leaf area
index [98]. Reference [99] suggest that the analysis of visible
bands can be useful for assessing pigment concentration
in leaves and nitrogen content. Another index that can be
measured using infrared radiation is canopy temperature,
which can provide an indication of the transpiration rate
of plants and their performance under low water stress
conditions [100]. Reference [101] carried out an extensive
collection of sensor data, vegetation indices, and remote
sensing applications, all of which are currently available
on an open-access website. However, acquiring images for
vegetation index extraction can be challenging due to the
requirement for stable lighting conditions [102], while the
time of day and camera angle during image acquisition
can also influence these indices [103]. It’s worth noting
that the reflectance of plants may vary depending on their
growth stage. Table 3 below summarizes the main vegetation
indices used in agro-forestry sciences in the literature and
their formulas for estimating their value concerning data from
different spectral bands.

The use of drones and remote sensing in agricultural crop
monitoring holds significant potential, yet the technical and
logistical constraints concerning image acquisition and inter-
pretation of vegetation indices need thorough consideration.

C. WEED MONITORING
According to several authors [132], [133], [134], weeds
are the main cause of yield loss in agricultural production,
covering about one-third (approximately ∼ 34%) of the
total. These are followed by animal pest infestations (approx-
imately ∼ 18% loss) and plant pathogens (approximately
∼ 16% loss). Wild species, especially weeds, are charac-
terized by different mechanisms of environmental adaptation
(remarkable physiological, phenotypic, morphological, and
anatomical plasticity) and great competitive abilities (seed
heteromorphism, intraspecific variability, allelopathy) that
result in higher tolerance to environmental stresses compared
to cultivated species [133], [135], [136], [137]. Many studies
have investigated crop-weed interactions; in particular, it has
been found that these dynamics have not remained unchanged
over the centuries but have evolved in tune with the
progress of management strategies adopted by agricultural
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TABLE 3. Vegetation index formulas.

producers [138]. Conventional modes of chemical and
mechanical pest control show several limitations, both in

terms of operational efficiency and economic-environmental
sustainability [139], [140], [141]. From this assumption,
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we note the need to opt for site-specific management systems
based on the strategic use of new technologies, and drones in
particular (see Figure 7).

Early diagnosis is crucial for preventing and limiting
pest development [142]. Recent years have seen the devel-
opment of systems combining drone image acquisition or
field spectro-radiometers with machine learning methodolo-
gies [143], aimed at managing weed removal activities with
robots [144] for automated weed control. In this contex,
a primary role is being played today by research based
on the use of artificial neural networks to implement new
techniques for localized weed management through selective
application of herbicides using eco-friendly methods [145].
The key aspect of implementing automated weed control
systems lies in employing detection techniques and tech-
nologies characterized by high reliability to achieve accurate
differentiation between weeds and crop species. Various
machine learning algorithms, such as Convolutional Neural
Networks Convolutional Neural Networks (CNN), Artificial
Neural Network (ANN), and Support Vector Machines
Support Vector Machines (SVM), are effectively applied
in this domain. Hyperspectral imaging appears to be a
highly promising solution, demonstrating a great capability
in real-time differentiation between crops and weeds [143].
As per the findings of [2], the combination of Integrated

Weed Management and Unmanned Aerial Vehicles UAVs
offers a promising opportunity for targeted Weed Man-
agement 6. This innovative approach not only proves to be
a remarkably effective technique but also holds significant
environmental advantages. Pest control methods utilizing
new technologies, particularly through UAVs, are notably
efficient, especially regarding the potential for employing
site-specific methodologies promptly. Regarding the applica-
tion of UAVs in pest management, a primary concern lies
in the diverse technologies and modes of image acquisition
necessary to obtain the identification, characterization, and
geographic location of pests in a field. A review of the
pertinent literature shows that the main types of sensors used
are:

1) RGB (Red, Green, Blue) or VIS (Visible) cameras;
2) Multispectral cameras also capable of capturing NIR

(Near Infrared) and LWIR (Longwave Infrared);
3) Hyperspectral cameras also capable of capturing over

different spectral ranges, generally between 400 and
1700µm with bands from 2 to 14 µm.

While RGB cameras are cost-effective and don’t require
special radiometric calibration, they have notable limitations
in discriminating and characterizing different weed types. On
some crops, RGB imaging techniques still exhibit excellent
potential and high levels of accuracy [146], but they are
limited in their use to supervised learning mechanisms in
which training datasets must be manually compiled, and
results can be particularly affected by temporal variability due
to physiological or environmental changes [147]. Solutions
involving multispectral and hyperspectral sensors prove to
be more efficient and versatile across in different contexts.

They offer flexibility and adaptability to the spatiotemporal
variability inherent in agroecosystems and the associated
pests [148]. Hyperspectral data analysis allows not only
the accurate determination of the exact classification [149],
[150], [151] and mapping [152] of weeds in the field but
also the identification of their peculiar characteristics of
fundamental importance, such as resistance or sensitivity to
chemical agents like glyphosate [153], [154].

D. INSECT AND PATHOGEN MONITORING
Insects that harm crops are notorious for causing widespread
devastation and significant decreases in global food grain
yields. The Food and Agriculture Organization (FAO) has
projected that losses of more than 37% are expected due
to pests and diseases. Agri-food product losses because
of animal pathogens and pests can be considerable, about
34% according to [132], and must be prevented or at
least controlled with appropriate management strategies.
Recent developments in multispectral imaging technology,
acquired by UAVs, have opened up new perspectives for
agricultural crop monitoring and management, even for
small-scale agricultural enterprises. Reference [155] tested
the possibility of identifying pests in rice fields through
machine learning systems capable of analyzing data acquired
from thermal and multispectral cameras. Reference [156]
used an RTK drone-stabilized imaging system based on
multispectral image processing to realize the monitoring
of diseases and insect infestations on banana plantations.
According to [157], UAV technologies are considered one of
the most efficient solutions for pest surveillance, monitoring,
and management. The identification of diseases caused by
pathogens, as stated by several authors [158], [159], [160],
now appears to be a well-established practice based on
advanced hyperspectral imaging techniques (380−1020nm).
Specifically, the use of hyperspectral imaging can reduce the
number of samples required for analysis and enable multiple
repetitions, resulting in more efficient work. Furthermore,
hyperspectral imaging is an objective method that differs
from visual assessment and can be integrated into automated
systems, leading to a significant reduction in workload (as
demonstrated in studies conducted by [161], [162], and
[163]). This leads to reduced economic and ecological costs
in agricultural production. It has been shown that during
pathogen infestations, the plant’s photosynthetic apparatus
undergoes changes that can be detected through wavelength
analysis ranging from 500 to 680nm. Pathogens also have a
significant influence on near-infrared wavelengths, extending
from 700 to 1000nm. Specifically, necrotrophic pathogens
cause necrosis of plant cells and alterations in water content,
which is manifested through increased reflectance in specific
water absorption bands in the shortwave infrared at 1400 and
1930nm.

E. UAV TREATMENTS
Although UAVs in agriculture have historically been used
for monitoring agro-environmental parameters, they have
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FIGURE 6. Example of weed management with UAVs system [2].

FIGURE 7. Site-specific weed management by UAVs system.

recently begun to see new applications and operational
perspectives. Today, there are significant opportunities for
active fieldmanagement aswell. For instance, DJI Agras T30,
T20, and T10 are agricultural drones used for aerial and crop
spraying. EquippedwithD-RTK technology, these drones can
achieve centimeter-level horizontal accuracy when enabled.
Moreover, the T30 boasts a maximum load capacity of
40kg and a spraying flow of 7.2 L/min, while the T20
features a 20L tank and a radar module ensuring ±0.1 m
vertical accuracy. In contrast, the T10 has an 8L tank and a
nominal takeoff weight of 24.8 kg. All these models facilitate
efficient, data-driven active field management. Among the
most popular ways of use in carrying out crop operations
are irrigation, fertilization, phytosanitary treatments, and
integrated pest management.

While there are also promising prospects for artificial
pollination interventions, these will not be addressed in this
paper.

1) FERTIGATION
The literature search conducted yielded limited scientifically
valid content pertaining to the topic under consideration.
When considering field irrigation, especially for low- to
middle-income crops, the utilization of UAVs is deemed
unsuitable. The substantial water volumes required, along

with limitations related to flight time and flyable areas, make
periodic interventions with drones currently impractical.
Moreover, the high demand for operational repeatability,
including multiple interventions within a single day for
certain crops, exacerbates the inconvenience. Nevertheless,
there are notable ongoing and completed studies, such as the
one conducted by [164], which focused on designing efficient
trajectories for precision irrigation using drones. One of the
primary challenges in these applications is ensuring a uniform
distribution of products across the entire area, without the
capability to address heterogeneous demands based on crop
and soil conditions. The authors attempted to mitigate this
issue by adjusting flight paths and proposing a hypothetical
spatially variable distribution function, denoted as P(t),
which resulted in up to 45% savings in distributed liquid.
However, the authors themselves acknowledged significant
limitations of the model, with percentage errors exceeding
50% in certain instances. Reference [165] also developed a
model for optimizing energy and water consumption in crop
irrigation using UAVs, highlighting an important trade-off
between water and energy savings. However, no information
regarding the efficiency of the model was provided.

2) DEFENSE AND PEST CONTROL
In conventional agriculture, the primary equipment used for
pesticide spraying on crops includes handheld compressed-
air sprayers and battery-powered shoulder-mounted sprayers.
However, the utilization of such sprayers can lead to
severe environmental and human health consequences, with
approximately one million cases of pesticide-related side
effects during manual spraying reported by the World
Health Organization. To address these negative impacts and
overcome labor shortages, adopting of mechanized spraying
techniques becomes imperative. Agricultural aerial spraying,
whether operated by humans or autonomously, often repre-
sents the fastest and most cost-effective approach to ensure
efficient pesticide application on crops and promptly respond
to pest outbreaks, thereby minimizing environmental and
human health risks [166]. Over time, human-operated aerial
platforms have supplemented manual and vehicle-mounted
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sprayers. UAVs offer significant advantages compared to
the aforementioned methods. Their size and technological
capabilities eliminate the need for a pilot, allowing them
to operate at low altitudes, perform precise site-specific
management, and easily adapt to soil topography. Notably,
there are distinctions between chemical spraying from UAVs
and conventional applications, including drift dynamics and
vertical flow symmetry [167]. As a result, numerous drone
models have been developed in recent years for plant
protection treatments. The drone spraying system typically
comprises a tank and a nozzle. Unlike fertilizer distribution,
pesticide spraying typically requires the use of a pressure
pump [168]. For obvious reasons, missions involving UAVs
for pesticide distribution are considered more hazardous
compared to remote sensing tasks. The market offers a wide
variety of UAVs today, with load capacities ranging from 5 to
over 30 liters. In one study, [169] developed a fumigation
prototype for the M600 Pro drone, which was compared with
the DJI Agras T30 A. In another study, [170] described the
spraying process and assessed the effectiveness and primary
operational characteristics of the DJI AGRAS T16, T20,
and T30 models with plant protection products. Further-
more, [171] conducted experiments involving a remote weed
mapping system combined with autonomous spraying using
UAVs, achieving significant results in terms of herbicide
product savings but also encountering important inaccuracies
in terms of percentage coverage of the target area. Ultimately,
we emphasize the importance of having centimeter-level
satellite RTK correction, which serves as an additional driver
for these systems.

F. PARAMETERS FOR THE UAVs
Considering the dynamics discussed earlier, selecting the
most suitable drone for a farm’s specific requirements
necessitates a thorough assessment of several crucial
parameters.

1) LOAD CAPACITY AND FLIGHT DURATION [172], [173],
[174]
The drone’s payload capacity is crucial as it dictates the
number of sensors or instruments it can accommodate.
Evaluating whether the drone can support data collection
devices like multispectral or thermal cameras, and if its flight
duration is adequate to cover the entire monitoring area
without frequent battery replacements, is essential.

2) ACCURACY AND RESOLUTION OF SENSORS [175]
The precision and resolution of the sensors attached to the
drone significantly impact the data quality. Choosing a drone
with sensors capable of detecting subtle changes in field
conditions is crucial for precise monitoring of crops, soil
moisture levels, and the presence of pests or diseases.

3) EASE OF USE AND USER INTERFACE [176]
A user-friendly and intuitive interface is essential to
ensure efficient drone operation by agricultural personnel,

minimizing the need for extensive training. Additionally,
having accessible data processing software for image analysis
and map generation further enhances usability.

4) RESISTANCE TO ENVIRONMENTAL CONDITIONS [177]
Environmental conditions within a farm can vary signifi-
cantly over time, necessitating a drone capable of operating
in various situations, including windy conditions, light rain,
and extreme temperatures. Weather resistance is crucial
for ensuring flight safety and the continuity of monitoring
operations.

5) SCALABILITY AND INTEROPERABILITY [178]
The capacity to expand or upgrade the drone system in
the future is a crucial factor to consider, particularly for
expanding farms. Moreover, the drone’s compatibility with
other agricultural management systems, such as crop plan-
ning software or automatic irrigation systems, can enhance
the overall efficiency of agricultural operations.

6) TYPE OF ANALYSIS TO BE PERFORMED [179]
The selection of a drone should take into account the specific
analysis required. Various types of cameras, such as thermal,
multispectral, hyperspectral, infrared, etc., can be integrated
into UAV survey systems. Depending on the management
objectives, it is essential to determine the type of analysis
needed and, consequently, the sensors to be incorporated into
the system.

7) TYPE OF CROPS TO MONITOR [180]
Monitoring requirements can differ based on the crop types
cultivated on the farm, whichmay include annual or perennial
herbaceous crops, shrub crops, or tree crops. Selecting
instrumentation capable of detecting essential physiological
and soil parameters is crucial and should be aligned with the
specific crop types found on the farm.

8) TYPE OF TREATMENT TO BE ADMINISTERED [181]
Furthermore, as discussed, certain drones can also be
utilized for applying phytoparasitic treatments or fertigation.
Evaluating the compatibility of the chosen drone with
the applications outlined in the farm management plan is
essential.

9) ECONOMIC EVALUATION OF INVESTMENT AND
OPERATOR TRAINING [182]
It’s crucial to evaluate the investment needed for acquiring
the drone and its accessories, along with the expenses for
operator training. An accurate assessment of the economic
advantages of drone usage, such as time and resource savings,
is crucial for ensuring a favorable return on investment.
Ultimately, choosing the most appropriate drone (and accom-
panying sensors) for a farm entails a comprehensive evalua-
tion of various technical, operational, and economic factors.
Understanding the farm’s specific requirements alongside
the technical features of drones available in the market is
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essential for enhancing crop monitoring effectiveness and
optimizing overall resource management.

V. CONCLUSION
This study examines the primary models and applications
of UAVs currently available in the market and used
in research within the broad field of DPA. Significant
advancements have been made in the past two decades,
leading to the development of crucial models for monitoring
essential agro-environmental parameters and the creation of
autonomous Decision Support Systems (DSS). Presently,
main limitations are associated with flight autonomy and the
limited number of operations that can be performed. Leading
manufacturers of UAVs, such as DJI, Parrot, Precisionhawk,
AGEagle, and Trimble Navigation, are actively addressing
emerging needs in the field. However, the combination
of high spatial and temporal resolution capabilities, the
ability to operate in adverse conditions, and the repeatability
of operations contribute to the overall positive impact of
UAV utilization. Exciting prospects for further development
are linked to emerging technologies such as artificial
intelligence, machine learning systems, and next-generation
radio systems. The study reveals that implementing these
technologies significantly enhances the operational potential
of UAVs. The challenge lies in maximizing the potential of
complex systems where the integration of different technolo-
gies (UAVs, robots, artificial intelligence, big data, internet
of things, intelligent sensing, etc.) operates effectively in a
symbiotic manner.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
DPA Digital Precision Agriculture
UAV Unmanned Aerial Vehicles
PA Precision Agriculture
MAVs Micro or Miniature Air Vehicles
NAVs Nano Air Vehicles
VTOL Vertical Take-Off & Landing
LALE Low Altitude, Long Endurance
MALE Medium Altitude, Long Endurance
HALE High Altitude, Long Endurance
LASE Low Altitude, Short-Endurance
RTK Real-Time Kinematic
GCPs Ground Control Points
GIS Geographic Information System
PPK Post-Processed Kinematic
SDK Software Development Kit
NTRIP Networked Transport of RTCM via Internet

Protocol
GNSS Global Navigation Satellite System
GPS Global Positioning System
FCS Flight Control System

LQG Linear Quadratic Controller
SC Sliding Mode Control
PID Proportional Integral Derivative
NN Neural Network
IMU Inertial Measurement Unit
NMPC Nonlinear Model Predictive Control
SMC Soil moisture content
SSM Superficial Soil Moisture
SWI Soil Water Index
ANN Artificial Neural Network
SVM Support Vector Machines
FAO Food and Agriculture Organization
DSS Decision Support Systems
SOC Soil Organic Carbon
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