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ABSTRACT The frequent occurrence of cable early faults can lead to permanent failure of cables, making the
power grid damaged and unable to work normally. To avoid the cable early faults causing great damage to the
power grid operation, in this paper, we propose a research method for cable early fault identification based
on the fusion of Markov Transition Field (MTF)-Gramian Angular Field (GAF) and multi-head attention
mechanism features to accurately identify the cable early faults. Firstly, the fault data are preprocessed by
the least mean square algorithm optimized by the adaptive gradient method; then the preprocessed one-
dimensional data are converted into two-dimensional (2D) images by using MTF and GAF, respectively,
and then the two types of images are fused to serve as the input of the classification network; finally,
a hybrid neural network for cable early fault identification composed of a deep convolutional neural network
and dense convolutional network is established, the hybrid neural network is improved by using group
convolution and Ghost convolution, and the output features of the hybrid neural network are fused and
classified through the mechanism of multi-head attention, and the output results of the cable early fault
identification are output. At the same time, the classification results of cable early faults are visualized using
the t-distributed Stochastic Neighbor Embedding (t-SNE) method to visually observe the classification effect
of the hybrid neural network. The experimental results show that the algorithm has a high recognition rate
for cable early fault classification, and the least mean square algorithm optimized by the adaptive gradient
method is more noise-resistant compared with other optimization methods.

INDEX TERMS Cable early faults, fault identification, MTF, GAF, AlexNet, DenseNet.

I. INTRODUCTION
Power cables are widely used in urban underground power
grids, power plants, and other fields due to their small foot-
print and low failure rate during power transmission [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangya Yang .

However, the harsh underground environment can lead to
phenomena such as mechanical damage to cables, resulting in
a reduction of cable insulation strength, which further leads
to the occurrence of early cable faults [2], [3]. Early cable
faults are intermittent arcing faults that can be categorized
according to the duration of the fault into 1/4 cycle early faults
and multi-cycle early faults [4], with the former lasting about
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1/4 cycle and the latter lasting about 1 to 4 cycles. Early faults
in cables are also known as self-clearing faults because a short
circuit or fault within the cable causes a change in the current
and produces an electro-thermal effect, which causes the
fault to repair itself. Early cable failures usually occur at the
instant of voltage peak, accompanied by arcing, when cable
insulation breakdown is more likely. Early faults in cables
occur causing an instantaneous increase in the phase current
of the fault, a decrease in the phase voltage, and a return
to normal phase currents after the fault is over. However,
since early cable faults are characterized by periodicity and
repetition, and the frequency of early faults will increase over
time, it will eventually lead to the occurrence of permanent
cable faults [5]. Therefore, fast and accurate identification
of cable early faults is crucial to ensure the safe and stable
operation of the power grid [1], [2], [3], [4], [5], [6].

With the development of artificial intelligence technology,
a variety of intelligent algorithms are gradually applied to the
study of cable early fault identification. Ghanbari [2] used a
Kalman filtering-based method to detect early faults in power
cables that cannot be detected in time by conventional pro-
tective relays. The results show that the method can achieve
reliable identification of early faults in cables and distinguish
them from other similar faults on the basis of simulation
and field measurement data. Shao et al. [7] proposed a deep
learning (DL) network approach based on non-negative con-
strained autoencoder stacking. Primary features are extracted
by wavelet transform, and then multilayer NCAE is used to
construct a DL network, which finally realizes early fault
identification by the Softmax classifier. The results show that
the method is able to recognize early faults in cables more
accurately than traditional pattern recognition methods when
dealing with current waveform incompleteness and random
uncertainty. Liu et al. [8] proposed a method to construct a
deep neural network based on a sparse self-encoder and deep
confidence network, which is able to effectively recognize
early faults in cables without preprocessing fault signals.
However, the method has high requirements for the accu-
racy and completeness of fault samples and requires a large
number of fault samples for training. Wang and Deng [9] pro-
posed a cable early fault identification method that combines
a noise-reducing self-encoder, an improved particle swarm
algorithm, and a support vector machine. The method can
effectively extract current signal features and identify faults,
and the recognition accuracy is improved compared with
traditional methods. Wang et al. [10] proposed a recognition
method based on S-transform feature extraction and Max-
Relevance and Min-Redundancy (mRMR) feature selection.
The initial feature set is extracted by S-transform and the best
feature subset is selected by mRMR, and the SVM classifier
with kernel function is utilized to realize cable fault recog-
nition. Experimental results show that the method has high
recognition accuracy and robustness under different noise
environments. Lu et al. [11] proposed a fault identification
method based on Stationary Wavelet Transform (SWT) and
Dropout Deep Belief Network (DDBN). The method extracts

shallow features by smooth wavelet transform and then uses
the constructed DDBN model to identify early. Although
the cable early faults in the above literature have a high
recognition accuracy, when the cable early faults occur, the
fault information is hidden in the phase currents and phase
voltages, and the fault characteristics are relatively difficult to
detect and capture. Therefore, this paper proposes the method
of converting one-dimensional fault signals into 2D images to
capture early fault information and realize the study of cable
early fault recognition.

First, the cable early fault data are collected by the Power
Systems Computer Aided Design/ Electromagnetic Tran-
sients including DC (PSCAD/EMTDC) simulation model,
and the fault signals are preprocessed by the optimized Least
Mean Square (LMS). Then, two image conversion methods
are used to convert the one-dimensional fault data into two
types of 2D images, and the images containing two types
of fault information are fused into one feature image, and
this feature image is used as the input of the classification
network. Finally, the constructed hybrid neural network is
improved using combined group convolution and Ghost con-
volution to realize the recognition study of early cable faults
through multi-head attention mechanism feature fusion. The
t-SNE visualizationmethod is also utilized to demonstrate the
classification results of the hybrid neural network used in this
paper.

II. DATA PREPROCESSING AND FEATURE EXTRACTION
A. DATA PREPROCESSING METHOD BASED ON
OPTIMIZED LMS
The core of the Least Mean Square (LMS) algorithm lies in
adjusting the filter coefficients by constant iteration to mini-
mize the mean square value of the output error signal [12],
which is widely used in fields such as noise cancellation.
Define the input signal as X = {x1, x2, · · · , xn}, the filter
coefficients asW (n), and the output of the filter as Y (n). Then
we have:

Y (n) =

M∑
i=0

Wi(n)X (n− i) (1)

where M is the order of the filter.
The error signal e(n) of an LMS filter is usually defined as

the difference between the desired signal d(n) and the output
signal Y(n) of the filter, i.e:

e (n) = d (n) − Y (n) (2)

The formula for updating the coefficients of the filter by the
LMS algorithm is as follows:

W (n+ 1) = W (n) + 2µe (n)X (n) (3)

where the learning rate 0 < µ < 1
λmax

, λmax is the maximum
eigenvalue of the autocorrelation matrix of the input signal.

Since in the LMS algorithm, all parameters share a global
learning rate, which can lead to slow learning or failure to
converge to the optimal solution [13]. Therefore, in this paper,
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FIGURE 1. Comparison of error between LMS and improved LMS.

we use a modified LMS algorithm to filter the fault signal
and introduce a personalized adjustment to the update of
each parameter by introducing the adaptive gradient (Ada-
Grad) algorithm. The core idea of the AdaGrad algorithm is
to maintain a cumulative gradient sum of squares for each
parameter, and then based on this cumulative value, adjust
each parameter’s learning rate. This approach results in a
faster decrease in the learning rate for frequently updated
parameters and a slower decrease in the learning rate for
infrequently updated parameters. Therefore, the weights of
the improved LMS algorithm are updated as follows:

grad = e (n) · X (n)

r = α · r + grad2

W (n+ 1) = W (n) +
η

√
ε + r

· grad (4)

where grad is the gradient, r is the cumulative sum of all
current gradient squares, η is the initial learning rate, α is the
forgetting factor, which controls the effect of the historical
gradient on the current learning rate, and ε is a small constant
to prevent division by zero.

Early fault signals in cables may contain various types
of noise, including interference from various sources such
as sensors, electromagnetic interference, and the environ-
ment. To verify the denoising effect of the improved LMS

algorithm, Fig. 1 below takes the cable multi-cycle fault with
a signal length of 1900 sampling points as an example, pre-
processes the fault signal with the addition of 30db of noise,
and compares the denoising effect of the LMS algorithm and
the improved LMS algorithm using the error signals and the
average absolute error. As shown in Fig. (c), the optimized
LMS algorithm has a lower average absolute error than the
original LMS algorithm. As shown in Fig. (d), the optimized
LMS algorithm performs better in terms of error effect during
the fault signal occurrence. Therefore, AdaGrad’s improved
LMS algorithm improves the overall performance of the
algorithm by introducing an independent adaptive learning
rate for each weight.

B. FEATURE EXTRACTION
1) FEATURE EXTRACTION BASED ON GAF METHOD
Gramian Angular Field (GAF) is a representation that con-
verts time series data into a 2D image, making time series
data easier to understand and analyze [14], [15]. Given a set
of time series data X = {x1, x2, · · · , xn}, the data is first
normalized so that all its values are scaled in the interval
[−1,1], this is to eliminate the scale differences between the
data and ensure the accuracy of the subsequent calculations.

x̃i =
(xi − max (X)) + (xi − min (X))

max (X) − min (X)
(5)
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FIGURE 2. Feature extraction of fault data based on GAF.

The one-dimensional time series data is then rescaled in polar
coordinates by encoding the values as angular cosines and
setting the timestamp ti to radius r. Then:

φ = arccos x̃i, −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r =
ti
N

, ti ∈ N (6)

where N is a constant factor of the regularized polar coordi-
nate system generating space.

After transforming the one-dimensional time series, the
Gram matrix is generated by considering the triangular sum
between each point to realize the temporal correlation in
different time intervals.

G =


cos (φ1 + φ1) cos (φ1 + φ2) · · · cos (φ1 + φn)

cos (φ2 + φ1) cos (φ2 + φ2) · · · cos (φ2 + φn)
...

...
. . .

...

cos (φn + φ1) cos (φn + φ2) · · · cos (φn + φn)


(7)

In this paper, Gramain Angular Summation Fields (GASF)
with angle summation inner product is selected for data
feature extraction and 2D image acquisition. Fig. 2 below
shows an example of a cable 1/4 cycle early fault and a multi-
cycle early fault, where one-dimensional time series data with
a fault signal length of 1 × 1900 is converted into a two-
dimensional image of size 256 × 256.

2) FEATURE EXTRACTION BASED ON MTF METHOD
Markov Transition Field (MTF) is a method of converting
time series data into a 2D image, aiming to make the features
of time series data more intuitive and analyzable. The basic
idea of MTF is to use the Markovian properties in time series
data to construct an image [16]. Given a set of time series
data X = {x1, x2, . . . , xn}, the given time series data is first

FIGURE 3. Feature extraction of fault data based on MTF.

divided into Q parts according to the range of values, and each
part represents a different subspace. Then each data point in
the time series is mapped into the defined subspace accord-
ing to the numerical characteristics, and in this process, the
calculation of the transfer probability wij is very important,
which represents the probability that a data point in the time
series is transferred from state i to state j. It can be estimated
by observing the state change of consecutive data points in
the time series. The specific calculation is as follows:

wij = p
{
xt+1 ∈ qj |xt ∈ qi

}
(8)

where xt is the signal amplitude at moment t, P is the prob-
ability, qj is one state in the Markov chain, and qi is another
state in the Markov chain.

The Markov variation field M matrix is constructed for
each probability by arranging them in time order:

M =


wij

∣∣x1 ∈ qi, x1 ∈ qj · · · wij
∣∣x1 ∈ qi, xn ∈ qj

wij
∣∣x2 ∈ qi, x1 ∈ qj · · · wij

∣∣x2 ∈ qi, xn ∈ qj
...

. . .
...

wij
∣∣xn ∈ qi, x1 ∈ qj · · · wij

∣∣xn ∈ qi, xn ∈ qj


(9)

The one-dimensional time series data is converted to a 2D
image by the above MTF calculation method, and Fig. 3
below shows the converted 256× 256.2D image as an exam-
ple of a cable 1/4 cycle early fault and a multi-cycle early
fault.

3) COMBINATION FEATURE DATASETS
The cable early fault time series data are transformed into
2D image data by the GAF method and MTF method, and
in order to preserve more features, this paper fuses the GAF
image and MTF image. Since MTF captures the features by
calculating the moments of the signal, focusing on the overall
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FIGURE 4. Construct feature image dataset.

shape and structure of the signal; while the features extracted
by GAF pay more attention to the temporal evolution char-
acteristics of the signal, capturing the angular information
between the time series. Therefore, constructing the fea-
ture dataset through the fusion method can capture different
aspects of the data more comprehensively, thus obtaining
more comprehensive information. Meanwhile, different fea-
ture extraction methods have different sensitivities to noise
and changes in the data, which can enhance the robustness of
the model to noise. Each pixel of the fused image is obtained
by taking the arithmetic average of the corresponding pixels
of the GAF image and the MTF image. Let I1 and I2 be
the pixel matrices of the GAF image and the MTF image,
respectively, and for each pixel position (x, y) its fused pixel
value F(x, y) is calculated by the following equation:

F (x, y) =
I1 (x, y) + I2 (x, y)

2
(10)

Through the above formula, a new image of size 256 ×

256 containing the intrinsic features of the two types of fault
data is generated, constituting the feature image dataset, and
Fig. 4 below shows a cable 1/4 cycle early fault and a multi-
cycle early fault as examples.

III. A METHOD BASED ON THE IDENTIFICATION OF
EARLY FAULTS IN CABLES
In order to better identify early cable faults and other cable
overcurrent disturbances, and to guarantee the safe and stable
operation of the power grid, this paper constructs a hybrid
neural network based on AlexNet and DenseNet and fuses
the output features of the hybrid neural network through the
mechanism of multi-head attention to realize the identifica-
tion study of early cable faults.

A. GROUP CONVOLUTION AND GHOST CONVOLUTION
1) GROUP CONVOLUTION PRINCIPLE
Group convolution is a technique that groups input chan-
nels and performs convolution operations independently; this
method was first proposed as a solution to the problem of

FIGURE 5. Group convolutional structure.

GPUmemory constraints [17] and was later found to improve
the computational efficiency of networks.

The structure of group convolution is shown in Fig. 5
above. In group convolution, the channels of the input feature
map are first divided into several groups. The convolution
operation is carried out independently for each group, and
each group of convolution kernel acts only on the correspond-
ing group of input channels. Finally, the output feature maps
of the groups are combined to form the final output feature
map. Define the number of channels of input data feature
map and the number of channels of output data feature map
as Cinput and Coutput respectively, and the size of convolution
kernel is K × K, the group convolution divides the input
feature map into N groups, then the number of channels of
each group is Cinput

N , and the number of channels of the output
feature map is Coutput

N , then the total number of convolution
kernels is:

N ×
Cinput
N

×
Coutput
N

× K × K (11)

And the total number of convolution kernels should be. For
normal convolution, the total number of convolution kernels
should be:

Cinput × Coutput × K × K (12)

Comparing the two kinds of convolution kernel totals, it can
be seen that the computation amount of group convolution is
1
N of the computation amount of normal convolution. Group
convolution significantly reduces the number of parameters
by reducing the number of connections between each con-
volution kernel and the input channel, and fewer parameters
mean lower computational costs. Therefore, utilizing group
convolution instead of normal convolution can reduce net-
work computation, decrease model complexity, and reduce
the occurrence of overfitting phenomenon.

2) GHOST CONVOLUTION PRINCIPLE
The lightweight Ghost convolution module is an efficient
deep-learning architecture component that was proposed in
2019 [18]. The core idea of the Ghost convolution module is
to generate more feature maps while reducing the computa-
tional cost. The module achieves this by generating a portion
of the feature maps using fewer convolutional operations and
then generating the remaining feature maps through linear
operations.

The schematic structure of ordinary convolution and Ghost
convolution is shown in Fig. 6 below. Ghost convolution first
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FIGURE 6. Schematic diagram of ordinary convolution and Ghost
convolution.

uses ordinary convolution to generate a set of feature maps,
which are called ‘‘native feature maps’’; then it uses linear
transformation operation to generate more feature maps from
native feature maps, which are called These additional feature
maps are called ‘‘Ghost feature maps’’; finally, the native
feature maps and Ghost feature maps are merged to form the
final output feature maps.

Define the size of the input Input to be H × W × C, the
number and size of the convolution kernels to be n and K ×

K, respectively, and the size of the output Output to be H’×
W’× n. Then the computational and parametric quantities of
the Ghost convolution are as follows:
n
s
×H ′

×W ′
×C×k×k + (s− 1)×

n
s
×H ′

×W ′
×d×d

n
s
×C×k×k + (s− 1)×

n
s
×d×d (13)

where s (s > 1) is the scale factor for generating the Ghost
feature map and d × d is the size of the linearly transformed
convolutional kernel used to generate the Ghost feature map.

And the computational and parametric quantities of ordi-
nary convolution are:

n× H ′
×W ′

× C × k × k

n× C × k × k (14)

The computational and parametric quantities of the ordinary
convolution and the Ghost convolution are compared, and the
ratios are rs and re. This is shown in the following equation,
where the size of s ≪ c, d × d is similar to the size of k × k.

rs =
n×H ′

×W ′
×C×k×k

n
s ×H

′×W ′×C×k×k + (s− 1)× n
s ×H

′×W ′×d×d

=
C×k×k

1
s ×C×k×k + (s− 1)× 1

s ×d×d
≈

s×C
s+ C − 1

≈ s

rc =
n×C×k×k

n
s ×C×k×k + (s− 1)× n

s ×d×d
≈

s×C
s+ C − 1

≈ s

(15)

From the above equation, it can be found that Ghost convo-
lution is more efficient than ordinary convolution because it

FIGURE 7. Combination structure diagram of group convolution and
Ghost convolution.

reduces the number of convolution operations, which reduces
the computational cost and ensures that the model is able
to learn more feature information to a certain extent at the
same time, realizes the model’s lightweight and reduces the
model’s complexity.

3) COMBINING GROUP CONVOLUTION AND GHOST
CONVOLUTION
In order to improve the computational efficiency of the model
and reduce the number of parameters, this paper proposes a
method to replace the ordinary convolution in the network
model by combining the group convolution and Ghost convo-
lution. This combination aims to fully utilize the advantages
of the two convolution methods to achieve a more efficient
network design and solve the problems of a large number of
traditional convolutional parameters and high computational
costs.

The structure of the combination method is shown in Fig. 7
below. In this combination method, the input feature maps
are first divided into groups, and each group is subsequently
processed by an independent Ghost convolution module. The
Ghost convolution module effectively reduces the amount
of computation required for each convolution by generating
Ghost feature maps. This approach not only reduces the com-
putational cost of a single convolution but also significantly
reduces the number of parameters in the overall model as each
group processes fewer input channels.

B. AlexNet MODEL PRINCIPLES AND IMPROVEMENTS
The AlexNet model is a key milestone in the history of deep
learning, proposed by Alex Krizhevsky et al. in 2012. Its
performance and effectiveness have been widely verified and
recognized. The original AlexNet consisted of five convolu-
tional layers followed by three fully connected layers [19],
and the key to this architecture is the ability to automatically
extract features from an image, which are then used for
classification tasks.

Since the traditional AlexNet network model is relatively
complex, but the cable early faults are relatively simple and
easy to extract feature information, this paper chooses to
use the simplified and improved AlexNet network model
for the cable early fault recognition research. First, the five
convolutional layers of the original network are simplified
into three convolutional layers, and each convolutional layer
is connected to a maximum pooling layer; then the three fully
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FIGURE 8. Improved AlexNet model structure diagram.

FIGURE 9. Dense block structure.

connected layers of the original network are simplified into
two, and the first fully connected layer parameter is modified
to 1024, and the second fully connected layer parameter is
set to 7, i.e., the cable early faults are divided into 7 cate-
gories. Then, the ordinary convolutional layers in the AlexNet
model are replaced by the combined group convolution and
Ghost convolution. The improved AlexNet model reduces
the computational requirements of the model while reducing
the parameters, realizes lightweight, and also maintains the
expressiveness of the model. The structure of the improved
AlexNet model is shown in Fig. 8 below.

C. DenseNet MODEL PRINCIPLE AND IMPROVEMENT
DenseNet is an effective deep-learning architecture proposed
by Huang et al. in 2016 [20]. Its core innovation lies in the
reuse and transfer of features through dense layer-to-layer
connections within Dense Blocks.

The DenseNet network mainly consists of several Dense
Blocks and Transition Layers. In the Dense Block, each layer
is connected to all previous layers in a cascade fashion and
maintains the same size as the feature map. The Transition
Layer contains the Batch Normalization Layer, Activation
Layer, Convolution Layer, and Pooling Layer, whose main
role is to connect different Dense Blocks and compress the
feature map while connecting to reduce the dimensionality.
The dense block structure is shown in Fig. 9 below.
In this paper, we utilize a combination of group convolution

and Ghost convolution to replace the normal convolution in
the densely connected layer of DenseNet, with the aim of
generating ‘‘Ghost’’ feature maps using fewer convolution
operations, thus reducing the computational complexity and
model parameters. The improved DenseNet model structure
is shown in Fig. 10 below.

D. INTEGRATION OF CHARACTERISTICS OF MULTI-HEAD
ATTENTION MECHANISMS AND T-SNE VISUALIZATION
1) INTEGRATION OF CHARACTERISTICS OF MULTI-HEAD
ATTENTION MECHANISMS
The multi-head attention mechanism is derived from the
Transformer architecture [21] and has been shown to be
effective in sequential tasks. The multi-head attention mech-
anism is the introduction of multiple attention heads in the
attention mechanism, each of which independently learns
different attention weights to capture relevant information
at different locations in the input sequence. By intro-
ducing the multi-head attention mechanism, the model
can parallelize the attention computation on the input
from different perspectives, which improves the model’s
representational and generalization capabilities. Therefore,
in this paper, we propose a feature fusion model based
on the multi-head attention mechanism, which aims to
integrate feature representations from two parallel neural
networks.

The process of convergence of the characteristics of the
multi-head attention mechanisms is as follows: first, two
independent network models process the input images in
parallel and output the processed feature vectors individually;
then, the feature vectors from these two models are spliced
together in terms of feature dimensions; then, a multi-head
attention mechanism is introduced to process the spliced fea-
ture vectors, and the weights of the features are automatically
adjusted according to the interrelationships among the input
feature vectors, so as to highlight the features that are favor-
able for classification and suppress irrelevant noise; finally,
a linear classification layer is used to map the attention-
enhanced features to the final category labels to complete the
fault classification task.

2) T-SNE VISUALIZATION
The core principle of the t-distributed Stochastic Neighbor
Embedding (t-SNE) algorithm [22] is to compute the similari-
ties between data points in a high-dimensional space, and then
reproduce these similarities as probability distributions in a
low-dimensional space. This visualization method enables us
to observe the distribution and clustering of data points of
different categories in the space, to verify whether the model
can effectively distinguish different categories. Therefore,
in this paper, we will visualize the feature representation of
the hybrid network model by the t-SNE algorithm to show the
network classification effect.
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FIGURE 10. Improved DenseNet model structure diagram.

E. RECOGNITION NETWORK BASED ON EARLY FAULTS IN
CABLES
Since frequent early cable faults can lead to grid damage
problems, in order to avoid this problem this paper proposes
a research method for early cable fault identification based
on the fusion of features of multi-head attention mechanism.
Firstly, the hybrid neural network of AlexNet andDenseNet is
constructed, and the combined group convolution and Ghost
convolution are used to improve AlexNet and DenseNet;
then the output features of the hybrid model are fused by
using the multi-head attention mechanism to realize the
recognition study of early cable faults; finally, the t-SNE
classification results are visualized to observe the fault clas-
sification results are visualized to more intuitively observe
the effect of fault classification. The structure of the con-
structed fault identification networkmodel is shown in Fig. 11
below.

IV. RESEARCH PROCESS BASED ON THE IDENTIFICATION
OF EARLY FAULTS IN CABLES
The research process of cable early fault identification based
on feature fusion of multi-head attention mechanisms is
shown in Fig. 12 below. The specific research steps are as
follows:

(1) Firstly, build a cable simulationmodel through PSCAD,
set up cable early faults and cable overcurrent disturbance
faults, and collect raw fault information.

(2) Data preprocessing of one-dimensional raw fault sig-
nals through AdaGrad optimized LMS filter.

(3) Convert the preprocessed 1D fault signal into two types
of 2D image signals by GAF method and MTF method
respectively, and then fuse the two types of 2D image signals
into a new 2D image to construct the 2D image dataset and
divide it.

(4) Input the divided training set into the feature fusion
network based on the multi-head attention mechanism for
training, adjust the network parameters, and train the clas-
sification network. Then the test set is input into the
trained classification network to output the fault recognition
results.

V. ALGORITHM ANALYSIS
A. DATA ACQUISITION
In order to validate the cable early fault identification method
proposed in this paper, a 10kV cable early fault simulation
model is constructed in PSCAD/EMTDC, and the structure is
shown in Fig. 13 below. Since the cable early fault resistance
is similar to the arc fault resistance characteristics and both
have nonlinear time-varying characteristics, this allows the
arc model to better simulate the waveforms of early cable
faults. Therefore, most of the existing studies have used arc
modeling for the identification and study of early faults in
cables. Because the improved ‘‘cybernetic’’ arc model can
more realistically reflect the characteristics of actual arcs,
the improved ‘‘cybernetic’’ arc model is used in this paper
to simulate early cable faults [23]. Early cable fault signals
are usually characterized by weak fluctuations or changes in
current. Therefore, cable early fault signals can be detected by
monitoring and analyzing the current belief signals simulated
in the simulation model. The simulation parameters of the arc
are referred to in [24], and the voltage drop per centimeter
of the arc gap is set to 75V; the amplitude of the steady-
state current of metallic grounding fault in the small-current
grounding system is 7.818A; the constant coefficient is 7.56×
10−6; and the length of the arc is 5.

In the PSCAD simulation model, the cable adopts XLPE
tube type three-core cable, and the radius of the cable core,
the radius of the main insulation of the cable, the radius
of the metal sheath, and the radius of the outer insulation
of the cable are set to 0.01175 m, 0.01275 m, 0.02325 m,
and 0.02445 m. In building the cable early fault simulation
model, not only the cable 1/4 cycle early fault and the cable
multi-cycle early fault are built, but also five kinds of over-
current disturbance faults, constant impedance grounding,
transformer excitation inrush, motor switching, load switch-
ing, and capacitor switching, are built. The waveforms of the
seven faults are shown in Fig. 14 below. During power system
operation, various transient disturbances occur frequently,
such as transformer excitation inrush, motor switching, load
switching, and capacitor switching. These perturbations lead
to changes in the current with characteristics similar to the
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FIGURE 11. Recognition network based on early faults in cables.

FIGURE 12. Cable early fault identification process.

FIGURE 13. Structural diagram of early cable fault simulation model.

transient characteristics of the system when a short-circuit
fault occurs. In addition, early faults are usually single-phase

faults whose current transient process is similar to that of
single-phase constant impedance grounding. Therefore, five
cable disturbance overcurrent phenomena are considered in
this paper for cable early fault classification study.

The cable early fault simulation is set up with two cases of
grounding and ungrounding via an arcing coil, and the load
is set up with three cases of light load, heavy load, and full
load. For cable early fault types, such as cable 1/4-cycle early
faults and multi-cycle early faults, the moment of occurrence
is set as a random value within 0.001 seconds before and
after the voltage peak. The grounding resistances for constant
impedance faults are considered for 0.5 �, 50 � and 500 �

cases and the angle of the fault is set in a random range of [0◦,
360◦]. The motor switching is set for 3 different power levels,
while the load switching is set for 5 different cases. In addi-
tion, the capacitor switching also considered 3 different cases
and set the fault angle in a random range of [0◦, 360◦]. Finally,
for the transformer excitation inrush fault angle was also set
to a random range of values within [0◦, 360◦]. The length
of the cable line is set to 20km, and the fault simulation is
done every 2km from the first 2km of the line. The sampling
object of the data set is the cable fault current signal, and the
sampling frequency is set to 10 kHz. the obtained cable early
fault number set is divided into training set, validation set, and
test set according to the ratio of 6:2:2, as shown in Table 1
below.

B. MODEL EVALUATION INDICATORS
In order to comprehensively evaluate the performance of the
model, four key metrics, namely Accuracy, Precision, Recall,
and F1 value, are selected as evaluation criteria in this paper.
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TABLE 1. Dataset partitioning for early cable faults.

The evaluation metrics are calculated as follows:

Accuracy =
TP+ TN

TP+ FN + FP+ TN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 =
2TP

2TP+ FP+ FN
(16)

where TP is the true positive case, TN is the true negative
case, FP is the false positive case, and FN is the false negative
case.

Accuracy measures the proportion of samples correctly
predicted by the classifier, which is the proportion of true
and true-negative cases among all samples. Precision is the
proportion of all samples classified as early cable faults that
are actually early cable faults. Recall is the proportion of cor-
rectly classified cable early faults among all samples of actual
cable early faults. The F1 value is the reconciled average
of Precision and Recall, which combines the accuracy and
coverage of the classifier.

C. NETWORK TRAINING AND FAULT IDENTIFICATION
RESULTS
In this paper, we propose a cable early fault identification
algorithm based on the fusion of features from multi-head
attention mechanisms to classify fault feature maps. The
cable early fault identification experiments used a com-
puter equipped with an Intel Core i5-12600Kf 3.7GHz CPU,
GeForce RTX3060Ti GPU, and 32 GBRAM running a 64-bit
Windows operating system. The software environment was
Python 3.10 using the PyTorch 2.0.0 library and CUDA ver-
sion 11.7.

In the network model, the size of the feature picture is
adjusted from 256×256 to 224×224 to ensure that it fits the
input of the network model. This not only effectively reduces
the computational complexity and storage requirements and
speeds up the training of the model, but also the adjusted
feature picture still retains the main fault characteristics and

FIGURE 14. Fault line current waveform.

FIGURE 15. Fault classification curves for validation and testing sets.

information. The training process of the whole network was
set to 60 epochs with 32 samples per batch with an initial
learning rate of 0.0001 and the learning rate was adjusted
by cosine annealing strategy. AlexNet and DenseNet were
trained separately and further training was done on the basis
of fusing these two models. The Adam optimizer was used to
tune the network parameters during training, and the cross-
entropy loss function was employed to calculate the loss
values of the models. At the end of each training cycle,
we evaluated the performance of eachmodel on the validation
set and performed the final evaluation on the test set, and the
validation and test set fault classification accuracy curves are
shown in Fig. 15 below.

The cable early fault assessment parameters include accu-
racy, precision, recall and F1 score as shown in Table 2 below.
From the above change curves of fault classification accu-

racy and change curves of loss value for the validation and test
sets, it can be found that the network has stabilized when the
test network is iterated up to 30 times. From the Fig. and the
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TABLE 2. Model classification indicators.

FIGURE 16. T-SNE visualization classification result.

table, it can be found that the accuracy of the test set for cable
early fault identification reaches 99.49% and the loss value
stays at 0.0202, which indicates that the proposed method
in this paper can accurately categorize cable early faults.
In addition, the t-SNE technique is also used to visualize the
fault classification, and the fault classification on the training
set and the test set is demonstrated by 3D graphs, as shown in
Fig. 16 below. From the t-SNE visualization of classification
results graphs on the test set, it can be found that the method
used in this paper can accurately identify cable early faults.

D. COMPARISON EXPERIMENT
1) EFFECT OF DIFFERENT LEVELS OF NOISE ON FAULT
IDENTIFICATION
In the field of early fault detection in cables, accurate fault
identification is crucial, especially in the complex environ-
ment of power systems. The actual grid environment is full of
unforeseen noise disturbances, whichmay come from the grid
itself or from surrounding electronic devices, greatly affect-
ing the accuracy and reliability of fault signals. In order to
ensure the effectiveness of the cable early fault identification
method, it is very necessary to examine its ability to resist
noise interference. To this end, in this paper, common types of
noise in the grid environment are simulated, such as Gaussian
white noise, which is statistically normally distributed and
has similar characteristics to the common noise in the grid.
By introducing Gaussian white noise with different signal-to-
noise ratios into the early fault signal of the cable, the noise

FIGURE 17. Waveform and characteristic images of early cable faults after
adding 20dB noise.

situation that the cable may encounter under actual grid oper-
ating conditions is simulated. Fig. 17 below shows a cable 1/4
cycle fault and a cable multi-cycle fault as an example, where
20dB noise is introduced into the original fault signal, and the
fault waveforms and characteristic images are shown below.

In order to comprehensively evaluate and improve the
performance of the algorithms in this paper in the face of
grid noise, different data preprocessing methods are used.
Specifically, the least mean square (LMS) algorithm opti-
mized by AdaGrad was mainly used to preprocess early cable
fault signals, and its performance is compared with several
other optimizationmethods, including the LMSmethod using
Adam optimization, RMSprop optimization, and the original
LMS method. By testing these methods in Gaussian white
noise with different signal-to-noise ratios, the effectiveness
of various data preprocessing strategies in reducing noise and
improving fault detection accuracy is explored in depth. The
noise immunity of different data preprocessing methods is
shown in Table 3 below.
Based on the results of the noise comparison experiments

above, it can be seen that the noise level has a signifi-
cant effect on fault classification. In low noise environments
(40dB and 30dB), the AdaGrad optimized LMS method per-
forms well with 99.43% and 99.41% accuracy, precision, and
recall. In comparison, other methods such as Adam-LMS,
RMSprop-LMS, and LMS performed slightly worse under
these conditions. However, at higher noise levels (20 dB),
the performance of all the methods suffers, but it can still
be seen that the AdaGrad-LMS method is relatively stronger
with an accuracy of 92.78%. Thus, the AdaGrad-optimized
LMS method used in this paper performs well at all noise
levels with better noise immunity.

2) COMPARATIVE ANALYSIS OF ABLATION EXPERIMENT
RESULTS
In order to verify the effectiveness of the method proposed
in this paper, different combinations of methods are set up
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TABLE 3. Comparison results of noise resistance using different
preprocessing methods.

for ablation experiments to compare the cable early fault
identification accuracy of different combinations of methods.
The combinations are shown in Table 4 below, combination
1 is a densely connected network, combination 2 is a deep
convolutional neural network, combination 3 is a model that
introduces a multi-head attention mechanism to fuse a deep
convolutional neural network and a densely connected net-
work, combination 4 is a densely connected network that
introduces a combination of group convolutions and Ghost
convolutions, combination 5 is a deep convolutional neural
network that introduces a combination of group convolutions
and Ghost convolutions to replace the ordinary convolutional
neural network, and combination 6 is the recognition method
used in this paper.

The computation time in Table 4 above refers to the
network running time for recognizing a set of fault data.
It is obvious from the experimental results that the cable
early fault diagnosis method proposed in this paper performs
the best among all model combinations, with an identi-
fication accuracy of 99.49%, which is much higher than
other combinations of methods. In addition, the improvement
of DenseNet and AlexNet using combined group convolu-
tion and Ghost convolution, although slightly increasing the
computation time for recognizing faulty data, the improved
networks achieve 99.38% and 99.24% accuracy, respec-
tively, which is a significant improvement over the original
network recognition accuracy. Meanwhile, comparing the
number of parameters and model size before and after the
network improvement, it can be found that the combined

group convolution and Ghost convolution instead of ordinary
convolution can effectively reduce the number of parameters
and model size of the network operation. The larger the num-
ber of parameters, the more fault features can be extracted
from the network. In addition, the hybrid network identifica-
tion method incorporating multi-head attention mechanism
feature fusion has higher accuracy than the improved two
networks, indicating that the multi-head attention mechanism
feature fusion method is beneficial for categorizing early
cable faults and identifying early cable faults and other cable
overcurrent perturbation phenomena.

3) COMPARATIVE ANALYSIS OF FAULT IDENTIFICATION
RESULTS OF DIFFERENT DIAGNOSTIC MODELS
In order to comprehensively evaluate the performance of
the network model proposed in this study for early cable
fault diagnosis, it is crucial to conduct a comparative anal-
ysis between different diagnostic models. This comparison
not only highlights the advantages of the models in this
paper but also provides insights for selecting the most suit-
able fault identification method for this application scenario.
Specifically, we compare the network model in this paper
with other algorithms. Five network models, ShufflenetV2,
MobileNetV3, GoogleNet, Vggnet16, and ResNet18, are
selected for comparison with this paper’s method. This is
because these five networks cover a wide range of network
structures from lightweight to deep, while these network
models have been extensively validated and applied in clas-
sification experiments. When the classification of different
classification networks tends to a stable state, the classifica-
tion accuracy results are compared as shown in Table 5 below.
According to the data in the table, it can be seen that the

accuracy of this paper’s method is much higher than that of
the other five neural network models, and the loss value of
the network is much lower than the loss value of the other
methods, which indicates its excellent performance in the
network classification process.

4) COMPARATIVE ANALYSIS OF DIFFERENT CLASSIFICATION
METHODS
In order to further prove the superiority of this paper’s
method, this paper’s method is compared and analyzed with
other methods in the existing literature, as shown in Table 6
below.

The cable early fault classification includes seven cases
of the cable 1/4 cycle early fault, the cable multi-cycle
early fault, constant impedance grounding, transformer exci-
tation inrush, motor switching, load switching, and capacitor
switching. Literature [3] utilizes the Restricted Boltzmann
machine (RBM) feature extraction method and Stacked
Auto-Encoder (SAE) network to classify six fault cases. Lit-
erature [25] extracts energy, mean, and other features after
wavelet transform and uses Convolutional Neural Networks
(CNN) to classify five types of faults. In contrast, litera-
ture [26] utilizes DAE for feature extraction and combines it
with CNN to classify six fault classifications. A comparative
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TABLE 4. Classification performance of different combination models.

TABLE 5. Different neural network classification effects.

TABLE 6. Comparative analysis of different classification methods.

analysis of the different classification methods in Table 6
reveals that this paper’s method has a higher classification
accuracy for classifying seven cable early fault conditions.

VI. CONCLUSION
The study of cable early fault identification based on MTF-
GAF and multi-head attention mechanism feature fusion
proposed in this paper is based on preprocessing the raw
fault data by AdaGrad-optimized LMS, then generating
2D feature images by using MTF and GAF methods, and
finally diagnosing and classifying cable early faults by using
improved hybrid neural network, which leads to the following
conclusions:
(1) AdaGrad optimized adaptive filter is adopted to pro-

cess the cable fault signal, this method can effectively

reduce and eliminate extraneous noise in the sig-
nal, and compared with other optimization methods,
AdaGrad optimized LMS demonstrates stronger noise
resistance.

(2) In order to better preserve and analyze the informa-
tion of early cable faults, MTF and GAF methods
are used to transform one-dimensional fault data into
2D images. These two methods can reveal the intrin-
sic characteristics of fault data from different angles.
By fusing the images generated by these two methods,
a feature image containing rich fault information is
obtained to realize cable early fault classification.

(3) A new convolutional structure is formed by combining
the group convolution andGhost convolution to replace
the ordinary convolution in AlexNet and DenseNet,
which can effectively reduce the computation and
complexity of the model. The method of combin-
ing the constructed hybrid neural network with the
multi-head attention mechanism effectively improves
the recognition accuracy of early cable faults. At the
same time, the hybrid neural network has a strong
anti-interference ability and also has a better fault
recognition effect compared with different network
models.

The method proposed in this paper has a high recognition
accuracy in processing cable early fault signals, but the adapt-
ability of the method in the face of strong noise or other
complex environments still needs to be improved. Also fur-
ther validation of the methodology of this paper using actual
field data is required later.
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