
Received 18 January 2024, accepted 9 May 2024, date of publication 15 May 2024, date of current version 28 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3401627

TRConv: Multi-Platform Malware Classification
via Target Regulated Convolutions
ALPER EGITMEN 1, ALI GOKHAN YAVUZ2, AND SIRMA YAVUZ3, (Member, IEEE)
1Crossfirelab Software Inc., Esenler, 34220 Istanbul, Turkey
2Department of Computer Engineering, Turkish-German University, 34820 Istanbul, Turkey
3Department of Computer Engineering, Yıldız Technical University, 34349 Istanbul, Turkey

Corresponding author: Alper Egitmen (alper.egitmen@crossfirelab.com)

This work was supported in part by Yıldız Technical University (YTU) Scientific Research Projects Coordination Unit (BAPK) under
Project FBA-2022-4904.

ABSTRACT Malware is an important threat to digital workflow. Traditional malware modeling approaches
focused on using hand-crafted features while recent approaches proved the necessity of using learning
based methodologies. In this paper, we propose a novel opcode based methodology that additionally learns
multiple behavioral target variables to effectively regulate and guide the static malware classification. Our
methodology shows that introduction of previously extracted malware behavior-related target variables
immediately improve binary malware classification performance in both Android and Windows platforms.
The contributions of our methodology has been extensively validated on the AMDArgus and the MOTIF
dataset. Mean classification accuracy and F1 scores suggest that our model is robust against random opcode
injection attacks compared to other convolution based architectures.

INDEX TERMS Convolutional network, opcode length, malware and benign, malware behaviour analysis.

I. INTRODUCTION
Malware and disruptions to digital workflows pose sig-
nificant socio-economic threats. Both at the corporate and
individual levels, systems face persistent and indiscriminate
cyber attacks, leading to consequences such as resource
exploitation, service malfunction, unavailability, and theft.
Compared to few decades ago, today’s world is populated
with Android based systems such as mobile devices, internet
of things (IOT) devices and vehicles. This widespread usage
of Android systems along with increased connectivity and
network transfer rates contributed number of malicious
malware and users’ rate of exposure. Now, it is established
that the problems arising from this inclusiveness and
accessibility is only surmountable with the development of
an accurate automated analysis. However, accuracy of such
an analysis necessitates novel techniques and reasonable
approximations for rapid inference to ensure maximum
protection. Thus, rapid identification of large volumes of
cross-platform malware with such automated methods with
minimal human intervention is still under exploration.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

Traditional approaches to malware classification relied
on using hand-crafted features, while modern approaches
proved the necessity of using learning based methodolo-
gies to achieve generality. Many of these learning based
approaches use neural architectures. Malware analysis is
usually categorized by whether the analysis is offline or
real-time. Offline analysis known as static analysis relies
on the metadata and binary of the program, without access
to the runtime behavior of the malware. In contrast,
dynamic analysis requires a monitored environment to
observe and investigate the program’s behavior. We per-
form static analysis and focus on the well-learnability of
malware.

In this paper, we propose a new methodology to address
static malware classification task. Although there are various
approachesmodeling themalware classification task, amodel
which effectively regularizes the opcode sequences, and
shows satisfying performance in a wide setting is missing.
In this paper, we address this problem and propose a novel
convolutional architecture. Briefly put, the contributions of
this paper are:

• Faster and more reliable training by incorporation of
opcode pretraining to a convolutional architecture.

71492

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9249-3700
https://orcid.org/0000-0002-5798-398X

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

• Formulation of malware classification as joint learning
of multiple related but weakly reliable target variables.

• Unlike many existing approaches, we validate the
efficacy of our methodology on both Windows and
Android architectures.

• Evaluation of our model’s performance in various real-
world scenarios.

II. RELATED WORK
A. MALWARE ANALYSIS APPROACHES
Malware detection methods perform the analysis either in a
static or dynamic fashion. In static analysis, the malware is
analyzed only by assuming access to malware’s binary, and
occasionally meta-data based access statistics. Thus, one has
no knowledge of its real-time behavior. In this conventional
method of malware analysis, a disassembler tool is used
to obtain the assembly code of the malware. Then, input
modalities can be formed on different levels of representation
such as raw-bytes or opcodes, along with high level features
such as assembly code flow. For instance, Jiang et al. [1]
categorize opcodes as sensitive and non-sensitive by the help
of API calls and sensitive metadata before feeding them to
classifiers.

Dynamic analysis is a more extensive analysis of malware.
In dynamic analysis, the malware is analyzed while it runs,
meaning that its behavior can be monitored in real-time and
its runtime statistics can be immediately taken into account.
With dynamic analysis, one obtains useful new features such
as network usage, file accesses, system calls and runtime
metrics. An example is found in Catal et al.’s work [2]
where they perform a multi stage dynamical analysis by
using API call graphs, followed by Node2Vec to create
node representations which is fed to a graph neural network
models, namely Generative Adversarial Networks (GAN)
and Graph Convolutional Network (GCN).

Some works follow a joint approach to increase the
modeling power. Aktas and Sen [3] propose a hybrid analysis
where static and dynamic features are aggregated together.

B. INPUT MODALITIES IN MALWARE ANALYSIS
Both on static or dynamic approaches, different input
modalities are used. Yan et al. [4] present an opcode-
based analysis, extracting opcodes from Android Package
Kit (APK) files. Recurring opcode patterns are further
filtered to increase the signal to noise ratio of the opcode
sequences. To address the challenge posed by varying opcode
sequence lengths in APK files, they define method blocks
to normalize sequence lengths for proper training, especially
for Long Short-Term Memory (LSTM) autoencoder-based
approaches.

These problems are encountered on Windows malware
as well. Anderson and Roth [5] propose EMBER, which
captures common statistical features of Portable Executable
(PE) files, determined by an analysis of human experts.
Raju and Wang [6] perform a Malware Capabilities (CAPA)
labeling-based analysis on PE files, extracting predefined

identifiers such as API imports, parsing errors, entropy and
byte distributions by the help of subject matter experts. These
extracted features are further complemented by EMBER
features. Kadri et al. [7] show the increased benefit of
using opcode representations over raw bytes modeling.
Considering risks of raw byte modeling into account,
Vinayakumar et al. [8] use combination of raw bytes and
EMBER features which are extracted from given malware
a priori. Pektaş and Acarman [9] extract opcodes and
system call graph features in a dynamic-analysis scenario.
Saxe and Berlin [10] use a combination of features to
model malware classification task. They use contextual
byte features, metadata features of PE and byte entropy
histograms.

Contrary to learning opcode vectors, Raff et al. [11]
propose usingN-grams formodeling opcode sequences. They
use up to 6 grams to represent the files. Although these
approaches are quite robust when they saw a predefined
pattern, there are two key limitations that prevents these
solutions to scale up. First, higher order N-gram modeling
suffers from memory limitations and the need for developing
additional mechanisms to deal with the inherent data sparsity.
Thus, we do not utilize any traditional N-gram features, and
stick with fully learned features in this paper.

There are variations in how researchers implement an
opcode based malware representation. Ghezelbigloo and
VafaeiJahan [12] use so called role-opcodes, an opcode
grouping approach. As a result, compared to the standard
opcode representations, they end up in a much smaller
vocabulary space. Zhang et al. [13] incorporate system call
sequences along with opcodes to perform a static analysis.
In dynamic analysis, Yesir and Soğukpinar work [14]
constitutes and example where he incorporates API call
sequences. Lucas et al. [15] address the sensitivity of
MalConv [16] and AvastNet to random alterations to opcode
sequences, suggesting that such simple alterations can lead to
very high evasion rates.

Motivated by the recent successes in image classification
domain, there has been a tendency to represent the raw
malware file as a 2D image [17], [18], [19], [20]. For
instance, Xu et al. propose the SeqNet architecture [21] which
transforms the input malware into an image by introducing
techniques to minimize resampling and edge losses during
this conversion.

Bensaud et al. [22] consider malware file as a 2D image
with pixel intensities byte values and learn the class of
image with well-known networks such as Inception, VGG16,
Resnet50. Similar modeling has been done with adversarial
networks [17]. Even simple CNNs also showed extremely
high accuracy [23]. Usually, these works form an image
using raw malware bytes. In contrast to this, in Xing et al’s
work [24] authors first extract the opcodes, and then form a
malware image representation by viewing opcodes as pixels.

Although transforming the malware to a 2D image enables
using a suite of standard image classification models, there is
no clear evidence whymalware should be treated as an image.

VOLUME 12, 2024 71493

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

A byte in a malware is highly dependent on its location in the
code. However, in images a pixel always captures a color or
intensity information. By representing malware 2D, we add
some horizontal connections which does not necessarily hold,
there should be some constraints imposed to penalize number
of such connections. In this paper, we do not explore such
directions, and stick with the non-spatial, unidimensional
representation of the malware.

C. MODEL ARCHITECTURES
Since the problem of malware modeling has many different
aspects, a large variety of complex architectures have been
used for addressing this task. A subset of approaches suggest
incorporating large language models (LLMs). For instance,
Long Short-Term Memory (LSTM) networks are employed
in Dang et al.’s work [25]. Balikcioglu et al. [26] also propose
a LSTM method to model Android instructions. Unlike a
standard approach that only represent features at the lowest
level, such as individual machine instructions, they further
bag these instruction features into function-wise and class-
wise fashion. Demirci et al. [27] offer several approaches
for handling android opcodes and focus on systematic
comparison of pre-trained fine tuned transformer models
including Generative Pre-trained Transformer 2 (GPT2),
distilBERT and Stacked Bidirectional LSTM (BiLSTM),
providing a thorough comparison. Ding et al. [28] address
the multi-class problem particularly when samples exhibit
a high imbalance ratio. Their model enjoys a self-attention
mechanism to efficiently localize relevant regions in the
feature representation. This approach is further extended
using additional strategies such as selecting top opcodes and
sequence truncation.

Although convolutional approaches are effective for
malware modeling, under some circumstances they are vul-
nerable to attacks. In this branch of work, Demetrio et al. [29]
use a CNN based approach and analyzes the adverserial
properties of deep learning methods to model the malware.
Kolosnjaji et al. [30] highlight weaknesses of simple
convolutional approaches to malware classification. The
arguments are shown by constructing false headers to trick
the MalConv model. By manipulating the informative bytes
which constitutes less than one percent of the malware
content, they show that more than fifty percent of the
altered malware samples are classified as false-negative by
MalConv. Suciu et al. [31] investigate the sensitivity of
MalConv architecture by designing adversarial attacks to the
architecture, and claims that it does not encode positional
information of input features well, and vulnerable to append
based attacks. Song et al. [32] introduce a reinforcement
learning guided framework to design adversarial samples and
attackMalConv and EMBER.We take these observations into
account in our experiments.

Lu et al. [33] propose a simple and shallow self-attention
transformer model that focuses on low-latency classification
task. They try modeling the malware input both as a 1D
sequence and as a 2D image to train their model. An extensive

benchmark is performed by using the models such as
MalConv, CNN-BiLSTM, CNN-BiGRU. Amin et al. [34]
benchmark various deep learning architectures such as CNN,
DAE, DBN, RNN, LSTM and BiLSTM, and reports their
performance on Android malware classification, including
zero-day benchmarks. For readers interested in an extensive
summary of malware classification modeling with learning
based approaches, we direct the reader to [35] where many
recent approaches are addressed in a taxonomic manner.

III. PROPOSED APPROACH
A. LOCAL ANALYSIS DIFFICULTY OF MALWARE
Most of the works in the literature treat malware detection as a
classification problem. Some of these work report sufficiently
high performances on their datasets, and their performance
appears to be mostly saturated on many datasets. This raises
the question whether malware detection is a solved problem
or if the datasets used lack representativeness to highlight the
difficult of the task. If the complexity of the problem indeed
low, it is natural to try to understand classifiers’ responses as
in Riber et al.’s work [36]. If this hypothesis is true, a demand
for of interpretability should be sought out. In this sense,
we believe any analysis that could shift the domain towards
explainable AI [37] would benefit the malware analyst.

To enhance explainability, it is interesting to understand
whether certain parts of a malware file is more informative
than the others. If some local parts are more interesting than
others, then training a classifier over subsets of malware
could not only yield increased interpretability but also hint
towards localizing the regions that characterize the malware-
ship. However, without loss of generality, it is quite difficult
and expensive for most malware researchers to obtain a
comprehensive line of code analysis providing which local
regions are directly attributed to being a malware. Due to
this limitation, we instead test the locality hypothesis by
creating an alternative dataset where equally divided sections
of malware and benign samples are used to form training
samples for the classifier.

In the first step, we learn opcode vector features in an unsu-
pervised fashion [38]. This is followed by equally partitioning
local regions for each malware file, and representing each xr
region with its average opcode vector. Then we train a simple
region classifier using averaged opcode features. Then we
evaluate the posterior probability p(y = 1|xr) of the classifier
for each local region. In Figure 1a, we show these posterior
probabilities p(y = 1|xr) for different samples. Although
we do not fully expect an ideal unimodal profile with few
peaks, wewould at least expect some clues for discrimination.
At least for benign samples, a consistent and concentrated
signal in these posterior probabilities would be expected
where we know all regions should output a very small
posterior probability of being malware. The analysis did
not provide us this discrimination. Moreover, in Figure 1b,
we plot the expected value of posteriors for each local region
E[p(y = 1|xr)] of malware and benign samples. Two signals
exhibit very similar characteristics, hinting that it is quite

71494 VOLUME 12, 2024

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

FIGURE 1. a) Posterior probabilities p(y = 1|xr) of classifier for each region of the samples after training. The responses are highly dispersed, it is quite
difficult to observe an uniform, and peaky pattern which attributes the predictions to a single region. b) Average posterior probability per region for both
malware and benign sets. Two signals exhibit very similar characteristics. c) Histogram of the entropies of posterior probabilities, malware (red) and
benigns (green). Distinguishing signals are even difficult with the entropy information.

difficult to capture any clue of interpretability from classifier
responses.

Lastly, motivated by the significant role of entropy and
its role in the modeling of disorder in words and word
vectors [39], [40], we quantify the amount of disorder in these
posterior probabilities. For a malware sample we compute its
signal entropy Hm(.):

Hm[p(y = 1|x)] = −

∑
xr

p(y = 1|xr)log (p(y = 1|xr))

for both malware and benign sets. Figure 1c shows the
entropy histogram for both s Hm[p(y = 1|x)] (light red)
and Hb[p(y = 1|x)] (green). Although benign samples’
entropy has a higher standard deviation, as expected, both sets
have a very close average entropy (showed by vertical lines)
hinting that the amount of disorder of posterior probabilities
in our local analysis are almost the same for both sets.
This analysis suggests that achieving interpretability for
which code regions are responsible for malware-ship is very
difficult, and we require a convolutional approach which
learns the malware as a single entity.

B. JOINT CONVOLUTIONAL MODELING
Based on these findings, we understand that it is nontriv-
ial to train a localized classifier for addressing malware
classification problem. Any label noise introduced from
the non-malware regions immediately hurts the classifier.
Although this observation lays out a difficulty for moving
towards explainable solutions, they are on par with the
findings of Raff et al.’s work [16], who suggests that any
analysis can’t be carried out properly if we segregate the
holistic structure of the malware file. It is difficult to attribute
meaning to particular individual subsets of the malware, and
the complexity of this learning problem is higher than initially
guessed by current works. Thus, additional mechanisms to
properly address this complexity is required to keep the
performance of the learner in control. This is especially
important if the training is done under scarce data regime.
To address this, we adopt a network which is based on a
set of convolutional filters. Such convolutional solutions for
malware classification task in literature is vast. MalConv [16]
is one of these architectures, adopting a gated and nongated

convolutional block to filter the raw byte of Windows
malware. Our architecture exhibits similarities withMalConv
but different to it in few aspects:

1) OPCODE BASED TRAINING
Many convolutional architectures including MalConv archi-
tecture is designed to operate on raw bytes of the malware
file. Although this approach aims to retain all relevant
information, it requires a huge amount of training data to
be at disposal of the malware analyst. Full bytes include
vast amount of irrelevant content and as the dataset size
and the variety of malware increase, training using the
raw-byte approach will introduce inefficiency. Findings of
Kadri et al. [7] suggest that performances obtained from
raw-byte MalConv training can be unstable if the training
is not properly performed. In our work, given that the
training data is scarce, we also believe that it is reasonable to
learn these convolutional filters with the under the guidance
of previously extracted opcode sequences rather than raw
bytes. By reducing the input space’s dimensionality, opcodes
introduce a natural regularization to the convolutional filters
and significantly reduces the amount of training time and
required number of samples.

Another advantage of using pretrained opcode representa-
tions is the speed. In contrast to convolutional models with
an initial embedding layer, we do not jointly learn such
an embedding layer. Because opcode features are already
pretrained, we freeze the embedding layer and focus on
learning the convolutional filter weights. This tweak enables
our model to learn an order of magnitude faster. A Second
reason for using opcodes is that there have been discussions
on MalConv architecture’s susceptibility for attacks since
it usually exploits information from the file header [29].
Thus, we expect the opcode based training to circumvent
this weakness and mostly focus on instructions to capture a
malware-ship pattern.

2) TARGET REGULATED CLASSIFICATION
Our second strategy is to introduce weak target labeling
procedure to the learning problem. It is known that each
malware file originates from a specific family, and each
family exhibits predefined and limited behaviors, denoted

VOLUME 12, 2024 71495

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

FIGURE 2. Overview of our model architecture.

as z = {z1, z2, z3}. For example, some malware might
perform a renaming operation whereas a sample from the
same family can perform string encryption. Our key idea here
is to first incorporate these task information as attributes z,
along with their dependencies, and then cast the training as a
multi-target to have a more accurate malware classification.
Thus, in this step the convolutional architecture learns the
relationship fθ (z|x) where x is a training sample and θ is the
set of parameters and z are the known set of behavioral target
variables.1 The final architecture is shown in Figure 2.
To identify these dependencies, we analyzed the correla-

tions between traits of the Android malware families. Out
of 70 families, we selected the most frequent malware,
and run a correlation test over their traits. We observed
both positive and negative correlations between the types of
tasks these malware perform. For instance, it is statistically
likely for a random malware to do string encryption if it
performs dynamic-loading, while it is less likely for it to
have native payload if it uses a renaming approach. These
patterns motivate us that using these dependencies effectively
can help to train a neural architecture better. For this
purpose, we resort to multi-target classification formulation
to effectively incorporate these task dependencies into the
problem.

We anticipate that such a multi-target formulation will
introduce an auto-regularization effect our malware classifi-
cation model. We acknowledge that it is quite likely to learn
a pattern that correlates well with malware characteristics
but does not necessarily indicate the presence of malware.
However, it’s important to note that selected malware from
particular family does not necessarily possess all malicious
tags associated with the family, but is likely to have some
of them in its code base. Thus, it is more logical to think
of these attributes as the so called weak labels with lower
reliability, preparing the architecture to correctly predict
malware/benign decision.

C. FINAL FORMULATION
In the most general scenario, some behavioral attributes of
these malware samples can have nonlinear dependencies.
However, we stay agnostic and do not assume any nonlinear
relation between these attributes. Instead we expect the
network to learn these priors through the data. Following this
direction, we avoid any weighting of the traits during the
learning. When some malware samples in our dataset have no
tagged attribute, we treat these samples pessimistically, and

1List of variables are provided in the Supplementary Material.

assume that the respective malware family is likely to possess
all of the attributes. Thus, these samples are treated to have
an attribute vector full of ones 1K .
As our convolutional network will output positiveness

of each trait, this information has to be somehow linked
to the final malware or benign decision. In here, we have
conducted previous experiments to translate the multi-target
regression output to final binary decision. Initial strategies
of vector thresholding 1

K

∑K
i=1 p(zi|X) > 1

K where K is the
number of targets used, did not suffice to discriminate the
malware-ship.

Thus, here we incorporate another dense layer to learn
the relation of weak target predictions to the final malware
gφ(y|z) where y is the final prediction and z is provided
by our convolutional architecture as in the form of ẑ. Since
there is no sequential pattern between ẑ and y, a dense layer
would suffice to capture the nonlinear relation between these
variables. The pipeline is trained end to end fashion to avoid
any information loss that might be introduced due to the
separated training. Thus for a given sample x, the objective
function of our model becomes the linear combination of two
different loss functions:

J (θ) = λℓM (z, fθ (x)) + (1 − λ)ℓC (y, gφ(fθ (x))) (1)

where θ, φ are model parameters and ℓM is theMean Squared
Error (MSE) and ℓC is the Cross Entropy loss function. λ the
parameter that weights learning of f (.) and g(.) functions.

IV. EXPERIMENTAL RESULTS
Experimental Setup: The experiments are conducted on

a workstation PC having 128GB of RAM and Ryzen 9
5900 CPUs. Unless otherwise stated, all experiments are run
on RTX A5000 with 24GB VRAM with 8192 Cuda Cores.
For the software, we use Tensorflow version 2.12 and Cuda
version 11.8. We set batch sizes of 16 in order to have a
balanced trade off between experimental speed and accuracy.
No batch normalization is done as it is known to degrade
performances.
Experimental Evaluation: We mainly evaluate the perfor-

mance of the models using their training, test and zero-day
accuracies.Moreover, in order to understand the robustness of
themodels, we test model performances on various sensitivity
analysis settings. In order to leave out randomness in the
GPU calculations and ensure experimental reproducibility,
we repeat each experiment with five different seeds and report
the mean accuracy.
Tested Models:We use the following set of models both on

Android and Windows experiments:

71496 VOLUME 12, 2024

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

FIGURE 3. T-SNE embeddings of average vector representations of malware files, color coded by their respective family. Best
viewed in color.

TABLE 1. Number of samples for each family in the AMDArgus dataset.

• APK2Vec [38]: A Skip-Gram [41] based opcode vector
averaging algorithm to perform malware classification.
Under some conditions, this model is shown to yield sat-
isfactory testing accuracies on the AMDArgus malware
dataset. For final classification with APK2Vec’s average
vectors, Random Forest Classifier used.

• CNN-BiLSTM [25]: A well suited LSTM originated
architecture with a CNN backend, proven to have high
performance on many tasks due to initial CNN filtering
and BiLSTM extension.

• MalConv [16]: A gated CNN model that outperforms
many architectures on malware classification tasks.

• TRConv. Our Target Regulation Convolution model
with additional parameter λ.

A. ANDROID APK EXPERIMENTS
Dataset Collection and Preprocessing: We form our

dataset from a collection of sources. We obtain most of the

malware samples from the AMDArgus dataset. This dataset
have approximately 24k Android applications. The timespan
of the Android applications in this dataset lies between
2012 and 2016. In order to obtain a well balanced benign
set of samples, we aggregate samples from MalAnal2017
[42], Maldroid2020 [43] and also some extra benign samples
manually collected from multiple sources. In total, this
aggregation strategy outputs 22899 malware, 22279 being
samples. APK malware are originated from a total of 71+1
families. Table 1 shows the malware family distribution.
Families such as Airpush, Dowgin and FakeInst have
significantly more samples than other families.

We used open source ApkTool software for Android
to extract the opcode sequences from APK files. During
extraction, various non-essential files such as resources and
assets within the APK are excluded. Extraction process
generates multiple .smali files for single APK, containing
human-readable assembly language instructions specific
to the Android application environment. These resulting

VOLUME 12, 2024 71497

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

.smali files are then concatenated into single .smali file.
To combat overfitting in the context of limited dataset
availability, we strip all parameters, operands, and addresses
from the instruction sequences during opcode extraction,
retaining only the opcodes themselves. Otherwise it is quite
likely for models to overfit based on the values of these
parameters. Additionally, to standardize the sequence length
and accommodate variations in file sizes, we set a default
window of the first 65k opcodes for each file. For APKs with
fewer than 65k opcodes, zero-padding is applied to extend the
sequences, while longer sequences are truncated to fit within
the 65k opcode window.

In Figure 3, we visualize t-Distributed Stochastic Neighbor
Embedding (T-SNE) plot of the malware samples where
each color represents a malware family. Families having
high number of samples are mostly dispersed in the feature
space. Observe how some malware families form locally
concentrated clusters. We believe one of the reasons for this
phenomenon is that the dataset contains custom clones of
some particular representative malware samples.

In malware analysis literature, zero-day analysis is an
indicator of well-generalization. The point in this anal-
ysis is to deliberately leave out samples from some of
the families during the training, and only train on the
samples coming from the rest of the families. Then, it is
expected from the classifier to generalize well and obtain
a good prediction performance on samples from unseen
families.

We explore zero-day performance of our model and try to
infer its robustness against zero-daymalware. Previously [44]
performed a zero-day analysis for the largest 20 family,
and left out of them in turn from the training. However,
we believe that such a zero-day test is slightly skewed. It is
also optimistic for assuring a well real time performance
because the effect of class-imbalance is completely left out
from the problem by selecting zero-day samples from the
most frequent families. Thus, we follow a more balanced
and heterogeneous leave-out strategy, and randomly choose
families that contain sufficiently large number of samples.
Some work consider allowing one exemplar sample in the
training set. Here, as we aim to operate on a slightly
pessimistic scenario, we do not include not even one sample
from these families to the training set. In this sense, our zero-
day experimental design can be interpreted as the worst case
scenario.
Parameters/Hyperparameters: For the CNN-BiLSTM

architecture, we performed hyperparameter search and used
the following parameters: a batch size of 16, 10 max epochs,
early stopping by validation set as the stopping criterion,
dropout: 0.2, 128 LSTM units, CNN kernel size of 32 with
a stride 32 and pooling of 2. 128 CNN filters and 64 dense
layers neurons in total. 239 unique opcodes are present. This
results in 417k total parameters for CNN-BiLSTM. (263k is
from LSTM layer).

For APK2Vec training, we used 32 dimensional embed-
dings with window size of 3. As architecture, we choose

the standard Skip-Gram architecture with Negative Sampling
with k = 10 and frequency subsampling parameter 6e− 5.

For our model, The parameter λ governs how much our
model prioritizes predicting the weak target variables and
final malware-ship decision. We pessimistically treated all
malware from a particular family to share their family’s
weak-target label. This assumption might not hold for some
members of the family, thus we do not desire our model
to exactly learn these capabilities. Thus, to determine this
parameter we have relied on empirical observation and
optimization landscape inspection, and fixed it to λ =

0.2 for all experiments. For optimization, we use RMSProp
algorithm. This algorithm maintains a moving average of
the square of gradients. For RMSProp, we use learning rate
1e−4, old gradient discount factor ρ = 0.9, epsilon tolerance
rate of 1e − 07 with no momentum applied. A dropout
of 0.2 is applied for models. We use a batch size of 16.
We apply random shuffling of the instances at every step of
optimization.

TABLE 2. Test evaluation for android dataset.

TABLE 3. Zero-day evaluation for android dataset.

After our analysis of weak target variables, we choose
15 target variables. Full list of behavioral target variables for
Android malware is shown in Table 8

1) RESULTS ON OPCODE LENGTH
Raff et al. [45] proposed a solution for classifying malware
sequences of extreme length. However, for many architec-
tures such as BiLSTMs, opcode length parameter is still a
design criterion, and it is not clear how the length of the
opcodes influence the final performance. In this experiment,
we query the limitations of benchmarked models against
variations to the representations in opcode sequence lengths.

Since the concatenation order of .smali files is randomized,
we expect to observe a gradual linear increase in performance
as the considered opcode sequence length increases. Prior
work in [25] tested the opcode length parameter space from
2k to 10k. According to the statistics in our dataset, 38% of
test set has more than 65k opcodes, and 40% of zero-day
malware has more than 65k opcodes. Motivated by this
significant proportion of large malware files, we extend the
analysis to a larger parameter space to minimize the chances

71498 VOLUME 12, 2024

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

FIGURE 4. Malware classification on ARGUS dataset. a) performance for varying opcode lengths b) performance when some benign samples are
excluded from the experiments x-axis is the percentage of benign samples excluded.

of discarding influential sections that could be crucial for
classification.

In Figure 4a, we show performances on zero-day set for
a regime of 4k to 64k opcodes. As opcode length increases,
we observe that the performance of CNN-BiLSTM and
APK2Vec architectures enjoy a minor gain. For APK2Vec,
the performance appears to be greater on longer opcode
sequences. We believe this is due to fact that APK2Vec is
insensitive to the number of vectors it is averaging. The more
opcode vectors are used, the better for it. Similarly for LSTM
based approaches, we observe it is safer to train with the
longest possible opcode length. MalConv especially suffers
a steep performance drop. It is possible that when opcode
length increases, MalConv network will probably undergo
a label shift in which network filters will change what they
are learning. Our model also undergoes a small performance
degradation. This could be an indicator that, on the short term,
it becomes harder to learn the traits simultaneously as input
size increases. However, the performance degradation is not
substantial, and our model is on the average still superior to
the baselines.

2) RESULTS ON THE EFFECT OF CLASS IMBALANCE
Class imbalance is a common occurrence in malware
classification tasks, particularly in multi-class scenarios.
Allix et al. [46] argue that adding more benign samples to the
training increases precision but decreases recall. Thus, they
claim decreased malware/benign ratio will in general output
worse performance.We have verified this by excluding [%10,
%20, %30, %40, %50] benign samples from the dataset
and found out that in general, average accuracy of models
decrease as the imbalance is on benign samples’ favor. This
phenomenon can be explained by the entropic difference
between malware and benign samples. As more benign
samples dominate the training set, the average entropy of the
training set will increase relatively, which in turn will make

it harder to classify the malware without further precaution
or treatment. Thus, we are inclined to believe that collecting
malware samples are much more helpful for an effective
learning in limited data regime.

Figure 4b shows our results over zero-day set. As a general
trend, all models output better zero-day performance. As we
exclude more benign samples from the training, models
are more prone to label a zero-day sample as malware.
Up to %20 exclusion, models output a minor performance
gain whereas APK2Vec’s decision rapidly changes. Although
this performance increase can be interpreted as a gain for
APK2Vec, we suspect that APK2Vec is too quick to embrace
the class prior imbalance introduced in the benign-exclude
settings. So from this point of view, we believe that minor
performance gain of models is a sign that they are simply
learning well, and not effected immediately by the inherent
training data class imbalance up to %20 exclusion.

TABLE 4. Subtype information of the malware in the AMDArgus dataset.

3) RESULTS ON ZERO-DAY ANALYSIS
In Figure 5we plot the average test and zero-day accuracies of
randomly trained from subset of dataset. At each step, a larger
subset of training data is used to trainmodels. As training data
size increases, performance of APK2Vec and CNN-BiLSTM
degrades which suggests that high performances obtained
with these models might be due to overfitting. As training
set size increases, our model is able to output a better
zero-day performance which is an indicator that it is capable
of generalizing. Highest performance is achieved when
we use the full set. The risk of overfitting increases as
samples in the training set is poorly sampled, or weighted
from arbitrary sources. As the difficulties constructing

VOLUME 12, 2024 71499

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

a representative dataset always remains, extra categorical
information immediately helps to train the malware detector.
We believe this trends of weaknesses will be similar to other
architectures if training set is not properly maintained.

FIGURE 5. Test set (dashed curves) and zero-day (non-dashed curves)
accuracy of models in AMDArgus dataset.

B. WINDOWS EXPERIMENTS
In this section, we aim to explore our model’s performance on
WindowsOperating SystemEnvironment and show results on
PE (Portable Executable) files.

1) DATASET AND PREPROCESSING
Following the recent advances on static malware analysis,
we use the Malware Open-source Threat Intelligence Family
(MOTIF) dataset [47]. This dataset is the first dataset to
provide a comprehensive alias mapping that includes aliases
derived from both open-source reporting and antivirus signa-
tures. It contains a larger and more diverse set of malware
samples. Malware samples in this dataset has low labeling
inconsistency compared to other malware source dataset,
yielding an appropriate source for training the models. The
samples are originally collected from 329 families. After
omitting families which have less than two samples, and
performing the disassembling approach, we are left with
2601 samples from 295 families. Table 1 shows the histogram
of the number of samples per class. For Windows PE
disassembly, we used executable reversing tool PE-Bear [48].
We considered all programs sections (not only the .text
section that primarily contains the code) because malware
tend to hide codes into different named sections. We then
extract opcodes from the resulting code.

As the MOTIF dataset has no benign samples, addressing
malware vs benign task requires introduction of benign
samples. To solve this need, we use recent PEMDB [49]
dataset to enlarge the training set with an extra 2K benign
samples. Similarly to the work in [38], we also add
100 malware samples from PEMDB dataset to the training
set, and 1400 of them to the zero-day dataset. As most of the
training and validation accuracies are uninformatively high,

we directly report zero-day and test set accuracies to assess
how models respond to mostly unseen malware samples.

We use 70/30 split to training and test set using a sampling
strategy to ensure that each family has at least one sample
in both sets. Opcodes are extracted in a similar manner
to the APK experiments. However, we notice that opcodes
exhibit higher amount of diversity in the PE experiments with
respect to APK scenario. In the APK experiments we had
239 distinct opcodes, whereas in Windows experiments we
observed 1536 distinct opcodes in our dataset. Our visual
analysis suggests that most of the time, the groupings in
APK opcode embeddings are easier to notice than the PE
experiments which makes sense due to the scarce data and
increased number of opcodes.

FIGURE 6. Test set (dashed curves) and zero-day (non-dashed curves)
accuracy of models in the MOTIF dataset.

MOTIF dataset offers malware description on family
level. However, as the native structure of PE files are
much more complex than APK programs, this complexity
makes learning architecture design harder. For this reason,
a higher amount of information should be incorporated with
weak target variables to be able to achieve representative
features with a small amount of training set. To address
this difficulty, we extract weak target variables using CAPA
tool by Mandiant. This tool scans the PE file and extracts
a list of hierarchical attributes that characterize the PE
file. The full list of attributes are provided on Table 7.
To maintain simplicity, we binarize this list of attributes,
considering a higher-level attribute as present if any of its
subattributes belong to it. Thus the counts of identity of
low level attributes are discarded. This approach gives us
19 weak target variables. The preprocessing is automated
using relevant libraries for both PEBear and the CAPA tool.

2) RESULTS AND DISCUSSION
The Windows experiment presents more challenges com-
pared to the Android experiment for several reasons. Firstly,
translating PE files into common instruction sequences
is more difficult because some samples are for various
runtime environments while others are native. Secondly,

71500 VOLUME 12, 2024

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

FIGURE 7. Sensitivity result analysis for each model on both (AMDArgus for APK and MOTIF for Windows) dataset. Top row: attacks of a) random append
b) append on begin c) append on end on AMDArgus dataset. Bottom row: attacks of a) random append b) append on begin c) append on end on the
MOTIF dataset.

while Android is entirely object-oriented, making it easy
to find opcodes of classes, Windows architecture does
not have a strict limitation to be object-oriented. Thirdly,
compilers can obfuscate code which increase complexity.
Moreover, in Portable Executable files, all code are not
necessarily on .text section, some of the codes can be located
in other segments which introduces extra difficulty to the
preprocessing step.

TABLE 5. Test evaluation for windows dataset.

TABLE 6. Zero-day evaluation for windows dataset.

In Figure 6, we plot accuracies of eachmodel. Here, at each
step, models see a portion of the training data. Thus, in the low
sample regime, models suffer from data scarcity. In Tables 2
and 3, we present accuracy and F1 scores for the Android
dataset. Similarly, Tables 5 and 6 provide the corresponding

metrics for the Windows dataset. In general, TRConv, CNN-
BiLSTM, and APK2Vec appear to have a good performance
on the zero-day set. On the test set, TRConv and MalConv
perform the best. Also, the relatively lower zero-day accuracy
can be attributed to the non-informativeness of the benign
samples, which is difficult to form a representative subsample
due to intellectual property. However, the experiment acts
as a proof of concept for our model, which is well
applicable to the Windows architecture with a minimal
amount of changes. Our model maintains a relatively higher
performance compare to MalConv due to learning with weak
target variables.

C. SENSITIVITY ANALYSIS
1) EXPERIMENTAL SETUP
In this section we analyse how each model responds to
random injections to input opcode sequences. After training
the models, we change the opcode representation of test
and zero-day samples by applying random opcode injections
in order to evade detection. Most of the work focusing on
designing attacks implements them as injection of random or
previously designed bytes as in [30]. In this work, we focus
on opcode level injections. We differentiate between the
following attack strategies:

• RA: scenario that inserts random opcodes at random
locations of the opcode sequence. This strategy com-
pletely breaks the opcode sequence pattern in the file,
and can be thought as the most difficult type of attack.

VOLUME 12, 2024 71501

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

• RAB: inserting opcodes to the beginning of the opcode
sequence. Some convolutional architectures such as
MalConv is known to quickly scan the file header
which usually resides in the beginning of the file, this
type of attack can be conceptualized as a measure
of positional invariance whether the candidate model
explicitly prioritizes the patterns in the beginning of the
file.

• RAE: As a last strategy, we inject opcodes to the end
of the opcode sequence. The rationale here is to check
whether redundant end bytes (such as program sections
where resource files exist) can deceive the convolutional
filters.

In all experiments, we start with 5% injections and
gradually increase the injection amount to 15% of the opcode
sequence length. To keep the attacks simple, we sample attack
opcodes from an uniform distribution. More complex attack
techniques are possible by taking co-occurence statistics of
opcodes into account. However, this is beyond the scope of
this paper and we leave that as future work.

2) QUANTITATIVE RESULTS
We plot our findings on Figure 7. In the AMDArgus
dataset, MalConv and TRConv appears to be robust to
the variations in the test set and zero-day set. As opcode
injection proportion parameter increases, these two models
classify more zero-day files as malware. This might be
due to the fact that it is harder for MalConv and TRConv
to overfit since the model complexity is relatively lower
with respect to the CNN-BiLSTM based architectures.
APK2Vec suffers from a small performance drop. CNN-
BiLSTM undergoes sharp performance drops. It totally
fails to predict zero-day when RAB attacks are performed.
The memory neurons of CNN-BiLSTM gets confused very
quickly.

In Figure 7b, we show attack results for the MOTIF
dataset. Under RA attacks, performance of all models degrade
quickly. Having less training data appears to hurt all models
immediately. In RAE attacks, APK2Vec significantly loses
most of its prediction power while for rest of the models a
minor performance change is observed.

In general, we observe that MalConv and TRConv
suffers more from random attacks in the MOTIF dataset
compared to AMDArgus dataset. Morever, on both scenarios,
LSTM model is effected most when we randomly add
opcodes to the beginning of the malware. This observation
highlights that any LSTM training methodology should
by default augment the training set with shifted opcode
augmentations. However, while designing this type of
augmented training is easy for image-based input without
breaking the integrity of the image. For opcode sequences
it is not straightforward to artificially create valid opcode
sequences. Thus with TRConv we can still obtain reasonable
performance without using such additional augmentation
mechanism.

TABLE 7. List of used weak target variables for windows architecture.

TABLE 8. List of used weak target variables for android architecture.

V. CONCLUSION AND DISCUSSION
We proposed a novel opcode based malware classification
approach where weak target regulation variables are con-
structed and used inside a convolutional framework. The
performance of the proposed method has been extensively
evaluated on a zero-day analysis for both Android and
Windows platform malware. Its robustness is evaluated on
sensitivity analysis tasks. It is quite helpful to jointly learn
these weak target regulation variables to classify malware.

We assumed all weak target variables are independent and
there is no complicated relation between the target variables.

71502 VOLUME 12, 2024

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

As a future work, it would be interesting to model relations
of these variables as in [50] and incorporate that extra
information to the network to obtain a more effective training.
Another future direction could be measuring the limitations
of TRConv on more carefully designed attack strategies,
i.e. smarter opcode insertion attacks that preserve program
integrity. Finally, it would be interesting to explore whether
we can transfer knowledge between different platforms to
detect malware patterns faster.

APPENDIX
See Tables 7 and 8.

ACKNOWLEDGMENT
The authors appreciate malware analyst ‘‘hasherezade’’ for
enhancements to her PEBear tool, which greatly facilitated
the disassembly of Windows samples for this research.

REFERENCES
[1] J. Jiang, S. Li, M. Yu, G. Li, C. Liu, K. Chen, H. Liu, and W. Huang,

‘‘Android malware family classification based on sensitive opcode
sequence,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2019,
pp. 1–7, doi: 10.1109/ISCC47284.2019.8969656.

[2] C. Catal, H. Gunduz, and A. Ozcan, ‘‘Malware detection based on graph
attention networks for intelligent transportation systems,’’ Electronics,
vol. 10, no. 20, p. 2534, 2021, doi: 10.3390/electronics10202534.

[3] K. Aktas and S. Sen, ‘‘UpDroid: Updated Android malware and its familial
classification,’’ in Secure IT System (Lecture Notes in Computer Science),
vol. 11252, Nov. 2018, pp 352–368.

[4] J. Yan, Y. Qi, and Q. Rao, ‘‘LSTM-based hierarchical denoising network
for Android malware detection,’’ Secur. Commun. Netw., vol. 2018,
pp. 1–8, Nov. 2018, doi: 10.1155/2018/5249190.

[5] H. S. Anderson and P. Roth, ‘‘EMBER: An open dataset for training static
PE malware machine learning models,’’ 2018, arXiv:1804.04637.

[6] A. D. Raju and K. Wang, ‘‘LockBoost: Detecting malware binaries by
locking false alarms,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2022, pp. 1–8, doi: 10.1109/IJCNN55064.2022.9892667.

[7] M. A. Kadri, M. Nassar, and H. Safa, ‘‘Transfer learning for malware
multi-classification,’’ in Proc. 23rd Int. Database Appl. Eng. Symp., 2019,
pp. 1–7.

[8] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, ‘‘Robust intelligent malware detection using deep learn-
ing,’’ IEEE Access, vol. 7, pp. 46717–46738, 2019.

[9] A. Pektaş and T. Acarman, ‘‘Learning to detect Android malware via
opcode sequences,’’ Neurocomputing, vol. 396, pp. 599–608, Jul. 2020,
doi: 10.1016/j.neucom.2018.09.102.

[10] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection
using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[11] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. K. Nicholas, ‘‘An investigation of byte n-gram features
for malware classification,’’ J. Comput. Virol. Hacking Techn., vol. 14,
pp. 1–20, Feb. 2018.

[12] Z. Ghezelbigloo and M. VafaeiJahan, ‘‘Role-opcode vs. opcode: The new
method in computer malware detection,’’ in Proc. Int. Congr. Technol.,
Commun. Knowl. (ICTCK), Nov. 2014, pp. 1–6.

[13] N. Zhang, J. Xue, Y. Ma, R. Zhang, T. Liang, and Y. an Tan, ‘‘Hybrid
sequence-based Android malware detection using natural language
processing,’’ Int. J. Intell. Syst., vol. 36, no. 10, pp. 5770–5784, Jul. 2021,
doi: 10.1002/int.22529.

[14] S. Yesir and I. Soğukpinar, ‘‘Malware detection and classification using
fastText and BERT,’’ in Proc. 9th Int. Symp. Digit. Forensics Secur.
(ISDFS), Jun. 2021, pp. 1–6.

[15] K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, ‘‘Malware
makeover: Breaking ml-based static analysis by modifying executable
bytes,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur., 2021,
pp. 744–758.

[16] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, ‘‘Malware detection by eating a whole exe,’’ in Proc.
Workshops 32nd AAAI Conf. Artif. Intell., 2018, pp. 268–276.

[17] O. J. Falana, A. S. Sodiya, S. A. Onashoga, and B. S. Badmus, ‘‘Mal-
detect: An intelligent visualization approach for malware detection,’’
J. King Saud Univ.-Computer Inf. Sci., vol. 34, no. 5, pp. 1968–1983,
2022.

[18] J. Singh, D. Thakur, F. Ali, T. Gera, and K. S. Kwak, ‘‘Deep feature
extraction and classification of Android malware images,’’ Sensors,
vol. 20, no. 24, p. 7013, 2020.

[19] M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan, R. Damasevi-
cius, and T. Blazauskas, ‘‘Hybrid malware classification method using
segmentation-based fractal texture analysis and deep convolution neural
network features,’’ Appl. Sci., vol. 10, no. 14, p. 4966, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/14/4966

[20] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
‘‘Novel feature extraction, selection and fusion for effective malware
family classification,’’ 2015, arXiv:1511.04317.

[21] J. Xu, W. Fu, H. Bu, Z. Wang, and L. Ying, ‘‘SeqNet: An efficient neural
network for automatic malware detection,’’ 2022, arXiv:2205.03850.

[22] A. Bensaoud, N. Abudawaood, and J. Kalita, ‘‘Classifyingmalware images
with convolutional neural network models,’’ Int. J. Netw. Secur., vol. 22,
no. 6, pp. 1022–1031, 2020.

[23] E. K. Kabanga and C. H. Kim, ‘‘Malware images classification using
convolutional neural network,’’ J. Comput. Commun., vol. 6, no. 1,
pp. 153–158, 2017.

[24] X. Xing, X. Jin, H. Elahi, H. Jiang, and G. Wang, ‘‘A mal-
ware detection approach using autoencoder in deep learning,’’ IEEE
Access, vol. 10, pp. 25696–25706, 2022, doi: 10.1109/ACCESS.2022.
3155695.

[25] D. Dang, F. Di Troia, and M. Stamp, ‘‘Malware classification using long
short-term memory models,’’ 2021, arXiv:2103.02746.

[26] P. G. Balikcioglu, M. Sirlanci, O. A. Kucuk, B. Ulukapi, R. K. Turkmen,
and C. Acarturk, ‘‘Malicious code detection in Android: The role of
sequence characteristics and disassembling methods,’’ Int. J. Inf. Secur.,
vol. 22, pp. 107–118, Nov. 2022, doi: 10.1007/s10207-022-00626-2.

[27] D. Demirci, N. sahin, M. sirlancis, and C. Acarturk, ‘‘Static malware
detection using stacked BiLSTM and GPT-2,’’ IEEE Access, vol. 10,
pp. 58488–58502, 2022, doi: 10.1109/ACCESS.2022.3179384.

[28] Y. Ding, S. Wang, J. Xing, X. Zhang, Z. Qi, G. Fu, Q. Qiang, H. Sun,
and J. Zhang, ‘‘Malware classification on imbalanced data through self-
attention,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy Comput.
Commun. (TrustCom), Dec. 2020, pp. 154–161.

[29] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, ‘‘Explaining
vulnerabilities of deep learning to adversarial malware binaries,’’ 2019,
arXiv:1901.03583.

[30] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, ‘‘Adversarial malware binaries: Evading deep learning for
malware detection in executables,’’ inProc. 26th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2018, pp. 533–537.

[31] O. Suciu, S. E. Coull, and J. Johns, ‘‘Exploring adversarial examples
in malware detection,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8–14, doi: 10.1109/SPW.2019.00015.

[32] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, ‘‘MAB-
malware: A reinforcement learning framework for attacking static malware
classifiers,’’ 2020, arXiv:2003.03100.

[33] Q. Lu, H. Zhang, H. Kinawi, and D. Niu, ‘‘Self-attentive mod-
els for real-time malware classification,’’ IEEE Access, vol. 10,
pp. 95970–95985, 2022, doi: 10.1109/ACCESS.2022.3202952.

[34] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar,
‘‘Static malware detection and attribution in Android byte-code through
an end-to-end deep system,’’ Future Gener. Comput. Syst., vol. 102,
pp. 112–126, Jan. 2020.

[35] D. Gibert, C. Mateu, and J. Planes, ‘‘The rise of machine learning
for detection and classification of malware: Research developments,
trends and challenges,’’ J. Netw. Comput. Appl., vol. 153, Mar. 2020,
Art. no. 102526.

[36] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’’ Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 97–101, doi: 10.1145/2939672.2939778.

[37] P. Gohel, P. Singh, and M. Mohanty, ‘‘Explainable AI: Current status and
future directions,’’ 2021, arXiv:2107.07045.

VOLUME 12, 2024 71503

http://dx.doi.org/10.1109/ISCC47284.2019.8969656
http://dx.doi.org/10.3390/electronics10202534
http://dx.doi.org/10.1155/2018/5249190
http://dx.doi.org/10.1109/IJCNN55064.2022.9892667
http://dx.doi.org/10.1016/j.neucom.2018.09.102
http://dx.doi.org/10.1002/int.22529
http://dx.doi.org/10.1109/ACCESS.2022.3155695
http://dx.doi.org/10.1109/ACCESS.2022.3155695
http://dx.doi.org/10.1007/s10207-022-00626-2
http://dx.doi.org/10.1109/ACCESS.2022.3179384
http://dx.doi.org/10.1109/SPW.2019.00015
http://dx.doi.org/10.1109/ACCESS.2022.3202952
http://dx.doi.org/10.1145/2939672.2939778

A. Egitmen et al.: TRConv: Multi-Platform Malware Classification via Target Regulated Convolutions

[38] A. Egitmen, I. Bulut, R. C. Aygun, A. B. Gunduz, O. Seyrekbasan,
and A. G. Yavuz, ‘‘Combat mobile evasive malware via skip-gram-
based malware detection,’’ Secur. Commun. Netw., vol. 2020, pp. 1–10,
Apr. 2020.

[39] C. Bentz, D. Alikaniotis, M. Cysouw, and R. Ferrer-I Cancho,
‘‘The entropy of words-learnability and expressivity across more than
1000 languages,’’ Entropy, vol. 19, no. 6, 2017. [Online]. Available:
https://www.mdpi.com/1099-4300/19/6/275

[40] T. Kekeç, D. Mimno, and D. M. Tax, ‘‘Boosted negative sam-
pling by quadratically constrained entropy maximization,’’ Pattern
Recognit. Lett., vol. 125, pp. 310–317, Jul. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865519301424

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent. (ICLR)Y. Bengio and Y. LeCun, Eds. Scottsdale, AZ, USA,
May 2013, pp. 1–12.

[42] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmarkAndroidmalware
datasets and classification,’’ in Proc. Int. Carnahan Conf. Secur. Technol.
(ICCST), Oct. 2018, pp. 1–7.

[43] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and
A. A. Ghorbani, ‘‘Dynamic Android malware category classification using
semi-supervised deep learning,’’ in Proc. IEEE Int. Conf. Dependable,
Autonomic Secure Comput., Int. Conf. Pervasive Intell. Comput., Int.
Conf. Cloud Big Data Comput., Int. Conf. Cyber Sci. Technol. Congr.
(DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 515–522.

[44] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–15.

[45] E. Raff, W. Fleshman, R. Zak, H. S. Anderson, B. Filar, and M. McLean,
‘‘Classifying sequences of extreme length with constant memory applied
to malware detection,’’ 2020, arXiv:2012.09390.

[46] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. Le Traon,
‘‘Empirical assessment of machine learning-based malware detectors for
Android,’’ Empirical Softw. Eng., vol. 21, no. 1, pp. 183–211, 2016.

[47] R. J. Joyce, D. Amlani, C. Nicholas, and E. Raff, ‘‘MOTIF: A malware
reference dataset with ground truth family labels,’’ Comput. Secur.,
vol. 124, Jan. 2023, Art. no. 102921.

[48] (2016). A Tool for Reverse Engineering Android Apk Files. [Online].
Available: https://github.com/hasherezade/pe-bear

[49] (2016). A Tool for Reverse Engineering Android Apk Files. [Online].
Available: https://practicalsecurityanalytics.com/pe-malware-machine-
learning-dataset/

[50] H. Borchani, G. Varando, C. Bielza, and P. Larranaga, ‘‘A survey on
multi-output regression,’’Wiley Interdiscipl. Reviews: DataMining Knowl.
Discovery, vol. 5, no. 5, pp. 216–233, 2015.

ALPER EGITMEN received the M.S. degree
in computer engineering from Yıldız Technical
University, Istanbul, Turkey. His current research
interests include artificial intelligence, computer
security, and digital signal processing

ALI GOKHAN YAVUZ received the Ph.D. degree
in computer engineering from Yıldız Technical
University, Istanbul, Turkey. He is currently a
Professor and the Head of the Department of
Computer Engineering, Turkish-German Univer-
sity. His current research interests include systems
and network security, cloud computing, and big
data.

SIRMA YAVUZ (Member, IEEE) received the
Ph.D. degree in computer engineering from Yıldız
Technical University, Istanbul, Turkey. She is
currently a Professor and the Head of the Depart-
ment of Computer Engineering, Yıldız Technical
University. Her current research interests include
artificial intelligence, neural networks, machines,
and robotics.

71504 VOLUME 12, 2024

