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ABSTRACT Machine learning (ML) has become a popular technique for various automation tasks in
the era of Industry 4.0, such as the analysis and synthesis of visual data such as images and videos,
natural language and speech, financial data, and biomedical applications. However, ML-based automation
techniques are facing difficulties like decision-making, thus incorporating user expertise into the system
might be advantageous. The goal of adding human domain expertise withML-based automation is to provide
more accurate prediction models. Human-in-the-loop (HITL) systems that integrate human expertise with
ML algorithms are becoming more and more common in various industries. However, there are a number of
methodological, technical, and ethical difficulties with the development and application of HITL systems.
This paper aims to explore the methodologies, challenges, and opportunities associated with HITL systems
implementations. We also discuss a number of issues that must be resolved for HITL systems to be effective,
including data quality, bias, and user engagement. Besides, we also explored several approaches that can
be utilized to enhance the performance of HITL systems, such as active learning (AL), iterative ML, and
reinforcement learning, as well as the current state of the art in HITL systems.We also selectively highlighted
the advantages of HITL systems, such as their potential to increase decision-making process accountability
and transparency by utilizing human experience to improve ML decision-making capability. The paper will
be very useful for researchers, practitioners, and policymakers.

INDEX TERMS Human-in-the-loop (HITL), machine learning algorithms, accountability, transparency.

I. INTRODUCTION
Deep learning (DL) has garnered impressive achievements
across a range of domains, encompassing tasks such as the
interpretation and generation of visual data like images and
videos, understanding and processing natural language and
speech, applications in the medical field, as well as enhancing
the capabilities of intelligent transportation systems [1].
This success can be attributed to the use of larger models
with numerous parameters, providing greater flexibility and
descriptive power [2]. However, the effectiveness of DL
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relies on a substantial amount of labeled training data [3].
Acquiring and annotating such data is a challenging and time-
consuming task, as the growth rate of data is much slower
compared to the rate of model parameter expansion. To over-
come this challenge, researchers are employing techniques
such as generating new datasets, speeding up model iteration,
and decreasing expenses related to data annotation [4],
[5], [6], [7]. Additionally, pre-trained models and transfer
learning methods like Transformers [8], BERT [9], and
GPT [10] have demonstrated impressive outcomes. Although
the generated data initializes the model, specific data labeling
and updates are often necessary to achieve a high-precision
usable model. Weak supervision techniques and few-shot
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FIGURE 1. Human-in-the-loop learning framework.

learning have been proposed to address data scarcity issues,
with researchers actively exploring these approaches [11],
[12], [13].

Integrating prior knowledge into the learning framework
has emerged as a valuable approach to tackling sparse
data problems. By incorporating human wisdom and knowl-
edge [14] the machine can learn from existing knowledge
sources. Notably, researchers have been increasingly incorpo-
rating pre-existing knowledge into their learning frameworks,
particularly in medical fields such as clinical diagnosis,
where data availability may be limited [15], [16], [17].
Utilizing pre-training knowledge can enhance performance
and address data limitations effectively [18], [19], [20].
Recent studies have highlighted the importance of human-

related aspects, including emotional state and practical
capability, in influencing the results of teaching and learning.
To address these challenges, the concept of ‘‘human-in-
the-loop’’ has been introduced, involving the incorporating
human knowledge into the process of modeling [21].
This multidisciplinary approach intersects computer science,
cognitive science, and psychology.

A typical ML framework with Human-in-the-loop (HITL)
learning is shown in Fig. 1 which consists of three compo-
nents: data pre-processing, data modeling, and modifying the
process to improve performance [22]. However, the results
and performance ofMLmodels can be unpredictable, making
it uncertain which aspect of human-machine interaction
yields the best learning outcomes. Researchers concentrate
on introducing manual intervention at various stages to
address this issue. This article explores prevailing research on
HITL technology and explores diverse implementations from
a practical standpoint. These implementations encompass
data processing, model training and inference, as well as
system construction and application. The authors aim to
explore the impact of different types of human interaction on
learning outcomes in intelligent systems and its interaction
with other components of the HITL pipeline. Additionally,
researchers are developing independent systems to enhance

the model improvement process. The paper discusses meth-
ods to improve model performance through data processing,
intervention-based model training, and the configuration of
system-independent ‘‘human-in-the-loop’’ setups [23], [24],
[25], [26], [27].

HITL systems play a crucial role in the implementation
of Industry 5.0, which focuses on enhancing collaboration
between humans and machines to improve productivity,
efficiency, and safety in various industries, particularly
manufacturing. Industry 5.0 emphasizes the utilization of
‘‘weak AI’’ that is understandable and manageable by
humans, highlighting the importance of the HITL concept
for transparent man-machine cooperation, ethical decision-
making, and resilience. In contrast, Industry 4.0 relies on
‘‘Black Box AI’’ that offers limited human control [28].
The concepts of Operator 4.0 and Operator 5.0 introduce
a human-centric perspective and a symbiotic relationship
between humans and automation in the fourth industrial
revolution. The vision of a resilient Operator 5.0 aims to
create self-resilience for the workforce and system resilience
to ensure optimal operation through smarter collaboration
between operators and machines. Training such professionals
necessitates the use of mixed reality frameworks and
platforms [29]. The HITL offers several advantages, such as:
Improving precision: As humans continue to refine the

model’s responses to different scenarios, the algorithm
becomes more accurate and consistent. In fields like content
moderation, there are limits to how much analysis can be
automated, and humans are crucial in interpreting context,
multilingual text, and cultural nuances.
Enhancing data acquisition: ML models require large

amounts of data to be effective, and a HITL can generate data
and ensure its accuracy in situations where there is a lack of
data. P Mitigating bias: AI programs designed by humans
based on historical data can perpetuate inequalities, and a
HITL can identify and correct bias early on.
Increasing efficiency: Machine intelligence can save

significant time and costs by processing and filtering large
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amounts of data, and the remaining tasks can be performed
by humans. While not all aspects of the process can be
automated, a substantial portion of it can be, resulting in time
savings.

Our investigation focuses on the following inquiries
concerning HITL for ML:

1) What is the role of human expertise in improving ML
models?

2) How can HITL approaches be integrated into the
machine-learning pipeline?

3) What are the most effective methods for incorporating
human feedback into the learning process?

4) How do different types of human feedback affect the
learning outcomes of the model?

5) What are the ethical implications of using HITL
approaches in ML?

6) How can we ensure that human feedback is unbi-
ased and does not reinforce existing biases in the
data?

7) What are the trade-offs between using HITL
approaches and fully automated ML?

8) How canwe designHITL systems that are user-friendly
and accessible to non-experts?

9) What are the implications of HITL approaches for data
privacy and security?

10) What are the implications of HITL approaches for the
scalability and efficiency of the ML process?

A. CONTRIBUTION
This paper provides a comprehensive review and analysis of
the research on HITL, with a particular focus on the following
key aspects:

• Present different methodologies for incorporating
human feedback into ML, including Active learning
(AL), interactive ML, and crowd-sourcing.

• Classify and compare different methods of HITL,
highlighting the challenges faced by this approach and
proposing potential solutions. Also, provide qualitative
evaluations and comparisons of these methods to help
readers choose the appropriate one for their specific
problem.

• Identify a series of important milestones achieved by
various methods in this area.

• Discusses the challenges associated with HITL systems,
such as the need for unbiased human feedback, ensuring
privacy and security, and designing systems that are
accessible to non-experts.

• Highlight the opportunities that HITL systems provide,
such as improving model accuracy and generalization,
reducing bias, and enabling domain experts to provide
their knowledge of the model.

• Included several case studies that demonstrate the
effectiveness of HITL systems in different domains,
such as healthcare, education, and natural language
processing.

II. METHODOLOGIES
HITL methodologies are collaborative approaches that
involve both humans and machines working together to
enhance the performance of ML algorithms. Popular HITL
methodologies include AL, Reinforcement learning, and
Explainable AI. These methodologies have been shown to
improve the accuracy and efficiency of ML algorithms.
However, HITL approaches require a significant investment
of time and resources to implement and maintain, making
them more suitable for real-world applications.

A. ACTIVE LEARNING
Active learning is an ML technique that involves selecting
the most informative or representative data points to label
and adding them to the training set [2]. This approach
aims to reduce the cost of data annotation, as it requires
fewer labeled data points than traditional supervised learning
methods. Cloud computing services have played a significant
role in facilitating AL by providing access to scalable and
cost-effective computational resources. In addition to com-
putational resources, cloud computing services also provide
access to crowdsourcing frameworks, which can be used to
further reduce the cost of data annotation. Crowdsourcing
involves outsourcing small tasks to a large group of people,
typically through an online platform. This allows researchers
to leverage the collective intelligence of a diverse group
of individuals to perform tasks such as data annotation.
By combining AL with crowdsourcing, researchers can
create a powerful and cost-effective framework for building
high-quality ML models. This approach has been used in
a wide range of applications, including natural language
processing, computer vision, and healthcare, among others.

AL for a general classification task can be defined based on
Mitchell’s [30], [31] concept of a well-formed ML problem:

Task function: f : υ → {1, 2, . . . .p} where υ represents
the set of data items with their corresponding true labels, and
{1, 2, . . . .p} represents the available classes.
Performance Measures: Precision, recall, F1-score, etc.,

serve as performance metrics.
Active learning Process: In the active learning (AL)

process, unlabeled samples Xt ⊆ DUt are chosen at each
time step t , using a query strategy Sq. Subsequently, labels are
requested for each selected sample from an oracle. Following
the query and labeling at time step t , the labeled dataset
becomesDLt+1 = DLt ∪Xt , and the unlabeled dataset becomes
DUt+1 = DUt − Xt .
AL loops often involve incorporating the input of human

annotators or non-expert contributors, particularly in sub-
jective domains. Over the years, extensive research has
been conducted on integrating human input into AL loops
to explore a range of classical problems. Fig. 2 depicts
a typical AL framework, which involves determining the
informativeness of each unannotated data point based on
the query type chosen. The chosen data points are then
annotated, and the AL framework utilizes the newly acquired
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FIGURE 2. Human-in-the-loop active learning frameworks.

annotations to improve the model. This enhancement can be
attained by either completely retraining the model using all
existing annotated data or by fine-tuning the network with the
most recently labeled data points. By adopting this approach,
it is possible to attain state-of-the-art performance using
fewer annotations for various biomedical image analysis
tasks. Consequently, this widens the annotation bottleneck
and reduces the costs associated with developing DL-enabled
systems from unannotated data. AL has been successfully
applied in many fields, including Natural Language Pro-
cessing (NLP), data annotation, and image classification
tasks [32], [33], [34]. In NLP, for example, AL can be used
to improve the accuracy of natural language understanding
systems by selecting the most informative examples for
annotation, for example, the samples that are difficult to
classify or the representative samples of a particular domain
or topic. Similarly, in image classification, AL can be used to
select the most representative images for annotation, which
can improve the accuracy of the model and reduce the amount
of labeled data required.

AL involves eliciting ground truth labels for uncertain
data instances to enhance the model’s performance [35],
[36]. Different approaches have been proposed, including
prioritizing the inspection of uncertain samples [37], [38],
enhancing diversity involves a strategic collection of sam-
ples to accurately depict the entire data distribution, all
while considering both uncertainty and diversity aspects
simultaneously [39]. However, the existing AL models have
some fundamental limitations for practical use. Initially,
a significant portion of evaluations relies on static test data,
which does not account for concept drifts occurring in
real active learning scenarios [40], [41]. Second, manual
inspection or annotation is costly, and the budget is often
limited, making it difficult for exploration-oriented AL
algorithms to succeed.

B. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a type of ML that enables an
agent to learn from its own interactions with an environment
by receiving feedback in the form of rewards or penalties [42],

[43], [44], [45]. RL has been proposed as a potential use
case of AL in medical image analysis, where an agent
can learn to decide which examples are worth labeling.
The combination of RL and AL has been explored in
several works, with promising results in improving prediction
accuracy or data selection policy. An overview of the HITL
RL framework [46], in which a human provides new actions
in response to state queries can be seen in Figure 3.
Recently, effective generalization in reinforcement learning
over large, high-dimensional state spaces, extending the set of
actions makes this task even more challenging. Therefore, the
concentrates on the more traditional reinforcement learning
setting with a discrete, relatively small state space [47].
In [48], authors used RL to reframe the data selection

process as an RL problem and learned a data selection
policy that is independent of the heuristics commonly used
in AL frameworks. They showed improvements in entity
recognition. Although RL methods offer a different approach
to AL and HITL problems, can facilitate real-time feedback
between a DL-enabled application and its end-users. It should
be noted that RL requires task-specific goals that may not
be generalizable across various medical image analysis tasks.
Therefore, it is essential to clearly define the goals of the RL
agent to ensure they align with the specific task at hand. The
combination of RL and AL has the potential to improve the
efficiency and effectiveness of medical image analysis tasks.
However, further research is necessary to investigate the
generalizability and scalability of this approach to different
tasks and domains. The human-in-the-loop low-shot (HILL)
[49] framework utilizes uncertainty assessment to identify
challenging samples, human intervention to label them,
and reinforcement learning to adapt the model based on
this feedback. Knox et al. [50] introduce a new ‘‘regret
preferencemodeling’’ approach for learning reward functions
in reinforcement learning from human feedback.

C. EXPLAINABLE AI
Explainable AI (XAI) is a rapidly growing field that
aims to create ML systems that are more transparent and
interpretable. XAI techniques can help users to understand

75738 VOLUME 12, 2024



S. Kumar et al.: Applications, Challenges, and Future Directions of Human-in-the-Loop Learning

FIGURE 3. Human-in-the-loop reinforcement learning framework.

FIGURE 4. Human-in-the-loop in XAI framework.

how decisions are made by AI systems as shown in Fig. 4,
which can be critical in domains where trust, accountability,
and human oversight are important, such as medicine, law,
and defense [51].
XAI techniques include a range of methods such as

model visualization, feature attribution, and natural language
explanations, which can help users to understand the behavior
of complex AI models. By providing more transparent
and interpretable models, XAI can also help to improve
the trustworthiness and reliability of AI systems and can
enable more effective collaboration between humans and
machines [52]. However, it is important to note that
there are trade-offs between explainability and performance
in AI systems, and achieving both can be challenging.
XAI research is therefore an ongoing effort to find the
right balance between performance and interpretability in
ML systems.

The effectiveness of explanations in XAI heavily relies
on the ability of humans to understand and interpret them
accurately. Poor explanations can mislead users and generate

undesired bias. Therefore, the XAI research field expands
from IT-related fields to human-centered disciplines, such
as psychology and decision-making. Current research directs
its attention toward assessing human behaviors during the
exploration, interpretation, and utilization of explanations.
Adequately framing and evaluating the interpretability and
efficacy of these explanations necessitates a profound
comprehension of how humans perceive and comprehend
them. Achieving equilibrium between broad and detailed
explanations aids users in grasping and forecasting the
model’s operations. Designing adaptable explanation strate-
gies and explainability techniques that effectively convey
model behavior, contingent on the specific user group,
is crucial [53]. Engaging humans in XAI fundamentally
enhances the formulation and advancement of explanations.

MLmodels becomemore complex and capable, it becomes
increasingly challenging for humans to interpret their behav-
ior and make decisions based on their output. This is where
XAI comes in, which aims to make ML models more
transparent and understandable to humans. XAI methods
involve developing algorithms and models that not only
provide accurate predictions but also offer clear explanations
for their decisions. This can help users, including both experts
and laypeople, to better understand how the model works
and why it is making certain decisions. XAI techniques
can also help to identify potential biases and errors in the
model and allow for more effective and ethical use of AI in
various domains, such as healthcare, finance, and security.
By incorporating XAI methods into the development and
deployment of ML models, we can ensure that humans
remain in control of the decision-making process, while also
taking advantage of the incredible power and efficiency of AI
systems [54].

III. APPLICATIONS
Various applications of HITL learning are summarized
in Fig. 5 and explained in detail in the following
subsections.
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FIGURE 5. Applications of Human-in-the-loop learning.

A. AUTONOMOUS VEHICLES
The potential benefits of autonomous vehicles are road safety
and efficient transportation. However, the need for human
factors in autonomous vehicles is vital to gain public trust
and ensure operational safety from any type of malfunction.
HITL-based autonomous driving could help to address these
concerns and pave the way for the widespread adoption of
autonomous vehicles. Wang et al. [55] present a human-
centered feed-forward control (HCFC) system designed for
enhancing vehicle steering performance and minimizing
driver workload. The proposed system employs a dynamic
control strategy that considers factors like vehicle speed,
lateral deviation, yaw error, and steering angle as inputs,
generating the anticipated steering ratio for the driver. For
determining the control strategy’s parameters, drivers are
categorized into three groups based on their sensitivity
to errors. The HCFC system introduces a human-centered
steering system (HCSS) that features an adjustable steering
gain, which adapts to the driver’s path-following tendencies.
This adaptation diminishes driver workload by assisting in
maintaining a prescribed path with reduced steering wheel
angles and rate of angle change. A series of experiments
are executed to assess the system’s performance, with a
focus on tracking the centerline during a double lane change
(DLC). These experiments utilize CarSim in conjunction
with a portable driving simulator, all within a fixed-
speed environment. The selected drivers encompass three
distinct profiles for testing purposes. The outcomes of both
simulations and experiments highlight the superiority of
the proposed HCSS with the dynamic control strategy over
the conventional steering ratio-based control strategy. Task
performance is shown to improve by approximately 7%.
This improvement could be due to various factors, such as,
clearer guidance, reduced distractions, improved decision-
making. Furthermore, the new system results in a reduction
of approximately 35% in physical workload and about 50%
in mental workload for drivers following the prescribed
path. This reduction could be due to automation, improved
ergonomics, reduced decision-making burden, reduced infor-
mation overload, improved situational awareness and reduced
monitoring. In [56], the authors develop a 3D virtual
simulation platform that incorporates human input into the
evaluation of autonomous vehicle performance. The system is

designed to provide end-to-end support for the development
of autonomous vehicle controllers, including the generation
and collection of human driving data, as well as the testing
of controllers in critical scenarios in a virtual environment.
The study focuses on the configuration of the system, which
is intended to provide a comprehensive platform for the
development and testing of autonomous vehicle technology.
This includes the use of human driving data to improve
the performance of autonomous vehicles and the testing of
autonomous vehicle controllers in a simulated environment
to ensure their safety in real-world scenarios. The system
is designed to be flexible and adaptable, allowing for the
integration of new technologies and approaches as they
emerge in the field of autonomous vehicle development.
Ultimately, the goal of the study is to provide a powerful and
effective tool for the continued advancement of autonomous
vehicle technology, with a focus on safety and performance.

In [57], the authors introduce an intelligent haptic interface
aimed at improving the driving state recovery and control
performance of human drivers during takeover situations in
automated vehicles. The foundation of this interface rests on
a novel two-phase human-machine interaction model. This
model applies haptic torque to the steering wheel and dynam-
ically switches its function between predictive guidance and
haptic assistance, contingent upon the human driver’s state
and control capabilities. To ascertain the effectiveness of
their approach, the authors conducted vehicle experiments
involving 26 participants. The results demonstrate that the
proposed method substantially enhances the driving state
recovery and control performance of human drivers during
takeover scenarios. Importantly, this approach surpasses an
existing method in terms of both the safety and smoothness
of human-machine interaction. Hang et al. [58] presents
a collaborative control framework where the human driver
assumes the role of the primary controller. An active rear
steering (ARS) system is integrated to counterbalance any
control deviations introduced by the human driver, using
real-time front steering angle information. The primary
objective of this approach is to enhance the vehicle’s handling
performance, lateral stability, rollover prevention, and path-
tracking capabilities. The framework establishes two distinct
driving profiles: experienced and inexperienced, in order
to validate the efficacy and adaptability of the proposed

75740 VOLUME 12, 2024



S. Kumar et al.: Applications, Challenges, and Future Directions of Human-in-the-Loop Learning

methodology. Additionally, the approach is subjected to
testing under challenging conditions, such as scenarios
involving low-adhesion roads and highly curved paths. This
evaluation process serves to assess the viability and resilience
of the linear time-varying model predictive control (LTV-
MPC) algorithm, taking into account inherent parametric
uncertainties.

Liu et al. [59] propose a strategy that aims to opti-
mize the driving authority allocation between the driver
and the automated driving system (ADS) in real time, based
on the driver’s behavior and intention. By taking into account
the driver’s preferences and behavior, the ADS can adjust the
driving authority assigned to the driver to improve the overall
driving performance and safety. The proposed method uses
an online optimization algorithm that considers the driver’s
intention and behavior prediction and dynamically adjusts the
driving authority allocation accordingly.

Wang et al. [60] consider the dynamics of both con-
nected autonomous vehicles (CAVs) and the following
human-driven vehicles (HDVs) in an optimization frame-
work to improve holistic energy efficiency, along with
car-following safety and traffic efficiency. The HDVs are
modeled using the intelligent driver model (IDM) based on
the Next Generation Simulation (NGSIM) dataset, which
covers a broad range of stochastic and realistic driving
behaviors. The study analyzes the quantitative impacts of
various driving behaviors on energy efficiency improvement
using the proposed control algorithm.

Wu et al. [61] present an innovative approach involving
a HITL deep reinforcement learning (DRL) framework.
This framework integrates human intelligence in real time
during the process of model training. They introduce the
Real-Time Hug-DRL method, which they apply to train
agents in autonomous driving scenarios, with the primary
aim of enhancing both learning efficiency and the overall
performance of an off-policy DRL agent. The proposed
architecture introduces a dynamic learning process that
incorporates human expertise. At each step of the learning
process, an evaluation module assesses the relative utilities
of the actions guided by humans and those taken by the
DRL agent. This dynamic assessment ensures a balanced
integration of human insights and the DRL agent’s learning
trajectory.

Lee and Park [62] presents a new method for autonomous
drone control using deep reinforcement learning (DRL) to
improve navigation in difficult environments. It focuses on
real-time obstacle avoidance through advanced trajectory
optimization and sensor-aware control. A unique feature is
incorporating human feedback (HCI) to adapt to unforeseen
situations. Human as AI mentor-based deep reinforcement
learning (HAIM-DRL) [63] framework for mixed traffic
platoons shows promise for advancing safe and efficient
autonomous driving by incorporating human expertise into
the learning process.

B. VISUAL DATA PROCESSING
HITL systems are widely used in visual data processing
applications, which involve the processing and analysis of
image or video data. Trainingmodels with humans in the loop
has a long history within the field of computer vision [64],
[65], [66], [67]. The most recent approach for handling
visual data is the different types of DL-based methods [68],
[69]. In order to further improve this, researchers have been
looking into how to incorporate human feedback into DL
architecture. Interactive labeling, AL, or HITL strategies can
be used to provide this input. The system as a whole can
become more intelligent and capable of handling complex
cases by incorporating human input. This incorporation of
human input could help DL techniques perform better on
visual data processing tasks.

Object detection is a foundational and complex challenge
within computer vision [70]. In recent times, it has garnered
substantial attention [71]. The objective is to identify
instances of specific object classes within digital images.
Despite notable advancements in object detection techniques,
the detection of occluded, diminutive, or unclear objects
remains a formidable task. To surmount these obstacles,
researchers have ventured into incorporating human feedback
into the object detection process. In their work [72], authors
introduce an interactive object detection framework that
enlists human involvement to rectify annotations proposed
by a detection system. However, this approach can be both
time-intensive and costly. Alternatively, in [73], authors
propose a HITL object detection strategy that combines
bi-directional deep SORT [74] with annotation-free segment
identification. Here, human validation is sought for object
candidates that the model cannot autonomously detect.
Subsequently, the model is retrained using the additional
objects annotated by humans. These methodologies hold
promise in enhancing the overall performance of object
detection.

Image restoration entails the endeavor to recuperate
damaged images [75] to their original condition. There
exist two principal avenues in image restoration: exemplar-
based approaches [76] and methods rooted in DL [77].
While DL-based techniques hold current prominence and
efficacy, they may grapple with overfitting in scenarios
with limited training data. Additionally, restored images can
contain unfamiliar artifacts due to the absence of semantic
information in severely corrupted regions. To confront these
challenges, Weber et al. [78] present an interactive ML
system for image restoration, built upon the foundation of
deep image prior (DIP) [79]. This approach involves the
infusion of human insights into the training process. In the
domain of Electron Microscopy, Roels et al. [80] propose a
hybrid HITL framework that synergizes expert microscopy
knowledge with image restoration algorithms, culminating
in an enhancement of image quality. These HITL paradigms
offer the potential to heighten the precision and efficacy of
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image restoration by harnessing human operators’ expertise
alongside automated algorithms.

Image segmentation constitutes a pivotal stage in numer-
ous computer vision applications [81], involving the assign-
ment of class labels to individual pixels within an image [82].
While this field has witnessed remarkable growth, scant
attention has been directed towards effectively identifying
and rectifying shortcomings in high-performing semantic
segmentation models. To tackle this concern, Wang et al. [83]
propose a dual-stage hybrid system that leverages human
involvement to troubleshoot pixel-level image labeling mod-
els. This approach commences by autonomously selecting
informative unlabeled images, thereby revealing vulnera-
bilities in the target model’s performance. Subsequently,
human experts filter this set to create a refined subset,
which is then employed for fine-tuning and retraining
the target model. Within the realm of medical image
processing, data annotation can be intricate and resource-
intensive [84]. Ravanbakhsh et al. [85] introduce a training
protocol that synergistically combines conditional generative
adversarial networks (cGAN)with human annotators. Human
experts annotate complex cases, and the newly annotated
images perpetuate the training and inference process. These
strategies exhibit the potential of human-machine synergy in
elevating the accuracy and efficacy of image segmentation
models.

Image enhancement (IE) is a significant task in computer
vision, aimed at improving image quality for specific
applications [86]. However, most existing IE methods ignore
user preferences, resulting in sub-optimal results that may
not meet the user’s needs. To overcome this issue, several
researchers have proposed user-guided image enhancement
methods. For instance, Murata and Dobashi [87] intro-
duced a framework that learns the user’s preference via
user-provided examples and score-based feedback. Similarly,
Fischer et al. [88] developed a system called neural image
correction and enhancement routine (NICER), which allows
users to modify imagemanipulation parameters and guide the
optimization process towards satisfying local optima. These
user-guided IE methods can provide end-users with more
personalized and satisfactory image enhancement results.

Video object segmentation (VOS) stands as a pivotal
computer vision task, focused on segmenting an object
instance throughout an entire video sequence based on
either a manually or automatically selected first frame [89].
Despite the growing prominence of the VOS research field,
its intricacy persists due to the inherent characteristics of
videos, such as motion blur and occlusion. To grapple with
these challenges, HITL frameworks have been embraced to
secure precise outcomes. Benard and Gygli [90] introduce
an inventive interactive VOS approach that treats the pre-
vailing segmentation mask as an additional input. Similarly,
Oh et al. [91] bring forth Interaction-and-Propagation
Networks (IPN), permitting iterative interactions between
individuals and the proposed model. In this process, feedback

is provided through scribbles across multiple frames during
the interactive phase. These frameworks hold promise in
delivering accurate VOS outcomes, aided by human input,
thereby mitigating the necessity for manual annotation and
curtailing time consumption.

Some researchers [92], [93] have been directed toward
diminishing the burden of annotation costs in the context
of HITL model learning. In the study by Abad et al. [92],
an effort was made to train crowdsource workers through
an iterative human-machine collaboration mechanism. This
process involves a classifier—essentially, a machine learning
model—that selects the most superior examples to train
the crowdsource workers (i.e., humans). Subsequently, these
workers annotate the lower-quality examples, and the result-
ing annotated data is employed to retrain the classifier with
more precise examples. This iterative approach consistently
enhances the quality of the training data. The effectiveness
of this method was demonstrated through its application
to two distinct tasks: Relation Extraction and Community
Question Answering, conducted in English and Arabic lan-
guages, respectively. The experimental outcomes exhibited
a substantial improvement in creating Gold Standard data
in comparison to utilizing distant supervision or resorting
to crowdsourcing devoid of worker training. Notably, the
method approached the performance levels of state-of-the-
art techniques employing costly Gold Standard for worker
training. In another work by Ravanbakhsh et al. [93], a novel
strategy is presented for executing image segmentationwithin
a semi-supervised setup, leveraging a HITL framework
alongside a conditional Generative Adversarial Network
(cGAN). This method harnesses the discriminator in the
cGAN to identify slices with questionable reliability, warrant-
ing expert annotation. Meanwhile, the generator synthesizes
segmentations for unlabeled data that the model deems
confident about. Evaluation on a widely recognized bench-
mark demonstrates the approach’s comparable performance
to state-of-the-art fully supervised methods in slice-level
evaluation, demanding notably less annotated data. These
findings indicate that the proposed approach has the potential
to considerably curtail the volume of expert annotation
required, all while upholding elevated levels of segmentation
precision.

Wang et al. [94] introduces the human-in-the-loop based
deep neural networks (H-DNNs), where human input helps
achieve better performance with optimized resource usage.
Enhancing various mobile applications powered by DNNs,
such as voice assistants, augmented reality, and image
recognition. In [95], the authors present a new framework
called HITL Video Semantic segmentation Auto-annotation
(HVSA) that utilizes a HITL approach to generate semantic
segmentation annotations for videos while only requiring
a small annotation budget. The framework incorporates
an active sample selection algorithm to choose the most
important samples for manual annotations, and a test-
time fine-tuning algorithm to propagate the annotations
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to the entire video. The results of real-world experiments
demonstrate that the proposed approach generates highly
accurate and consistent annotations while keeping annotation
costs low. Controllable fine-grained text2face (CFTF) [96]
offers a promising approach for generating faces with a
high degree of user control, opening up possibilities in
various fields beyond the initial suspect portrait application.
Deng et al. [97] developed the potential of human-in-the-loop
learning approaches for developing intelligent robot vision
systems that can effectively handle complex tasks, paving
the way for advancements in various applications requiring
robot-human collaboration.

C. HEALTHCARE
Fully automatic DL-based approaches become the lead-
ing technique in various healthcare applications, including
computer-aided detection, diagnosis, treatment planning,
interventions, and therapy. Despite its advanced capabilities,
medical image/signal analysis poses unique challenges,
making the involvement of a human end-user advantageous
in any DL-enabled system. Kim et al. [98] present concept
activation vectors (CAVs) that enable neural networks’
internal states to be interpreted in a way that is easy for
humans to understand. Instead of being a hindrance, the
high-dimensional internal state of a neural network can be
leveraged to gain insights. Testing with CAVs (TCAV) is a
technique that utilizes directional derivatives to measure how
crucial a user-defined concept is to a classification outcome.
For instance, it quantifies the extent to which the presence
of stripes influences the prediction of a zebra. By applying
CAVs in the realm of image classification and demonstrating
how they can be used to investigate theories and produce
insights for a standard image classification network and a
medical application. Cai et al. [99] discuss the development
and evaluation of tools designed to assist pathologists in
searching for similar images retrieved using a DL algorithm.
The authors identified the needs of pathologists in this
context and developed tools that allow users to refine their
search on the fly, communicating what types of similarity
are most important at different moments in time. The
assessment of these tools encompassed two studies involving
pathologists, revealing that the refinement tools amplified the
diagnostic effectiveness of identified images and augmented
user confidence in the algorithm’s outcomes. Moreover, these
tools were favored over a conventional interface, without any
discernible compromise in diagnostic precision. The authors
additionally noted a shift in user strategies when engaging
with refinement tools, employing them to explore and grasp
the underlying algorithm’s functioning, and to distinguish
between errors stemming from machine learning and those
originating from their own evaluations.

In [100], the authors delve into the enhancement
of human performance in deception detection through
machine-learning models while preserving human agency.
They introduce a spectrum encompassing complete human

agency and full automation, then proceed to devise various
levels of machine assistance that gradually augment the
influence of machine predictions. The study unveils that
presenting explanations alone slightly enhances human
performance, while displaying predicted labels yields a
significant improvement (>20% relative improvement).
Additionally, explicitly suggesting strong machine perfor-
mance further elevates human effectiveness. Interestingly,
when predicted labels are showcased, explanations of
machine predictions yield accuracy levels akin to an explicit
declaration of robust machine performance. These findings
underscore the equilibrium between human performance
and agency, emphasizing that explanations of machine
predictions can mediate this balance. Bansal et al. [101]
focalize on two pivotal attributes of AI error boundaries—
parsimony and stochasticity—and their influence on human
comprehension of AI capabilities and collaborative team
performance. Their investigation delves into these attributes
within the context of task dimensionality, scrutinizing their
interplay with existing research. The authors advocate
considering objectives beyond accuracy during model
selection and optimization to optimize human-AI team
performance. Their experimental results demonstrate the
impacts of these attributes on team performance and the
shaping of mental models regarding AI capabilities. Overall,
these findings emphasize the necessity of comprehending
the attributes of an AI’s error boundary to effectively
enhance human-AI team performance. In [102], the authors
explore the informational requirements of medical experts
when initially introduced to a diagnostic AI assistant. They
conducted interviews with 21 pathologists before, during,
and after exposing them to deep neural network predictions
for prostate cancer diagnosis. The results underscore that
clinicians seek upfront information regarding fundamental,
overarching aspects of the model, including its known
strengths, limitations, subjective viewpoint, and overall
design intent. Participants likened these informational needs
to the collaborative mental models they developed when
seeking second opinions frommedical colleagues. This study
underscores the importance of furnishing medical experts
with information that surpasses the localized, case-specific
rationale behind individual model decisions. These findings
contribute to discussions surrounding AI transparency for
collaborative decision-making, providing insights into what
experts deem crucial when acquainting themselves with AI
assistants prior to their integration into routine practice.
In [103], the authors new approach to chest radiograph
diagnosis that combines swarm-based technology to amplify
the diagnostic accuracy of networked human groups with AI
capabilities.

Beede et al. [104], conducted a human-centered study
of a DL system used in clinics for the detection of
diabetic eye disease. The study involved interviews and
observations across eleven clinics in Thailand to understand
the current eye-screening workflows, user expectations
for an AI-assisted screening process, and post-deployment
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experiences. The authors found that several socio-environmental
factors impact model performance, nursing workflows, and
patient experience. For instance, the availability of a quiet and
well-lit screening area significantly impacted the accuracy of
the model. Additionally, nursing workflows were found to
be affected by the integration of the DL system, leading to
changes in how nurses conducted eye screenings. The study
highlights the importance of conducting human-centered
evaluative research alongside prospective evaluations of
model accuracy. By doing so, researchers can better
understand how the system is being used in real-world
contexts and identify areas for improvement beyond technical
aspects such as model accuracy. Tschand et al. [105] reported
the effects of varied representations of AI-based support
on diagnostic accuracy across different levels of clinical
expertise and multiple clinical workflows, using skin cancer
diagnosis as a case study. The study found that good quality
AI-based support of clinical decision-making improved
diagnostic accuracy over that of either AI or physicians alone
and that the least experienced clinicians gained the most
from AI-based support. The study also compared AI-based
multiclass probabilities to content-based image retrieval
(CBIR) representations of AI in the mobile technology
environment and found that AI-based multiclass probabilities
outperformed CBIR representations. Additionally, the study
demonstrated the utility of AI-based support in simulations of
second opinions and telemedicine triage. The study highlights
the potential benefits associated with good quality AI in the
hands of non-expert clinicians and the potential for faulty
AI to mislead clinicians across the spectrum of expertise.
Furthermore, the study shows how insights derived from AI
class-activation maps can inform improvements in human
diagnosis.

Steyvers et al. [106] devised a Bayesian framework that
harmonizes the forecasts and confidence scores generated
by both humans and machines, enhancing the performance
of image classification tasks. The study showcases that a
hybrid amalgamation of human and machine predictions
can yield superior outcomes compared to relying solely on
either human or machine predictions. This holds true as
long as the accuracy disparities between the two realms fall
within a specific range dictated by the underlying correlation
between their confidence scores. Furthermore, the authors
unveil that refining hybrid human-machine performance can
be achieved by distinguishing between the errors made by
human and machine classifiers across distinct class labels.
Notably, the study emphasizes the benefits of incorporating
human confidence ratings into the Bayesian fusion model,
leading to heightened performance for the hybrid approach.
Gu et al. [107] introduced NaviPath, a collaborative human-
AI navigation system tailored for pathologists to enhance
their navigation processes. This system seamlessly integrates
domain knowledge and workflow considerations into prac-
tice. NaviPath alleviates pathologists’ burdens by employing
an AI-assisted algorithm to automate navigation, while

simultaneously enhancing their work through a collaborative
workflow. By intertwining domain expertise and practical
workflow integration, NaviPath exhibits the potential to
both automate navigation and enhance pathologists’ tasks.
The collaborative workflow within NaviPath is poised to
reduce pathologists’ workloads and elevate their navigation
efficiency, consequently bolstering the quality of examina-
tions. The commendable aspect is how NaviPath bridges the
divide between medical professionals and AI, embedding
doctors’ domain knowledge and affording them the ability
to delegate tasks to AI based on their preferences. Equally
impressive is the outcome of the user evaluation study, where
medical professionals affirmed that the human-AI system
enhanced navigation efficiency and bolstered examination
quality. The findings of this study hold the promise of
substantial implications for medical decision-making and
provide valuable insights for HCI researchers in crafting
collaborative AI systems for medical professionals.

Sharma et al. [108] engineered an AI-in-the-loop agent
named HAILEY, designed to furnish timely feedback to
peer supporters on the TalkLife online peer-to-peer support
platform. A randomized controlled trial involving 300 par-
ticipants was conducted, revealing a noteworthy 19.6%
elevation in conversational empathy between peers overall
through their approach. Notably, within the subgroup of peer
supporters facing challenges in providing support, a more
substantial increase of 38.9% was observed. An analysis
of human-AI collaboration patterns indicated that peer
supporters adeptly utilized AI feedback, both directly and
indirectly, without undue dependence on AI. Participants also
reported heightened self-efficacy post-feedback. This study
effectively underscores the potential of feedback-driven,
AI-in-the-loop writing systems to empower individuals in
socially significant tasks such as empathetic conversations.
Cabitza et al. [109] scrutinize human-AI collaboration proto-
cols, a design construct focused on evaluating how humans
and AI harmoniously collaborate in cognitive tasks. This
study encompassed two user studies involving 12 radiologists
and 44 ECG readers who evaluated cases across diverse
collaboration configurations. The study underscores that AI
support offers assistance, yet the deployment of eXplainable
AI (XAI) might trigger a ‘‘white-box paradox,’’ leading to
neutral or counterproductive effects. The sequence of presen-
tation also emerges as a critical factor, with AI-first protocols
correlating with higher diagnostic accuracy in comparison
to human-first protocols, as well as standalone humans and
AI. The study unveils the optimal conditions for AI to
enhance human diagnostic capabilities while circumventing
cognitive biases that could impair decision-making effective-
ness. Zhou et al. [110] advocate a video-based augmented
reality system for HITL assessment of muscle strength in
children with Juvenile Dermatomyositis (JDM). This system
incorporates an Automatic Quantitative Assessment (AQA)
algorithm for JDM muscle strength assessment, relying
on contrastive regression and trained on a dedicated JDM
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dataset. The AQA results manifest as a virtual character
via a 3D animation dataset, allowing users to juxtapose
real-world patients with the virtual character to comprehend
and verify AQA outcomes. In [111], the authors presented
a proof-of-concept system to demonstrate its feasibility for
building on user needs and their willingness to participate in
Interactive Machine Learning (IML) solutions. This system
was evaluated through a prototype Internet of Things (IoT)
application called ‘‘The Smart Drink Monitoring System’’.

Human Correction of AI-Generated Labels (H-COAL)
[112] framework allows selective human correction of
AI-generated labels based on their confidence scores. Sig-
nificantly closes the gap between AI and human-labeled
model performance up to 86% improvement with 20%
correction. Liang et al. [113] present by combining transfer
learning, active learning, and human-in-the-loop interac-
tion. Extracts crucial biomedical information from under-
resourced languages. Reduces dependence on large amounts
of manually annotated data, saving time and resources. Agile
Modeling [114] groundbreaking method empowers everyday
users, not just experts, to create vision models for subjective
concepts. Forget labeling countless images or grappling with
complex algorithms. Imagine shaping a model’s understand-
ing through intuitive interaction, providing feedback and
examples in real-time.

D. NATURAL LANGUAGE AND SPEECH DATA PROCESSING
AI has achieved remarkable strides in the realm of nat-
ural language and speech data processing. Researchers
have harnessed diverse techniques to train and deduce
experimental outcomes. Notably, recognizing the varying
levels of human creativity has emerged as a key factor
in enhancing the accuracy of these methodologies. The
evolving landscape of data availability and computational
prowess suggests that AI’s momentum in these domains
will persist, driving significant advancements and break-
throughs in the times ahead. Within the domain of Opinion
Mining (OM), Sentiment Analysis (SA) holds a pivotal
position, focusing on computationally dissecting individuals’
attitudes and viewpoints towards entities mentioned within
text. In recent times, a profusion of neural network-based
strategies has gained prominence, showcasing their efficacy
in addressing sentiment analysis tasks [115], [116], [117].
DL based techniques have notably dominated the SA
landscape, showcasing robust accuracy and F1 scores in
sentiment prediction. However, these metrics offer limited
insight into the rationale behind erroneous predictions [118].
To bridge this gap, Liu et al. [119] introduced an explainable
HITL SA framework. This framework orchestrates a data
perturbation process to dissect local feature contributions,
aggregates these local features to derive comprehensible
global-level attributes, and involves human assessment of
top-ranked global features to gauge their relevance to the
ground truth and identify errors. Subsequently, the system
computes an error score based on both global and local
sentimental features. Predictions bearing scores surpassing a

predefined threshold are classified as inaccurate predictions.
This proposed framework offers a holistic assessment of
sentiment analysis models, while its inherent explainability
holds the potential to foster trust and widespread adoption of
these models in practical applications.

Text Classification (TC) is another important NLP
task that involves categorizing text into specific cate-
gories. Researchers have orchestrated diverse methodologies
to elevate the precision of TC systems. For instance,
Karmakharm et al. [120] have put forth a rumor classification
system that taps into feedback from journalists. This feedback
is employed to retrain a machine-learning model, enhancing
its accuracy. Given that many contemporary TC approaches
pivot on deep neural networks [115], [121], which are often
perceived as ‘‘black boxes,’’ Arous et al. [122] have ventured
into developing an augmented human-AI framework named
MARTA. The core objective of MARTA is to render these
models more interpretable. This novel framework embraces
a Bayesian paradigm that iteratively refinesmodel parameters
and human reliability, fostering mutual enrichment until
alignment is achieved between labels and rationales.

In addition to text classification, there is a growing interest
in HITL approaches for syntactic and semantic parsing. Syn-
tactic parsing entails extracting the valid syntactic structure
from input sentences, whereas semantic parsing involves
mapping natural language to formal, domain-specific seman-
tic representations. A noteworthy instance in this realm
is the HITL parsing method [123] designed to elevate
the precision of Combinatory Categorial Grammar (CCG)
parsing. This ingenious approach leverages non-experts to
respond to straightforward questions generated from the
parser’s output. These responses are then assimilated as
soft constraints during the model’s retraining phase. Yet,
parsing technologies continue to grapple with assorted
challenges, encompassing user input ambiguity, suboptimal
performance of contemporary parsers, and the dearth of
elucidation within neural network-based models. Addressing
these quandaries, researchers have introduced the concept of
interactive semantic parsing [124]. Furthermore, a model-
based interactive semantic parsing framework [125] has been
formulated as a universal principle for interactive semantic
parsing. These innovative strategies present encouraging
potential in enhancing the accuracy and explicability of
syntactic and semantic parsing systems.

HITL paradigms are making inroads into the realm of
text summarization, a process centered on crafting concise
versions of texts while upholding their underlying signif-
icance [126]. Notably, in a study by Ziegler et al. [127],
endeavors were made to refine pre-trained language models
through reinforcement learning, employing a reward model
derived from human preferences. This methodology has
been wielded to engender summaries across diverse datasets,
encompassing Reddit TL, DR, and CNN/DM. Nonetheless,
disparities in perspectives between labelers and researchers
can yield low concordance rates, curtailing the efficacy of
this approach. To surmount this challenge, another strategy
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proposed in Stiennon et al. [128] entails constructing a dataset
of human preferences by juxtaposing pairs of summaries.
This dataset serves as fodder to train a reward model via
supervised learning. Subsequently, a policy is honed through
reinforcement learning, aiming to maximize the reward
model’s generated score. This innovative methodology dis-
plays promise in heightening the accord between labelers
and researchers, whilst also segregating policy and value
networks to enhance the efficiency of text summarization
processes.

Recently, there has been a growing interest in designing
frameworks that incorporate human feedback into dialogue
and Question Answering (QA) systems. These frameworks,
referred to as HITL intelligent systems, can be broadly
categorized into two types: online and offline feedback
loops [129]. In the context of the online feedback loop,
as exemplified by Hancock et al. [130], human feedback
is persistently harnessed to iteratively refine the model
through reinforcement learning. This dynamic approach has
evidenced its potency in enhancing the efficacy of chatbots
and agents. By perpetually incorporating human input, these
systems continually generate novel instances and undergo
self-retraining, leading to performance improvements. Con-
versely, the offline feedback loop entails amassing a sub-
stantial corpus of human feedback for model enhancement.
Wallace et al. [131] have pursued this path to fortify
system robustness, recognizing that some end-user feedback
may be misleading. Through judiciously integrating such
feedback, they endeavored to bolster system resilience.
Across the spectrum of these frameworks, researchers have
substantiated their efficacy, poised to markedly contribute to
the advancement of more natural and adept conversational
agents.

HITL techniques have been widely applied to various NLP
tasks for better performance, interpretability, and usability.
Empirical outcomes from these endeavors underscore that a
relatively modest corpus of human feedback can substantially
augment model efficacy in text classification [120], dialogue
interactions, and question-answering domains [130]. More-
over, these techniques have demonstrated prowess in enhanc-
ing model robustness and generalization [128]. Beyond
their performance-enhancing attributes, HITL approaches
have also exhibited the capacity to render models more
interpretable and comprehensible to humans. To exemplify,
Arous et al. [122] ingeniously wove human rationales into
an attention-based Bayesian framework, thus yielding a
classification interpretation that is more human-intelligible.
Similarly, Liu et al. [119] leveraged uni-grams as explainable
features for LIME [132], aiding end-users in comprehending
the impact of each word on the final sentiment classification
rendered by the model. Further showcasing the breadth of
application, Wallace et al. [131] engaged ‘‘trivia enthusiasts’’
to imaginatively devise specific adversarial questions, offer-
ing insights into the inherent attributes of intelligent question-
answering systems.

Stiennon et al. [128] presented a quartet of significant
contributions in their study: (1) the efficacy of training
summarization models using human feedback, (2) the robust
generalizability of human feedback models across diverse
domains, (3) an extensive empirical exploration of their
policy and reward model, and (4) the public release of
their human feedback dataset for further exploration and
research. The authors posit that their methods address
growing concerns regarding the alignment of AI systems with
human values and preferences, particularly as AI systems
wield increasing power and undertake more critical tasks.
By amassing an extensive dataset of human comparisons
between summaries, they trained a model to predict human-
preferred summaries, employing this as a reward mechanism
to refine summarization policies through reinforcement
learning. Their approach was applied to the TL; DR dataset
from Reddit posts, where their models notably outperformed
both human reference summaries and larger models that
underwent supervised learning-based fine-tuning exclusively.
Moreover, the authors demonstrated the transference of
their models to CNN/DM news articles, yielding summaries
almost as proficient as human reference summaries without
necessitating news-specific fine-tuning.

Fan et al. [133] introduced the Nested HITL Reward
Learning algorithm NANO, designed to utilize human
feedback for generating text adhering to diverse distributions.
The NANO algorithm features an outer loop that comprises
three distinct phases: generation, human feedback collection,
and model training. Within this framework, an inner loop
conducts a tree search, with nodes sampled from a language
model. The study demonstrates that integrating human
feedback into the training process enhances performance
across quantified and unquantified distributions, and attains
personalization using only a limited 64 labels per individual.
NANO also attains state-of-the-art outcomes in governing
quantified distributions and generating content with specific
topics/attributes even with few-shot data. The significance
of multi-iteration human feedback is underscored through
ablation studies. This approach finds applications in domains
such as chatbots, automated writing, and tailored recommen-
dation systems. Dong et al. [134] proposed a novel technique
termed HITL-based swarm learning (HBSL) to amplify
the effectiveness of swarm learning in counterfeit news
detection. The HBSL method incorporates user feedback
into the swarm learning process, forming a loop consisting
of three stages: local learning, model updating, and human
feedback. The loop continues until predefined stopping
criteria are met. During local learning, nodes independently
learn detection models on their respective local data. In the
model updating phase, the primary node updates models by
averaging model weights. In the human feedback stage, user-
provided feedback on test data predictions augments training
data to enhance detection accuracy. Experimental results on
the LIAR dataset reveal that the proposed HBSL method
outperforms traditional swarm learning for decentralized
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counterfeit news detection. The study’s contributions encom-
pass the introduction of HBSL and its successful validation
on the LIAR dataset, showcasing notable enhancement
in counterfeit news detection performance for each node
through local training coupled with user feedback.

Bonet-Jover et al. [135] proposed a semi-automatic annota-
tion methodology that combines summarization and human-
in-the-loop techniques to create resources for disinforma-
tion detection.Achieves high accuracy in both reliability
detection (0.95) and veracity detection (0.78). Introduce
MArBLE, a hierarchical multi-armed bandit method for
human-in-the-Loop set expansion [136]. With MArBLE,
an expert sees suggestions from different models one by
one and decides whether to accept or reject them. MArBLE
learns which models are best for this specific task and
suggests accordingly. The Human-in-the-Loop methodology
for semi-automatic annotation combines human expertise
with machine assistance to accelerate the process [137]. It is
applied to construct a Spanish news dataset for assessing
content reliability, known as the RUN dataset. Reduced
annotation time up to 64% faster compared to fully manual
methods.

E. FINANCIAL SERVICES
The significance of human involvement and supervision is
to ensure that artificial intelligence (AI) operates responsibly
and in line with desired objectives in the financial domain.
Asthana et al. [138] proposed a novel methodology called
DaME (Data Mapping Engine) that utilizes HITL techniques
and trains a data mapping engine to perform data mapping.
The results from propped method evaluation on a financial
services dataset in an industrial application have been
promising, as it has significantly reduced the manual effort
required for data mapping and enabled learning reuse.
In comparison to the existing state-of-the-art, our dataset
achieved a much higher accuracy rate of 69%, compared
to the previous accuracy rate of 34%. DaME has helped
improve the productivity of industry practitioners by saving
them 14,000 hours of manual mapping work over a period of
ten months.

Yasir et al. [139] discover the obstacles that prevent people
from participating in the financial sector and suggest AI as a
solution to these problems. To achieve this, the literature on
AI and financial inclusion was examined, and examples of
AI implementation in finance were provided to support the
argument. The study concentrates on the barriers that have
a potential solution in AI. Additionally, the authors discuss
the challenges of adopting AI to enhance financial inclusion.
Ultimately, this research serves as a guide for economies
to recognize the importance of AI in achieving financial
inclusion. Ding et al. [140], introduce ALARM1, short for
Analyst-in-the-Loop Anomaly Reasoning and Management,
as an end-to-end framework. ALARM1 facilitates the entire
anomaly mining cycle, spanning from anomaly detection to
subsequent actions. Beyond its capacity for autonomously

detecting emerging anomalies, the framework provides
explanations for anomalies and incorporates an interactive
graphical user interface (GUI) to engage HITL processes.
These processes encompass visual exploration, comprehen-
sion enhancement, and the formulation of new detection
rules. These new rules supplement the rule-based supervised
detection methods commonly utilized in various operational
systems, thus closing the loop in the anomaly management
process. The study effectively showcases the capabilities
of ALARM1 through diverse case studies involving fraud
analysts from the financial sector.

Buckley et al. [141] addressed the growing significance
of AI in finance by emphasizing human accountability. The
primary concern is the AI ‘‘black box’’ problem, where the
AI may generate unexpected or unwanted outcomes that are
not recognized or predicted due to the complexity of its
internal workings or its independent operationwithout human
supervision. The article explores the various applications
of AI in finance, its rapid progress, and the potential
issues and regulatory challenges it poses. It argues that
effective regulatory measures involve personal responsibility
regimes that incorporate human oversight, eliminating the
black box defense for AI decision-making and operations.
Zetzsche et al. [142] proposed a regulatory roadmap for
the implementation of AI in finance that prioritizes human
responsibility and involvement. They provide examples of AI
usage in the finance industry and outline potential challenges
that may arise. The article discusses the regulatory challenges
involved and the tools that may be utilized. Key concerns
include information asymmetries, data dependencies, and
system interdependencies, which can result in unexpected
outcomes.

Truby et al. [143] suggested that to promote a sustainable
future in AI innovation within the financial sector, it’s crucial
to adopt a proactive regulatory approach that emphasizes
preventive measures rather than reactive ones. This approach
should involve creating rational regulations that align with
jurisdiction-specific guidelines and carefully crafted interna-
tional principles. The objective is to prevent any financial
harm before it happens.

IV. CHALLENGES
HITL systems are used in a variety of domains and they
offer several benefits over traditional ML systems, such
as increased accuracy, transparency, and the ability to
handle complex tasks. However, HITL systems also pose
several challenges, ranging from human factors to technical
challenges, as shown in Fig. 6. In this section, we will discuss
the challenges of HITL and potential solutions to address
them.

A. HUMAN FACTORS
One of the most significant challenges of HITL is the involve-
ment of humans in the decision-making process [27], [144],
[145], [146], [147]. Humans can introduce bias, subjectivity,
and inconsistency into the system, which can negatively
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FIGURE 6. Challenges of Human-in-the-loop learning.

impact the performance of the ML system. For instance, if a
human annotator labels a dataset incorrectly, the model’s
performance will be affected, resulting in poor predictions.
To address this challenge, organizations can adopt several
strategies. First, they can use multiple human annotators
to label data and aggregate the results to improve the
quality of annotations. Second, they can use quality control
measures, such as inter-annotator agreement, to ensure that
the annotations are consistent and accurate. Third, they can
use ML algorithms to detect and correct errors in the labeled
data. Another challenge related to human factors is the
scalability of human input. As the amount of data increases,
it becomes increasingly difficult for humans to provide
input at the same rate. This can lead to bottlenecks in the
learning process, slowing down the system’s performance.
To address this challenge, organizations can use specialized
tasks, where humans only provide input on specific parts of
the data, allowing them to focus on their areas of expertise.
They can also automate some tasks, reducing the burden on
human annotators. Crowdsourcing is another option, where
organizations can tap into a global pool of workers to provide
input.

B. COST
The cost of HITL can be high due to several factors, including
the need for human experts, training costs, and the time
required for human input [27], [148], [149]. One of the
primary costs associated with HITL is the need for human
experts. In some cases, HITL may require the involvement
of highly skilled and experienced experts to provide input
and ensure that the learning system produces accurate and
relevant results. These experts may have high salaries or
require specialized training, which can significantly increase
the overall cost of the HITL system.

Another factor that can impact the cost of HITL is the
training required for human input. In some cases, HITL
systems may require extensive training for humans to provide
input that is accurate and consistent. This can be especially
true for complex tasks or processes that require specialized
knowledge or skills. Training costs can include not only the
cost of training materials but also the cost of the trainer’s time
and expertise.

The time required for human input is another significant
cost associated with HITL. As data volumes increase, the
time required for humans to provide input can become a
bottleneck in the learning process, delaying the delivery of
results and increasing the cost of the system. Additionally,
the need for human input can make the learning process
more time-consuming and slower than fully automated ML
systems.

Fortunately, there are several strategies that organizations
can use to mitigate the cost of HITL. One approach is to use
automation wherever possible to reduce the amount of human
input required. For example, automated pre-processing and
feature extraction can reduce the amount of manual data
preparation required, while automated quality control and
feedback mechanisms can ensure that human input is
accurate and consistent. Another strategy is to specialize
tasks between humans and machines. This approach involves
identifying tasks that are best performed by humans and
tasks that are best performed by machines, and then
assigning those tasks accordingly. For example, humans
may be better suited to tasks that require judgment or
reasoning, while machines may be better suited to tasks
that require processing large volumes of data quickly and
accurately.

Crowdsourcing is another strategy that can help reduce
the cost of HITL [150], [151]. Crowdsourcing involves
soliciting input from a large number of individuals, often
via online platforms, to complete small, discrete tasks. This
approach can be especially useful for tasks that require
human input but do not require specialized knowledge or
expertise. Crowdsourcing can be an effective way to tap into
a large pool of talent, reduce costs, and speed up the learning
process. Continuous training is another strategy that can
help reduce the cost of HITL. By continuously updating the
learning system with new data and feedback, organizations
can improve the accuracy and relevance of the system over
time. Continuous training can also help reduce the need for
extensive initial training, as the system can learn and adapt
over time.

C. COMPLEXITY
HITL learning involves the integration of human expertise
and judgment into the ML process. However, this integration
also adds complexity to the learning process. In this section,
we will discuss the challenges of complexity for HITL
learning.

One of the primary challenges of complexity in
HITL learning is the need for specialized skills and
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knowledge [148], [152]. Unlike traditional ML, HITL
learning requires the involvement of experts in various
fields to provide domain-specific knowledge and feedback.
For example, in the healthcare industry, HITL learning
may require the input of medical professionals to provide
insights into the effectiveness of treatments or the diagnosis
of diseases. Similarly, in the financial industry, experts in
risk management may be required to provide input on the
identification and mitigation of potential risks.

This need for specialized skills and knowledge can create
challenges in the recruitment and retention of experts for
HITL learning. It may be difficult to find and attract experts
who are willing to devote their time and effort to the learning
process. Additionally, experts may require compensation for
their participation, adding to the cost of HITL learning.
Another challenge of complexity in HITL learning is the
need to manage the feedback provided by experts. Unlike
traditional ML, HITL learning involves the integration of
feedback from multiple experts, which can be conflicting
or inconsistent. Managing and reconciling this feedback can
be a complex and time-consuming process. Furthermore, the
feedback provided by experts may not always be accurate or
reliable. Experts may have biases or make errors, which can
negatively impact the learning process. For example, in the
legal industry, HITL learning may require input from lawyers
on the interpretation of legal statutes. However, lawyers may
have differing opinions on the interpretation of the law, which
can make it difficult to determine the correct answer.

In addition to the challenges of managing feedback from
experts, HITL learning also requires the integration of
feedback from end-users. End-users provide feedback on
the usability and effectiveness of the ML system. However,
this feedback can be subjective and inconsistent, making it
challenging to incorporate into the learning process. Another
challenge of complexity in HITL learning is the need for
interpretability and transparency. As discussed earlier, HITL
learning requires the use of interpretable ML models that
can be easily understood and interpreted by experts and end-
users. This interpretability is necessary to ensure that the ML
system is making decisions that align with the expectations
and needs of experts and end-users.

However, achieving interpretability and transparency in
HITL learning can be challenging. ML models can be
complex and difficult to interpret, especially when they
involve the integration of feedback from multiple experts
and end-users. Additionally, the integration of feedback from
experts and end-users can make it difficult to explain how the
machine-learning system arrived at a particular decision.

D. QUALITY OF THE DATA
One of the primary challenges of HITL learning is the quality
of the data [27], [151], [153]. HITL systems rely on input
from humans to improve the performance of the ML models.
However, the quality of human input can be subjective,
biased, or inconsistent, which can negatively impact the

performance of the ML system. One major issue is that
humans may have different interpretations of the same data,
leading to inconsistencies in labeling or categorization. For
example, in a medical diagnosis system, different doctors
may interpret the same symptom differently, leading to
inconsistent labels for the training data. This can lead to
inaccurate models that do not generalize well. Another issue
is that humans may introduce biases into the training data,
whether intentionally or unintentionally. This can occur when
the human labelers have prior beliefs or stereotypes that
influence their labeling decisions. For example, in a hiring
algorithm, if the human labelers have a bias towards certain
demographics, the resulting model will perpetuate that bias.

Additionally, humans may not be able to provide
high-quality data consistently as the amount of data increases.
This can lead to a bottleneck in the learning process [154],
as the system cannot learn as quickly as new data is
generated. To address these challenges, several strategies
can be employed. One approach is to use multiple human
labelers and aggregate their responses to reduce the impact of
individual biases or inconsistencies. This approach can also
help identify problematic labelers and remove their responses
from the dataset. Another approach is to use domain
experts as labelers [155], as they have more knowledge and
experience in the specific domain and can provide more
accurate labels. In the medical diagnosis example, using
doctors as labelers can improve the quality of the training
data.

Automated quality control mechanisms can also be imple-
mented to identify and correct inconsistencies or errors in
the training data. These mechanisms can flag questionable
labels for human review or automatically correct obvious
errors. Finally, continuous training can help address the issue
of scalability by enabling the system to learn and improve
over time as more data becomes available. In this approach,
humans provide initial labels, but the system can retrain and
adjust its model as it receives new data.

E. INTERPRETABILITY
Model interpretability refers to the ability to understand how
a machine-learning model arrives at a decision [156], [157].
This is essential for domains such as healthcare and finance,
where the decisions made by the system have significant
consequences. To address this challenge, organizations can
use interpretable ML models, such as decision trees, linear
models, and rule-based models. These models are easier
to interpret than black-box models such as deep neural
networks. Another approach is to use post-hocmethods [158],
such as feature importance and local explanations, to explain
the model’s decisions.

F. ONLINE LEARNING
Online learning refers to the ability of the system to learn
continuously from new data, updating themodel’s parameters
as new data arrives. This is critical for domains such as fraud
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detection and cybersecurity, where the system needs to adapt
to new threats. To address this challenge, organizations can
use online learning algorithms such as stochastic gradient
descent and online linear regression [148], [159], [160].
These algorithms update the model’s parameters as new data
arrives, allowing the system to adapt to new patterns.

G. HUMAN-MACHINE INTERACTION
Within theHITL framework, the challenge of human-machine
interaction is rooted in the intricate nature of collaboration.
Despite an expanding body of technical research on
human-machine synergy in ML, the fundamental collabo-
ration model and mechanisms remain enigmatic. An array
of uncertainties prevails, encompassing the delineation of
the collaboration mode, the amalgamation of machine
and human outputs (e.g., machine-extracted and human-
nominated features) across parallel and sequential contexts,
and the orchestration of transitions between both sides
for diverse learning tasks. Furthermore, the assignment of
roles to human collaborators, whether lay individuals or
domain experts, along with optimizing the requisite number
of human contributors, introduces heightened complexity.
Successfully addressing these pivotal queries is imperative
for unveiling the ML collaboration model. Although human
intelligence can enrich interpretable features, merging them
with machine-generated attributes holds potential for a
more potent learning paradigm. Yet, unresolved hurdles
persist, chiefly in assigning values to human-nominated
features. This task’s resource-intensive nature, attributed to
the nuanced qualities of many features, necessitates human
engagement in labeling. In contrast to the single-label-
per-entry scenario in classification tasks, value acquisition
involves multiple human interventions per entry, prompting
the need for strategies that balance cost against model effi-
cacy. A promising avenue involves curating information-rich
features, striving for equilibrium between feature labeling
costs and model precision. Furthermore, the integration of
human and machine attributes presents a conundrum. While
a straightforward approach involves concatenating features
into an elongated vector, an alternate strategy entails training
distinct machine and human classifiers and subsequently
amalgamating them through ensemble learning techniques to
bolster predictive accuracy [161], [162].

H. VALIDATION
In the context of HITL learning, validation becomes more
challenging due to the involvement of humans in the
learning process [152], [163], [164]. This section will
discuss some of the challenges associated with validating
HITL systems. One of the primary challenges of HITL
validation is the subjectivity of human input. Humans can
have different opinions and interpretations of the same data,
which can lead to inconsistencies in the validation process.
For example, in a medical diagnosis system, different doctors
may have different opinions on a patient’s condition, leading

to inconsistencies in the system’s performance evaluation.
To overcome this challenge, it is essential to have clear and
objective criteria for evaluating the performance of HITL
systems. These criteria should be defined in collaboration
with domain experts and should be based on measurable
outcomes [165].

Another challenge of HITL validation is the lack of a
ground truth for human input. In traditional ML systems,
a ground truth is used to evaluate the system’s performance.
The ground truth is a set of data that is known to be correct,
and the system’s output is compared against this ground
truth to assess its performance. However, in HITL systems,
the ground truth is often missing, as the input provided by
humans may not be entirely accurate. For example, in a
language translation system, the translation provided by a
human may not be the only correct translation. To overcome
this challenge, it is essential to have multiple human
annotators to provide input and to use statistical methods
to evaluate the system’s performance. Another challenge of
HITL validation is related to the scalability of human input.
As the amount of data increases, it becomes increasingly
challenging for humans to provide input at the same rate.
This can lead to bottlenecks in the learning process and can
affect the system’s performance. To overcome this challenge,
it is essential to use efficient data sampling techniques and to
specialize tasks between humans and machines [54].

Furthermore, HITL systems may require ongoing training
and adaptation, making validation an ongoing process.
As the system continues to learn and adapt, the criteria for
validation may also change. To overcome this challenge,
it is essential to have a feedback loop in place that allows
for continuous evaluation and improvement of the system.
Another challenge of HITL validation is related to the
ethical implications of human input. In some cases, the input
provided by humans may contain biases that can lead to
discrimination and unfairness in the system’s output. For
example, in a hiring system that uses HITL, human input may
contain biases based on gender, ethnicity, or age. To overcome
this challenge, it is essential to have a diverse group of
human annotators and to use statistical methods to identify
and correct biases in the system’s output.

I. ETHICAL AND LEGAL ISSUES
HITL systems also pose several ethical and legal challenges,
such as data privacy and bias [141]. Data privacy refers to the
protection of personal information, such as medical records
and financial information. HITL systems can pose a risk to
data privacy, especially if human annotators have access to
sensitive data. To address this challenge, organizations can
use techniques such as differential privacy to protect sensitive
data. Differential privacy adds noise to the data to ensure
that the data cannot be traced back to an individual. Bias is
another ethical challenge in HITL systems. Bias can occur
when the dataset used to train the model is biased, leading to
biased predictions. Leverage the HITL approach, combining
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human and machine intelligence throughout the entire ethical
AI design process [166]. For instance, if a facial recognition
system is trained on a dataset.

V. FUTURE DIRECTIONS
HITL systems refer to a type of ML system that involves
human input and oversight. These systems are becoming
increasingly popular, and as a result, there are many research
opportunities in this area. Here are some of them:

• The feedback individuals can provide for systems like
chatbots or automatic summarization tools is sparse due
to the size of the output space [167]. It’s important
to explore intelligent questions for syntactic parsing
tasks [123] and to consider trust and confidence in
user-centered design and evaluation of topic modeling
tasks [168]. However, some HITL techniques may allow
malicious individuals to train models for their purposes,
potentially causing harm to society by exploiting human
feedback. This could result in language models being
used to manipulate human beliefs, instill radical ideas,
commit fraud, and more [128].

• In order to improve image restoration, it is important
to optimize predictive parameters using supervised
regressionmodels and scientifically analyze correlations
between different algorithms using HITL methods [80].
Additionally, in image enhancement tasks, AL can
be used to help users estimate cluster membership
with the fewest image enhancements. These approaches
are outlined in studies on HITL computer vision
systems [169].

• Human supervision is preferred due to varying levels
of expertise and potential for erroneous decisions as
workload increases [170]. To improve NLP and CV,
more human feedback datasets should be collected and
shared [171]. User credibility should also be considered
to evaluate the quality of feedback provided [120].
In addition to model performance, more rigorous user
studies should be designed and conducted to assess the
effectiveness and robustness of HITL frameworks [168].
For generative tasks, an explicit function can be defined
with user feedback to collect and evaluate generated
signals [167]. It is important to find an efficient method
to dynamically select the most representative and
valuable feedback [172]. Finally, a more user-friendly
way of displaying the model’s learning and the feedback
process should be explored through visualization [173].

• To ensure reliability and safety, it is crucial to choose
the right time for artificial intervention, particularly for
tasks that require high levels of safety and security [174].
When it comes to human-computer interaction systems,
users’ experience expectations are usually given more
importance than performance. Therefore, it is crucial to
model sensor signals and create a unified code for both
abstract and concrete information to make this process
smoother [175]. While human intervention usually

revolves around shallow judgments such as acceptance,
rejection or direction, it is important to explore more
complex feedback for HITL applications [176].

• To improve the efficiency and performance of robotic
systems, the research aims to gain a comprehensive
understanding of evaluative feedback and preference
learning in PlacingBall-Simulation, Reaching, and two
real robot tasks. The objective is to develop robotic sys-
tems that can effectively assist humans in various tasks
and operate in a human-like manner. To achieve this, the
findings will be validated by running all experiments
with actual human trainers who can provide feedback
and help improve the systems’ performance [177].

• Developingmethods to improve the generation ability of
large language models is necessary because the present
model is limited by the generation ability of GPT-3
[178]. Future research could focus on developing meth-
ods to improve the generation ability of large language
models, such as training models on more diverse and
representative datasets, developing more effective fine-
tuning methods, or designing new architectures that can
better capture long-term dependencies.

• Investigating finer-grained human feedback for text
generation because the current approach relies on
sentence-level feedback, which may not be sufficient
for generating high-quality sentences that fully meet the
desired attribute/distribution. Exploring finer-grained
human feedback, such as rating or rewriting part
of a sentence. Future research could investigate the
effectiveness of such feedback mechanisms, as well
as develop new methods for incorporating them into
text generation models. This could involve designing
new interfaces for collecting feedback, developing
algorithms for processing and incorporating feedback
into models, or exploring the use of reinforcement
learning to optimize generation based on feedback.

• Developing tutorials for ML models and their explana-
tions could help relieve some of the cognitive burdens
from humans. Such tutorials could summarize the model
as a list of rules, add heatmaps in examples, or provide
a sequence of training examples with explanations
and sufficient coverage. Future research could focus
on developing effective tutorials for ML models and
their explanations, and investigating how they can best
support human decision-making [100].

• Providing narratives to improve the effectiveness of
explanations because feature-based and example-based
explanations could further improve the trust of humans
in machine predictions. Future research could investi-
gate the effectiveness of different forms of narratives
in enhancing the interpretability and trustworthiness
of ML models. This could involve designing new
approaches for generating narratives that are tailored to
the needs of different user groups or exploring the use
of storytelling techniques to communicate complex ML
concepts [100].
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• Studying the ethical concerns of providing assistance
from ML models in human decision-making because
of raises important ethical concerns, such as the risk of
removing human agency and the potential for unfairness
in algorithmic decision-making. Future research could
investigate these concerns in greater detail, and explore
ways to mitigate potential harms. This could involve
developing new approaches for designing fair and
transparent ML models or investigating the legal and
social implications of using ML in decision-making
contexts [100].

• Investigating the impact of the system on the patient
experience: The authors note that further research is
needed to understand how the system affects the patient
experience, particularly in terms of patient trust and
likelihood to act on the system’s predictions. Future
research could involve conducting user studies with
patients to better understand their perceptions of the
system and investigating ways to enhance patient trust
and engagement.

• Understanding the impact of the system on ophthalmol-
ogists’ practices: The authors suggest that additional
research is needed to understand how the system may
alter the practices of ophthalmologists who evaluate
patients who have received a prediction from the DL
system. Future research could involve conducting sur-
veys or interviews with ophthalmologists to understand
their perceptions of the system and exploring ways to
integrate the system into their clinical workflows.

• Designing study protocols for human-centered prospec-
tive studies: The authors suggest that an important
area of future work is the design of study protocols
for conducting human-centered prospective studies and
studies on end-to-end service design of AI-based clinical
products. Future research could focus on developing
new methods and best practices for conducting user
studies in clinical settings and investigating the design
of AI-based clinical products from a human-centered
perspective. This could involve exploring ways to
involve patients and clinicians in the design process
and developing methods for evaluating the impact of
AI-based clinical products on patient outcomes and
clinical workflows.

• Designing and testing onboarding materials for AI
Assistants based on the findings of this research. This
includes exploring how onboarding materials can shape
work practices, instill accurate and actionable mental
models, and impact assessments and attitudes toward the
AI Assistant, such as user trust [102].

• Investigating how the AI Assistant can be used in differ-
ent collaborative decision-making scenarios, including
those that involve complex and uncertain information.
This research could explore how the AI Assistant can
be used to help people develop more effective strategies
faster, and how it can support decision-making processes
that involve multiple stakeholders.

• Exploring how AI Assistants can be customized for
different users and contexts. This could include design-
ing personalized onboarding materials, tailoring the
AI Assistant’s capabilities to different decision-making
contexts, and considering how user preferences and
needs can be incorporated into the design of the AI
Assistant.

• Examining the long-term effects of using anAIAssistant
for collaborative decision-making. This research could
explore how the use of an AI Assistant impacts team
dynamics and collaboration over time, and how it
influences the development of decision-making skills
and expertise among team members.

• Investigating ethical considerations related to the use of
AI Assistants for collaborative decision-making. This
could include exploring issues related to bias, fairness,
transparency, and accountability, as well as considering
how to ensure that the AI Assistant is aligned with the
values and goals of the organization and its stakeholders.

• Utilizing machine learning algorithms for automated
mapping enhances model accuracy and mitigates chal-
lenges associated with Data Outdated and Ambiguous
Mapping. Broadening the dataset’s coverage across
different geographies and business categories serves to
validate the applicability of the proposed approach in
diverse environments [138].

• Designing a steering assistance system when the human
driver model is inaccurate and the curvature is time-
varying [179].

• Future research work could include investigating the
relationship between human driver attention, scenario
contextual information, and other surrounding agents to
develop an intelligent and adaptive driver attention esti-
mation system. Additionally, the semantic segmentation
technology could be further improved, and it could be
adopted to obtain semantic information [180].

• Future research work mentioned in the given paragraph
is ‘‘fixed-time formation control for HiTL UAV systems
with prescribed performance [181], [182], [183], [184],
[185], [186].

• Improving the performance of the brain-control behav-
ior to address the challenge of inaccurate or untimely
output of desired commands by the drivers. This
can be achieved by redesigning the stimulus presen-
tation paradigm to help users to produce the dis-
criminative EEG signals or developing some hybrid
Brain-computer interfaces (BCIs) to improve the decod-
ing performance of BCIs. Enhancing the driving
ability of the brain-control drivers by practicing and
developing a more user-friendly interface. Increas-
ing the number of acceleration commands and driv-
ing speed to enhance the brain-controlled vehicles
(BCVs) [187].

• To improve the computation efficiency and the adap-
tivity of the algorithm to various complex traffic
scenarios and validate the performance of the proposed
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algorithms in real-time using hardware-in-the-loop sim-
ulations [188].

• Development of the decision-making strategy based on
the human-demonstration-aided reinforcement learning
(RL) method. This could involve exploring different
types of safe demonstrations or modifying the Double
Dueling Deep Q Network (D3QN)-RL algorithm to
further enhance its performance. Collaborating with dif-
ferent research domains to advance decision-making and
autonomous driving technologies. This could involve
working with experts in computer vision, robotics, and
human factors to develop more comprehensive and
integrated approaches to autonomous vehicles [57],
[189], [190], [191], [192], [193], [194].

• Collecting data from diverse age groups and increasing
the number of participants to improve the reliability and
generalizability of the study’s findings. Studying a more
in-depth human driving model to identify potential areas
of integration into the performance-based approach.
Conducting experiments in real traffic environments as
autonomous functions becomemore accessible and legal
to use when driving on the road [195].

• Conducting annotations on larger scales to evaluate the
presented error detection framework from more angles
other than precision. Investigating how the identified
erroneous instances or features could be used for further
fixing or debugging the pre-trained models [119].

• Conducting further research on developing rational
and intuitive interfaces for human-machine (brain)
interfaces to improve explainable AI (XAI). Developing
an explainable twin AI system to work in parallel
to the DL systems that are designed for optimization
performance [196]. Developing defense mechanisms
that can recognize targeted attacks against DL and XAI
engines. Conducting further research on understanding
DL modules that contribute to physical (PHY) and
medium access control (MAC) layer roles. Embarking
on research to incorporate XAI into future wireless
systems [197].

• Establishing automatic assessment algorithms for each
type of action based on different childhood myositis
assessment scale (CMAS) rules. Generating more real-
istic motions by combining the motion-style transfer
technique for the corresponding character for a given
action. Conducting further user studies to assess the
repeatability and usability of the system. Further opti-
mization and validation of the system will be necessary
before clinical use [110].

• Improving the accuracy of the causal model by address-
ing limitations like sampling biases and missing proxy
variables. This can be done through the use of non-linear
structural equation models (SEMs) and causal discovery
algorithms like Fast Causal Inference (FCI). Enhancing
the scalability of the tool to handle larger datasets
by exploring GPU-based parallel implementation of

PC algorithms like cuPC or using inherently faster
causal discovery algorithms like F-GES. Optimizing
graph layout algorithms and exploring other visual
analytics techniques like node aggregation to help
navigate larger graphs better. Extending the HITL
methodology to tackle biases in other domains such as
word embeddings. Addressing human factors involved
in the tool’s operation, such as user bias and misuse,
by choosing responsible users, checking system logs,
and holding users accountable for their actions.

• Exploring the utility of higher-order information such
as curvature, which could facilitate the search process
by allowing exploration in a curved subregion. Studying
utility for choosing other (l ̸= 1) dimensional
subspaces, as well as its combination with conditional
generative models or domain-specific approaches. Test-
ing on different types of generative models such as body
shapes and hairstyles to see how well it works [198].

• Conducting multi-disciplinary studies that contain
human factors and ergonomics (HF/E) as an essential
discipline to support the shift in focus from a
technology-centric view to a systems perspective when
designing and developing AI applications for healthcare.
Developing reporting guidelines for AI studies that
include rigorous HF/E practices and evidence to
ensure that AI-enabled healthcare is trustworthy and
sustainable. Exploring how HF/E considerations such
as situation awareness, workload, automation bias,
explanation and trust, human-AI teaming, training, the
relationships between staff and patient, and attention to
ethical issues can be integrated into the design and use of
AI applications in healthcare to improve patient safety,
patient experience, staff well-being, and the efficiency
of health systems. Reinforcing regulatory expectations
that HF/E best practices have been followed when
designing and developing AI applications for healthcare.
Providing education and support in HF/E for healthcare
professionals and organizations to effectively apply
HF/E theories and approaches in practice and embed
AI successfully in health systems. Extending the scope
of research beyond the limited evidence base of AI
in real-world use and exploring how well AI-enabled
healthcare works for other medical applications and
settings. Investigating how higher-order information,
such as curvature, can facilitate the search process
in exploring high-dimensional latent spaces for deep
generative models [199].

• Investigating the effectiveness of democratic AI as a
method for value alignment. While the current study
demonstrates that an AI system can be trained to
satisfy a democratic objective, it is important to further
explore the strengths and limitations of this approach.
For example, future research could investigate the
potential for the ‘‘tyranny of the majority’’ to arise
with democratic AI, and explore ways to protect the
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interests of minority groups. Examining the potential for
AI systems to replace human decision-makers in various
contexts. The study raises questions about whether
people would trust AI systems to design mechanisms
in place of humans, and whether such systems could be
used in the public sphere without human intervention.
Future research could explore these issues in greater
depth, as well as investigate the potential benefits
and risks of using AI systems in place of human
decision-makers [200].

• Exploring the long-term effects of metacognitive mon-
itoring feedback and the self-regulated fuzzy index
(SRF) index in a HITL simulation, to better understand
the relationship between metacognitive judgments and
human performance in different environments and age
groups. Additionally, the study could investigate further
the SRF index to find various relationships between
the SR learning process and human performance. This
research will be valuable in developing more advanced
feedback learning algorithms to improve an operator’s
situation awareness (SA) [201].

• Evaluating the effectiveness of the HITL control strategy
for a larger group of patients with various lower limb
impairments. Additionally, the use of other imaging
techniques, such as electromyography (EMG), could
be explored to further understand the muscle activity
and coordination involved in the rehabilitation training.
Furthermore, the adaptive controller could be improved
to better account for varying levels of impairment and to
provide personalized assistance for each patient [202].

• Introducing functional magnetic resonance imaging
(fMRI) to evaluate the performance of lower extremity
motor function in patients in the context of a unilateral
exoskeleton system for rehabilitation training. Exploring
the potential of using an ML estimation technique
called approximate expectation-maximization (EM) and
a multiple-model estimator that switches between
multiple nonlinear human motion models to infer
human motion trajectories and estimate reaching goal
intentions for assistive robots in joint tasks with humans.
Investigating how to ensure the safety of humans in the
presence of actuator and sensor failures and exploring
the use of sensors such as ultrasound imaging to estimate
human intention in human-robot collaboration (HRC)
tasks involving assistive robots [203], [204], [205].

• Conducting a larger user study to involve other cate-
gories of computer users and explore their distraction
patterns, as well as considering computing professionals
in the Wall Street business enterprises to capture their
distraction behavior, are future research directions.
While using a camera for collecting ground truth is
more reliable, it may be privacy-invasive in a computing
environment [206].

• Validation of the HITL weight compensation method on
a real upper limb exoskeleton device with myoelectric
sensors. Minimization of whole muscles’ effort using

partial observation of four mono-articular muscles.
Investigation of the adaptation rule’s robustness to
sensory noise in EMG sensors. Consideration of the
adaptation rule as a cognitive model for mass estimation
in static conditions. Exploration of the potential of the
method as a deep sensing method for individuals with
hand amputations who still have sensory neurons [207].

• HITL learning is an emerging paradigm that holds
great promise for solving complex problems in various
domains. Developing formal computational frameworks
that incorporate humans in the loop is critical for the
success of HITL systems. These frameworks should
address the challenges of HITL learning, such as the
quality of human input, scalability, and ethical issues,
while also predicting the future of HITL platforms.
Continued research and development in HITL learning
will help to maximize the benefits of human-machine
collaboration and create more intelligent, adaptive, and
efficient systems.

VI. CONCLUSION
HITL systems are a promising area of research that seeks
to leverage the strengths of both humans and machines to
accomplish complex tasks. Despite the possible advantages,
creating HITL systems has its own set of difficulties, includ-
ing creating efficient human-machine interfaces, dealing with
ambiguity and uncertainty, controlling biases, and addressing
ethical issues. This paper has reviewed the current state-
of-the-art methodologies for developing HITL systems and
identified the major challenges that need to be addressed.
We have also talked about the possible uses of HITL
systems in a number of industries, including healthcare,
finance, and education. Moving forward, the development
of HITL systems requires a collaborative effort between
experts in ML, human-computer interaction, and domain-
specific knowledge. By working together, we can advance the
development of HITL systems that can effectively leverage
the strengths of both humans and machines to improve
decision-making, automate tedious tasks, and enhance overall
performance.
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