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ABSTRACT Ethereum Blockchain technology introduced a competitive environment in the financial sector.
Consequently, new technologies emerged, such as Smart Contracts (SCs), which preclude code corrections
due to their immutable nature. However, the incorrect and faulty uploaded SCs led to uninvited penetrations
into SCs’ accounts, resulting in considerable customer losses. This SC’s drawback requires tools to test the
SCs and paves the way for research on vulnerability detection techniques. Our survey paper comprehensively
reviews 41 SC tools and presents the vulnerability detection techniques (VDTs) of several previously
invented tools by dividing them into general and specific classes. Finally, we also perform a classification
of detection techniques to standardize the approaches. Thus, our study will help SC developers and security
analysts to streamline the security of SCs and reduce the chances of malicious monetary transfers.

INDEX TERMS Ethereum blockchain, smart contracts, survey, vulnerability detection techniques, classifi-
cation of smart contracts, vulnerability detection tools, static analysis, dynamic analysis.

I. INTRODUCTION
ABlockchain is a database of blocks containing a list of trans-
actions of fixed or variable sizes. Henceforth, the immense
volume of stored information and the mechanisms for creat-
ing and handling such gigantic information can invite several
anomalies. For instance, Blockchain’s reliance on the dis-
tributed consensus mechanism can result in a 51% attack [1].
The attack requires that most of the computing power is
malicious. Fortunately, in an extensive distributed network,
it isn’t easily achieved. However, the expansion of Blockchain
can lead to scalability problems, causing slow processing of
the transactions. Again this problem overwhelms only if the
transaction is urgent [2]. But still, Blockchain technology
enjoys a less welcoming attitude in several countries because
its nascent existence has met with severe attacks like DAO in
2016 and, more recently, the Binance attack in 2022 [3], [4].
These incidents highlight that security problems keep haunt-
ing Blockchain investors; hence, Blockchain’s programming
modules, i.e., smart contracts (SCs), need immediate atten-
tion. One way to boost the security of SCs is by developing

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

robust tools to prevent hackers from stealing funds from SC
accounts, Brent et al. [5]. Developers with recent exposure to
security flaws and research like ours, which focuses on SC
vulnerability detection techniques, can be helpful in neutral-
izing attack vectors in this direction.

A vulnerability [6], [7], [8] refers to a programming prac-
tice that can be problematic due to the programmer not
anticipating a malicious semantic behavior. In traditional
networks of financial institutions, vulnerable code may be
present in the repositories [9]. But in EVM there are known
cases of the vulnerable patterns causing direct and indirect
harm to users’ funds. Our work focuses on both direct [10]
and indirect [11] losses of cryptocurrency like Ether. Direct
loss involves accessing vulnerable code segments by the
attacker that can transfer Ether to unknown accounts. On the
other hand, indirect loss occurs due to the loss of gas, which
acts as fuel for running programs on the EVM and has a
cost associated with it. Work in [12] discusses some cod-
ing patterns that can cause ‘out of gas‘ exceptions (patterns
normally relate to images [13]). Thus, understanding Solid-
ity concepts helps to design secured and economical SCs.
Hence, our research does not restrict vulnerability to unse-
cured access to Ether transfer statements (i.e., unprotected
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Ether withdrawal [14]), costly gas patterns [15], deprecated
instructions (useful to identify vulnerabilities in old deployed
SCs [16]), mathematical discrepancies [17], misusing SC’s
program variables [18] and Blockchain variables [19], result-
ing in miners’ violations. But, we include any other coding
flaw as minor as ignoring return values or devastating like
reentrancy if it highlights a wicked intent.

Our analysis contains over 20 state-of-the-art SC vulner-
abilities and 42 detecting tools. We focus on the following
three dimensions (a) vulnerability detection techniques and
their classification (b) highlighting of Solidity and bytecode-
based SCs’ exploitable weaknesses (c) workings of various
Ethereum SC’s testing tools.

A. THEORETICAL FOUNDATION
The motivation is that a better understanding of vulnerability
detection techniques would develop (i) more effective tools,
(ii) a bug-free Solidity programming language, and (iii) a pro-
tective EVMBlockchain. Apart from other research, the work
presented by Atzei et al. [20] acted as a backbone for our
programming knowledge related to SC vulnerabilities. In our
previous survey, we provide a list of vulnerabilities, catego-
rized in the context of domain knowledge of the vulnerable
operation of SC [23]. We also show how the adversary could
exploit the vulnerabilities to generate attacks such as DAO,
Grossman et al. [38] andKing of Ether Throne (KOET), Atzei
et al. [20]. Comparatively, the following reasons compel us to
develop an updated survey:
– Revision in Solidity Programming Constructs. The

Solidity [39] programming language has undergone
major changes. Solidity has introduced new directives
like payable to indicate that a function can receive
Ether or an address is capable of transferring Ether.
The ‘constructor’ keyword represents the construc-
tor’s name instead of SC’s. The built-in function names
have also been changed, like revert replaces throw,
selfdestruct replaces suicide, var deprecated,
and so on.
Some recent changes are the introduction of a virtual
keyword for the overriding and an abstract keyword
to indicate that we cannot create the instance of SC
because the SC has at least one undefined function. One
significant change is the splitting of the fallback function
into receive(), and fallback() functions, where
receive() only handles monetary transactions, and
fallback() can handle both data and financial trans-
actions. We replicated the code from previous research
(with references) and modified it in conversant with the
‘‘solc’’ compiler version 0.6.1.

– Covering Additional Vulnerabilities and Code-level
Bugs. Several vulnerabilities and code-level bugs are
overlooked in previous surveys, including Atzei et al.
[20]. For instance, there is no discussion on Arithmetic
Bugs (or Integer Overflow) in the survey, Atzei et al.
[20]. Furthermore, the previous surveys do not shed thor-
ough light on gas-related vulnerabilities. Our research

addresses this gap by providing detection techniques for
integer overflow and gas-related vulnerabilities.

– Not Adequate Discussions on the Latest SC Tools.
Unlike Atzei et al. [20], we incorporate vulnerabil-
ity detection techniques developed after Atzei’s survey,
like the techniques based on fuzzing tools, XML, and
invariants; hence our work can provide more up-to-date
knowledge for future research. Invariants are always true
properties, like the balance invariant, which should not
be false for funds withdrawal (i.e., the balance is greater
than the withdrawal amount).

Furthermore, recent surveys presented in [21] and [40],
Tolmach et al. [41], [42] and Ji et al. [43] are also different
from ours, because our survey provides:
– Thorough Discussion on SC Vulnerability Detection
Techniques. None of the research in [44], [45], Xu et al.
[46], Praitheeshan et al. [34], Kushwaha et al. [47] and
López Vivar et al. [48] comprehensively discuss SC vul-
nerability detection techniques and their classification.
For the first time, we provide an up-to-date discussion
on 41 SC tools within Ethereum Blockchain focusing
Solidity programming language and/or EVM bytecode-
based SCs. Work in [23] provides a comprehensive
discussion about SC vulnerabilities which could be help-
ful for novice Blockchain developers to understand some
of the concepts mentioned in this research. Our work
extends the research in [23].
Table 1 provides the section# of our survey, significance,
and focus of the research work linked to the mentioned
section. We divide Table 1 into five parts discussed
below:
Part 1 cites two articles that may arouse interest in
Ethereum research. For instance, Atzei et al. [20] dis-
cusses several buzzwords like ‘‘King of Ether Throne’’
(i.e., a game), ‘‘msg.sender’’ (i.e., Solidity’s keyword
representing the caller of SC’s any function), ‘‘Ponzi
Scheme’’ (i.e., a fraudulent SC promoting invest-
ment [49]) and so on. The game offers a lucrative
crown to users at the cost of some Ether. However,
when the users play the game, they lose their Ether due
to mishandled Exception vulnerability. The other work
in [21] provides helpful information about the Consen-
sus algorithm that solves the trust problem in Blockchain
so that Blockchain doesn’t require 3rd party to act as a
witness for the transaction. The research compares six
consensus algorithms. For instance, the ‘Proof of Work‘
consensus algorithm deals with BitCoin Blockchain.
The algorithm requires the computing nodes, called
miners, to solve a mathematical puzzle to validate
the transactions in a block before the block becomes
part of the Blockchain. Finally, the paper focuses on
security issues and discusses various vulnerability detec-
tion tools like Zeus (Section III-A1) and MadMax
(Section III-A16).
In Part 2, we discuss two papers. One is [22], which
classifies SC vulnerabilities and assigns them IDs. This
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TABLE 1. Some vital, novel, and additional contributions related to different sections of our article.

work is the need of the hour because it could provide
a standard scheme for referring to the vulnerabilities.
However, the authors don’t use efficient coding for the
subjects. For example, they focused on 54 vulnerabilities
and could achieve their coding using 6-bit binary values.
Instead, the authors started with 2-Hex digits but later
shifted to 3-Hex numbers, which is not scientific. The
other work in [23] helps understand the SC vulnerabili-
ties and familiarizes readers with Solidity coding.
In Part 3, we introduce five vulnerability detection tools
developed in 2023: Exgen (Section III-A24), MSmart
(Section III-A14), IR-Fuzz (Section III-A18), Hors-
tify (Section III-A20) and TechyTech (Section III-B11).
Additionally, part 3 references some novel tools
like Ethainter (Section VII-A6) and Clairvoyance
(Section III-A29). Ethainter focuses on information flow
rules, and Clairvoyance incorporates path-protective
techniques. Information flow partitions information
into trusted and untrusted groups and traces their
path. Path protective techniques help in the feasibil-
ity checking of paths to reduce false positive cases.
But the survey in [32] discusses the methods to
defend against vulnerabilities, which could be helpful
to novice users. Further, we highlight the rare work
done in [30] (i.e., detection of event ordering bugs
(Section III-B9)), [31] (i.e., summary-based symbolic
analysis (Section III-A7), and detection of batch over-
flow vulnerability (Section VI-B4).
In Part 4 we include two surveys i.e., [33] (published in
2023), and [34]. Survey [33] focuses on SC properties

and provides more than 200 references. The property
represents the SC’s behavior and helps identify the pro-
gram’s correctness. In addition, the authors classify their
analysis methods into four major categories: (a) static,
(b) dynamic, (c) formal verification, and (d) machine
learning [50]. Finally, the authors organize the analysis
methods into more specific ones (like a: static type
checking, abstract interpretation, b: Concolic testing,
Fuzzing, c: theorem proving, model checking, d: super-
vised and unsupervised learning) and then discuss the
properties associated with them. Survey [34] highlights
the uniqueness of attacks. For example, an attacker
exploits the selfdestruct vulnerability, destroys
the SC, and locks the Ether of dependent SCs. However,
none of the above three surveys discuss the specific
vulnerability detection techniques that we focus on in
this article. Part 5 discusses the future research directions
(SectionXVI), which could influence new researchers in
chalking out their research plans.

Our attention has been on the tools, and we think
pre-scanning SCs with vulnerability detection tools can
reveal code flaws. Several tools are already available for
vulnerability detection, but their execution processes are
complex, and the tools’ research does not classify the detec-
tion techniques into a SC-based classification model. We are
the first to provide a classification model for SC-based
vulnerability detection techniques after going through the
original research of the tools. To classify the detection
approaches, we first gather techniques from research papers
and web articles, verify them through discussion forums
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TABLE 2. Categories and percentages: Downloaded and referenced research papers.

(if there is any ambiguity), and then categorize the techniques
into various SC-based vulnerability detection classes.

Furthermore, Ethereum SC technology’s ongoing evolu-
tion adds new features to the Solidity programming language
and Ethereum Blockchain technology, confirming the valid-
ity of our research. Consequently, the latest versions of the
Solidity programming language do not support many old
vulnerability detection tools. Yet, the old vulnerabilities per-
sist because EVM still supports the old SCs. Therefore, it is
necessary to highlight the old tools’ detection techniques so
that the Ethereum Blockchain community can support old
SCs and develop new tools to fill the gap related to inefficient
and outdated tools.

B. SURVEY METHODOLOGY
Before going into the details of our methodology, we want
to state that we try to familiarize ourselves with Truffle1

and Remix2 tools to understand how these tools detect SC
vulnerabilities.

However, the usage of any tool discussed in (Section III)
for analysis of any SC is beyond the scope of this research.
We classify the tools into different vulnerability detection
classes, listed in (Section IV), using the information retrieved
from the tool’s associated research article’s title, text or
specifically the steps involved in the vulnerability detection
process (also retrieved from article’s text). We identify ten
vulnerability detection classes based on software testing, pro-
gram analysis, and EVM modules.

We started browsing research papers using the search
phrase ‘‘Ethereum Blockchain Survey’’. But after reading the
article [51] based upon the F* framework, we transformed our
unidirectional keyword search into a two-dimensional one
because we also started browsing the vulnerability detection
tools using their exact titles through the university portal.
We emphasize this aspect in Figure 4 using the expression
GoogleSearch + UniversityPortal. The said article provides
information about two buzzwords: reentrancy and Oyente.
Similarly, the retrieval of the survey paper published by Atzei
et al. [7] provided references to several research papers,
which led to the download of 10 additional research papers,
including Kalra et al. [40].

Hence, we learned that there are several vulnerabilities
apart from reentrancy and several tools in addition to Oyente.
Thus our continuous reading of the downloaded articles gave
us the sound decision to download which of the remaining
39 articles related to our vulnerability detection tools survey.
In short, our strategy was not to download all (i.e., 669)

1https://www.trufflesuite.com/
2https://remix.ethereum.org

research papers first and then select the 41 tools from them.
Instead, we devised the method of download-read-select and
repeated the cycle until we completed the download of our
remaining 39 tool-based articles.

We constructed databases for survey and non-survey
papers and moved tool and vulnerability-linked documents
from these two databases into a single (or special) ‘tool and
vulnerability’ database. The University portal fortifies the
database by targeted search, utilizing the titles of tools’ and
vulnerabilities’ papers. The specialty of the ‘tool and vulner-
ability’ database is to keep a count of tools and vulnerabilities
and their detection techniques.

We are first downloading the papers and assigning them a
category (i.e., a subfolder, represented by a string as men-
tioned in Table 2) and an id (indicating count of paper).
After that, the categorized paper is referenced (if appropri-
ate). Next, we calculate two percentages (i.e., the reference
papers percentage and the downloaded papers percentage) for
each category. These percentages indicate the nearness factor
(defined below) of our categories with our research. If the
primary category (defined below) has the highest percentage
for both the referenced and downloaded papers, then it indi-
cates that the primary category has the highest nearness factor
and hence the correctness of our methodology. We identify
the percentages as the ratio of ‘Referenced papers of the
category to the total Referenced papers’ (i.e., R to R) and
the ratio of the ‘Downloaded papers of the category to the
total Downloaded papers’ (i.e., D to D) and use the following
formulas for their evaluation:

R to R of a Category =
Category References ∗ 100

Total References of all categories

D to D of a Category =
Category Downloads ∗ 100

Total Downloads of all categories

Table 2 categorizes our downloaded research papers. Vulner-
ability Detection Tools, abbreviated as Tools, is our ‘primary
category’ because our research inclines toward it, as evi-
dent from our paper’s title. The other categories (along with
their abbreviated names, if any) are: Blockchain Security &
Attacks (i.e., Blk. Sec. & Attacks), Testing, Solidity, Vulner-
ability, Non-Security Survey (i.e., Non-Sec. Survey), SWC
(Software Weakness Scheme) and & DASP (Decentralized
Application Security Project), and Security Survey (i.e., Sec.
Survey).

Following are the reasons that forced us to expand our
database (i.e., based upon MySQL tool and simply folders)
of downloaded research papers once we met the count of the
required tool-based research papers (i.e., at least one paper
for each tool):
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1) We focus on 20 vulnerabilities in our survey. Hence to
clearly understand their dangerous behavior, we down-
loaded scores of research papers that we spread across
the vulnerability categories, like, Security Survey,
Blockchain Security & Attacks, and SWC and DASP.

2) Finally, the remaining documents, particularly the ones
we incorporate in the Testing, Solidity, and Non-
Security categories, help us to understand the software
engineering and programming-based issues.

FIGURE 1. Algorithm: Methodology and criteria for downloading research
papers.

Inclusion and Exclusion Policy & Nearness Factor
Exclusion Policy:We do not incorporate non-CS issues in

our research. But in the CS domain, we do not focus on non-
Ethereum, non-Solidity, non-testing, and non-security-based
issues.

Inclusion Policy: We incorporate software engineering-
based issues and include research papers and articles pro-
viding definitions for some complex Blockchain terms and
helping understand mathematical proofs and equations.

Nearness Factor: We define the nearness factor as the
proximity of the downloaded and referenced research papers
to our primary category as much as possible. This factor
means that the primary class should lead other categories
regarding the count of downloaded and referenced docu-
ments. In our case, this is true, because the ‘Tools’ category
has the highest R to R and D to D ratio as evident from the
data shown in Table 2.

C. RESEARCH QUESTIONS
Our research tries to find the answers to the following
questions:

1) How do the workings of some vital, novel, and latest
SC tools differ?

2) Which vulnerabilities (if any) are detected by the tools
retrieved through research Q1 (i.e. RQ1)?

3) What are the vulnerability detection techniques (if any)
applied by the selected tools through RQ1?

4) How can we classify the vulnerability detection tech-
niques (if any) of the tools retrieved through RQ1?

D. KEY CONTRIBUTIONS OF THIS SURVEY PAPER
This paper is the first thorough survey on SCs based upon the
following research perspectives enumerated below:

1) We collect the vulnerabilities, their associated SWC
and DASP IDs, tools detecting them, and the detection
technique of each tool in Table 4, 5, 6, 7. This informa-
tion helps Ethereum researchers, software engineers,
and security analysts. They can use the information to
develop new tools by varying the techniques discussed
in this research, supporting the growth of Solidity,
EVM, and SCs.

2) The survey discusses the vulnerability detection tech-
niques corresponding to different tools.We deduce four
important facts (a) ‘‘reentrancy’’ is a highly researched
threat; our research reports 19 tools currently available
for its detection (b) SmartCheck, Tikhomirov et al.
related research [52] provides the most significant
number of vulnerability detection techniques (c) static
analysis and AI-based approaches (or specifically the
Solver-based approaches) are leading the domain of
vulnerability detection of Ethereum SCs (d) Summa-
rization of vulnerability detection techniques of 41 SC
tools in the Tables 4, 5, 6, 7.

3) The survey also provides some insight to academicians,
developers, and software engineers to design better SCs
and testing tools by identifying vulnerable code.

4) To the best of our knowledge, we are the first to deduce
the popularity factor of tools. This factor provides some
clues to the highly referenced tools in the surveyed
literature.

5) We showed the applicability of the Constructive ECF’s
immunity approach, discussed in Albert et al. [53] for
reentrancy detection.

6) For the first time, we classified the vulnerability detec-
tion techniques into general and specific groups. The
specific groups help to identify the novelty of tools.
General groups utilize information related to soft-
ware engineering, software security principles, and
Ethereum modules, whereas specific groups focus on
significant detection chores. This grouping provides a
broader view of software engineering approaches to
novice users.

7) To the best of our knowledge, we are the first to provide
a classification for vulnerability detection techniques
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incorporating around 41 tools. This classification can
provide a standard mechanism for referring to vulnera-
bility detection techniques.

8) Additionally, we collectively list all the techniques
applied by the tools in a Multilevel classification table.
The top-level classification dictates the novice soft-
ware engineers that there are only two major testing
approaches (i.e., static and dynamic analysis), and the
rest of the approaches reside under them. This classifi-
cation enables the researchers to know how to test the
applications of newer CS domains.

9) We distinguish the EVM opcodes with Solidity state-
ments (e.g., send) to better understand the text by
using CAPITAL LETTERS for the opcode.

10) We create a nearness factor to enable the researchers to
determine if the research has achieved its goals. This
factor depends upon the downloaded papers and those
referenced from the downloaded documents.

E. STRUCTURE OF THE SURVEY
Section II sheds some light on the advantages of categorizing
vulnerabilities into six groups as in our earlier research [23].
Section III discusses the workings of 41 static and dynamic
analysis tools. Section IV lists ten vulnerability detection
classes, and we discuss their detection techniques from
Section V to Section XIV in connection with several tools
discussed in Section III. Section XV provides a multilevel
description of detection techniques and lists them in a table.
Section XVI embeds a thorough discussion on Future Work
by dividing it into innovations related to vulnerability detec-
tion tools, SC testing, Solidity, and EVM. Section XVII
incorporates the conclusion.

II. A CLASSIFICATION OF VULNERABILITIES IN SC:
ADVANTAGES
Work in [23] discusses a domain knowledge-based cate-
gorization of SCs’ vulnerabilities. The advantage of this
classification is that the category’s name gives us information
about the cause of vulnerability. In the context of testing SCs
for a specific vulnerability, our categorization helps to find
a range of tools related to the vulnerability category. This
fact implies that one should test SCs with a range of tools
instead of one or two to ensure that the SC is not devoid of
vulnerabilities. Table 3 lists examples of some of the classes
of vulnerabilities identified in SCs in connection with [23].
A transfer of Ether between two SCs, for example, can result
in inter-contractual vulnerabilities. Intra-Contractual vulner-
abilities like selfdestruct, frozen Ether, and stealing Ether
restrict to only a single SC. For instance, if there is a vulnera-
ble selfdestruct, it destroys only that particular SC. The
other classes are Integer Bugs (causes overflow, underflow,
and other mathematical bugs), out-of-gas (which include
gas-related vulnerabilities like out-of-gas, wallet griefing ),
transactional vulnerabilities (like tx.origin, transaction
order dependence), and deprecated (like var, call stack depth).
Interested readers may refer to [23] for detailed descriptions

of the vulnerabilities. We did not cover DoS or DDoS vul-
nerabilities but found that work in [61] extensively covers
DDoS-related aspects.

III. TOOLS FOR DETECTING VULNERABILITIES IN SC
We briefly describe the tools’ working below and provide a
classification of tools instead of vulnerabilities as in [23].
Table 4, 5, 6, 7 list the SC vulnerabilities along with the
tools detecting them and the tool’s detection technique. This
research focuses on seven vulnerability categories retrieved
from [23]. But we inducted a new access control category for
selfdestruct vulnerability in this research as discussed
in [62]. Table 4, 5, 6, 7 do not analyze the detection tech-
niques by including the comments from the other research
papers about the detection technique’s effectiveness. How-
ever, Table 4, 5, 6, 7 provide SWC (Smart Contract Weakness
Classification) [63] and DASP (Decentralized Application
Security project) [64] related details. SWC and DASP are two
important vulnerability classifications for SCs. SWC registry
discusses 37 vulnerabilities, whereas DASP discusses the top
10 vulnerabilities.

Surveyed literature does not show any comprehensive
representation of SCs’ vulnerability detection techniques,
as provided in the multilayer table in Figure 4. Some of the
strategies mentioned by the tools help prevent intrusion. Still,
we have included those tools in this research (Section III-A,
and Section III-B) to give meat to future researchers so that
the esteemed researcher can modify them for detection pur-
poses. The detection techniques focus on several dynamic and
static analysis tools. However, static and dynamic analysis
tools can borrow each other’s capabilities. For example, static
analysis tools do not run the SC but retrieve and analyze the
code patterns [65]. Still, to reason about the execution of SCs
static tools use the symbolic analysis engine as discussed
in Nikolić et al. [57]. Similarly, dynamic tools use keyword
search, a static analysis strategy, to find the presence of some
vulnerable opcodes.

A. STATIC ANALYSIS TOOLS FOR SMART CONTRACTS
Before discussing the vulnerability detection techniques,
we provide below a brief discussion about the working and
scope of SC tools based upon static analysis:

1) ZEUS, KALRA ET AL. [59], VDT SECTION (VIII-A1)
Zeus focuses on the Solidity-based SCs and a policy spec-
ification, a set of syntactical symbols to aid Zeus in avoid-
ing confusion. It detects some of the Inter-Contract (like
Unchecked and Failed send, reentrancy), Arithmetic (like
overflow), and Transactional (like TimeStamp Dependence
and Transaction Ordering Dependence) vulnerabilities. Zeus
performs formal verification using abstract interpretation and
symbolic model checking. Abstract interpretation is a pro-
gram verification technique in which we define abstract states
(like Even or Odd) using concrete values (Even = 2, 4,
6,. . .& Odd = 1, 3, 5,. . . ) and then use concrete values to
define the semantics of the program (like adding two odds
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TABLE 3. A classification of SC’s vulnerabilities [23].

values results in an even value) [66]. Symbolic Model Check-
ing performs program verification automatically by using
a finite state machine [67]. Zeus executes in a two-prong
fashion, i.e., transforms both the Solidity code and the user
policy (defined using mathematical assertions) into LLVM
(Section V) bit code, IR (i.e., intermediate representation),
and then feeds IR into CHC (i.e., Constrained Horn Clauses)
engine. Constrained Horn Clauses help in automatic program
verification and hence provide a means for supporting sym-
bolic model checking [68].

2) VerX, PERMENEV ET AL. [69]
VerX does not detect vulnerabilities but helps program veri-
fication by combining the symbolic execution with reduced
temporal properties (i.e., represented using a reduced set of
temporal logic commands) and delayed abstraction (term not
defined in VerX related research [69]). For testing, VerX
inputs several SCs along with a temporal safety property.
Temporal logic is time-dependent and uses operators such
as ‘always’ and ‘once’ for processing inputted SCs. VerX
uses temporal operators to extend Solidity code. Work-
ing starts by instrumenting the temporal property into SCs
and extracting the related Solidity predicates. Finally, VerX
transforms the temporal properties into reachability checks
to perform reachability verification or provides a counter-
example. In case of incomplete data, VerX demands more
information. One example of requirement (to transfer funds)
and the transformed temporal property in Solidity is given
below:

Requirement: Investors cannot claim refunds after more
than 10,000 ether is collected.

Where sum(deposits) is a delayed abstraction containing the
Solidity code:

Execution of delayed abstraction could indicate that VerX
reaches the destination code [70].

3) VeriSolid, MAVRIDOU ET AL. [71]
VeriSolid does not detect vulnerabilities. Instead, it creates a
new SC through formally verified safety properties that pre-
vent reentrancy and DoS (Denial of Service) vulnerabilities.
Input to the system consists of a graphical specification of
SC using a transition system and its solidity code containing
variables, actions, and guards, which we call (1). The system
also inputs a set of properties for verification, which we
call (2). VeriSolid generates the Behavioral Interaction Prior-
ity model using (1) and compares the generated model with
the translated Computation Tree Logic retrieved from (2).
Finally, it compares both outputs; if they are the same, the SC
behavior is verifiable. The developers can generate SC code
from the verified model.

4) VeriSmart, SO ET AL. [72]
VeriSmart is a tool that helps detect arithmetic vulnerabilities
in SCs. The input to VeriSmart is the Solidity SC and the
output returned by VeriSmart is the verification result of
the assertion. VeriSmart automatically generates assertions
for mathematical statements. For example, for the math-
ematical statement, a+b, the tool generates the assertion:
assert(a+b>=a). This feature empowers VeriSmart to
retrieve the hidden invariants in mathematical statements of
SCs. VeriSmart consists of two components: (1) a generator
responsible for generating two types of invariants, i.e., loop
invariants and transactional invariants. The generator receives
back the unproven queries for refinement, (2) the validator
is responsible for proving the queries and sends back the
unproven to the generator. The validator starts by using the
candidate invariant. If the invariant fails, the validator for-
wards the set of failed invariants to the generator, which
refines the unproven invariant by generating a new one.
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TABLE 4. Vulnerabilities: classification and detection techniques (Part 1).

VeriSmart detects proxyOverflow vulnerability, which is not
part of our research.

5) VANDAL, BRENT ET AL. [36], VDT SECTION (VII-A1)
Vandal focuses on the bytecode of SC to create an inter-
mediate relationship using a register transfer language.

It detects some of the Inter-Contract (like Unchecked
send), reentrancy) and Intra-Contract (like Unsecured bal-
ance or Stealing Ether, destroyable SC) vulnerabilities by
applying AI-based techniques on intermediate represen-
tation. Vandal also generates CFG to perform symbolic
analysis.
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TABLE 5. Vulnerabilities: classification and detection techniques (Part 1-portion-1).

TABLE 6. Vulnerabilities: classification and detection techniques (Part 1-portion-2).

6) teEther, [56], VDT SECTION (VII-A4)
Teether detects selfdestruct vulnerability, and four
others (i.e., Erroneous visibility, Erroneous constructor,

Semantic confusion, and Logic Flaw) by using a combi-
nation of CFG, symbolic execution, and constraint-solving
approaches. First, Teether constructs the CFG of the SC
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TABLE 7. Vulnerabilities: classification and detection techniques (Part 2).

using the EVM bytecode. Then, three modules process the
CFG. The path generation module detects critical paths and
state-changing paths. Critical paths in Teether [56] research
mean the paths that can lead to the execution of CALL,
CALLCODE, DELEGATECALL, and SELFDESTRUCT
instructions. This is different from the critical path (i.e., only
money-related paths) discussed in Chang et al. [58]. Next, the
constraint generation module uses the Z3 symbolic engine to
compute path constraints related to opcodes such as CALL,
CALLCODE, DELEGATECALL, and SELFDESTRUCT.
Then, the exploit generation module generates the exploits by
solving the combined constraints of critical paths and state-
changing paths. Finally, Teether validates the exploits.

7) SmartScopy, FENG ET AL. [31], VDT SECTION (VI-A2)
SmartScopy innovates summary-based symbolic evaluation
to speed up symbolic execution and focuses on the Appli-
cation Binary Interface (ABI) and the bytecode of the
victim’s SC. SmartScopy detects vulnerabilities like reen-
trancy, timestamp dependence, gasless send, and batch
overflow by synthesizing adversarial SCs. The tool first

develops an adversarial SC using the victim’s Application
Binary Interface and bytecode. Application Binary Interface
retrieves the signatures of the public methods of the vic-
tim SC. SmartScopy uses Vandal’s decompiler to translate
the bytecode of the victim SC into SmartScopy’s language
for adversarial attacks. The attacker’s program consists of
small queries. Hence the approach is called summary-based
symbolic execution. The attacker SC confirms the summary
step by recording side-effects on storage and the global
state of Blockchain by running the transactions of public
methods of SC on EVM. The summary step also generates
summary-based CALL and summary-based SSTORE.

8) SmartCheck, TIKHOMIROV ET AL. [52], VDT
SECTION (IX-A1)
Smartcheck analyzes Solidity SCs by generating an XML
parse tree as an intermediate representation of solidity SC.
The tool then performs pattern matching using Xpath[xpa]
queries. Thus the tool takes advantage of using XML doc-
uments as a database. XPath is a query-based language,
and xpa is an indexing mechanism for reasoning XPath
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queries [73]. The tool detects the most significant number of
vulnerabilities with a complete description of its techniques
like reentrancy, tx.origin, and so on.

9) SLITHER, FEIST ET AL. [74], VDT SECTION (X-A1)
Slither recovers essential information such as the inheritance
graph, control flow graph, and the programming expressions
from the Abstract Syntax Tree and converts this information
into an intermediate representation. Abstract Syntax Tree
helps to represent a program using a tree. Slither’s interme-
diate representation, SlitherIR, is available in static single
assignment form, which analyzes read/write variables, data
dependency, and unprotected functions. The static single
assignment requires a one-time variable assignment and def-
inition before usage. Finally, the built-in code analysis using
taint tracking helps in the following ways:

a) the read/write state variables (i.e., same as Java’s
instance variables) help in reentrancy detection.

b) owner address variables can perform privilege
operations.

c) unprotected functions do not use msg.sender for
comparison.

d) shadowed variables may contain unexpected data.
Slither detects reentrancy vulnerability.

10) SECURIFY, TSANKOV ET AL. [75], VDT (SECTION VII-A2)
Securify inputs bytecode of SC, or Solidity SC and converts
SC into bytecode, along with a set of security patterns. Secu-
rify performs a data and control flow dependency analysis.
The derived dependency predicates formulate characteriza-
tions of security patterns using an iterative process. Securify
infers the facts about the pattern using the Souffle Dat-
alog solver. Securify uses both compliance and violation
patterns. If it detects a violation pattern, then it reports vul-
nerable instructions. If no pattern matches, then it notifies a
warning. However, Securify’s pattern-matching approach is
different from the syntactical query-based patterns employed
by Smartcheck (Section III-A8 and IX-A1). Securify detects
vulnerabilities like stealing and frozen Ether, reentrancy, mis-
handled exception, and Transaction Ordering Dependence.
Securify has an updated version Securify2 [76], which detects
37 vulnerabilities.

11) sCompile, CHANG ET AL. [58], VDT SECTION (XI-A2)
sCompile focuses only on money-related paths designated as
critical paths. sCompile first converts the inputted bytecode
to EVM opcode, which helps to get CFG, and CFG helps
detect critical paths that correspond only to the opcode of
either a CALL, a DELEGATECALL, or a SELFDESTRUCT
statement. Once the tool finds the critical paths, it computes
the criticalness (or criticality) of each path, known as the
rank of the path. Path ranking helps the Z3 SMT solver to
filter out less critical paths. Finally, the visualization com-
ponent displays the critical paths for the user’s inspection.

sCompile detects vulnerabilities like reentrancy, be no black
hole (i.e., Locked Ether) and unguarded self-destruct.

12) OYENTE, LUU ET AL. [60], VDT SECTION (VI-A1)
Oyente processes the SC’s bytecode along with Ethereum’s
global state to detect vulnerabilities like TransactionOrdering
Dependence, TimeStamp Dependence, Mishandled Excep-
tion, and Call Depth Stack. First, the tool’s CFGBuilder
constructs the CFG, which the Explorer module uses to
find symbolic traces for each feasible path. The CoreAnal-
ysis module uses Explorer’s output to detect vulnerabilities.
Finally, the Validator module confirms the results using the
Z3 SMT solver’s constraint module.

13) OSIRIS, TORRES ET AL. [77], VDT SECTION (X-A2)
OSIRIS applies symbolic analysis to SC’s bytecode. The
symbolic analysis component creates the CFG and then
forwards all the executed instructions to the taint analysis
component. The integer error detection component is called
only if the instruction is arithmetic. The Taint Analysis
Module uses the concept of source and sink and declares a
valid bug if the inputted data propagates from an untrusted
source (i.e., Taint Source) to a sensitive location (i.e., Taint
Sink) [78] using SSTORE, JUMPI, CALL, and RETURN
instructions. On the other hand, the Integer DetectionModule
only scans integer-related operations and employs the Z3
solver if the Taint Analysis Module declares the arguments
of integer operations untrusted. Osiris detects arithmetic bugs
(overflow/underflow and division by 0), truncation bugs (con-
verting from a larger to smaller data size, e.g., 64-bit data to
16-bit data), and signedness bugs (converting a signed integer
to an unsigned integer of the same width and vice versa).

14) MSmart, FEI ET AL. [24]
MSmart uses SmartCheck’s detection framework to convert
Solidity SCs into path diagrams using lexical and syntactic
analysis. Lexical analysis converts a high-level program into
tokens where each token is a sequence of characters. Syn-
tactic analysis (also known as parsing) analyzes the string of
tokens if they conform to formal grammar rules. Path dia-
grams use syntactical analysis to create XML parse tree-like
structures that incorporate rules. An example of rules speci-
fied in XPATH is discussed in [79]. Path diagrams are then
subject to path matching, which helps in vulnerability detec-
tion. Path matching uses an expression tree (i.e., XML parse
tree) and then adds existing SmartCheck’s rules (and new
rules formulated by the authors ofMSmart). The evaluation of
the SC’s expression using path matching tells if SC is vulner-
able. XML parse tree acts as an intermediate representation
for SCs.

15) MAIAN, NIKOLIĆ ET AL. [57], VDT SECTION (XIV-A1)
Maian inputs the bytecode of SC and its state from the
Blockchain. The state represents a sequence of invoca-
tions, and the authors referred to it as an execution trace.
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Maian detects SCs specified as greedy (i.e., locking fund
behavior, prodigal (i.e., leaking fund behavior), and suici-
dal (i.e., self-destructive behavior). The detection process
employs inter-procedural symbolic analysis and concrete val-
idation. The interprocedural calls transfer control only to the
target within the SC. For implementing symbolic analysis,
the authors create a custom EVM to run all traces using
symbolic values until the EVMdeveloped by the authors finds
a trace violating liveness and safety properties. The custom
EVM returns concrete values. The concrete validator uses the
values returned by symbolic analysis to determine if the SC
is true positive or false positive in exhibiting the violation.

16) MadMax, GRECH ET AL. [12], VDT SECTION (VII-A3)
MadMax uses Vandal’s decompiler to transform the EVM
bytecode into a structured logic-based intermediate repre-
sentation. For analysis purposes, MadMax uses the Datalog
engine. As a result, MadMax performs both control flow and
declarative program analysis. Vandal’s decompiler outputs
3-address relations, which helps MadMax (Souffle engine
component) generate C++ code for high-level program
analysis of loops. MadMax defines strategies for detecting
unbounded mass operations,Wallet griefing and integer over-
flow situations using Datalog rules.

17) KEVM, HILDENBRANDT ET AL. [80]
KEVM framework does not detect vulnerabilities, but its
program verifier performs two important tasks (1) verifies
the functional correctness of SCs, useful in the context of
integer overflow (2) and handles the gas analysis of SCs.
The prover performs symbolic analysis by inputting the
K-framework’s definitions and logical reachability claims.
The gas analyzer computes gas bounds during execution and
thus can help detect gas-related vulnerabilities.

18) IR-FUZZ, LIU ET AL. [26]
IR-Fuzz’s approach prioritizes writing over reading. For
instance, a function like donate() executes before
withdraw(). IR-fuzz uses this approach to generate pos-
sible SC’s function invocation sequences. Later, IR-fuzz
extends the invocation sequence using a new set of param-
eters. Finally, IR-fuzz derives fuzzing input by seed selection
and stores the test cases covering a new branch (note,
recording helps reveal simple branches). In addition, IR-fuzz
proposes a branch distance-based measure to select new test
cases that comply with complex branches.

19) INTERACTIVE THEOREM PROVERS (ITPs), [81], VDT
SECTION (VIII-A2)
By the term ‘‘interactive theorem provers’’ the author refers
to a whole class of general-purpose tools like LEM, Mulligan
et al. [82], OCAML [83], and Isabelle/HOL [84], focus-
ing on EVM bytecode for SC’s formal verification. For
instance, LEM is a mathematical tool for writing, publishing,
and managing portable semantic definitions, and the author

initially transforms the EVM bytecode into LEM. Then
both the community-based test suits and interactive theo-
rem provers like Isabelle/HOL and OCAML test their EVM
definitions to prove the desired properties of SCs related to
reentrancy attack and self-destruct vulnerability. Isabelle is
a proof assistant for proving mathematical formulas using
logical calculus, whereas OCAML is a general-purpose func-
tional programming language.

20) HORSTIFY, HOLLER ET AL. [25]
Horstify is a formal proof framework that generates logical
proof for program slices (i.e., code related to SCs) and then
uses the Datalog solver for verification. This tool can act
as additional information for readers focusing on the formal
verification of SCs. Horstify uses its analysis for timestamp
dependence and discovers program slices by matching secu-
rity patterns with SC code.

21) GASPER, CHEN ET AL. [85], VDT SECTION ( VI-A3)
Gasper performs symbolic execution on Oyente-generated
CFG and identifies the code for optimization, Marescotti
et al. [86]. During symbolic execution, the tool uses the
Z3 solver to handle branch ambiguities and identifies seven
gas-costly patterns (i.e., we designate them as Gasper pat-
terns). However, based upon the 0.6.1 solidity compiler,
we could not detect high-cost coding patterns related to dead
code and opaque predicate as discussed in Gasper-related
research. One reason might be the lack of compiler details in
Chen et al. [85].

22) FSolidM, [55]
FsolidM is not a vulnerability detection tool. FSolidM uses
graphics and text input and incorporates a Solidity parser
for syntax checking. In the case of graphical input, FSolidM
would generate the Solidity code. FSolidM introduces a set
of plugins and design patterns which the developers can add
to the SC for implementing locking, maintaining transaction
counter, and enforcing timed transitions to safeguard against
reentrancy, transaction ordering, and time constraint bugs
respectively.

23) FORMAL VERIFICATION USING F* (FVF*) TOOL,
BHARGAVAN ET AL. [51], VDT SECTION (VIII-A3)
FVF* tool employs the Solidity code and EVM bytecode
to perform formal verification using F*. Solidity* (a subset
of F*) produces the verified output of Solidity code, and
EVM* (also a subset of F*) produces the verified output
of EVM bytecode. The tool compares both the results for
Functional Correctness (i.e., unchecked send), and Runtime
Safety (i.e., reentrancy) but recommends manual proof.

24) ExGen, JIN ET AL. [27]
ExGen is a symbolic analysis tool and can be help-
ful for additional reading related to Symbolic Execution-
based tools, Section VI-A. ExGen detects vulnerabilities
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like overflow, underflow, reentrancy, selfdestruct, and
delegatecall. In delegatecall the called SC has
access to the calling SC’s state variable. A SC, with no
Ether transfer function, uses delegateCall to let other
SC execute Ether transfer function on its behalf. ExGen first
generates an ordered sequence of transactions and transforms
them into an attack SC. The next step executes the attack
SC with the target SC using symbolic and concrete values
retrieved from the public Blockchain. Finally, the symbolic
execution retrieves constraints. The solution to the constraints
using a solver allows Exgen to access the vulnerable function.
Exgen deploys the attack SC on the BlockChain to verify its
functionality.

25) EtherTrust, GRISHCHENKO ET AL. [87], VDT
SECTION (VII-A5)
EtherTrust applies the reachability property on SC’s byte-
code to detect a FF responsible for a DAO-like attack and
miner-controlled parameters responsible for transaction dis-
orders. EtherTurst converts the SC’s bytecode into Horn
Clause (Section III-A1) representation and passes it to the
SMT solver. Results thus obtained help EtherTrust to reason
about the reachability property for verifying single-entrancy
and independence of miners. However, the analysis aborts if
the SC encases CALLCODE or DELEGATECALL instruc-
tions. Single-entrancy is a safety property that rules out
vulnerabilities due to unintended callbacks (i.e., unintended
invocation from FF) like DAO. Also, single-entrancy and
independence of miner is not part of our vulnerability detec-
tion techniques.

26) Ethainter, BRENT ET AL. [5], VDT SECTION (VII-A6)
Ethainter uses information flow rules to detect com-
posite vulnerabilities like accessible SELFDESTRUCT
(i.e., unguarded SELFDESTRUCT) and tainted SELF-
DESTRUCT. In tainted one, the SC protects SELFDE-
STRUCT with a vulnerable guard condition. For example:
EasyToKill() in Listing 1, line#2, uses owner variable

LISTING 1. Example of information flow rules, modified from He
et al. [88].

initialized in a non-constructor to authenticate the sender.
Henceforth attacker gets access to SC’s sensitive parts.

Information flow rules deal with programmatic guarding
(e.g., guards based on msg.sender) to prevent the flow of
tainted input.

Ethainter decompiles the SC’s bytecode using the Giga-
horse, Grech et al. [89] toolchain to obtain a Datalog
representation of the information flow model. The Datalog
representation is a collection of declarative rules and uses the

Souffle Datalog engine to generate C++ code from Datalog
input relations. Ethainter uses C++ code to flag vulnerabil-
ities, and Ethainter-kill, a companion tool of Ethainter, kills
the vulnerable SC to confirm the vulnerability.

27) DappGuard, COOK ET AL. [90], VDT SECTION (VII-A7)
DappGuard detects diverse VULNERABILITIES in Solidity
SCs. Additionally, DappGuard focuses on faulty transaction
receipts. DappGuard operates in two modes. The Knowl-
edge Acquisition mode uses receipts to analyze live SCs
and declare them malicious based on burst gas usage in a
short period. TheActiveMonitoring andDetectionmode uses
the Oyente engine to discover vulnerabilities like reentracy,
transaction ordering, timestamp dependence and mishandled
exceptions. The authors do not provide the source for retriev-
ing transaction receipts.

28) CONSTRUCTIVE ECF (CECF) ANALYSIS,
ALBERT ET AL. [53], VDT SECTION (VII-A8)
This work ensures that the behavior of the SC does not
change in the presence of callback, motivated by effectively
callback-free (ECF) concept, Grossman et al. [38]. Hence-
forth the callback behavior ensures modularity. The authors
create an intermediate representation using the bytecode of
SC and applied SMT solver, such as Z3, which queries for
modularity checking by dividing the program into segments.
SMT solvers generate counter examples of modularity for
error detection and fixing callback violations effectively. The
danger of callbacks results in stealing Ether and reentrancy
vulnerability, and their approach focuses on detecting immu-
nity to reentrancy attacks. However, we discuss how their
approach can detect reentrancy.

29) CLAIRVOYANCE, XUE ET AL. [29], VDT SECTION (VI-A4)
Clairvoyance is a reentrancy detection tool and uses Solidity
SCs related to the caller and callee SCs [91] to perform static
analysis based on a cross-contract call chain (i.e., from one
SC to the other SC) for reentrancy detection. The retrieval
of cross-contract information reduces false-negative cases by
realizing the complete cross-contract call chain. Additionally,
Clairvoyance incorporates five path defensive techniques to
avoid reentrancy. For instance, the code in Listing 2 assigns
the conditional test variable (i.e., reentered) true at line#5
(i.e., locking) and false at line#7 (i.e., unlocking), restraining
the reentrancy cycle.

LISTING 2. Highligthing path protective technique, Xue et al. [29].

70882 VOLUME 12, 2024



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

Clairvoyance detects this locking and unlocking limited
to a function definition and does not report reentrancy, out-
performing Securify and Slither. The work starts by creating
CFG and a call graph for inputted SCs. The next step uses
Taint Analysis to identify vulnerable objects, addresses, and
call chains. After that, Clairvoyance uses path-defensive tech-
niques for Empirical studies to avoid false-positive cases. The
last step is eliminating paths that can’t cause reentrancy from
SC and output the remaining reachable paths.

30) BRAN, [92]
Bran combines grey box fuzzing capabilities with online
static analysis to check the functional correctness of SCs but
does not detect any vulnerability. It works directly on the
bytecode and seed inputs. Bran first finds no-target-ahead
prefixes, termed as look-ahead analysis. Then, the results
from the look-ahead exploration feed into a power schedule
that determines the fuzzing schedule and guides in locat-
ing the target. We provide an example modified from [92]
to illustrate the reachability problem associated with grey
box fuzzing (i.e., to reach assertion statement, i.e., line#3
in Listing 3 using constant-propagation analysis, i.e., using
constants instead of variables) in the following code:

LISTING 3. Example of reachability problem analysis, [92].

The assert statement is reachable when a has a value
42 in line#2, [93]. The grey box fuzzer’s probability of gen-
erating 42 out of 2256 values is minimal in the above code.
On the other hand, the power schedule component of Bran
assigns more energy (i.e., more iterations) to inputs to allow
them to bombard at the target location to generate 42.

B. SMART CONTRACT DYNAMIC ANALYSIS TOOLS
Now we will provide a brief description of dynamic Analysis
SC tools:

1) VULTRON, WANG ET AL. [37], VDT SECTION (XII-A1)
Authors use Truffle suite to test Vultron’s prototype version
to identify vulnerabilities like reentrancy, exception disorder,
integer overflow/underflow, and gasless send. Vultron detects
irregular transactions by observing changes in the balance
invariant. In other words, Vultron requires that the difference
between the SC’s account balance (i.e., bal) and the sum
of all participants’ bookkeeping balances e.g., balances
array (Listing# 4, line#4), should be constant, before and after
each transaction. Note, Solidity SCs’ have no built-in variable
bal [94]. The tool either inputs bookkeeping information or
retrieves it using taint analysis.

2) SEREUM, RODLER ET AL. [54], VDT SECTION (XIII-A1)
Sereumworks at the bytecode level and detects different vari-
ations of reentrancy attacks. Sereum adds the Dynamic Taint
Analysis module and Attack detector to the go-Ethereum

LISTING 4. Example of array for balance bookkeeping, [37].

client. Dynamic Taint analysis monitors the data at execution
time, Alashjaee et al. [95]. Sereum detects state updates that
cause inconsistency by implementing a set of locks. The
updating violation helps Sereum to reason about reentrancy.

3) ReGuard, LIU ET AL. [10], VDT SECTION (V-A5)
Reguard detects reentrancy bugs. The tool employs a Fuzzing
Engine to generate random transactions after the SC Trans-
former creates a C++ SC using the inputted source code or
bytecode of the SC. Finally, Reguard forwards the SC’s exe-
cution of the transactions, mainly function calls and access to
the storage to the Core Detector for reentrancy detection.

4) EasyFlow, GAO ET AL. [99], VDT SECTION (XIV-A2)
EasyFlow detects overflow in deployed SC by employing
taint analysis. EasyFlow’s input data consists of Ethereum
runtime bytecode, transaction data, Solidity source code of
SCs, and a JSON-format file containing state information.
The detection algorithm analyzes transactions and mathe-
matical instructions by executing them using different data
combinations.

EasyFlow consists of four components: (i) Extended
Go-Ethereum traces tainted data, (ii) Log analyzer ana-
lyzes the Go-Ethereum logs, like overflow detection logs,
and sending various overflow transactions to the transaction
constructor, (iii) Transaction constructor constructs the new
transactions using input data so that Extended Go-Ethereum
executes these transactions to determine potential over-
flows, (iv) Report generator creates a brief report. EasyFlow
divides overflow into: manifested overflow, protected over-
flow, potential overflow triggered, and potential overflow not
triggered. However, authors in [99] do not provide examples
for differentiating them.

5) CONFUZZIUS, TORRES ET AL. [96], VDT SECTION (V-A1)
Confuzzius tests SC using its source code and Blockchain
state. Source code generates the application binary interface
(ABI) and bytecode. ABI allows EVM to understand the
code. Confuzzius relies on an evolutionary fuzzing engine
and genetic programming to generate an initial population
based on SC’s ABI. The genetic algorithm helps the fuzzer
to generate uncommon input [100]. The evolutionary engine
uses the input to execute the SC in the EVM environment.
Both genetic algorithm and evolutionary fuzzing are fields
of AI (artificial intelligence) and mimic Darwin’s theory of
Evolution. The genetic algorithm is a component of the evolu-
tionary fuzzer. The genetic algorithm is a continuous process
of enhancing the population of existing individual solutions
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TABLE 8. The vulnerabilities detected by fuzzing tools developed for SCs.

by selecting unique solutions in the current population to act
as parents and produce children for the next generation.

Symbolic taint analysis, data dependency analysis, and
constraint solver process the generated results for feeding
them back to the evolutionary fuzzer. This process continues
for several generations or the time allocated for processing
elapses. Confuzzius is a hybrid fuzzer. When the traditional
fuzzer cannot cover branches, Confuzzius switches to sym-
bolic execution to solve the complex branch condition and
then reverts to fuzzing. Confuzzius detects vulnerabilities like
assertion failure, block dependency, integer overflow, reen-
trancy, transaction order dependency, unhandled exception,
leaking Ether, locking ether, unprotected selfdestruct,
and unsafe delegatecall.

6) sFuzz, NGUYEN ET AL. [98], VDT SECTION (V-A6)
sFuzz inputs the bytecode and the ABI of the SC and detects
several vulnerabilities but we focus on reentrancy, gasless
send, and freezing Ether. The tool has three components:
the runner performs overall management of test cases by
generating externally owned accounts, commands to analyze
the ABI and the options for the other two components listed
below: (i) liboracles monitors the execution of test cases for
the detection of vulnerabilities by creating events containing
read-only values for the program’s stack and memory data
structures, and (ii) libfuzzer generates the test cases by using
the feedback guided Adaptive Fuzzing algorithm.

sFuzz’s technique is adaptive because sFuzz changes the
objective function to maximize the count of vulnerabilities
detected in the tested program [101]. The algorithm uses
quantitative measures for covering the just missed branches,
as in the case of the following branch:

Due to condition#2 in the above quiz game SC, retrieved from
Nguyen et al. [98], sFuzz fails to detect the gasless send vul-
nerability in Line#3 when sFuzz uses the traditional fuzzing
techniques. On the other hand, condition#1 represents the cor-
rect answer to a quiz question, but the && operator requires
sFuzz to pass both conditional tests to evaluate the branch.
sFuzz solves the problem of testing the vulnerable branch
by using quantitative measures. sFuzz keeps calculating a

numerical value for msg.value such that msg.value is
closer to 100 in an iterative manner and ultimately uses
100 as the value for msg.value in 140th iteration, which
avoids checking 2256 values because msg.value has a size
of 32 bytes.

7) IMITATION-BASED LEARNING FUZZER (ILF), HE ET AL.
[88], VDT SECTION (V-A4)
Imitation-based Learning (ILF) Fuzzer empowers by incor-
porating symbolic analysis to generate effective inputs using
the CFG of SCs (training set). The inputs help in code
coverage and analyzing the security of a SC. For instance,
in the following code, i.e., Listing 5, the assignment in Line#3
is trustable due to the presence of a guard in Line#2. ILF
transform the secured functions into transactions (identified
by function signature, address of the initiator, and Ether) and
then serve as training sequences for the Neural Networks
(NNs). The trained NN then helps improve the coverage
of the Fuzzer during testing a SC because it can gener-
ate inputs for unseen SCs. ILF detects vulnerabilities like
locking or freezing Ether, leaking or stealing Ether, suici-
dal, block dependency, unhandled exception, and controlled
delegateCall.

LISTING 5. Shows a trustable assignment modified from He et al. [88].

8) ContractFuzzer, JIANG ET AL. [97], VDT SECTION (V-A2)
ContractFuzzer’s input consists of SC’s bytecode, ABI, and
the constructor arguments. It first performs static analysis
on the ABI and the bytecode. The output focuses on func-
tion signatures, the data types of each argument, and the
subset of SCs for interaction. The next step generates valid
fuzzing inputs and their bombardment on random function
invocations of a SC under test. After that, the tool detects vul-
nerabilities like gasless send, reentrancy, exception disorder,
timestamp dependence, blocknumber dependence, dangerous
delegate call, freezing Ether by applying specific oracles
(i.e., modules to connect SC with external systems) to gen-
erate random invocations of SC under test. ContractFuzzer
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collets the invocation output as execution logs and analyzes
it for vulnerability detection.

9) EthRacer, KOLLURI ET AL. [30], VDT SECTION (V-A3)
EthRacer focuses on partial-order reduction techniques to
flag event ordering bugs (discussed below) using happens-
before relations. According to the happens-before relation-
ship, if one event should happen before the other, the
result must reflect that, even if the events happen ran-
domly [102]. For instance, in the case of banking transactions,
the happens-before relationship is essential if an overdraft
causes account cancellation [103], [104]. Ethracer either
inputs SC’s byte code or its Ethereum address. It runs
the bytecode directly by combining symbolic analysis with
fuzzing events on EVM. First, EthRacer uses symbolic exe-
cution to detect public functions termed as events. Next,
EthRacer analyzes the output of the events using dynamic
symbolic analysis. The dynamic analysis returns SMT for-
mulae for each event, which helps determine concrete values.
EthRacer determines concrete values using two approaches.
The first one applies SMT solver, and the output obtained by
executing SCs under test on Blockchain, and helps in pruning
optimizations. The 2nd one uses fuzzing. If two different
execution traces (i.e., the bytecode of a path generated by a set
of invocations) of the concretely tested events (e.g., function
invocations) generate different outputs, EthRacer declares the
SC vulnerable to event-order bugs.

10) MYTHRIL [105], VDT SECTION (XI-A1)
Mythril performs symbolic analysis using Laser-Ethereum
[106]) (a symbolic virtual machine), Concolic analysis using
symbolic and concrete values respectively, and control flow
checking on EVM bytecode to detect vulnerabilities (like
reentrancy, mishandled exception, selfdestruct, integer over-
flow or underflow, and transaction order dependence). Laser
executes different types of calls associated with symbolic and
concrete data, e.g., Laser runs Ethereum SCs and supports
inter-SC calls.

11) TechyTech [28]
The tool uses the accounting system of truffle suite. When
a SC contains an unprotected selfdestruct, then the
execution of SC results in destroying the SC as well as
transferring its remaining Ether to a designated Truffle
account. TechyTech then uses assertions to confirm this
terminating transfer. Similarly, TechyTech also discovers
reentrancy and tx.origin vulnerabilities [107] using an
involuntary transfer-based technique. TechyTech develops a
categorization string to distinguish between tx.origin
and reentrancy vulnerabilities. TechyTech applies inbound
but no outbound transfer approach for detecting locked Ether
vulnerability [108].

IV. VULNERABILITY DETECTION CLASSES
In the following sections, we classify and review the vulner-
ability detection techniques by different tools. We group the

detection techniques into General and Specific approaches.
In addition to the above grouping, we provide two tables
for each general class. The vulnerability table discusses the
vulnerabilities detected by each tool in the general class. The
general information table discusses the common attributes of
the tools like citations, publication year, analysis type (‘S’ for
static and ‘D’ for dynamic), and so on. Below we discuss the
need for this classification:

a: GENERAL AND SPECIFIC CLASSIFICATION
SC tools can focus on traditional and domain-specific
approaches. SC tools borrow traditional methods from other
vulnerability detection tools developed in Computer Science.
These tools use various common software engineering tech-
niques such as symbolic analysis, formal verification, model-
checking, fuzzing, etc. The above techniques are conversant
with computer science tools working for non-BlockChain
programs and SCs alike, and we refer to them as general
approaches in our research. The general approaches are
standard analysis methods to start processing or facilitate
processing to determine if the attacker secures its Ether
transfers [33]. Hence they need Blockchain environment or
BlockChain-specific approaches to detect malicious Ether
transfer issues.

These specific approaches come into play when SC tools
face Blockchain-specific challenges like data storage and val-
idation (use of consensus mechanisms), VMExceptions (use
of try-catch block), compatibility with Solidity versions (use
of bytecode [109]), locking reward price (a vulnerability),
etc. Henceforth to handle these specific challenges, particu-
larly handling of vulnerabilities, the tools’ research discusses
specific approaches that detect vulnerabilities. The specific
approaches innovate new tools in two ways: Either the tools
improvise the existing approaches (e.g., call analysis used
by Mythril and Vandal for reentrancy detection with minor
variations) or the tools create new ones (e.g., limit property
used by sCompile for reentrancy detection). Tools start their
processing using general approaches like symbolic analysis,
taint analysis, or SMT solvers but towards the end of their
detection techniques, authors devise specific techniques like
Checks-Interact-Effect, limit property, locking write access,
balance invariant, and so on for vulnerability detection and to
make their research innovative.

Below, we provide the names of our general classes, and
in the next section, we discuss the specific vulnerability
detection techniques beginning with the fuzzing tools.

b: GENERAL CLASSES OF VULNERABILITY DETECTION
As discussed above, general approaches depend upon already
conversant software engineering-based approaches. How-
ever, we derive the names of some general classes from
the tools’ development process. For instance, several tools
embed Datalog Engine or Ethereum Virtual Machine to infer
their results, and henceforth we formulated classes like AI
and Customization-based Approaches to group such tools.
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Below we list the various general classes and then discuss
the specific derived approaches by the vulnerability detection
tools:

i) Fuzzing-based Approaches (Section V), ii) Sym-
bolic Execution Approaches (Section VI), iii) AI-based
Approaches (SectionVII), iv) FormalVerification approaches
(Section VIII), v) Query Language-based Approaches
(Section IX), vi) Variable Analysis-based Approaches
(Section X), vii) Control Flow Graph-based Approa-
ches (SectionXI), viii) Invariant-based CheckingApproaches
(Section XII), ix) Execution State Validation Approaches
(Section XIII), and x) Customization-based Approa-
ches (Section XIV).

V. FUZZING-BASED APPROACHES
We discuss fuzzing as the technique to provide input to test a
SC. The input can be random or targeted to feed the function
arguments so that a conditional test (or a wrongful code
within the function) exposes SC vulnerabilities. SC fuzzers
benefit from the previous work related to American Fuzzy
Lop (AFL) [110], and LibFuzzer [111]. However, AFL fuzzer
employs a genetic algorithm technique, whereas LibFuzzer
is a LLVM [112] utility and communicates with the library
under test. Thus, LibFuzzer tests the libraries and their APIs
instead of individual programs [113]. LLVMproject stood for
the low-level virtual machine and started developing compiler
and toolchain technologies.

Table 8 lists the vulnerabilities detected by Fuzzing tools.
Table 9 lists features of Fuzzing tools while thorough details
of detection techniques are discussed below:

A. GENERAL TECHNIQUES OF VULNERABILITY
DETECTION BY FUZZING TOOLS
1) FUZZING TECHNIQUE OF CONFUZZIUS (SECTION III-B5),
TORRES ET AL. [96]
Confuzzius-related research focuses on hybrid fuzzing
(Section III-B5), a combination of symbolic analysis and tra-
ditional fuzzing techniques. Additionally, Confuzzius uses a
genetic algorithm (Section III-B5) and hence acts like an Evo-
lutionary fuzzer. But Evolutionary fuzzing has limited access
to deeper code [96], such as complex branch conditions.
However, hybrid fuzzing aided by a constraint solver gener-
ates inputs to satisfy complex branches. After sending inputs
to SC under test, Confuzzius analyzes the execution traces
(Section III-B9) to know which opcodes the SC executes
before termination. If the SC terminates with the opcodes like
REVERT or INVALID, the tool considers the input incorrect
and does not use it for testing purposes.

2) FUZZING TECHNIQUE OF CONTRACTFUZZER
(SECTION III-B8), JIANG ET AL. [97]
ContractFuzzer interacts with each function of a given SC
during testing by generating k random inputs for each func-
tion’s arguments according to the input domain and data
type. First, ContractFuzzer uses the inputs for generating calls

to the SCs’ functions during fuzzing. Then ContractFuzzer
merges all generated calls into a pool of calls to separate the
calls to a specific function. Then, ContractFuzzer randomly
selects a call to a function from the pool to perform fuzzing.
In addition to the randomly generated inputs, ContractFuzzer
also generates specialized inputs (e.g. for address-typed argu-
ments) according to the static analysis requirements.

3) FUZZING TECHNIQUE OF ETHRACER (SECTION III-B9),
KOLLURI ET AL. [30]
EthRacer combines fuzzing with symbolic analysis. Fuzzing
starts with randomly chosen, finite, concrete event traces
and bombards events’ input statements to note the outputs.
Next, the fuzzer repeats the process by forming combinations
by permuting event pairs (e.g., code containing call/return
statement), triples, and quadruples. Then the fuzzing process
matches the outputs related to the event trace to decide the
bugs. However, each combination member should not violate
the happens-before (Section III-B9) relationship and ensure
that the matching pairs like call/return execute atomically.

4) FUZZING TECHNIQUE OF IMITATION LEARNING FUZZER
(ILF) (SECTION III-B7), HE ET AL. [88]
ILF exploits the standard functionality of SCs to train a NN
on thousands of programs. Moreover, symbolic execution
on the history of transactions retrieves features like current
function coverage, opcodes encased in the function body, and
function name to help in training. The NN’s output facilitates
the automatic generation of test inputs to improve coverage.
The generated transactions by the ILF fuzzer, comply with
the signatures of functions belonging to the SC under test.

5) FUZZING TECHNIQUE OF REGUARD (SECTION III-B3),
LIU ET AL. [10]
Reguard’s research extends the fuzzing engine of fuzzers like
AFL and LibFuzzer for SCs. First, Reguard uses Fuzzing to
generate random but diverse function calls related to C++-
transformed SCs. Then it records malicious execution traces
of the SCs at runtime and analyzes their functional invo-
cations, returned values, storage, Blockchain variables, and
branching conditions using Finite State Machine.

6) FUZZING TECHNIQUE OF SFUZZ (SECTION III-B6),
NGUYEN ET AL. [98]
First, the authors generate an initial test suite and use it as
‘seeds’ to create new test cases. The initial test suite consists
of ‘n’ sequences of function invocations with appropriate
random values for parameters based upon the parameter type
and size, where n is the number of functions in the SC under
test. sFuzz executes the seeds and then evaluates their fit-
ness according to the unique branch coverage criteria. sFuzz
then determines the uncovered branches of the SC and finds
the seeds closest to the uncovered branch using a distance
function. Then sFuzz modifies all the existing seeds using a
genetic algorithm to generate more seeds but discards iden-
tical test cases. sFuzz repeats the process until a pre-defined
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TABLE 9. Fuzzing tools: General information at a glance.

time. Finally, sFuzz executes the test cases and monitors the
vulnerability detection process.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY FUZZING TOOLS
1) REENTRANCY DETECTION BY FUZZING

1) Confuzzius (Section III-B5 and V-A1): Confuzzius
declares a SC susceptible to reentrancy if the SC reads
a variable from the storage before the transfer using
CALL and updates the same variable but after the
CALL. Thus there is a violation of Checks-Effects-
Interactions (Section IX-A1) pattern.

2) ContractFuzzer (Section III-B8 and V-A2): The Con-
tractFuzzer creates an Attacker agent SC, which
interacts with each function of the SC under reen-
trancy test by sending Ether using CALL. The fuzzing
engine determines the value of Ether sent. The inter-
action might result in the called function sending a
bounty (i.e., Ether) back to the attacker using a CALL.
The attacker’s FF receives the reward and calls the
bounty-sending function of the testing SC again. This
process repeats until all the Ether of the testing SC
depletes. Thus ContractFuzzer detects reentrancy vul-
nerability in the testing SC by triggering a reentrancy
Attack cycle and confirms it by retrieving information
from the interaction like the opcode of the transfer
statement and gas spent by the testing SC.

3) sFuzz (Section III-B6 and V-A6): sFuzz creates a
reentrant attacker, which calls back the function that
transfers Ether to the attacker, invoking the attacker’s
FF.

4) ReGuard (Section III-B3 and V-A5): Reguard uses
a combination of a Fuzzing Engine and a Finite
State Machine (with five states) for detecting reen-
trancy vulnerability. START is the first state of these
five states, ERROR is the final state, and a SC lands
in the error state if the SC transfers Ether to the same
address repeatedly using call.

2) MISHANDLED/UNHANDLED EXCEPTION DETECTION BY
FUZZING

1) Confuzzius (Section III-B5 and V-A1): Solidity
supports send, transfer and call but EVM
contains only CALL opcode. For this reason, Con-
fuzzius, focuses on CALL opcode in the execution

trace (Section III-B9) to detect unhandled exceptions.
In responsible coding, the SC checks the top of the
stack for value ‘1’ (i.e., an exception occurred) and
then performs a JUMPI instruction for handling this
bug. But if the JUMPI is missing after CALL in the
execution trace, then Confuzzius reports the presence
of unhandled exception vulnerability.

2) ContractFuzzer (Section III-B8 and V-A2): Contract-
Fuzzer, detects Mishandled Exception (i.e., exception
disorder) in the context of call chain [114], when the
offshoot caller throws an exception but the root caller
does not throw an exception. However, Vultron-related
researchWang et al. [37] indicates that ConractFuzzer’s
strategy may produce false-positive results if all SCs in
the call chain properly handle the exceptions.

3) Imitation Learning-based Fuzzer (ILF) (Sec-
tion III-B7 andV-A4): ILF detects unhandled exception
if the root call during fuzzing does not revert(), but
the offshoot call reverts.

3) GASLESS send DETECTION BY FUZZING
1) ContractFuzzer (Section III-B8 and V-A2): Solidity

uses call, send, and transfer for Ether delivery.
EVM uses CALL for Ether transfer. If the CALL uses
0 gas argument as discussed in Darby et al. [115] and
shown below:

then it represents Solidity’ssend. ContractFuzzer uses
the above information combined with two more pieces
of evidence as in Cook et al. [90] for the detection of
‘‘Gasless send’’ like CALL returns an error code of
ErrOutOfGas, Jiang et al. [97], and the GASLIMIT is
2300.

2) sFuzz (Section III-B6 and V-A6): sFuzz checks the
bytecode of CALL such that the ‘‘value’’ is greater than
zero and ‘‘gas’’ cost is 2300.

4) UNPROTECTED SELFDESTRUCT DETECTION BY FUZZING
1) Confuzzius (Section III-B5 and V-A1): Confuzzius

detects selfdestruct vulnerability if the attacker
employs a malicious account (i.e., not previously used
or not known to the victim). For example, if the
runtime bytecode contains SELFDESTRUCT opcode
for a transaction involving a malicious account, then

VOLUME 12, 2024 70887



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

Confuzzius alerts the presence of SELFDESTRUCT
vulnerability.

2) ILF (Section III-B7 and V-A4): A SC is vulnerable
to selfdestruct if ILF finds that an attacker
can kill the SC (i.e., an unknown user can execute
SELFDESTRUCT).

5) LEAKING ETHER DETECTION BY FUZZING
1) Confuzzius (Section III-B5 and V-A1): Confuzzius

detects leaking Ether (or stealing Ether) vulnerability
if it finds any record of the CALL instruction (in the
runtime bytecode of SC), which transfers Ether to a
suspicious address (i.e., the address from which the SC
never received Ether and the address has never been
used as a parameter in a function).

2) ILF (Section III-B7 and V-A4): A SC is susceptible
to leaking Ether vulnerability if SC ownership is trans-
ferrable to untrusted users.

6) FROZEN (OR LOCKING) ETHER DETECTION BY FUZZING
TOOLS

1) Confuzzius (Section III-B5 and V-A1): Confuzzius
checks the runtime bytecode for the non-presence of
instructions like CREATE, CALL, DELEGATECALL,
or SELFDESTRUCT and the presence of a receiving
Ether transaction having greater than 0 value such that
it ends with a STOP instruction.

2) ILF (Section III-B7 and V-A4): ILF detects freezing
Ether vulnerability if the SC under test does not contain
opcodes like CREATE, CALL, DELEGATECALL,
and SELFDESTRUCT because these opcodes allow
the SC to transfer ether to other SCs. Instead, the SC
receives Ether.

3) ContractFuzzer (Section III-B8 and V-A2): Contract-
Fuzzer determines the freezing Ether vulnerability if
the SC uses DELEGATECALL, but simultaneously,
the SC is devoid of instructions like CALL, and SUI-
CIDE (deprecated), which shift the Ether outside the
SC.

7) INTEGER OVERFLOW DETECTION BY FUZZING
1) Confuzzius (Section III-B5 and V-A1): Confuzzius

analyzes the bytecode ofADD,MUL, and SUB instruc-
tions and compares the results of these mathematical
instructions with the results generated by authors.
If there is a disparity, then Confuzzius declares the
existence of overflow vulnerability.

8) DETECTION OF TIMESTAMP DEPENDENCE
VULNERABILITY BY FUZZING

1) ContractFuzzer (Section III-B8 and V-A2): Contract-
Fuzzer scans the TIMESTAMP opcode in conjunction
with the CALL opcode such that CALL has zero gas
argument (i.e., EVM CALL behaving like Solidity’s
send or transfer method), and non-zero value
argument [116]. But Feng et al. [31] argues that the

ContractFuzzer’s timestamp assertion may cause a
false alarm because of the use of ‘fuzzing’, which is
a random operation.

2) ILF (Section III-B7 and V-A4): ILF detects timestamp
dependence vulnerability if the SC’s Ether transfer
depends upon Blockchain’s state variables (i.e., on the
output of opcodes like TIMESTAMP, NUMBER, DIF-
FICULTY, GASLIMIT, and COINBASE) as shown in
the following code modified from [100]:

LISTING 6. A TimeStamp dependence violation pattern.

A malicious miner can influence Blockchain’s state
variables.

9) DETECTION OF EVENT ORDERING BUGS BY FUZZING
1) EthRacer (Section III-B9 and V-A3): EthRacer gen-

erates outputs for each event separately and performs
fuzzing using a random trace of k concrete events with
distinct entry points. EthRacer assigns ids to call-return
pairs and checks that they execute atomically, a condi-
tion known as linearizability.

VI. SYMBOLIC EXECUTION APPROACHES
Symbolic execution is traversing a program and determining
inputs to execute different parts. For this purpose, the sym-
bolic engine generates expressions using symbolic variables
and then uses solvers to create inputs to evaluate those expres-
sions. Thismerger allows the symbolic engine to reason about
branches, functions, and other control structures. However,
symbolic execution suffers from path explosion problems due
to increased program size or unbounded loops [117].

Table 10 lists the vulnerabilities detected by Symbolic
Execution tools. Table 11 highlights the features of Symbolic
Execution tools, while thorough details of detection tech-
niques are listed below:

A. GENERAL TECHNIQUES OF VULNERABILITY
DETECTION BY SYMBOLIC EXECUTION
1) SYMBOLIC EXECUTION TECHNIQUE OF OYENTE
(SECTION III-A12), LUU ET AL. [60]
Initially, Oyente uses the Z3 SMT solver as a constraint solver
to query the branch condition. Then, the Explorer component
(Section III-A12) jumps to the appropriate address based on
Z3’s output. If there is no result, then the Explorer traverses
both branches. At the end of the exploration phase, Z3 uses
the set of symbolic traces output by Explorer to eliminate
infeasible paths. Finally, Z3 confirms the vulnerabilities gen-
erated by CoreAnalysis component (Section III-A12).
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TABLE 10. The vulnerabilities detected by symbolic execution tools developed for SCs.

TABLE 11. Symbolic execution tools: General information at a glance.

2) SYMBOLIC EXECUTION TECHNIQUE OF SMARTSCOPY
(SECTION III-A7), FENG ET AL. [31]
SmartScopy utilizes summary-based symbolic evaluation to
solve space explosion problems related to symbolic exe-
cution. The summary-based technique incorporates early
pruning to search for vulnerability patterns like ‘CALL after
SSTORE’ in SCs. If the SC lacks the pattern, then the SC
is subject to vulnerability analysis. Again SmartScopy uses
such patterns for developing attack synthesizers. Path pruning
techniques remove the already explored path of the program
from the focus of the symbolic analyzer to avoid path explo-
sion problem [118]. Furthermore, SmartScopy symbolically
executes each public function only once instead of several
times using different symbolic arguments.

3) SYMBOLIC EXECUTION TECHNIQUE OF GASPER
(SECTION III-A21), CHEN ET AL. [85]
Gasper performs symbolic execution of SC and declares the
CFG blocks not executed by symbolic execution as Dead
Code Pattern, Chen et al. [85]. Similarly, an opaque predi-
cate always evaluates to true or false. Hence its evaluation
wastes gas. To detect expensive operations in the loop, Gasper
analyzes the CFG for JUMP and JUMPI opcodes and col-
lects information related to the entry and exit blocks and the
number of blocks within the loop. Gasper then passes this
information to the Dijkstra algorithm to detect expensive loop
operations.

4) SYMBOLIC EXECUTION TECHNIQUE OF CLAIRVOYANCE
(SECTION III-A29), HE ET AL. [88]
Clairvoyance innovates a static analysis-based reentrancy
detection technique by applying cross-contract and cross-
function analysis on Solidity SCs. The advantage is trac-
ing tainted parts related to the interprocedural call chain.
The authors first construct a CFG exhibiting a call chain
between the SC under test and a remote SC. Then, use

the extended CFG, i.e., XCFG, to perform taint analysis
to detect paths containing reentrancy bugs. XCFG repre-
sents a cross-contract call graph merged with CFGs of
SC’s functions. Finally, the detected paths are subject to
symbolic computation using path protection techniques to
eliminate non-reentrant traces. Path protection techniques are
countermeasures to avoid reentrancy attacks discussed by
He et al. [88].

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY SYMBOLIC EXECUTION TOOLS
1) REENTRANCY DETECTION BY SYMBOLIC EXECUTION

1) Clairvoyance (Section III-A29 and VI-A4): Clair-
voyance detects reentrancy vulnerability by finding
cross-contract CALL chains, which loop to callback the
current caller.

2) SmartScopy (Section III-A7 and VI-A2): SmartScopy
confirms the reentrancy by synthesizing an attacker SC.
The attacker acts as a recipient of a CALL transaction.
Thus the attacker receives sufficient gas and gener-
ates successive CALL invocations that do not modify
the storage (i.e., the balance variable) in each CALL,
i.e., line#4 in listing [51] below never executes. This
makes the condition in line#2 always true.

2) COSTLY GAS PATTERN (I.E., DEAD CODE AND OPAQUE
PREDICATE) DETECTION BY SYMBOLIC EXECUTION

1) Gasper (Section III-A21 and VI-A3): For dead code,
Gasper uses symbolic execution to record addresses of
executed blocks. Next, Gasper records the addresses of
CFG blocks related to the dead code. Finally, Gasper
warns about CFG blocks which symbolic execution
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does not execute as dead code patterns. For opaque
predicate detection, Gasper records the branch condi-
tion during the symbolic execution of the conditional
jump statement. Any branch related to a conditional
jump that never executes is vulnerable to the opaque
predicate.

3) UNCHECKED send OR MISHANDLED EXCEPTION
DETECTION BY SYMBOLIC EXECUTION

1) SmartScopy (Section III-A7 and VI-A2): Suppose a
SC does not use CALL’s return value in any condi-
tional jump statement. In that case, the SC is vulnerable
to unchecked send because the SC does not check
CALL’s return value.

2) Oyente (Section III-A12 and VI-A1): Oyente detects
(UnChecked send or Mishandled Exception) by
checking that each CALL instruction in the SC follows
the (EVM opcode) ISZERO. Otherwise, the code is
vulnerable to mishandled exception, Atzei et al. [20].
When an exception occurs, SC pushes zero on the
stack, and ISZERO checks if the top of the stack is
zero [119].

4) BATCHOVERFLOW DETECTION BY SYMBOLIC EXECUTION
1) SmartScopy (Section III-A7 and VI-A2): BatchOver-

flow vulnerability occurs when the multiplication oper-
ation overflows. SmartScopy detects this vulnerability
using the automatic synthesis of an attacker program,
which disables the checks and overflows one of the
multiplication operands. Lastly, the attacker manipu-
lates the transfer’s address to become the transaction’s
beneficiary.

5) TIMESTAMP DEPENDENCE DETECTION BY SYMBOLIC
EXECUTION

1) SmartScopy (Section III-A7 and VI-A2): SmartScopy
declares the Ether transfer vulnerable to TIMESTAMP
if Ether transfer statements like CALL (i.e., Solidity
call and send) depend upon block.timestamp
(i.e., Solidity’s representation of TIMESTAMP [120]).

2) Oyente, (Section III-A12 and VI-A1): Oyente detects
the timestamp threat by the presence of a symbolic
variable (as the tool uses Symbolic Execution) and
assumes that the path condition for the timestamp threat
must employ the symbolic variable and hence becomes
vulnerable to timestamp dependency. However, Atzei
et al. [20] have argued that this approach may result
in false-positive detection as the SC can check the
path condition using block.timestamp without
employing the symbolic variable.

6) TRANSACTION ORDERING DEPENDENCE DETECTION BY
SYMBOLIC EXECUTION

1) Oyente (Section III-A12 andVI-A1): Oyente discusses
two techniques for transaction ordering dependence.
Methods can detect transaction ordering problems in

the marketplace context and reward for solving a puz-
zle. The first technique detects transaction Ordering
vulnerability if a SC has pairs of Ether flowing paths
showing the disparity in the transaction order. However,
according to new rules Luu et al. [60], Oyente uses the
guard condition ‘g’, which if fails, the transaction fails.
‘g’ states that the ‘reward == R’ where R is the current
value of the reward. Participating SC locks the original
reward amount in R. If the miner disorders the trans-
action, then the locked price of R will not equal the
original value of the reward.

7) CALL STACK DEPTH DETECTION BY SYMBOLIC
EXECUTION

1) Oyente (Section III-A12 and VI-A1): Oyente detects
call stack depth threats by checking if the SC tries to
exceed the call stack beyond its maximum size, a condi-
tion that would result in remote call failure irrespective
of how much gas a SC uses.

VII. AI-BASED APPROACHES
This research focuses only on programming-based approa-
ches. Hence machine learning [121] is not part of our
domain. On the other hand, we incorporate tools that use
rule-based, logic-based, or solver-based techniques for vul-
nerability detection.
Table 12 indicates features of AI-based tools, while thor-

ough details of detection techniques are listed below. Table 13
lists the vulnerabilities detected by AI-based tools.

A. GENERAL TECHNIQUES OF VULNERABILITY
DETECTION BY AI
1) LOGIC RELATION-BASED TECHNIQUE OF VANDAL
(SECTION III-A5), BRENT ET AL. [36]
Logic relations ease vulnerability detection techniques as
they require few lines of code, for instance, using Souffle.
Logic relations focus on rules. For example, authors use
boolean operators to specify the security analysis-related
rules in Vandal’s development research, Brent et al. [36].
Thus, the logic-based approach is compact compared to
the traditional methods based on functional and OOP lan-
guages. An example is given below: Authors incorporate

LISTING 7. Vandal’s boolean logic-based security analysis,
Brent et al. [36].

logic relation using a static analysis library, Brent et al. [36]
that processes CFG, EVM opcodes, control, and data flow
constructs. For instance, Listing 7 shows the use of logic
relations to implement unchecked send detection proce-
dure (designated as uncheckedCall, line#1) discussed
in (section VII-B). The procedure claims SC is vulnerable
if the SC does not check the return value u of a transfer
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TABLE 12. AI-based tools: General information at a glance.

(i.e. CALL which is part of EVM bytecode but is used to
detect problems in Solidity send and throwwhich is dep-
recated), line#2, i.e., if the return value tells about vulnerable
throw (deprecated), line#3. Line#4 tells no action is taken if
the vulnerable code alters EVM storage. Deprecated throw
returns an exception whereas send returns false.

2) STRATIFIED DATALOG-BASED TECHNIQUE OF SECURIFY
(SECTION III-A10), TSANKOV ET AL. [75]
First, Securify applies Stratified Datalog to the SC to create
a dependency graph and then analyzes the dependence graph
using Datalog solvers (i.e., Securify constructs a dependence
graph using symbolic information and Datalog engine for
vulnerable patterns). The benefit is the creation of inference
rules to make logical reasoning about the SC’s storage and
memory utilization. Next, Souffle Datalog solvers compute
a fixed point using all facts, which is the minimal model for
the SC. The fixed point is a Datalog engine for declaring rules
and relations and specifying queries [122]. Finally, Securify
analyzes the fixed point to get information about vulnerable
instructions and warnings.

3) DATALOG RULE-BASED TECHNIQUE OF MADMAX
(SECTION III-A16), GRECH ET AL. [12]
MadMax defines Datalog rules for vulnerability analysis and
compiles them using Souffle. The Datalog program focuses
on relational instructions with the help of specialized data
structures. MadMax implements analysis using a layered
code where the first layer focuses on loops and induction
variables (i.e., variables whose value depends on the loop
iteration variable’s value). The next layer focuses on memory,
dynamic data structures, nested arrays, and SCs whose stor-
age increases on reentrance, even though MadMax does not
discover reentrancy vulnerability. The last layer deals with
gas-related vulnerabilities.

4) CONSTRAINT SOLVER-BASED TECHNIQUE OF TEETHER
(SECTION III-A6), [56]
Using constraint solver Z3, the TeEther infers vul-
nerable transactions related to critical instructions (or
functions) like CALL, CALLCODE, DELEGATECALL,

and SELFDESTRUCT. But, Teether does not focus
on user-defined functions. Instead, it uses an iterative
constraint-solving approach by finding the critical paths and
the related path constraints leading to said built-in func-
tions (e.g., path constraints like conditional tests to access
selfdestruct). Then uses, the constraint solver to obtain
a satisfying assignment that can generate tangible values
to invoke the critical instructions of SC under test. Finally,
TeEther uses the satisfying assignment to create transactions
for the attacker to exploit the SC.

5) Z3’s SPACER ENGINE BASED-TECHNIQUE OF
ETHERTRUST (SECTION III-A25), GRISHCHENKO ET AL. [87]
EtherTrust’s static analysis supports the reachability prop-
erty. For this purpose, EtherTrust converts the bytecode
into an internal Horn Clause (Section III-A1) repre-
sentation supported by Z3’s SPACER. Then, SPACER
finds a counter-example and constructs safe invariants
by extending the reachability concept, Kostyukov et al.
[123]. However, if Z3 can’t satisfy the query, then
EtherTrust assumes the query as satisfiable based upon
soundness theory, Grishchenko et al. [87]. When writ-
ing the research, Grishchenko et al. [87], EtherTrust does
not support CREATE, CALLCODE, or DELEGATECALL
instructions.

6) DATALOG AND REPEATED TRANSACTIONS-BASED
TECHNIQUE OF ETHAINTER (SECTION III-A26),
BRENT ET AL. [5]
Ethainter converts the Datalog representation into C++

code for vulnerability detection. In addition, the authors
designed rules in abstractions to model the attacker, owner,
and guards. For instance, ReachableByAttacker mod-
els the parts of the code executable by an Attacker.
The attacker would taint the executable parts, even
variables meant for guarding. Hence Ethainter invokes
AttackerModelInfoflow for taint analysis and ini-
tiates recursion between ReachableByAttacker and
AttackerModelI- nfoflow for catching composite
violations.
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TABLE 13. The vulnerabilities detected by AI tools: Vandal [36], Securify [75], MadMax [12], TeEther [56], sCompile [58], Ethainter [5], DappGuard [90], ECF
[53], developed for SCs.

7) OYENTE ENGINE AND RULES ENGINE BASED-TECHNIQUE
OF DappGuard (SECTION III-A27), COOK ET AL. [90]
DappGuard applies a multivariant approach for vulnerability
detection. For instance, to detect vulnerabilities like transac-
tion ordering dependence, exception disorder, and timestamp
dependence, DappGuard’s validator runs Oyente on the SC
under test by applying constraints on arguments’ data and
views the anomalies reported by transactions. But for other
vulnerabilities, DappGuard uses the rules engine to deter-
mine the validity of transactions related to the SC under test.
Rules Engine stores Blockchain’s transaction history, report
anomalies, and updates its security indicators based on its
judgments.

8) SMT SOLVER BASED-TECHNIQUE OF CONSTRUCTIVE ECF
(SECTION III-A28), ALBERT ET AL. [53]
Constructive ECF detects reentrancy vulnerability using the
effectively callback-free (ECF) notion. However, according
to ECF, reentrant functions can’t be callback-free. Thus,
a program exhibiting reentrancy can’t remove a reentrant
function like withdraw() function because due to the
removal of withdraw(), the program cannot handle the
callback. For instance, the listing 9 uses withdraw(..)
to transfer Ether using call which results in a call-
back. The authors used SMT solver to prove that removing
withdraw() would violate commutative property.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY AI TOOLS
1) REENTRANCY DETECTION BY AI

1) Constructive ECF (Section III-A28 and VII-A8):
Constructive ECF detects reentrancy by checking if it
can simulate an execution with callback using a code
without callbacks.

2) DappGuard (Section III-A27 and VII-A7): The reen-
trancy attack triggers an abnormally high gas con-
sumption, and DappGuard uses this information to
identify reentrancy. DappGuard applies the technique
of transaction log file. The amount of gas used in

the transaction can act as a determining factor for the
reentrancy attack.

3) Securify (Section III-A10 and VII-A2): Securify skims
for external calls, followed by writes to storage. Even
though this pattern-matching skill can simplify auto-
mated testing, related work in Rodler et al. [54] labels
this approach as too conservative.

4) Vandal (Section III-A5 and VII-A1): The authors of
Vandal detect reentrancy by critically analyzing the
CALL code to see if it’s recursive. The recursive block
does not apply mutex, and the CALL’s gas argument
is substantial. Note that mutex-free code permits the
attacker to perform unnecessary state changes. Solidity
implements mutex using locks as discussed in [124].
Line#5 in the listing [125] below initiates a call
transfer. The attacker’s FF generates a reentrant call but
the lock being true, line#2, prevents reentrancy.

Note in the above code the initial value of the lock is false so
that we can bypass require check.

2) UNCHECKED send (OR MISHANDLED EXCEPTION)
DETECTION BY AI

1) Securify (Section III-A10 and VII-A2): Securify
detects mishandled exception if CALL does not follow
a JUMPI, which should depend on the return value of
CALL, Tsankov et al. [75]. Note there is no goto in
Solidity [126] but Solidity depends on EVM JUMP and
JUMPI for translation of its loops [127].

2) Vandal (Section III-A5 and VII-A1): Vandal declares
the SC vulnerable to ‘‘UnChecked send’’ if the SC
takes no tangible action like throwing an exception or
updating persistent storage based on the return value of
CALL.
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3) SELFDESTRUCT DETECTION BY AI
1) Ethainter (Section III-A26 and VII-A6): Ethainter dis-

cusses two variants of SELFDESTRUCT: accessible
SELFDESTRUCT, in which SELFDESTRUCT com-
mand lies in a public function, and execution of the
public function destroys the SC. Ethainter confirms the
vulnerability by executing the public function using
the companion tool, Ethainter-Kill. Another variant
is ‘‘tainted selfdestruct’’ which furnishes composite
attacks because the attacker has to invoke multiple
transactions to get the required permissions to exe-
cute the SELFDESTRUCT command. Still, the code
is vulnerable if the code initializes the owner field
outside the constructor. Again Ethainter con-
firms SELFDESTRUCT vulnerability by killing the SC
using Ethainter-kill.

2) TeEther (Section III-A6 and VII-A4): TeEther detects
SELFDESTRUCT vulnerability if the SELFDE-
STRUCT opcode is reachable and the topmost stack
argument is vulnerable to external control. Thus the
attacker modifies the top of the stack by its address.

3) Vandal (Section III-A5 and VII-A1): Vandal discov-
ers selfdestruct vulnerability if the developer exposes
SELFDESTRUCT instruction to an arbitrary caller
without proper authentication.

4) UNSECURED BALANCE (OR STEALING ETHER)
DETECTION BY AI

1) Vandal (Section III-A5 and VII-A1): Vandal uses the
term ‘‘unsecured balance’’ and provides the example
of Rubixi Ponzi SC, Atzei et al. [20], to refer to the
stealing of Ether vulnerability. Vandal highlights that
Unsecure Balance vulnerability can cause an arbitrary
caller to manipulate the Ether transfer address of CALL
and henceforth transfer Ether to any undesired address.
Due to this transfer threat, Vandal checks the CALL’s
destination address to verify whether the attacker can
manipulate the address (possible if the victim’s SC ini-
tializes the Ether transfer address in a non-constructor
method) and if the accompanied amount of CALL is
non-zero.

2) Securify (Section III-A10 and VII-A2): Tsankov
et al. [75] equip Securify with violation and compli-
ance patterns [44]. For stealing Ether threat, Securify
scans the code of initialization function other than a
constructor and alarms a violation pattern. The
violation pattern may indulge in free writing (i.e., per-
missionless writing) to a storage variable.

5) FREEZING ETHER DETECTION BY AI
1) Securify (Section III-A10 and VII-A2): Securify dis-

covers the vulnerabilities related to freezing Ether by
detecting the two facts, i.e., users can credit the amount
in the SC’s account, and at the same time, Ether trans-
fer instructions are missing from the SC. For transfer,
Securify checks that all the CALL instructions transfer

0 ether. For a deposit instruction, Securify verifies a
successful path throughwhich the SC can receive Ether,
i.e., the path terminates with STOP, and the amount that
SC could receive is greater than 0.

6) UNBOUNDED MASS OPERATIONS OR DoS (DUE TO
OUT-OF-GAS) DETECTION BY AI

1) MadMax (Section III-A16 and VII-A3): MadMax
detects gas vulnerabilities resulting in the ‘‘out-of-gas’’
problem, which is directly related to Denial of Service.
Due to a lack of gas, some transactions may not run to
completion. MadMax detects Denial of Service in the
context of the unbounded mass operation (i.e., opera-
tion on an enormously large array) carried out within a
loop. According to unbounded mass operation vulner-
ability the loop is running through array size but not
resumable [23] or the loop is not checking the amount
of gas at each iteration. A resumable loop keeps track
of how far it has run. Hence, we can restart the loop
from the point of failure instead of redoing the whole
operation again.

7) WALLET GRIEFING (SECTION VIII-B3) DETECTION BY AI
1) MadMax (Section III-A16 and VII-A3): MadMax

detects Wallet Griefing vulnerability (Section VIII-
B3) by detecting for loop containing both send and
throw (deprecated) or revert (instead of throw)
and a dynamic array (i.e., a runtime value determines
the loop’s number of iterations) that loads the addresses
of the recipient for transfer using send. Research,
Grech et al. [12], declares Wallet Griefing, a severe
problem because revert can occur in the middle of
the loop [23].

8) INTEGER OVERFLOW DETECTION BY AI
1) MadMax (Section III-A16 and VII-A3): MadMax

detects integer overflow in connection with loops if the
loops have a dynamically bounded termination condi-
tion. Dynamically bounded means that the number of
iterations of the loop is determined at runtime. Example
in [12] shows that MadMax uses this strategy for var,
which is a deprecated vulnerability.

9) TRANSACTION ORDERING DEPENDENCE DETECTION
BY AI

1) DappGuard) (Section III-A27 and VII-A7): Dapp-
Guard detects transaction ordering when the user tries
to broadcast high gas activity after placing the bet,
which baits the miner from influencing the transac-
tion’s outcome immediately before the SC’s execution.
Higher gas means that the bet-related transaction might
have more than the average value.

2) Securify (Section III-A10 and VII-A2): Securify
detects transaction ordering in the context of selling
initially low-priced tokens, helping startups earn high
bonuses when the token prices are low. However, these
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TABLE 14. The vulnerabilities detected by formal verification tools developed for SCs.

transactions may be subject to miners’ exploitation.
Securify detects manipulations if the amount of CALL
depends upon reading storage data.

10) TRANSACTION ORIGIN DETECTION BY AI
1) Vandal (Section III-A5 and VII-A1): Vandal detects

tx.origin vulnerability at the bytecode level if
the SC uses the bytecode of tx.origin (i.e., ORI-
GIN) for altering state variables or as a conditional
test. However, security gurus discourage the com-
parison of tx.origin with the owner (i.e., initia-
tor of the transaction) but not with msg.sender,
Tikhomirov et al. [52].

VIII. FORMAL VERIFICATION APPROACHES
Formal verification is a process of proving mathematically
that a system obeys its design [128]. Formal verification tests
a program using an entire set of inputs instead of one or two
values. Oneway to achieve this is to consider a class of values,
such as positive or negative.

Table 14 lists the vulnerabilities detected by formal veri-
fication tools. Table 15 lists features of Formal Verification-
based tools, while thorough details of detection techniques
are discussed below:

A. GENERAL TECHNIQUES OF VULNERABILITY
DETECTION BY FORMAL VERIFICATION
To implement formal verification, Zeus focuses both on
abstraction and the entire data domain. Tools also relied on
Invariants, which are always true properties. Our research
speaks about vulnerability detection using formal verifica-
tion in connection with tools like Zeus, interactive theorem
provers, and FVF* as discussed below:

1) FORMAL VERIFICATION BY ZEUS (SECTION III-A1), [59]
To implement Formal Verification, Zeus aims to verify and
validate SC’s correctness based on syntax and adhering to
business logic. Moreover, Zeus focuses on automatic formal
auditing instead of manual work. Auditing means compliance
with the specification. Zeus inputs a policy file for compli-
ance checking. Zeus achieves its goal by utilizing abstract
interpretation, formal model checking, and constrained horn
clauses. Zeus applies abstract interpretation on a Solidity
SC converted into an LLVM bit code-based interpretation to
compute loops and public functions. Abstract interpretation

verifies a program’s semantics using conceptual ideas (like
positive or negative values) instead of fixed values [129].
Model-checking implies verifying and validating the SC’s
behavior, which requires specifications supplied using a pol-
icy file. Zeus checks only policy specifications related to
SC’s security using SeaHorn [130] tool. Horn clauses use
recursion and bounded iteration techniques. In addition, Zeus
puts assert statements before vulnerable statements for testing
purposes.

2) FORMAL VERIFICATION USING EVM DEFINITION BY
INTERACTIVE THEOREM PROVERS (ITPs)
(SECTION III-A19), [81]
The author focused on interactive theorem provers like LEM,
OCAML, and Isabelle/HOL. For example, Isabelle is a proof
assistant for proving mathematical formulas using logical
calculus, whereas OCAML is a general-purpose functional
programming language. In collaboration with his team, the
author translated the EVM bytecode in LEM and used the
translation to verify SCs. LEM is amathematical tool for writ-
ing, publishing, and managing portable semantic definitions.
Moreover, LEM’s EVM description supports its translation
into other interactive theorem provers like OCAML, which
the author used for testing against the VM test suite. Next,
the author translated the LEM definition into Isabelle/HOL,
tested the translation on the VM test suite, and got the same
results as with OCAML. This approach helped in the formal
verification of SCs. In addition, the author uses an invariant
(Section VIII-A) and shows that the failure of the invariant
is a sign of vulnerability, such as reentrancy and SELFDE-
STRUCT. The author has discussed that SELFDESTRUCT
execution does not immediately remove the SC from the
Blockchain or the removal of SC does not occur during
execution.

3) FORMAL VERIFICATION BY FVF* (SECTION III-A23),
BHARGAVAN ET AL. [51]
Authors performed formal verification of Ethereum SCs
using F*. They developed a Solidity language-based
approach incorporating F*, which uses two tools (1) Solid-
ity*, which converts Solidity programs into F* (2) EVM*,
which converts EVM bytecode into F*. Authors then used the
Solidity* and EVM* tools to perform three types of formal
verification: (1) Given a Solidity program, authors translated
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TABLE 15. Formal verification tools: General information at a glance.

the program into F* using Solidity* and used the Solidity
source code to verify SC invariants (Section VIII-A) and
runtime safety. (2) Given EVM bytecode author decompiled
the bytecode into Solidity using EVM* to verify the amount
of gas consumed by calls. (3) Given a Solidity program
and its EVM bytecode, authors verified their equivalence by
converting them into F*.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY FORMAL VERIFICATION TOOLS
1) REENTRANCY DETECTION BY FORMAL VERIFICATION

1) FVF* (Section III-A23 and VIII-A3): FVF* detects
reentrancy if the SC modifies storage variable after
send. However, the approach discussed in FVF*
related research, Bhargavan et al. [51], uses send
instead of call. send transfers only 2300 gas to the
caller and doesn’t cause reentrancy.

2) Interactive TheoremProvers (ITPs) (Section III-A19
and VIII-A2): Interactive Theorem Provers use the fail-
ure of execution as an indication of reentrancy. The
reentrant SC fails due to the violation of invariant prop-
erty. The invariant property does not hold because the
reentrant message-calls result in changes in the account
state, i.e., SC’s balance and storage.

3) Zeus (Section III-A1 and VIII-A1): We will now dis-
cuss an example of reentrancy detection using Zeus,
which clarifies its working. Figure 2, line#10, shows
the function, withdrawBalance(), retrieved
from [59]. Red lines in Figure 2 highlight the steps of
execution. Zeus clones the withdrawBalance()
and names it as withdrawBalance()’, line#2.
Zeus then performs static analysis, inserts an assert
statement in the cloned function at line#5, and invokes
the cloned function at line#13. Note both these inser-
tions (i.e., cloned function and assert(..)) are
before call-transfers and hence detect reentrancy
vulnerability. The call-chain consists of the SC verifier
invoking the withdrawBalance(), which in turn
invokes the cloned function and halts due to assert.
assert violations help the verifier to detect policy
violations. However, Zeus modifies the SC under test.
Subsequently, this technique is not scalable and unsuit-
able for cross-function reentrancy testing.

2) MISHANDLED EXCEPTION (OR UNCHECKED send
DETECTION BY FORMAL VERIFICATION

1) FVF* (Section III-A23 and VIII-A3): For determin-
ing unchecked send vulnerability, the authors merged

FIGURE 2. Reentrancy detection by zeus, modified from [9].

the concept of exception with monadic behavior,
i.e., related to chaining operations [131], i.e., computa-
tion depends upon the result of a computation that came
before it [132]. A boolean variable implements the
monadic behavior; for instance, throws an exception
if the boolean variable is false. The built-in interactive
proof assistant then verifies the translations.

2) Zeus (Section III-A1 and VIII-A1): Zeus maintains
that ‘‘unchecked send’’ threat arises due to failure of
send in the destination SC and leads to inconsistency
if the caller does not handle failed send invocations.
Therefore, Zeus initializes a global variable (i.e., gv)
to true if the send fails and inserts an assert state-
ment before any subsequent write to the global state to
confirm that unchecked send should not cause incon-
sistency in the SC.

3) FAILED send DETECTION BY FORMAL VERIFICATION
1) Zeus (Section III-A1 and VIII-A1): In connection with

failed send, the authors of Zeus discuss a similar
SC in [59] and grouped failed send with Wallet
Griefing. In Wallet Griefing attacker acts as an investor
but provides a callback function that does not han-
dle sub-call [133]. Zeus tries to avoid invoking of
throw (deprecated) because it can facilitate the unlaw-
ful activity of ransom, as discussed in [134]. throw
can cause reverting of all transactions due to the fail-
ure of one. Thus Zeus automatically puts an assertion
before throw to detect the failed send vulnerability.

4) selfdestruct VULNERABILITY DETECTION BY FORMAL
VERIFICATION

1) Interactive Theorem Provers (ITPs) (Sec-
tion III-A19 and VIII-A2): Interactive Theorem
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TABLE 16. Query language-based tool: General information at a glance.

Provers detect SELFDESTRUCT if the invariant fails,
i.e., the state changes occur due to the execution of
SELFDESTRUCT. State changes occur because SELF-
DESTRUCT’s execution destroys SC and hence clears
the state variables; hence the invariant fails. Thus the
SC is vulnerable.

5) INTEGER OVERFLOW/UNDERFLOW DETECTION BY
FORMAL VERIFICATION

1) Zeus (Section III-A1 and VIII-A1): Zeus remains con-
sistent with Solidity’s semantic, [135], for detecting
overflow and underflow, i.e., Solidity wraps around
the maximum value of an integer data type to zero
on increment and acts conversely for decrement opera-
tion (i.e., if we subtract 1 from a binary number with
all zeros, all digits will become 1). Zeus marks the
SCs unsafe (unnecessary in some cases) by detecting
wrap-around errors as discussed above. Perhaps, Zeus
performs overflow detection by checking the boundary
values.

6) timestamp DEPENDENCE DETECTION BY FORMAL
VERIFICATION

1) Zeus (Section III-A1 and VIII-A1): Zeus applies
broader path constraints, taint analysis, and symbolic
model checking to detect timestamp dependence bugs.
Thus detection incorporates several block state vari-
ables such as COINBASE, NUMBER, DIFFICULTY,
and GASLIMIT in addition to the TIMESTAMP to
generate alarms if the send or call path uses said
variables. Symbolic model checking (Section III-A1)
helps to eliminate infeasible paths.

7) TRANSACTION ORDERING DEPENDENCE DETECTION BY
FORMAL VERIFICATION

1) Zeus (Section III-A1 and VIII-A1): Zeus tool applies
taint analysis on global variables. Zeus signals global
variables (i.e., predefined variables [136]) vulnerable
to Transaction Ordering if the tainted variables perform
write-operations and then influence send or call
statements.

IX. QUERY LANGUAGE APPROACHES
One example of implementing a Query-based approach is
transforming the Solidity SC into XML representation and
then using XPATH-based query language to detect vulnera-
bilities as discussed in (Section III-A8) in connection with
SmartCheck.

Table 16 highlights features of SmartCheck, while thor-
ough details of detection techniques are listed in Table 17,

which lists some vulnerabilities detected by SmartCheck.
SmartCheck detects several other vulnerabilities, and we
would refer the interested reader to the research in [52] to get
more knowledge about SmartCheck’s vulnerability detection
techniques.

A. GENERAL TECHNIQUE OF VULNERABILITY DETECTION
BY QUERY LANGUAGE
1) XPATH BASED-TECHNIQUE BY SMARTCHECK
(SECTION III-A8), TIKHOMIROV ET AL. [52]
SmartCheck first develops an XML parse tree from the Solid-
ity code and then uses the XPATH expressions to traverse
the tree. XPATH expressions are similar to path expressions.
Smartcheck uses XPATH[xpa] queries to detect vulnerabil-
ity patterns. The advantage of XML documents is that we
can store vulnerability descriptions in the document, and
the XPATH[xpa] query can retrieve that information. How-
ever, XPATH is a simple mechanism for retrieving data from
XML documents and subsequently can’t support complex
vulnerability patterns and may output false-positive results
for catching Checks-Effects-Interactions violations in con-
nection with reentrancy vulnerability. Hence for complex
XML documents, XPATH benefits from the xpa tool to track
statistical information related to XML documents, such as
calculating the number of function calls which can help in
reentrancy detection.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY QUERY LANGUAGE TOOLS
1) REENTRANCY DETECTION BY QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1):
SmartCheck tests reentrancy depending upon three
actions: Checks-Effects-Interactions. Values of these
patterns can be, for instance: (1) Checks: This means
that the invariant (Section VIII-A) must always be
true. For instance, in the case of Ether transfer, the
withdrawal amount should always be less than the bal-
ance, i.e., amount < balance, (2) Effects: After
the invariant test and before the transfer, we must
implement the effect. In the case of transfer, the effect
is that the balance would become zero or the bal-
ance would reduce by withdrawal amount, i.e., the
effect would be: balance = 0, or balance -=
amount. (3) Interactions:. Finally, we would do the
transfer using call so that the transfer should not fail
if the receiving FF is costly.

Listing 8 presents the violation pattern, i.e., CHECK-
INTERACTION-EFFECT. The attacker implements
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TABLE 17. The vulnerabilities detected by query language tool (i.e., SmartCheck [52]), CFG-based tool (i.e., Mythril [137], sCompile [58]), Invariant
Violation Tool (i.e., Vultron [37], VeriSmart [72]), and runtime monitoring and validation tool (i.e., Sereum [54]) developed for SCs.

the DAO attack by calling withdrawMoney(),
line#1, and then repeats the call using its fallback func-
tion. The sequence of invocations would be:
• withdrawMoney (i.e. a user-defined unprotected
Ether transfer function in the sender SC)
• Fallback Function (i.e., a Solidity-based Ether
receiver function in an attacker SC)
• withdrawMoney (i.e., an invocation to the sender’s
Ether transfer function in the attacker’s fallback func-
tion, which initiated the transfer)

LISTING 8. Checks-effects-interaction violation pattern, [138].

The above pattern repeats until an out-of-gas situation
arises. CHECK-EFFECT-INTERACTION pattern can
mitigate the reentrancy problem as discussed in [139] in
the context of mitigation and prevention of reentrancy
attacks.

2) DENIAL OF SERVICE DUE TO UNEXPECTED throw
(DEPRECATED), DETECTION BY QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): If a con-
ditional statement depends on the external function
such as call or transfer, then it may cause
DoS because the receiver may throw (deprecated)
or revert as discussed in [23]. For example,
SmartCheck uses the pattern: if-statement followed by
external call in the condition, and the body contains

revert. Similarly, the if-pattern discussed above can
exist within a for loop.

3) UNCHECKED EXTERNAL CALL OR MISHANDLED
EXCEPTION DETECTION BY QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): SmartCheck
detects the SC vulnerable for an unchecked external
call invocation if the search pattern detects call,
delegatecall or send without an if-statement.

4) DETECTION OF LIBRARY VULNERABILITY BY QUERY
LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): Libraries
help in code reduction, but this vulnerability occurred
when the Parity SC used a library for transferring
Ether [23]. But when the attacker killed Library SC,
there was no way out to release the funds of Parity SC.
SmartCheck detects the library keyword.

5) DETECTION OF LOCKED ETHER OR FREEZING ETHER BY
QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1):
A SC can cause locking of funds. SmartCheck
detects the presence of payable directive in such
SCs to indicate the locked Ether vulnerability but
the converse statements like transfer, send, and
call.value()(), which withdraw Ether from the
SC, are non-existent.

6) DETECTION OF INTEGER DIVISION BY QUERY LANGUAGE
1) SmartCheck (Section III-A8 and IX-A1): SmartCheck

detects the division operator in a binary operation based
upon numerical values.

7) DETECTION OF DENIAL OF SERVICE DUE TO OUT-OF-GAS
(OR WALLET GRIEFING (SECTION VIII-B3)) BY QUERY
LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): SmartCheck
detects this vulnerability in the context of a for or
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while loop accessing all elements of an extensively
large array, and the body of the loop invokes a func-
tion [23]. Array traversal can trigger an out-of-gas
exception if the gas spent in the traversal exceeds the
block GASLIMIT.

8) DETECTION OF TIMESTAMP DEPENDENCE
VULNERABILITY BY QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): SmartCheck
detects timestamp by detecting Blockchain environ-
ment variable now (deprecated). But, again, this can
lead to false-negative cases because SC can use
variables containing the value of Blockchain.
timestamp, which can easily fool the tool.

9) DETECTION OF tx.origin VULNERABILITY BY QUERY
LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): tx.ori-
gin represents the originator of the transaction, which
is always the initial caller. Hence, if the SC uses
the condition: tx.origin == owner for authen-
tication, SmartCheck declares the SC vulnerable. The
above condition is always true because owner and
tx.origin point to the same address. SmartCheck
searches the pattern tx.origin.

10) DETECTION OF TYPE INFERENCE VULNERABILITY (USE
OF DEPRECATED var) BY QUERY LANGUAGE

1) SmartCheck (Section III-A8 and IX-A1): SmartCheck
uses the assignment statement pattern with var (dep-
recated) on the left of the assignment operator and an
integer on the right.

TABLE 18. The vulnerabilities detected by variable analysis tools
developed for SCs.

X. VARIABLE ANALYSIS APPROACHES
Taint Analysis and Static Single Assignment help in pro-
gram analysis. Taint analysis checks the program variables
for boundary values. Similarly, a static single assignment
analyzes the variables in intermediate representation for a
single assignment and definition before use. The assignment
simplifies control flow and data flow analysis [140] such that
every variable is allotted a value only once and is defined
before its use.

Table 18 provides a brief list of vulnerabilities detected
by variable analysis tools. Table 19 incorporates features of
variable analysis tools, while thorough details of detection
techniques are listed below:

A. GENERAL TECHNIQUES OF VULNERABILITY
DETECTION BY ANALYSING VARIABLES
1) STATIC SINGLE ASSIGNMENT BASED TECHNIQUE BY
SLITHER (SECTION III-A9), FEIST ET AL. [74]
Slither retrieves important information such as the inheritance
graph, control flow graph, and the programming expressions
from the Abstract Syntax Tree and converts this informa-
tion into an intermediate representation. Next, it performs a
single static assessment to analyze read/write variables, data
dependency, and unprotected functions. Static single assess-
ment requires a one-time variable assignment and definition
before usage. Finally, the analyzed code helps in detecting
reentrancy, owner authorization, unprotected functions, and
shadowed variables (SWC-19).

2) TAINT ANALYSIS BY OSIRIS (SECTION III-A13),
TORRES ET AL. [77]
External data can be malicious. SCs receive external data
through external functions, which store it in a space known
as msg.data or calldata. CALLDATACOPY copies this
data into memory, and CALLDATALOAD copies calldata
into the stack. In addition to stack and memory, calldata
interacts with instructions like SSTORE, JUMPI, CALL,
and RETURN. Hence, OSIRIS’s taint component designates
the storage location of calldata as ‘‘Sources’’ and the above
instructions as ‘‘Sinks’’ because the instructions access stor-
age (e.g. SSTORE), send Ether (e.g., CALL), and manipulate
the execution path (JUMPI). However, Taint Analysis only
focuses on the executed instructions related to stack memory
and storage. It identifies the operand of the instruction, and if
the operand influences any other data, then the impacted data
also becomes tainted.

In contrast, another component of OSIRIS, i.e., integer
error detection, checks the integer bugs. For instance, the
integer error detection component checks integer overflow if
the symbolic analysis executes ADD or MUL. OSIRIS also
performs width conversion checks if the symbolic analysis
executes AND or SIGNEXTEND instruction. Width con-
version check is a method for overflow detection such that
an arithmetic operation creates a value beyond the range
represented using a given number of digits [141]. An exam-
ple of SIGNEXTEND instruction is given in connection
with -28:

Binary value = 00011100
1’s complement = 11100011
2’s complement = 11100100
SIGNEXTEND = 1111111111100100.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY VARIABLE ANALYSIS TOOLS
1) DETECTION OF REENTRANCY VULNERABILITY BY
VARIABLE ANALYSIS

1) Slither (Section III-A9 and X-A1): Slither detects
reentrancy if the state variable changes after external
call.
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TABLE 19. Variable analysis tools: General information at a glance.

2) DETECTION OF INTEGER BUGS BY VARIABLE ANALYSIS
1) OSIRIS (Section III-A13 and X-A2): To detect over-

flow/underflow, and division bugs, Osiris uses a solver
and instructs it to check the boundary requirements
such that the operation’s result should not exceed the
resultant’s maximum possible value. This requirement
helps detect overflow related to ADD, MUL, and
underflow related to SUB instructions. The solver dis-
cards DIV and SDIV if the divisor is zero. Similarly,
the solver renders the truncation operation vulnerable
if the destination operand’s size is smaller than the
source operand. However, Osiris detects signedness
bugs using the Molnar approach, Molnar et al. [142].

XI. CONTROL FLOW GRAPH (CFG)-BASED APPROACH
We found several static analysis tools incorporating CFG
for analyzing the bytecode of SCs, but Mythril uses CFG
specifically for vulnerability detection. Table 17 lists the vul-
nerabilities detected by CFG tools. We can’t find the citations
of Mythril’s research-related article [143], hence we can’t
evaluate its popularity factor. However, Table 20 highlights
features of CFG tools, while thorough details of vulnerability
detection techniques are listed below:

A. GENERAL TECHNIQUE OF VULNERABILITY DETECTION
BY TOOLS ANALYZING CFG
1) CFG-BASED TECHNIQUE OF MYTHRIL
(SECTION III-B10), [105]
Mythril uses LASER Ethereum to create a CFG that helps
retrieve program states to prove specific properties to detect
reentrancy and other vulnerabilities. LASER Ethereum,
Mueller et al. [144], is a symbolic interpreter that works on
SC’s bytecode and returns the SC’s state, such as account
information, program counter, and local EVM client’s stack
information.

2) CFG-BASED TECHNIQUE OF SCOMPILE
(SECTION III-A11), CHANG ET AL. [58]
sCompile uses a combination of CFG, symbolic execution,
and SMT solver-based techniques for vulnerability detection.
sCompile first uses CFG to list program paths. These program
paths then help to identify monetary paths (or critical paths,
Section III-A11). sCompile ranks the critical paths by their
criticalness score. Finally, sCompile uses symbolic analysis
to filter out the less critical path. sCompile’s symbolic execu-
tion engine utilizes the capabilities of Z3 SMT solver.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY ANALYSING CFG
1) REENTRANCY DETECTION BY CFG

1) Mythril (Section III-B10 and XI-A1): Mythril
detects message calls other than invoking send and
transfer functions because they consume gas
amounting to only 2300 Wei. Thus, Mythril analyzes
the CFG of external calls to untrusted addresses and
generates a reentrancy warning if state changes occur
after the CALL invocations.

2) sCompile (Section III-A11 and XI-A2): sCompile
detects reentrancy by applying a combined approach
of analyzing critical paths and respecting the limitation
property. The limit property uses a limit variable with
an assigned value. Each time the critical path transfers
Ether out of the SC, sCompile decrements the limit
variable with the transferred amount; when the limit
value becomes negative, sCompile generates a viola-
tion message.

2) selfdestruct DETECTION BY CFG
1) Mythril (Section III-B10 and XI-A1): In case of self-

destruct vulnerability, Myhril generates alerts if the
SELFDESTRUCT opcode is reachable and if the argu-
ment of SELFDESTRUCT is writeable.

2) sCompile (Section III-A11 and XI-A2): sCompile
starts after finding out if SELFDESTRUCT is reach-
able or not. After that sCompile checks the constraints
like the address associated with SELFDESTRUCT
using Etherscan. If the address does not exist, sCom-
pile declares it a violation. sCompile also checks
other restrictions like block number, date, and owner’s
address associated with the conditional test statement
of SELFDESTRUCT. If no constraints are associ-
atedwith SELFDESTRUCT, then SELFDESTRUCT is
vulnerable.

3) FREEZING ETHER DETECTION BY CFG
1) sCompile (Section III-A11 and XI-A2): sCom-

pile, develops a CFG which identifies a node as
money-related if its basic block contains the opcode for
instructions like CALL, CREATE, DELEGATECALL,
or SELFDESTRUCT. One differentiating factor is that
sCompile generates awarningmessage labeling a SC as
a ‘‘black hole’’ if sCompile encounters a freezing Ether
threat. By ‘‘black hole’’ property, sCompile means that
the SC has no path to send the Ether out, but it has one
such path, which allows the transfer of Ether into the
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TABLE 20. Control flow graph tool: General information at a glance (’*’ means information not available).

SC. For the later one, sCompile checks the payable
directive.

XII. CHECKING INVARIANT VIOLATION APPROACH
An essential technique for vulnerability detection is to define
a set of invariants that should always be true. In computer
science, an invariant is a property that should hold to start/stop
the execution of some parts of a program (e.g., a loop invari-
ant) [91]. Hence, the invariant violation to initiate a sensitive
operation (like Ether transfer) indicates a vulnerability [145].
However, VeriSmart, Section III-A4, extends this approach
by detecting hidden invariants. But we could not find suffi-
cient details for specific vulnerability detection techniques.
Table 17 lists the vulnerabilities detected by Vultron. Table 21
lists Vultron’s features, while thorough details of Vultron’s
invariant-based detection techniques are listed below:

A. GENERAL TECHNIQUE OF VULNERABILITY DETECTION
BY CHECKING INVARIANT VIOLATION
1) INVARIANT-BASED TECHNIQUE OF VULTRON
(SECTION III-B1), WANG ET AL. [37]
One common purpose of SCs is sending and receiving Ether;
henceforth, SCs share some code in declaring data structures
and variables. Thus the commonality of goals and variables
can merge to define standard invariants for SC that do not
change, and if they change, we can trigger a vulnerability
alarm. For example, research related to Vultron, Wang et al.
[37], exploits the common invariant notion by creating a
balance invariant that requires that the SC’s balance before
and after a transaction and the sum of all participants’ book-
keeping balances remain constant. However, a bookkeeping
balance is an intra-contract property (i.e., declared inside the
SC using local variables).

2) HIDDEN INVARIANT-BASED TECHNIQUE OF VERISMART
(SECTION III-A4), SO, ET AL. [72]
VeriSmart generates the hidden invariant related to the math-
ematical statements and proves that the invariant holds;
otherwise, reprocesses the unproved invariant for refinement.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUE BY
DETECTING INVARIANT VIOLATION
1) REENTRANCY DETECTION BY INVARIANT VIOLATION

1) Vultron (Section III-B1 and XII-A1): Vultron uses a
balance invariant technique due to which the differ-
ence of SC’s balance and the sum of all participant’s
bookkeeping balances should remain constant. Still,
if the transaction does not update the bookkeeping

balance but the SC’s balance changes, it indicates a
reentrancy problem because of the difference between
the two (i.e. balance invariant) is not constant. Consider
the example in Table 22, modified from Wang et al.
[37], initially Victim’s balance is 10 and the Attacker’s
balance is zero, henceforth the difference is 10. Next,
the attacker donates, increasing Victim’s balance to
11 and the Attacker’s bookkeeping balance by one, but
the difference is still 10. However, the next transaction
in step 3 violates the balance invariant because the
Victim’s balance decreases to 10, but the bookkeeping
balance does not change, and hence the difference,
i.e., 9, is a violation of invariant property.

2) MISHANDLED EXCEPTION DETECTION BY INVARIANT
VIOLATION

1) Vultron (Section III-B1 and XII-A1): Vultron detects
mishandled exception using transaction invariant con-
cept. Let’s suppose the sender SC has no bookkeeping
variable, hence Vultron inserts a ghost variable for
keeping SC’s balance information locally. When the
SC performs a transaction, the receiver generates an
exception. Despite the exception, the sender updates
the value of the ghost variable instead of handling the
exception. Thus, the receiver’s balance will not change,
but the sender’s balance (i.e., the ghost variable) will
decrease, violating the transaction invariant.

3) INTEGER OVERFLOW DETECTION BY INVARIANT
VIOLATION

1) Vultron (Section III-B1 and XII-A1): Vultron uses the
concept of balance invariant to detect integer overflow
as Vultron does with reentrancy detection. Due to over-
flow/underflow, the balance invariant may violates,
which helps in the detection of overflow/underflow.
Consider the following line of code:

if balances[msg.sender] is 1 and the amount is 2 but
after the code above executes balances[msg.sender]
becomes 2256−1, which violates the balance invariant.

4) GASLESS send DETECTION BY INVARIANT VIOLATION
1) Vultron (Section III-B1 and XII-A1): Vultron pro-

poses transaction invariant to detect gasless send
as discussed in (Section XII). If the sender SC
does not handle the out-of-gas exception due to a
failed transfer, the SC balance would decrease as dis-
cussed in (Section XII-B2). Still, the receiver won’t
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TABLE 21. Checking invariant violation tool: General information at a glance.

TABLE 22. Reentrancy example modified from Wang et al. [37].

receive any Ether. Hence the authors use a ghost vari-
able (Section XII-B2) in conjunction with transaction
invariant.

XIII. RUNTIME MONITORING AND VALIDATION
APPROACHES
We found only Sereum employing Runtime Monitoring
and Validation approach by using storage data as an
execution state. However, based upon Wikipedia’s defini-
tion [146], we can call Sereum’s approach just runtime
verification. Table 17 provides list of vulnerabilities detected
by Sereum. Table 23 embeds common features of Sereum,
while thorough details of detection techniques are listed
below:

A. GENERAL TECHNIQUE OF VULNERABILITY DETECTION
BY VALIDATING PROGRAM EXECUTION STATE
1) RUNTIME MONITORING AND VALIDATION
BASED-TECHNIQUE OF SEREUM (SECTION III-B2),
RODLER ET AL. [54]
Sereum uses taint analysis and locking of write access to
the storage for reentrancy detection. Sereum waits for tainted
information to reach the taint sink from the taint source and
then invokes the reentrancy detection module. The detec-
tion module interprets the SSTORE’s write operation and
checks if the address has write- permissions or not. If the
write fails, Sereum alarms reentrancy attack and aborts
execution.

However, a thorough study of the Sereum-related research
highlights the fact that Sereum focuses on the detection of
inconsistent states, which is not necessary for reentrancy
detection. Because reentrancy means re-entrance, it doesn’t
need to cause state inconsistency. For instance, the code in
Listing 9 causes state inconsistency (i.e., balance becomes
negative) because the program does not deduct the trans-
ferred amount with the balance, i.e., line#17 never executes.
However, the code shown in the tutorial in [147] can also
cause reentrancy where the attacker can re-enter the SC and
transfer the unguarded funds using the transfer statement
shown in line#7 of the victim SC, even though there is no
state inconsistency issue.

LISTING 9. Example of a reentrancy program modified from [51].

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY VALIDATING PROGRAM EXECUTION
1) REENTRANCY DETECTION BY VALIDATING PROGRAM
EXECUTION STATE

1) Sereum (Section III-B2 and XIII-A1): The tool locks
the write access to storage addresses to influence con-
trol flow decisions. When a SC attempts to write to
a locked address after the external call, Sereum bangs
due to a reentrancy attack and aborts execution. Sereum
implements this logic because of its dynamic analysis
capabilities, particularly runtime analysis. Replication
of the runtime environment requires connecting with
the public Ethereum network, re-executing transac-
tions, and skipping blocks requiring high execution
time, causing Denial of Service.

XIV. CUSTOMIZATION-BASED APPROACHES
By Customization, we mean altering the operating environ-
ments like Ethereum Mainnet and Ethereum Clients. Tools
use Ethereum modules for this purpose. EthereumMainnet is
the public EthereumBlockchain where the actual transactions
occur. EthereumClient is the downloadable software that acts
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TABLE 23. Runtime monitoring and validation tool: General information at a glance.

as a node for Ethereum Blockchain. Table 24 provides a brief
description of Ethereummodules-based tools, while thorough
details of detection techniques are listed below:

A. GENERAL TECHNIQUE OF VULNERABILITY DETECTION
BY DEVELOPING CUSTOMIZATION MODULES
1) CUSTOMIZATION-BASED MODULE FOR CONCRETE
VALIDATION BY MAIAN (SECTION III-A15),
NIKOLIĆ ET AL. [57]
A private fork of Ethereum works under the concrete val-
idation component of Maian. It comes into play when the
symbolic analysis component discharges its output. The out-
put consists of concrete values, and the private fork of
Ethereum uses concrete values to validate the SC’s security
property.

2) CUSTOMIZATION-BASED MODULE FOR TAINT TRACKING
BY EASYFLOW (SECTION III-B4), GAO ET AL. [99]
Initially Taint Analysis component divides the SCs into safe,
overflow, and potential overflow. SCs declared as safe by
taint analysis are not subject to further processing. Otherwise,
EasyFlow declares an arithmetic operation based upon argu-
ments as potential overflow andmarks the arguments as taints
even if the result of the operation does not overflow. Easyflow
tests potential overflows by re-executing them using a series
of invocations. On the other hand, the SCs recognized as
overflow by taint analysis or SCs incorporating the SafeMath
library are compared with protection patterns to identify them
as protected or manifested overflows. The authors developed
an extended go-Ethereum module for tracking taints during
function executions.

B. SPECIFIC VULNERABILITY DETECTION TECHNIQUES
BY DEVELOPING CUSTOMIZATION MODULES
1) GREEDY (OR LOCKING FUND) DETECTION BY
ETHEREUM MODULES

1) Maian (Section III-A15 and XIV-A1): In connection
with Frozen Ether, the novelty of Maian is that it labels
the Frozen Ether SCs as ‘‘Greedy’’. Maian-related
research shows that sometimes it is difficult to detect
true positive cases in a greedy SC situation. One reason
is that the release of Ether may require a confirmation
from the majority of owners, which in turn requires the
majority of owners, for example, to execute the con-
firmation granting function as in Figure 3. Otherwise,
Maian uses a traditional approach, i.e., if the Ether
transfer instructions like CALL are unreachable but the
SC accepts Ether, then the SC is greedy.

FIGURE 3. ConfirmTransaction(..), Majority of owners confirm
transaction, [57].

2) SELFDESTRUCT (OR SUICIDAL) DETECTION BY
ETHEREUM MODULES

1) Maian (Section III-A15 and XIV-A1): Due to fund
transfer capability, Maian, detects SELFDESTRUCT
by building the transaction trace such that the last trans-
action is reachable to SELFDESTRUCT opcode.

3) PRODIGAL (OR LEAKING ETHER) DETECTION BY
ETHEREUM MODULES

1) Maian (Section III-A15 and XIV-A1): Maian detects
prodigal SCs if the CALL is reachable, the transfer
amount is non-zero, and the recipient is an arbitrary
account. However, Maian also checks success if the
process ends with STOP or RETURN, which is unnec-
essary because the return value of the transaction
determines the success.

4) INTEGER OVERFLOW DETECTION BY ETHEREUM
MODULES

1) EasyFlow (Section III-B4 and XIV-A2): EasyFlow
checks the bytecode associated with arithmetic instruc-
tions like ADD, SUB, MUL, DIV, and EXP to analyze
the values and protection patterns like conditional
statements and the SafeMath library. Then, when
EasyFlow suspects a check for potential overflow,
EasyFlow creates a transaction consisting of the orig-
inal msg.value and an integer value between 0 to
MAX_UINT256 as input data. Finally, these transac-
tions are re-executed for all the possible combinations
of integer values to test the presence of overflow.

XV. MULTI-LAYER CLASSIFICATION OF TOOLS’
TECHNIQUES
We provide four classes of SC tools in Figure 4 and divide
each class into three parts: (1) Higher Level Techniques,
which specifies the top-level software engineering techniques
used by a SC’s tool to initiate the vulnerability detection
process (2) Implementation: supporting modules and tools,
specifies the user-defined modules and/or built-in tools to
provide the input values and/or the environment necessary
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TABLE 24. Ethereum modules-based tools: General information at a glance.

TABLE 25. The vulnerabilities detected by ethereum module-based tools
developed for SCs.

to execute the newly developed tool and/or to perform the
reachability analysis, (3) Tool(Vulnerability Detected), spec-
ifies the tool name and the vulnerabilities detected by the
developed tool.

Class C1 focuses on the CFG-based seven vulnera-
bility detection tools incorporating static analysis. As a
first step, all the tools perform symbolic execution apart
from Securify (Section III-A10), which uses static single
assignment. After that, Securify follows a pure AI-based
approach incorporating Datalog analysis which uses the
Souffle engine to reason about the vulnerabilities by comput-
ing fixed-point (Section III-A10). On the other hand, tools
like Oyente (Section III-A12), sCompile (Section III-A11),
teEther (Section III-A6), Gasper(Section III-A6) utilize SMT
solvers like Z3 to solve integer or boolean-related con-
straints. But tools like Osiris (Section III-A6) and Clair-
voyance (Section III-A6) subject the SC to Taint Analysis
(Section III-A13) and/or path-protective technique (i.e., PPT,
Section I-A) before using solvers.
Class C2 presents eight SC tools incorporating static anal-

ysis based on intermediate representations. However authors
of constructive ECF (Section III-A28) do not elaborate on
its intermediate representation technique and focus only on
Z3 solver for vulnerability detection. Vandal (Section III-A5)
and MadMax (Section III-A16) apply AI-based processing
to their intermediate representations using Datalog analy-
sis. AI analysis helps MadMax to generate vulnerability
detection results, but Vandal further applies the Souf-
fle engine to highlight vulnerabilities in C++. Similarly,
other tools also process the intermediate representation. For
instance, SmartScopy (Section III-A7) retrieves the interme-
diate representation through Vandal’s engine and processes it
using Summary-based Symbolic evaluation (Section III-A7),
a faster version of symbolic execution. SmartScopy gener-
ates an attacker to help with reentrancy and batch overflow
detection. For reentrancy, the attacker generates a callback.
For batch overflow, the attacker generates a huge valuewhich,
when multiplied with the SC’s balance (for example), causes

the result to overflow. SmartScopy uses SMT solver to create
concrete values.

On the other hand, EtherTrust(Section III-A25) and
Zeus (Section III-A1) use Horn Clause representation
(Section III-A1) in two different ways. EtherTrust uses
the representation as an Intermediate representation, which
is subject to reachability analysis. Zeus performs Horn
Clause verification on the output obtained by formal verifi-
cation of LLVM’s intermediate representation. SmartCheck
(Section III-A8) starts its processing using an XML parse tree
as an intermediate representation for Solidity SC. The parse
tree then helps in vulnerability detection using XPATH[xpa]
queries. Slither (Section III-A9) starts with its intermediate
representation, i.e., SlitherIR, which is subject to a static
single assignment approach (Section III-A9). However, the
authors do not provide much detail about SlitherIR.

Class C3 incorporates four SC tools applying various static
analysis approaches. For instance, FVF* (Section III-A23)
converts SC and its EVM representations (i.e., Solid-
ity and bytecode versions of SC) into F* and then
checks their equivalence by applying formal verification.
ITP (Section III-A19) also performs formal verification by
first generating EVM definition in LEM (Section III-A19)
and extracting it using OCAML (Section III-A19) and
Isabelle/HOL (Section III-A19). Then ITP confirms the
OCAML implementation using a VM Test [81], holding
a database of EVM implementations. On the other hand,
Ethainter (Section III-A26) uses the information flow rules
(Section III-A26) to focus on guard conditions to sanitize
information. The Datalog engine implements the Informa-
tion flow rules. Taint Analysis (Section III-A13) tracks data
input during SC’s execution. If taint propagates through
storage, then a sizable number of SC’s are flagged vul-
nerable. In this situation, exploits override a guard by
overwriting the owner variable in the storage, which allows
the Ethainterkill to destroy the vulnerable SCs. But Dapp-
Guard (Section III-A27) adopts knowledge acquisition for
implementing AI. Rules Engine uses the knowledge for
vulnerability detection. DappGuard also applies the Oyente
engine for vulnerability detection, which requires symbolic
execution.

Class C4 discusses eleven SC tools based on dynamic
analysis.Wewill first examine themulti-level schemes for six
of them based on intermediate representation. For instance,
Confuzzius (Section III-B5) and sFuzz (Section III-B6)
embed evolutionary fuzzing through a Genetic algorithm
(Section III-B5), but Confuzzius can switch to hybrid fuzzing
if the fuzzer cannot solve the branching problem. sFuzz uses
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a feedback-guided adaptive fuzzing approach to handle the
missed branches and generates new test cases by applying the
existing ones. sFuzz repeats the process until the termination
condition occurs.

On the other hand, ILF (Section III-B7) incorporates prob-
abilistic and learning-based fuzzing. Probabilistic fuzzing
assigns probabilities to integer arguments and functions.
Learning-based fuzzing first uses symbolic analysis to gen-
erate inputs for learning the fuzzer using a Neural Network.
The learned fuzzer then uses inputs to test the unseen pro-
gram. Regaurd’s (Section III-B3) testing involves randomized
fuzzing which injects random data (i.e., random transactions)
into the SC. Regaurd records execution traces and feeds
the traces into reentrancy automata for reentrancy detec-
tion. EtherRacer (Section III-B9) applies dynamic symbolic
execution after randomized fuzzing to generate outputs of
each event separately. Another significant approach is the
partial order reduction which helps EtherRacer to prevent
state explosion problems [148]. However, EtherRacer uses
partial order reduction to check if reordering a set of func-
tions yields the same output. Linearizability optimizer in
EtherRacer finds the matching call/return pairs in the
called functions. On the other hand, the happens-before
optimizer catches event-ordering bugs. Finally, we dis-
cuss contractFuzzer (Section III-B8), which uses fuzzing
to produce random data according to function arguments.
Next ContractFuzzer uses the generated inputs to bom-
bard the function invocations arbitrarily. Instrumentation [45]
is a technique to record the opcode execution by provid-
ing an interpreter-based function for the opcode in the
implementation.

Now we will discuss CFG-based dynamic analysis tools
related to SCs. For instance, Mythril (Section III-B10)
performs symbolic and concrete analysis to test the SCs.
Afterward, Mythril uses the Laser Ethereum to represent the
execution of SC in propositional logic as a combination of
states and formulas. Mythril then uses the Z3 solver with
the Python script [105] to check if the proposition logic is
satisfactory. If an exception occurs, it indicates errors like
dividing by zero, asserting violations, writing to storage, etc.
Another tool, i.e., Maian III-A15), uses a custom EVM to
facilitate symbolic execution. Once the symbolic execution
flags a vulnerability, Maian uses the concrete value returned
by the symbolic analysis component to validate the result for
true positive detection.

Now we discuss dynamic analysis tools incorporat-
ing miscellaneous techniques. For example, EasyFlow
(Section III-B4) uses taint analysis (Section III-A13) to mon-
itor overflow vulnerability in mathematical statements and
transactions. EasyFlow checks that both operands are not
tainted, for instance, in a multiplication step. Also, EasyFlow
analyzes the multiplication result such that the result doesn’t
overflow. EasyFlow declares a potential overflow in a state-
ment if the result doesn’t overflow, but both operands are
tainted. The go-Ethereum component also helps EasyFlow

FIGURE 4. Classification of SC’s vulnerability detection techniques.

in tracing the tainted data [99]. Vultron (Section III-B1)
focuses on program verification. But instead of using a set
of properties, Vultron uses the concept of invariants. The
advantage is the translation of invariants into test oracles
(i.e., a mechanism for analysis of test outputs, [149]) and
assertions in the truffle environment. For instance, each SC
uses a balance variable (i.e. bal as per [37], section III-B1),
which one can extend to create a balance invariant to test SC’s
code. Sereum starts taint tracking (Section III-A13) by allo-
cating shadow memory (i.e., a protected memory area, [150])
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TABLE 26. Vulnerability names and codes.

to store storage variables that can influence control flow
decisions (i.e., due to instructions like JUMPI). Once the
execution of the SC ends, Sereum forwards the addresses of
the recorded storage variables to the attack detection unit to
identify the vulnerabilities.

XVI. FUTURE RESEARCH DIRECTIONS
This paper presents a survey that reviewed 41 smart con-
tracts’ (SCs’) tools, explicitly focusing on 30 vulnerability
detection tools (VDTs). The thorough discussion of vulnera-
bility detection techniques of 30 tools makes this work the
first comprehensive survey on SC Vulnerability detection
tools. The future work on vulnerability detection tools can
be expanded in the following three directions:

A. DEVELOPMENT OF ADDITIONAL VULNERABILITY
DETECTION TOOLS
– Reusing Modules and Code Compactness. Tool devel-

opers are focusing on incorporating EVM bytecode (as
in the case of Vultron) or modifying EVM clients (like
Geth as in the case of EasyFlow by Gao et al. [99],
and Sereum by Rodler et al. [54]). Tool developers can
also incorporate hevm (i.e., symbolic analysis) [151]
which supports version 8 of Solidity for unit testing
and debugging and has an additional symbolic execution
module. Other approaches needing research attention
are dynamic taint analysis (DTA) (again as in Sereum,
Rodler et al. [54]) or Summary based Symbolic evalua-
tion for the generation of attacker programs as in the case
of SmartScopy, Feng et al. [31]). Creating lightweight
tools would require less operational cost, speeding up
the analysis process. In the context of reusing modules,
Oyente is an excellent success for academia.

– Formal Verification Tools. Formal verification tools
resort to correct proof of the programs (i.e., SCs). Apart
from FVF*, tools like KEVM and ITPs demonstrated
their formalism only on one or two SCs, which requires
more justification in the future for better understanding.

– Testing of Bug Detection Tools. Solidifi [152] is a unique
tool that performs analysis of static analysis tools. How-
ever, it is currently available for only six static analysis

tools. But one can extend this idea to dynamic analysis
tools.

– Expanding the scope of Development Tools. Solidity,
Javascript, and Python are spearheading the Ethereum
tools’ development. All these languages benefit from
the availability of Ethereum libraries. A recent addition
is ‘Web3j for Java’, which is very useful because java
programming is an essential second or third-year course
in the CS undergraduate programs. Still, the C language,
a driving force in developing several programming lan-
guages, is devoid of the Ethereum library [153]. Hence
future research can focus on developing a C/C++ library
for Ethereum SCs. Apart from this, we focussed on
20 vulnerabilities, but zak100 et al. [154] provides links
to several new SC vulnerabilities. Future research can
develop tools to explore these vulnerabilities.

B. CHALLENGES WITH TESTING OF SMART CONTRACT
– Speeds up the Testing Process.Due to the increase in the

number of deployed SCs, the testing of SCs is becom-
ing more challenging. Thus, one can expect that future
research will try to improve the performance of testing
activities or handle the issue using parallel testing of
SCs.

– Enhancing the Testing Domain. Tools can also focus on
Viper (another language to code SCs) to compareViper’s
performance with Solidity. Recently launched Remix
IDE supports both Viper and Solidity. This development
is an indication of increasing attention to viper-based
SCs by EVM. Dynamic analysis approaches execute the
programs. Hence their results are trustworthy. However,
both static and dynamic analysis approaches can apply
techniques to confirm the results as done in [107] with
the help of assertions. Machine learning approaches can
also be adopted using the training techniques as applied
in several current research.

– Empirical Analysis and Comparison of the performance
of Vulnerability Detection and Testing Tools. Testing
tools are necessary for the survival of SC, but the inde-
pendent research shows only four endeavors as in: [155],
Parizi et al. [156], [157], [158] to compare these tools.
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There is a lot of room for extension of this research,
particularly involving new tools like Fuzzing tools.

– Database of Malicious SCs for controlled experimenta-
tion. It is worth doing quantitative analysis [157], and
the obtained results can be a source of future actions.
A signature-based profiling technique can help to cap-
ture malicious SCs and their features/patterns.

– Mitigation Approaches. Work in [159] recommends
using SafeMath library to mitigate overflow/underflow
and divide by zero errors. However, the use of
transfer instead of call to mitigate reentrancy is no
longer recommended; instead, developers should protect
call transfers properly.

C. ENHANCEMENT OF SOLIDITY, EVM AND THREAT
DETECTION TECHNIQUES
– Unpredictable Functionality of Remote SCs: Threats

like Denial of Service and ‘‘Gasless send’’ are a source
of loss of Ether because FF of remote SC throws or
incorporates state changes. DappGuard-related research,
Cook et al. [90], provides some solutions for this
problem, but DappGuard research does not offer any
practical implementation. Future research can handle
this problem.

– Handling SC with Vulnerable FF: Users can’t send
Ether to a SC whose FF function reverts. Work
in [160] discusses a solution for this problem using
selfdestruct opcode. However, the above work
recommends a pre-commit scheme that later submits
the details. Future research can perform comprehensive
research on the implementation of pre-commit schemes.

– Enhancing the Scope of ByteCode-Related Tools:
SmartCheck is a Solidity-based tool that detects the
most significant number of threats. However, extending
the capabilities of bytecode-related tools is still open to
research. This type of tester would fill the demands of a
broader community because EVM uses bytecode, so the
tool will not require translation for executing SCs.

– Event Ordering Bugs: Surveyed literature reports only
one research related to EthRacer, Kolluri et al. [30] for
detecting event ordering (EO) bugs (Section III-B9) at
the time of writing of this paper. EthRacer uses EO bugs
for reentrancy detection. Future research can use this
concept to detect vulnerabilities like miners’ manipula-
tion in transaction ordering dependence bugs. Thus EO
bugs need more research to highlight how this concept
can be utilized to detect other vulnerabilities and bugs.

– Batch Overflow Vulnerability: This vulnerability
occurs when the multiplication operation overflows.
SmartScopy detects this vulnerability using the auto-
matic synthesis of an attacker program. Future research
can opt for direct detection of this bug (i.e., without using
an attacker), which would be faster.

– Automation of Minning Process: This has become a
neglected area. That’s why the Blockchain concept can-
not fully penetrate the E-commerce realm (i.e., the retail

stores). Credit and debit cards dominate this sector. One
solution is to design the SC, which can automate the
process of mining [161], [162]. Future research can
improve on this.

– Enhancement to ZKP for 3rd party privacy in
E-commerce: Currently, E-commerce systems are using
ZKP for maintaining 3rd party privacy. However, this
concept has not yet been applied to Ethereum SC and
hence traders hesitate to use public Blockchains because
they leak out transaction information. Thus ZKP imple-
mentation for Ethereum can be a domain for future
research.

– Follow-up on Gasper Patterns:Work in Chen et al. [85]
detects some software patterns which consume a high
amount of gas. However, the above research does not
specify the Solidity compiler version which creates con-
fusion about this work. Our research identifies them as
‘‘Gasper Patterns’’ (Section III-A21). Thus, validation
of Gasper patterns using the latest Solidity compiler can
pave the way for highlighting the current advancements
of Solidity.

XVII. CONCLUSION
Cryptocurrency hacks have become commonplace in the last
couple of years. Some significant losses exploit bugs in SCs.
Automated vulnerability detection tools can help to prevent
such situations. Otherwise, unabated hacks can endanger the
growth of SCs despite their versatility. Hence, SCs’ progress
hook up to the tools to combat security threats. Briefly,
SCs’ strength depends upon three crucial players: Solidity,
the developer, and the EVM. Developers must test [163]
the SC through testing tools before launching them on the
Blockchain. Solidity is continuously in the renovation phase,
which is a good sign. And EVM can respond by keeping
track of the erroneous SCs so that attackers cannot succeed in
victimization again. Apart from the above said domains, the
role of academia is also vital in providing positive feedback
and highlighting vulnerable code, which can be helpful for
developers, software engineers, and security analysts, as we
have done in this survey paper. Due to the importance of
tools, all aspects of our survey focus on tools. Along with
data collection, the research title and our research questions
also focus on vulnerability detection tools.

We answer our research question 1, Section (I-C),
in Section (III) by discussing the working of thirty static
analysis tools and ten dynamic analysis tools. Similarly, for
research question 2, Section (I-C), we provide the list of
vulnerabilities detected by each tool in figure 4 in connection
with our multi-level detection techniques. For question 3,
we provide a thorough discussion on vulnerability detec-
tion techniques of our selected tools in Section (V) to
Section XIV. Our last question relates to the classification
of tools’ vulnerability detection techniques, and we refer
the readers to figure 4 and its related Section (XV). Our
future work will focus on developing dynamic analysis-based
tools.

70906 VOLUME 12, 2024



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

REFERENCES
[1] Z. Voell. (Sep. 2021). Ethereum Classic Hit By 3rd 51%

Attack in a Month. [Online]. Available: https://www.coindesk.
com/markets/2020/08/29/ethereum-classic-hit-by-third-51-attack-in-
a-month/

[2] (Feb. 2021). Blockchain Risks Every Cio Should Know. [Online]. Avail-
able: https://101blockchains.com/blockchain-risks/

[3] A. Berwick and T. Wilson. (2022). How Crypto Giant Binance Became
a Hub for Hackers, Fraudsters and Drug Traffickers. [Online]. Avail-
able: https://www.reuters.com/investigates/special-report/fintech-crypto-
binance-dirtymoney/

[4] J. Mirza. (2022). Pakistan to Investigate Crypto Exchange
Binance in an Alleged $100 Million Scam. [Online]. Available:
https://cryptoslate.com/pakistan-to-investigate-crypto-exchange-
binance-in-an-alleged-100-million-scam/

[5] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
‘‘Ethainter: A smart contract security analyzer for composite vulnera-
bilities,’’ in Proc. 41st ACM SIGPLAN Conf. Program. Lang. Design
Implement.New York, NY, USA: Association for Computing Machinery,
Jun. 2020, pp. 454–469.

[6] Z. A. Khan andA. S. Namin, ‘‘The applications of blockchains in address-
ing the integration and security of IoT systems: A survey,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2021, pp. 2421–2426.

[7] N. I. Haque, M. Ngouen, M. A. Rahman, S. Uluagac, and L. Njilla,
‘‘SHATTER: Control and defense-aware attack analytics for activity-
driven smart home systems,’’ in Proc. 53rd Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2023, pp. 1–13.

[8] X. Yi, J. Wu, G. Li, A. K. Bashir, J. Li, and A. A. AlZubi, ‘‘Recurrent
semantic learning-driven fast binary vulnerability detection in healthcare
cyber physical systems,’’ IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5,
pp. 2537–2550, Aug. 2023.

[9] D. Setó-Rey, J. I. Santos-Martín, and C. López-Nozal, ‘‘Vulnerability of
package dependency networks,’’ IEEE Trans. Netw. Sci. Eng., vol. 10,
no. 6, pp. 3396–3408, Aug. 2023.

[10] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘ReGuard:
Finding reentrancy bugs in smart contracts,’’ inProc. IEEE/ACM 40th Int.
Conf. Softw. Eng., Companion (ICSE-Companion), May 2018, pp. 65–68.

[11] B. Gao, S. Shen, L. Shi, J. Li, J. Sun, and L. Bu, ‘‘Verification assisted
gas reduction for smart contracts,’’ in Proc. 28th Asia–Pacific Softw. Eng.
Conf. (APSEC), 2021, pp. 264–274.

[12] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, ‘‘MadMax: Surviving out-of-gas conditions in Ethereum smart
contracts,’’ Proc. ACM Program. Lang., vol. 2, pp. 1–27, Oct. 2018.

[13] Z. A. Khan, ‘‘Cycle detection in signature images,’’ Int. J. Sci. Eng. Res.,
pp. 1327–1332, Jan. 2013.

[14] D. S. Connelly. (Jan. 2020). Smart Contract Vulnerabilities
on the Ethereum Blockchain: A Current Perspective. [Online].
Available: https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?
article=6512&context=open_access_etds

[15] J. Li, Z. Zhao, Z. Su, and W. Meng, ‘‘Gas-expensive patterns detection
to optimize smart contracts,’’ Appl. Soft Comput., vol. 145, Sep. 2023,
Art. no. 110542.

[16] Deprecated/Historical. [Online]. Available: https://consensys.
github.io/smart-contract-best-practices/attacks/deprecated/

[17] 8 Most Common Smart Contract Vulnerabilities. [Online]. Available:
https://losslessdefi.medium.com/8-most-common-smart-contract-
vulnerabilities-1ed7dc03080

[18] Z. Oualid. (Jul. 2022). Smart Contract Shadowing State Variable Vulnera-
bility. [Online]. Available: https://www.getsecureworld.com/blog/smart-
contract-shadowing-state-variables-vulnerability/

[19] D. Han, Q. Li, L. Zhang, and T. Xu, ‘‘A smart contract vulnerability detec-
tion model based on syntactic and semantic fusion learning,’’ Wireless
Commun. Mobile Comput., vol. 2023, pp. 1–12, Feb. 2023.

[20] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on Ethereum
smart contracts (SoK),’’ in Proc. Int. Conf. Princ. Secur. Trust. Cham,
Switzerland: Springer, 2017, pp. 164–186.

[21] H. Guo and X. Yu, ‘‘A survey on blockchain technology and its security,’’
Blockchain: Res. Appl., vol. 3, no. 2, Jun. 2022, Art. no. 100067.

[22] H. Rameder, M. di Angelo, and G. Salzer, ‘‘Review of automated vulner-
ability analysis of smart contracts on Ethereum,’’ Frontiers Blockchain,
vol. 5, Mar. 2022.

[23] Z. A. Khan and A. S. Namin, ‘‘Ethereum smart contracts: Vulnerabilities
and their classifications,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2020, pp. 1–10.

[24] J. Fei, X. Chen, andX. Zhao, ‘‘MSmart: Smart contract vulnerability anal-
ysis and improved strategies based on smartcheck,’’ Appl. Sci., vol. 13,
no. 3, p. 1733, Jan. 2023.

[25] S. Holler, S. Biewer, and C. Schneidewind, ‘‘HoRStify: Sound security
analysis of smart contracts,’’ in Proc. IEEE 36th Comput. Secur. Found.
Symp. (CSF), Jul. 2023.

[26] Z. Liu, P. Qian, J. Yang, L. Liu, X. Xu, Q. He, and X. Zhang, ‘‘Rethinking
smart contract fuzzing: Fuzzing with invocation ordering and important
branch revisiting,’’ Tech. Rep., 2023.

[27] L. Jin, Y. Cao, Y. Chen, D. Zhang, and S. Campanoni, ‘‘ExGen:
Cross-platform, automated exploit generation for smart contract vul-
nerabilities,’’ IEEE Trans. Depend. Secure Comput., vol. 20, no. 1,
pp. 650–664, Jan. 2023.

[28] Z. A. Khan and A. S. Namin, ‘‘Dynamic analysis for detection of self-
destructive smart contracts,’’ in Proc. IEEE 47th Annu. Comput., Softw.,
Appl. Conf. (COMPSAC), Jun. 2023, pp. 1093–1100.

[29] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, ‘‘Cross-contract
static analysis for detecting practical reentrancy vulnerabilities in smart
contracts,’’ in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Dec. 2020, pp. 1029–1040.

[30] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, ‘‘Exploiting the
laws of order in smart contracts,’’ in Proc. 28th ACM SIGSOFT Int. Symp.
Softw. Test. Anal., Jul. 2019, pp. 363–373.

[31] Y. Feng, E. Torlak, and R. Bodík, ‘‘Precise attack synthesis for smart
contracts,’’ 2019, arXiv:1902.06067.

[32] R. Pise and S. Patil, ‘‘A survey on smart contract vulnerabilities and
safeguards in blockchain,’’ Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 3,
pp. 1–16, Dec. 2022.

[33] S. Munir and W. Taha, ‘‘Pre-deployment analysis of smart contracts—A
survey,’’ Tech. Rep., 2023.

[34] P. Praitheeshan, L. Pan, J. Yu, J. K. Liu, and R. Doss, ‘‘Security analysis
methods on Ethereum smart contract vulnerabilities: A survey,’’ 2019,
arXiv:1908.08605.

[35] N. Ivanov, C. Li, Q. Yan, Z. Sun, Z. Cao, and X. Luo, ‘‘Security threat
mitigation for smart contracts: A survey,’’ Tech. Rep., 2023.

[36] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, ‘‘Vandal: A scalable security analysis framework for smart
contracts,’’ 2018, arXiv:1809.03981.

[37] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, ‘‘VULTRON: Catching
vulnerable smart contracts once and for all,’’ in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER), May 2019,
pp. 1–4.

[38] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, ‘‘Online detection of effectively callback free
objects with applications to smart contracts,’’ 2018, arXiv:1801.04032.

[39] J. M. Potter. (May 2018). The Problem With Solidity. [Online].
Available: https://medium.com/@XBY_Today/the-problem-with-
solidity-be7e6c277a58

[40] C. Lal and D. Marijan, ‘‘Blockchain testing: Challenges, techniques, and
research directions,’’ 2021, arXiv:2103.10074.

[41] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACMComput. Surv., vol. 54, no. 7,
pp. 1–38, Sep. 2022.

[42] H. Rameder, ‘‘Systematic review of Ethereum smart contract security
vulnerabilities, analysis methods and tools,’’ M.S. thesis, Technische
Universität Wien, Vienna, Austria, 2021.

[43] S. Ji, D. Kim, and H. Im, ‘‘Evaluating countermeasures for verifying the
integrity of Ethereum smart contract applications,’’ IEEE Access, vol. 9,
pp. 90029–90042, 2021.

[44] S. Rouhani and R. Deters, ‘‘Security, performance, and applica-
tions of smart contracts: A systematic survey,’’ IEEE Access, vol. 7,
pp. 50759–50779, 2019.

[45] M. di Angelo and G. Salzer, ‘‘A survey of tools for analyzing Ethereum
smart contracts,’’ inProc. IEEE Int. Conf. Decentralized Appl. Infrastruct.
(DAPPCON), Apr. 2019, pp. 69–78.

[46] J. Xu, F. Dang, X. Ding, and M. Zhou, ‘‘A survey on vulnerability
detection tools of smart contract bytecode,’’ in Proc. IEEE 3rd Int. Conf.
Inf. Syst. Comput. Aided Educ. (ICISCAE), Sep. 2020, pp. 94–98.

VOLUME 12, 2024 70907



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

[47] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, ‘‘Ethereum
smart contract analysis tools: A systematic review,’’ IEEE Access, vol. 10,
pp. 57037–57062, 2022.

[48] A. L. Vivar, A. T. Castedo, A. L. S. Orozco, and L. J. G. Villalba, ‘‘An
analysis of smart contracts security threats alongside existing solutions,’’
Entropy, vol. 22, no. 2, p. 203, Feb. 2020.

[49] A. Roan. (Feb. 2020). Ethereum Smart Contract Ponzi Schemes.
[Online]. Available: https://medium.com/blockcentric/ethereum-smart-
contract-ponzi-schemes-9e43015b56f8

[50] Z. Liu, M. Jiang, S. Zhang, J. Zhang, and Y. Liu, ‘‘A smart contract
vulnerability detection mechanism based on deep learning and expert
rules,’’ IEEE Access, vol. 11, pp. 77990–77999, 2023.

[51] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, ‘‘Formal verification of smart
contracts: Short paper,’’ in Proc. ACM Workshop Program. Lang. Anal.
Secur., 2016, pp. 91–96.

[52] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis of
Ethereum smart contracts,’’ in Proc. IEEE/ACM 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain (WETSEB), Gothenburg, Sweden,
May 2018, pp. 9–16.

[53] E. Albert, S. Grossman, N. Rinetzky, C. Rodríguez-Núñez, A. Rubio, and
M. Sagiv, ‘‘Taming callbacks for smart contract modularity,’’ Proc. ACM
Program. Lang., vol. 4, pp. 1–30, Nov. 2020.

[54] M. Rodler, W. Li, G. O. Karame, and L. Davi, ‘‘Sereum: Pro-
tecting existing smart contracts against re-entrancy attacks,’’ 2018,
arXiv:1812.05934.

[55] A. Mavridou and A. Laszka, ‘‘Tool demonstration: Fsolidm for designing
secure Ethereum smart contracts,’’ in Proc. Int. Conf. Princ. Secur. Trust.
Cham, Switzerland: Springer, 2018, pp. 270–277.

[56] J. Krupp and C. Rossow, ‘‘teEther: Gnawing at Ethereum to automatically
exploit smart contracts,’’ in Proc. 27th USENIX Secur. Symp., Aug. 2018,
pp. 1317–1333.

[57] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Finding the
greedy, prodigal, and suicidal contracts at scale,’’ in Proc. 34th Annu.
Comput. Secur. Appl. Conf., Dec. 2018, pp. 653–663.

[58] J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, ‘‘sCompile: Critical path
identification and analysis for smart contracts,’’ 2018, arXiv:1808.00624.

[59] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyzing safety
of smart contracts,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2018.

[60] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson,
‘‘Making smart contracts smarter,’’ in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency (ICBC), May 2021, pp. 1–3.

[61] Z. A. Khan and A. S. Namin, ‘‘A survey of DDOS attack detection
techniques for IoT systems using BlockChain technology,’’ Electronics,
vol. 11, no. 23, p. 3892, Nov. 2022.

[62] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, ‘‘SmartBugs: A frame-
work to analyze solidity smart contracts,’’ in Proc. 35th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2020, pp. 1349–1352.

[63] M. di Angelo and G. Salzer, ‘‘Consolidation of ground truth sets for
weakness detection in smart contracts,’’ Tech. Rep., 2023.

[64] Z. Zheng, J. Su, J. Chen, D. Lo, Z. Zhong, and M. Ye, ‘‘Dappscan: Build-
ing large-scale datasets for smart contract weaknesses in dapp projects,’’
Tech. Rep., 2023.

[65] A. Ding, G. Li, X. Yi, and Y. Liu, ‘‘IVSign: Interpretable vulnerabil-
ity signature via code embedding and static analysis,’’ in Proc. 53rd
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN-W),
Jun. 2023, pp. 25–31.

[66] A. Solar-Lezama. (2022). Introduction to Program Synthesis.
[Online]. Available: https://people.csail.mit.edu/asolar/SynthesisCourse/
Lecture19.htm

[67] (2022). Model Checking. [Online]. Available: https://en.wikipedia.
org/wiki/Model_checking

[68] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, ‘‘Horn
clause solvers for program verification,’’ in Fields of Logic and Compu-
tation II, 2015, pp. 24–51.

[69] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, ‘‘VerX: Safety verification of smart contracts,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 1661–1677.

[70] G. Li and I. Ghosh, ‘‘Lazy symbolic execution through abstraction and
sub-space search,’’ in Hardware and Software: Verification and Testing.
Cham, Switzerland: Springer, 2013, pp. 295–310.

[71] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid:
Correct-by-design smart contracts for Ethereum,’’ 2019,
arXiv:1901.01292.

[72] S. So, M. Lee, J. Park, H. Lee, and H. Oh, ‘‘VeriSmart: A highly precise
safety verifier for Ethereum smart contracts,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 1678–1694.

[73] M. Krátký and R. Baca, ‘‘A comparison of element-based and path-based
approaches to indexing xml data,’’ Databases, Texts, vol. 176, p. 103,
Jan. 2006.

[74] J. Feist, G. Grieco, and A. Groce, ‘‘Slither: A static analysis framework
for smart contracts,’’ in Proc. IEEE/ACM 2nd Int. Workshop Emerg.
Trends Softw. Eng. Blockchain (WETSEB), May 2019, pp. 8–15.

[75] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp. 67–82.

[76] P. Tsankov, C. N. Yannis Sachinoglou, and Iczc. (2020). Securify 2.0.
[Online]. Available: https://github.com/eth-sri/securify2

[77] C. F. Torres, J. Schütte, and R. State, ‘‘Osiris: Hunting for integer bugs in
Ethereum smart contracts,’’ in Proc. Annu. Comput. Secur. Appl. Conf.,
2018, pp. 664–676.

[78] (Aug. 2021). Taint Analysis (Taint Checking). [Online]. Available:
https://pvs-studio.com/en/blog/terms/6496/

[79] J. Ryan. (2003).Xpath Rules. [Online]. Available: https://www.developer.
com/java/xpath-rules/

[80] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, ‘‘KEVM: A
complete formal semantics of the Ethereum virtual machine,’’ in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), Jul. 2018, pp. 204–217.

[81] Y. Hirai, ‘‘Defining the Ethereum virtual machine for interactive theorem
provers,’’ in Proc. Financial Cryptogr. Data Secur. FC Int. Workshops,
WAHC, BITCOIN, VOTING, WTSC, TA, Sliema, Malta, vol. 10323.
Cham, Switzerland: Springer, 2017, pp. 520–535.

[82] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell, ‘‘Lem:
Reusable engineering of real-world semantics,’’ SIGPLAN Not., vol. 49,
no. 9, pp. 175–188, 2014.

[83] Y. Minsky, ‘‘OCaml for the masses: Why the next language you learn
should be functional,’’ Queue, vol. 9, no. 9, pp. 40–49, Sep. 2011.

[84] A. Yushkovskiy and S. Tripakis, ‘‘Comparison of two theorem provers:
Isabelle/HOL and Coq,’’ 2018, arXiv:1808.09701.

[85] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart contracts
devour your money,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol.
Reengineering (SANER), Feb. 2017, pp. 442–446.

[86] M.Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and N. Sharygina,
‘‘Computing exact worst-case gas consumption for smart contracts,’’ in
Proc. Int. Symp. Leveraging Appl. Formal Methods ISoLA Leveraging
Appl. Formal Methods, Verification and Validation. Ind. Pract. Nicosia,
Cyprus: Springer, 2018, pp. 450–455.

[87] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘Ethertrust: Sound
static analysis of Ethereum bytecode,’’ Tech. Rep., 2018.

[88] J. He,M. Balunovic, N. Ambroladze, P. Tsankov, andM. Vechev, ‘‘Learn-
ing to fuzz from symbolic execution with application to smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019.

[89] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, ‘‘Gigahorse: Thor-
ough, declarative decompilation of smart contracts,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 1176–1186.

[90] T. Cook, A. Latham, and J. H. Le, ‘‘Dappguard: Active monitoring and
defense for solidity smart contracts,’’ Tech. Rep., 2017.

[91] (Feb. 2020). Invariant (Mathematics). [Online]. Available:
https://en.wikipedia.org/wiki/Invariant_(mathematics)

[92] V. Wüstholz and M. Christakis, ‘‘Targeted greybox fuzzing with static
lookahead analysis,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng.
(ICSE). New York, NY, USA: Association for Computing Machinery,
Oct. 2020, pp. 789–800.

[93] Snoo20972 and Teraflop. (2021). Fuzzing: Why T14 and T19 Unreach-
able and T19 Reachable. [Online]. Available: https://www.reddit.com/r/
AskComputerScience/comments/o7fiif/fuzzing_why_t14_and_t19_
unreachable_and_t19/

[94] Has ’Bal’ Got Deprecated, Snoo20972, Adrewmc, and Flygoing, 2023.
[95] A. M. Alashjaee, S. Duraibi, and J. Song, ‘‘Dynamic taint analysis tools:

A review,’’ Int. J. Comput. Sci. Secur., vol. 13, no. 6, pp. 231–243,
Dec. 2019.

[96] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, ‘‘ConFuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS&P), Sep. 2021, pp. 103–119.

70908 VOLUME 12, 2024



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

[97] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,’’ in Proc. 33rd IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE). New York, NY, USA: ACM, Sep. 2018,
pp. 259–269.

[98] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, ‘‘sFuzz: An
efficient adaptive fuzzer for solidity smart contracts,’’ Proc. ACM/IEEE
42nd Int. Conf. Softw. Eng., pp. 778–788, Aug. 2020.

[99] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, ‘‘EASYFLOW:
Keep Ethereum away from overflow,’’ in Proc. IEEE/ACM 41st
Int. Conf. Softw. Eng., Companion (ICSE-Companion), May 2019,
pp. 23–26.

[100] B. L. Dalmazo, J. A. Marques, L. R. Costa, M. S. Bonfim,
R. N. Carvalho, A. S. da Silva, S. Fernandes, J. L. Bordim, E. Alchieri,
A. Schaeffer-Filho, L. P. Gaspary, and W. Cordeiro, ‘‘A systematic
review on distributed denial of service attack defense mechanisms in pro-
grammable networks,’’ Int. J. Netw. Manage., vol. 31, no. 6, Nov. 2021,
Art. no. e2163.

[101] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, ‘‘NEUZZ: Effi-
cient fuzzing with neural program learning,’’ 2018, arXiv:1807.05620.

[102] (Nov. 2021).Happened-Before. [Online]. Available: https://en.wikipedia.
org/wiki/Happened-before

[103] Snoo20972 and east_lisp_junk. (2022). What Is, ‘‘Partial Order
Reduction’ As Discussed In: Exploiting the Laws of Order
in Smart Contracts. [Online]. Available: https://www.reddit.
com/r/AskComputerScience/comments/s0ah2n/what_is_partial_order_
reduction_as_discussed_in/

[104] K. Payne and D. Foreman. (2021). Understanding Checking
Account Overdraft Protection and Fees. [Online]. Available:
https://www.forbes.com/advisor/banking/understanding-checking-
account-overdraft-protection-and-fees/

[105] B. Mueller, ‘‘Smashing Ethereum smart contracts for fun and real profit,’’
in Proc. 9th Annu. HITB Secur. Conf., 2018.

[106] H. Hackeerrrr. (2020). Information Regarding Laser and
Ethereum. [Online]. Available: https://ethereum.stackexchange.
com/questions/79938/information-regarding-laser-and-ethereum

[107] Z. A. Khan and A. S. Namin, ‘‘Involuntary transfer: A vulnerability pat-
tern in smart contracts,’’ IEEE Access, vol. 12, pp. 62459–62479, 2024.

[108] Z. A. Khan and A. S. Namin, ‘‘Dynamic analysis for the detection
of locked ether smart contracts,’’ in Proc. IEEE Int. Conf. Big Data
(BigData), Dec. 2023, pp. 2466–2472.

[109] S. Chadokar, L. Peltonen, and A. Dossa. (2018). How Smart
Contract Versioning Work With Compiler. [Online]. Available:
https://ethereum.stackexchange.com/questions/51331/how-smart-
contract-versioning-work-with-compiler

[110] (2021). American Fuzzy Lop (AFL). [Online]. Available:
https://en.wikipedia.org/wiki/American_fuzzy_lop_

[111] K. Frankowicz and K. Rytarowski. (Sep. 2020). An Introduction To LLVM
Libfuzzer. [Online]. Available: https://www.moritz.systems/blog/an-
introduction-to-llvm-libfuzzer/

[112] (2019). LLVM. [Online]. Available: https://en.wikipedia.org/wiki/LLVM
[113] K. Frankowicz and K. Rytarowski, ‘‘An introduction to LLVM libfuzzer,’’

Tech. Rep., Sep. 2020.
[114] R. H. Paul Razvan Berg. (2019). Who is Msg. Sender in a Nested

Call Chain. [Online]. Available: https://ethereum.stackexchange.
com/questions/73103/who-is-msg-sender-in-a-nested-call-chain

[115] A. Darby, T. Hess, X. L. B9lab, B. Bellaj, and Medvedev1088.
(Feb. 2018). Send Vs Call Differences and When to Use and When
Not to Use. [Online]. Available: https://ethereum.stackexchange.
com/questions/6470/send-vs-call-differences-and-when-to-use-and-
when-not-to-use

[116] P. R. Berg and R. Hitchens. (2020). Who is Msg.Sender in a Nested Call
Chain. [Online]. Available: https://immunebytes.com/time-dependency-
in-smart-contracts/

[117] Symbolic Execution. [Online]. Available: https://en.wikipedia.org/
wiki/Symbolic_execution

[118] S. Cha,M. Lee, S. Lee, andH.Oh, ‘‘SYMTUNER:Maximizing the power
of symbolic execution by adaptively tuning external parameters,’’ inProc.
IEEE/ACM44th Int. Conf. Softw. Eng. (ICSE), May 2022, pp. 2068–2079.

[119] zak100, haxerl, and PrashanthDev. (Feb. 2023). What is the Pur-
pose of Iszero. [Online]. Available: https://ethereum.stackexchange.
com/questions/71333/what-is-the-purpose-of-iszero

[120] Snoo20972 and Oriaj_13. (Feb. 2023). Difference Between Timestamp
and Block.timestamp. [Online]. Available: https://www.reddit.com/r/
ethdev/comments/10sohbp/difference_betwee_timestamp_and_
blocktimestamp/

[121] S. Gopali, Z. A. Khan, B. Chhetri, B. Karki, and A. S. Namin, ‘‘Vul-
nerability detection in smart contracts using deep learning,’’ in Proc.
IEEE 46th Annu. Comput., Softw., Appl. Conf. (COMPSAC), Jun. 2022,
pp. 1249–1255.

[122] (Feb. 2023). Fixedpoints. [Online]. Available: https://ericpony.
github.io/z3py-tutorial/fixpoint-examples.htm

[123] Y. Kostyukov, D. Mordvinov, and G. Fedyukovich, ‘‘Beyond the elemen-
tary representations of program invariants over algebraic data types,’’ in
Proc. 42nd ACMSIGPLAN Int. Conf. Program. Lang. Design Implement.,
Jun. 2021, pp. 451–465.

[124] W. Shahda. (2019). Protect Your Solidity Smart Contracts From Reen-
trancy Attacks. [Online]. Available: https://medium.com/coinmonks/
protect-your-solidity-smart-contracts-from-reentrancy-attacks-
9972c3af7c21

[125] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, ‘‘Step by
step towards creating a safe smart contract: Lessons and insights from
a cryptocurrency lab,’’ Tech. Rep., 2016.

[126] D. Quint. (Apr. 2017). Control Structures-Why is Switch and Goto
Not in Solidity. [Online]. Available: https://ethereum.stackexchange.
com/questions/13952/control-structures-why-is-switch-and-goto-not-in-
solidity

[127] N. Rob and A. Munagala. (Nov. 2017). How Are Ethereum
Bytecode Jumps and Jumpdests Resolved. [Online]. Available:
https://stackoverflow.com/questions/47520515/how-are-ethereum-
bytecode-jumps-and-jumpdests-resolved

[128] Formal Verification. [Online]. Available: https://csrc.nist.gov/glossary/
term/formal_verification

[129] M. Rosendahl. Abstract Interpretation. [Online]. Available:
http://pages.cs.wisc.edu/~horwitz/CS704-NOTES/10.ABSTRACT-
INTERPRETATION.html

[130] (2018). Seahorn Founders. [Online]. Available: https://seahorn.github.io/
[131] Community Wiki. (2015). What is a Monad. [Online]. Available:

https://stackoverflow.com/questions/44965/what-is-a-monad
[132] (May 2022). What’s a Monad. [Online]. Available: https://gist.github.

com/Daenyth/e5014ca0e1593f310fbd8d540b24a844
[133] Kadenzipfel Kaden. (Mar. 2023). Insufficient Gas Griefing. [Online].

Available: https://github.com/kadenzipfel/smart-contract-vulnerabilities/
blob/master/vulnerabilities/insufficient-gas-griefing.md

[134] S. Marx. (Aug. 2019). Provable Fair Ransom. [Online]. Available:
https://medium.com/consensys-diligence/provable-fair-ransom-
1547ba894d0

[135] J. Jiao, S. Kan, S. Lin, D. Sanán, Y. Liu, and J. Sun, ‘‘Executable
operational semantics of solidity,’’ 2018, arXiv:1804.01295.

[136] sanketnagare. Solidity Global Variables. [Online]. Available:
https://www.geeksforgeeks.org/solidity-global-variables/

[137] R. Bernstein. (Sep. 2018). Mythril Detection Capabilities.
[Online]. Available: https://github.com/ConsenSys/mythril/wiki/
Mythril-Detection-Capabilities

[138] zak100 and hroussille. (2015). Detection of Same Funtion
Reentrancy Vulnerability. [Online]. Available: https://ethereum.
stackexchange.com/questions/116919/detection-of-same-function-
reentrancy-vulnerability

[139] H. Hon and B. Liu. (2022). Forensics of Attacks and
Exploits in Defi. [Online]. Available: https://content-hub-static.
crypto.com/wp-content/uploads/2022/02/Forensics_of_Attacks_and_
Exploits_in_DeFi.pdf

[140] Dataflow Analysis, Iterative Data-flow Analysis and Static-Single-
Assignment. [Online]. Available: httphttp://www.cs.uccs.edu/
http://www.cs.uccs.edu/~qyi/UTSA-classes/cs5363/slides/dataflow
Analysis.pdfqyi/UTSA-classes/cs5363/slides/dataflowAnalysis.pdf

[141] (Feb. 2023). Integer Overflow. [Online]. Available: https://en.
wikipedia.org/wiki/Integer_overflow

[142] D. Molnar, X. C. Li, and D. A. Wagner, ‘‘Dynamic test generation to find
integer bugs in x86 binary Linux programs,’’ in Proc. 18th Conf. USENIX
Secur. Symp., 2009, pp. 67–82.

[143] B. Mueller. (2018). Smashing Ethereum Smart Contracts for Fun and
Real Profit. [Online]. Available: https://github.com/b-mueller/smashing-
smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf

VOLUME 12, 2024 70909



Z. A. Khan, A. S. Namin: Survey of Vulnerability Detection Techniques by Smart Contract Tools

[144] B. Mueller, JoranHonig, S. Bgrara, S. Pogodin, and J. Asplund. (2018).
Laser Ethereum. [Online]. Available: https://github.com/b-mueller/laser-
ethereum

[145] A. Chauhan. (Feb. 2022). How to Find Vulnerability in Smart Contracts
Unexpected Ether. [Online]. Available: https://betterprogramming.pub/
how-to-find-vulnerability-in-smart-contracts-unexpected-ether-
89f157ce2888

[146] Wikipedia. (Dec. 2021). Runtime Verification. [Online]. Available:
https://en.wikipedia.org/wiki/Runtime_verification

[147] D. Wesley. (Oct. 2017). Reentrancy Attack, on a Smart Contract.
[Online]. Available: https://medium.com/@JusDev1988/reentrancy-
attack-on-a-smart-contract-677eae1300f2

[148] B. Cirisci, C. Enea, A. Farzan, and S. O. Mutluergil, ‘‘A pragmatic
approach to stateful partial order reduction,’’ in Proc. Int. Conf. Verifi-
cation, Model Checking Abstract Interpretation, 2022.

[149] M. V. H. Prakash, A. A. Rao, and P. R. Raju, ‘‘Improving state invariant
test Oracle strategy using mutation analysis,’’ Int. J. Comput. Trends
Technol., vol. 61, no. 2, pp. 11–116, Jul. 2018.

[150] What is Shadow Memory? Complete Guide. [Online]. Available:
https://www.velocenetwork.com/tech/what-is-shadow-memory/

[151] cleanunicorn. (2020). Hevm. [Online]. Available:
https://github.com/dapphub/dapptools/tree/master/src/hevm

[152] A. Ghaleb and K. Pattabiraman, ‘‘How effective are smart contract
analysis tools? Evaluating smart contract static analysis tools using bug
injection,’’ in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
Jul. 2020, pp. 415–427.

[153] zak100 and kbw. (2021). Developing Contraol Flow Graph for
Solidity Smart Contracts in C/c++ Language. [Online]. Available:
http://www.cplusplus.com/forum/general/278355/

[154] Zak100, Abcoathup, and Marganaraz. (2021). How to Create
a Tool for Detecting Evm Vulnerabilities. [Online]. Available:
https://ethereum.stackexchange.com/questions/116919/detection-of-
samefunction-reentrancy-vulnerability

[155] A. Dika and M. Nowostawski, ‘‘Security vulnerabilities in Ethereum
smart contracts,’’ in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE
GreenComput. Commun. (GreenCom) IEEECyber, Phys. Social Comput.
(CPSCom) IEEE Smart Data (SmartData), Jul. 2018, pp. 955–962.

[156] R. M. Parizi, A. Dehghantanha, K. R. Choo, and A. Singh, ‘‘Empirical
vulnerability analysis of automated smart contracts security testing on
blockchains,’’ 2018, arXiv:1809.02702.

[157] R. Fontein, ‘‘Comparison of static analysis tooling for smart contracts on
the EVM,’’ in Proc. 28th Twente Student Conf. (IT), 2018.

[158] D. Pérez and B. Livshits, ‘‘Smart contract vulnerabilities: Does anyone
care?’’ 2019, arXiv:1902.06710.

[159] C. DeCusatis, B. Gormanly, J. Iacino, R. Percelay, A. Pingue, and
J. Valdez, ‘‘Cybersecurity test bed for smart contracts,’’ Cryptography,
vol. 7, no. 1, p. 15, Mar. 2023.

[160] K. Zipfel. (Dec. 2019). The Encyclopedia of Smart Contract Attacks and
Vulnerabilities. [Online]. Available: https://betterprogramming.pub/the-
encyclopedia-of-smart-contract-attacks-vulnerabilities-dfc1129fdaac

[161] S. Zhang and J.-H. Lee, ‘‘Smart contract-based secure model for
miner registration and block validation,’’ IEEE Access, vol. 7,
pp. 132087–132094, 2019.

[162] E. Chain. The First Self-mining Smart Contract. [Online]. Available:
https://www.minereum.com/

[163] P. Hartel and R. Schumi, ‘‘Mutation testing of smart contracts at scale,’’
in Proc. Int. Conf. Tests Proofs, vol. 12165, 2020, pp. 23–42.

ZULFIQAR ALI KHAN is currently pursuing the
Ph.D. degree with the Computer Science Depart-
ment, Texas TechUniversity. His research interests
include Ethereum smart contracts and the Internet
of Things. However, he is proficient in several
programming languages like Java, Python, Solid-
ity, and Javascript. In addition, he has more than
20 years of teaching experience in the leading uni-
versities of Pakistan, including Sir SyedUniversity
of Engineering and Technology, where he is also
an Assistant Professor on study leave.

AKBAR SIAMI NAMIN received the Ph.D.
degree in computer science from Western Univer-
sity, London, Canada, in August 2008. He is cur-
rently an Associate Professor in computer science
with Texas Tech University. He has coauthored
over 80 research articles published in premier
journals and venues. His research interests and
expertise include software engineering, testing,
program analysis, software and cyber security and
malware analysis, and machine and deep learning.

His research on cyber security research and education is funded by the
National Science Foundation.

70910 VOLUME 12, 2024


