
IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY SECTION

Received 9 April 2024, accepted 7 May 2024, date of publication 15 May 2024, date of current version 23 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3401416

Land Cover Classification From RGB and NIR
Satellite Images Using Modified U-Net Model
WON-KYUNG BAEK1,2, MOUNG-JIN LEE3, AND HYUNG-SUP JUNG 2,4,5, (Senior Member, IEEE)
1Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
2Department of Geoinformatics, University of Seoul, Seoul 02504, South Korea
3Division for Environmental Planning, Korea Environment Institute, Sejong 30147, South Korea
4Department of Smart Cities, University of Seoul, Seoul 02504, South Korea
5Department of Earth Sciences, Southern Methodist University, Dallas, TX 75205, USA

Corresponding author: Hyung-Sup Jung (hsjung@uos.ac.kr)

This research was supported by 1) the Institute of Civil Military Technology Cooperation, the Defense Acquisition Program
Administration, and the Ministry of Trade, Industry and Energy of Korea (22-CM-EO-02) and 2) the National Research
Foundation of Korea(NRF) grant funded by the Korea Government (MIST) (No. 2023R1A2C1004395). The work of
Won-Kyung Baek was supported by the funding of the Korea Institute of Marine Science & Technology (KIMST),
backed by the Ministry of Oceans and Fisheries (RS-2023-00254717). The work of Moung-Jin Lee was supported by
Development of Optimization Techniques for Reducing Heat Wave Considering Urban Environment (2023-014(R)),
conducted by the Korea Environment Institute (KEI).

ABSTRACT Multi-spectral satellite imagery has been widely used for land cover classification, because
it provides meaningful spectral information for Earth’s objects that are difficult to be described by using
visible band images. The near-infrared image enables us to classify in the fields of agriculture, forestry, and
geology/natural resources. However, the classification performances obtained from deep learning approaches
using both red-green-blue (RGB) and near-infrared (NIR) images were not significantly superior to the
classification performances using the RGB image, because the spectral information may not be appropriately
applied to the deep learning methods. In most deep learning approaches, the convolution operation does
not separate the pixel values in the band direction, but rather mixes all the pixel values. This mixing can
lead to the loss of information, particularly when dealing with multi-band images (like satellite imagery),
as important spectral information might be obscured, affecting the model’s accuracy and generalization
capability. To overcome the drawback, this study presents an efficient model, which is the separated-input-
based U-Net (SiU-Net), via modifying the U-Net model based on the separation of RGB and NIR images.
To show the performance improvement of land cover classification from the SiU-Net, the performance of
SiU-Net was compared with those of the DeepLabV3+ and U-Net models. We utilized a 2020 satellite-
derived land cover dataset, consisting of 300 patches in total. These patches were extracted from Sentinel-2
images, including both RGB and NIR bands, with a resolution of 10 meters, and each patch was sliced
into 512 × 512 pixel segments. The entire set of 300 patches was selected without overlap, adhering to a
distribution ratio of approximately 64% (192 patches) for training, 16% (48 patches) for validation, and 20%
(60 patches) for testing. The final performance evaluations were ultimately conducted using the test data. The
F1 score obtained from SiU-Net were about 0.797, and it was superior to about 0.541 from DeepLabV3+
and 0.720 from U-Net. Moreover, the F1 scores of SiU-Net (0.589) was more accurate than DeepLabV3+
(0.051) and U-Net (0.455) in the small training data, and the performance degradation due to data imbalance
was reduced in the SiU-Net model. This means that the SiU-Net model may be most suitable when the
training data are small and unbalanced.

INDEX TERMS Land cover, land cover classification, DeepLabV3+, separated input, SiU-Net, U-Net, red,
green, and blue (RGB), near-infrared (NIR).

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefania Bonafoni .

I. INTRODUCTION
Multi-spectral satellite imagery has salient advantages for
land cover classification, since it can provide meaningful
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spectral information, which is impossible to obtain from
visible band data alone [1], [2], [3], [4]. Especially NIR
images are widely used for land cover classification as below
reasons. 1) it can give us additional information about the
land cover, specifically vegetation characteristics such as its
types, health, and water contents. 2) the spectral range of NIR
(750-1100 nm) is within the solar radiation peak and thus
high-quality data of resolution and signal-to-noise (SNR) can
be anticipated [5]. Thus, NIR image has been widely used for
land cover classification in the fields of agriculture, forestry,
and geology/natural resources [1], [2], [3], [6], [7], [8], [9],
[10], [11].

Building on the well-established benefits of the NIR band,
recent advances in deep learning have led to numerous
applications incorporating the NIR band for land cover
classification. Mirpulatov et al. introduced a pseudo-labeling
approach tailored for multi-spectral satellite data to mitigate
the challenge of limited training data [12]. Baek et al. demon-
strated performance enhancements through the application
of data augmentation techniques to Sentinel-2 RGB and
NIR band data [13]. Additionally, studies by Cuypers et al.,
Yu et al., and Lee et al. have confirmed that combining
multi-temporal RGB+NIR data with multimodal data leads
to significant improvements in land cover classification
performance [14], [15], [16].

However, it is known that the effectiveness of NIR
imagery was not appreciable in the deep-learning-based
approach [8]. In Defence Science & Technology Labora-
tory (DSTL) satellite Imagery Feature Detection challenge
from the Kaggle, it was not reported that the significant
performance improvement by using NIR and short-wave
infrared (SWIR) in addition to the visible band [8], [17].
Similarly, Jónsson compared agricultural field classification
performances between RGB and multi-spectral (including
NIR) band images from unmanned aerial vehicle (UAV) [18].
From Jónsson (2018), although accuracy improvement of
0.14 was maximally archived, in most cases it was only less
than 0.05 [18]. Moreover, Gani et al. compared the deep-
learning-based object detection performance according to
spectral band compositions of the input data such as RGB +

thermal bands and RGB + thermal + NIR bands. And they
showed degradation of mean average precision when the NIR
band is additionally used [19].
This is because the spectral information of input data was

not appropriately extracted from the deep learning models.
Numerous previous studies have applied encoder-decoder
architecture with a single input node and an encoder to RGB
and NIR satellite imagery [1], [2], [7], [8], [9], [10], [11],
[20]. In the model architecture of a single input node, a bunch
of convolution filters from a single encoder cannot separate
the pixel values in the band direction, but rather mixes all the
pixel values. In other words, independent spectral informa-
tion of each RGB and NIR data are lost [21], [22], [23].
To overcome this drawback and exploit independent

spectral information each bands has, the separated input
and dual-encoder architecture can be valid [23]. Hou et al.

has solved the similar problem of us [23]. They proposed
dual-encoder architecture for the bi-temporal remote sensing
image change detection, which has separated input nodes and
extract independent contextual information from them [23].
Like Hou et al. [23], to extract independent spectral-
spatial information from multi-spectral data, the encoder
should be separated with two- or more- branch architectures
according to the correlation of RGB and NIR data. Recently,
Yu and Jung [16] developed a model with four encoders
for land cover classification from multi-seasonal UAV and
Lidar data. However, this study could not showcase the
performance improvements of separated input because they
utilized spectral indices as inputs, which led to pre-mixed
information across RGB and NIR bands, compounded by a
lack of sufficient training data [16].

In this study, we showed performance improvement of
land cover classification through input separation of RGB
and NIR data. For that, we implemented a modified U-
Net architecture with two separated input nodes for RGB
and NIR respectively, which called separated-input-based
U-Net (SiU-Net). To evaluate our model’s performance,
we conducted comparison tests with DeepLabV3+ and
U-Net, which are among the most renowned semantic
segmentation models [24], [25]. We utilized 2020 satellite-
derived land cover dataset for the training and test data, which
contains 4 bands of red, green, blue and NIR, from artificial
intelligence (AI) Hub, National Information Society Agency
(NIA), Korea [26], [27].

This study offers valuable insights into the effective
utilization of the NIR band, in conjunction with RGB, for
land cover classification through deep learning method-
ologies. Additionally, by examining the class proportions,
we have identified scenarios where the proposed approach
demonstrates optimal effectiveness. We anticipate that our
strategy will serve as a guideline for developing land
cover classification models utilizing multi-spectral satellite
imagery.

II. METHODOLOGY
In this study, our primary objective is to assess whether
our proposed approach surpasses other models in land
cover classification on the same dataset. Accordingly,
we have organized our methodology into two principal
sections: the characteristic architectures of the conventional
(DeepLabV3+ and U-Net) and proposed (SiU-Net) deep
learning models, followed by the evaluation of their per-
formance using test data. In the section on deep learning
models, we primarily discuss the structure of the network.
Specifically, for SiU-Net, we describe how the number
of separated input nodes and encoders are determined.
To comprehensively validate the superiority of our model,
we conducted not only numerical comparisons among the
models utilized but also a detailed analysis of classification
performance from both qualitative and quantitative perspec-
tives. This analysis encompasses an in-depth comparison of
class-specific features and the distinctive architectural traits
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FIGURE 1. The structure of DeepLabV3+ (a) and U-Net (b) used in this study.

of each model. The subsequent portion of this section will
detail the architecture of the deep learning models employed
in this research and the methods used for evaluating their
performance.

A. DEEP LEARNING MODEL
To validate the effectiveness of our proposed model, well-
applied deep learning models are adopted, which are
DeepLabV3+ and U-Net [24], [25]. DeepLabV3+ and
U-Net are deep learning models, that are constructed in
the encoder-decoder structure. Those models have been
widely used for semantic segmentation since they have
the advantages of localization and recovering boundary

information. Proposed model was designed based on U-Net.
Every model used in this study mainly consists of repetitions
of 3 × 3 convolutional operations, batch normalization (BN)
and a rectified linear unit (ReLU) [28]. The more detailed
information about each model is provided in the following
sections:

1) DeepLabV3+

DeeplabV3+ is a representative deep learning structure for
semantic segmentation, that has been successfully applied
in various fields. Figure 1 (a) showed the structure of
DeepLabV3+. Image data combined by four channels (blue,
green, red and NIR bands) are used as input image data. The
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backbone, ResNet-50 generates two bunch of feature maps,
which are 32 × 32 × 256, and 128 × 128 × 64 [29]. The
spatial resolution of feature maps for the 32 × 32 × 256 and
128 × 128 × 64 are 16 times and 4 times lower than that of
the original input data respectively.

In the encoder, the atrous separable spatial pyramid pooling
(ASPP) module extracts multi-scale contextual information
from feature maps of 32 × 32 × 256 and a 4 × 4 bilinear
upsampling operation recovers the size of feature maps as
128 × 128 × 256. For the feature maps of 128 × 128
× 64, which have low-level information, 1 × 1 convolu-
tion was applied to reduce the channels of feature maps
(128 × 128 × 48). By concatenating the feature map
of 128 × 128 × 256 (multi-scale contextual information
from the ASPP module) and 128 × 128 × 48 (low-level
information), the edge information is restored. Finally, the
full resolution of classification map is generated by applying
2 times convolution and another 4 × 4 bilinear upsampling.
However, since the final classification map is recovered from
the data whose resolutions are reduced by 4 and 16 times than
input data, detailed edge information can be lost.

2) U-Net
U-Net, a convolutional neural network with a distinc-
tive encoder-decoder architecture, was initially created for
biomedical image segmentation [25]. The key of U-Net is
combining feature maps generated in deep layers with those
generated in relatively shallow layers by the skip connection.
Through this simple skip connection structure, contextual
information from deep layers and edge information from
shallow layers can be considered together [25]. Eventually,
the decoder can generate a detailed segmentation map in
spatial.

The U-Net is symmetrical as given in Figure 1(b) [25]. The
left part is the encoder for extracting contextual information,
and the right part is the decoder for recovering the final
classification map. Same as DeepLabV3+, four channels of
image data are used as input image data. The basic unit of
convolution block is twice 3 × 3 convolution operations,
each followed by batch normalization and ReLU. In the
encoder, a 2 × 2 max-pooling operation is applied after
the convolution block. At each max-pooling operation, the
number of convolutional filters is doubled. In the decoder,
a concatenate process with skip connection from encoder’s
feature maps is preceded. And 2 × 2 nearest neighbor
upsampling operation is applied instead of max-pooling
operations with halving the number of convolutional filters.
Totally 4 times of max-pooling and upsampling operations
are included in U-Net model of this study. As a result,
the dimension of the lowest feature map is 32 × 32 ×

1024. Unlike DeepLabV3+, it enables to maintain the edge
information of the final classification map by skip connection
structures of U-Net. However, the independent spectral
information is lost because the feature maps are mixed in a
single encoder architecture.

3) SiU-Net
General CNN-based deep learning model structure consists
of a single input node and a single encoder. In the single
input node structure, all bands of the input data are stacked
and inputted. And in the convolution operations, one feature
map is generated by summing the convolution results of each
channel. By the serial convolutional operation within a single
encoder, multiple input feature maps are mixed and output
feature maps are generated. In this operation, the independent
spectral features frommulti-band input data are mixed, which
results in the loss of useful information for reconstructing the
final classification map. Accordingly, dual-branch separated
input U-Net (W-Net) was proposed [23].
The design of SiU-Net focuses on effectively deciding the

number of separate input nodes based on the data. A prior
study showed that distinct input nodes prevent the mixing and
loss of independent information [23]. Therefore, aligning the
number of input nodes and encoders with the number of bands
enables the efficient extraction of each band’s unique land
cover information. However, it would increase the number of
weight parameters, and be require large computing powers.

To optimize trade-offs, the numbers of input nodes and
encoders should be determined by similarities between
each band. Comparing correlation coefficients of each
band can be used for assessing band similarity. High
correlation indicates high similarity, while low suggests
containing unique information. Similar bands should be
grouped; less similar ones are separately inputted. Setting
threshold or clustering analysis of a correlation coefficient
allows for spectral band grouping and designing a SiU-Net
structure based on these groups. Grouped bands allow for
the determination of separated input nodes and encoders
based on these groups. By designing SiU-Net based on the
correlation coefficients of each spectral band, we ensure
that the data generated by each encoder is as distinct as
possible.

It is generally accepted that correlation between RGB
and NIR bands is low. From that, in this study, we adopted
modified U-Net architecture with two separate input nodes
and encoders for RGB and NIR bands. This separation
ensures that the unique features of both RGB and NIR
are independently processed, enhancing the model’s perfor-
mance in tasks requiring nuanced spectral differentiation.

Figure 2 illustrates the more detailed architecture of SiU-
Net. The SiU-Net used in this study incorporates dual
encoders, allowing for the independent generation of feature
maps from both RGB and NIR bands respectively. Every
convolution and max-pooling operation in each encoder are
same as U-Net encoder architecture. The 3 × 3 convolution
block are applied and then 2 × 2 max-pooling operation
is following. This process is repeated four times in each
encoder. At every max-pooling operation, the number of
convolutional filters is doubled. The decoder is also designed
to be the same as that of U-Net except for the skip connection
with feature maps generated by two encoders. Due to the
concatenation of feature maps from two encoders, the initial
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FIGURE 2. The structure of separated-input-based U-Net used in this study.

number of skip-linked featuremaps at the decoder is 4/3 times
greater than in the same layer of U-Net. Additionally, the
initial feature maps dimension of the lowest layer is 32 ×

32 × 2048 (which is 1024 + 1024), doubling the dimension
of U-Net. From the above, we can expected that SiU-Net
has two key advantages: 1) It can separately extract unique
information from RGB and NIR bands, and 2) It generates
more feature maps than U-Net, enabling the extraction of
more information for the land cover classification [23].

B. PERFORMANCE EVALUATION
Pixel accuracy, precision, recall, and F1 score are used
to evaluate classification performance of models [3], [30],
[31]. Pixel accuracy is calculated by the percentage of
accurately classified pixel in the images. It is the simple
and powerful index but has a tendency of being biased in
data imbalance case. Precision, recall and F1 score can fulfil
shortcomings of pixel accuracy. Precision is the percentage of
correctly classified pixels among the pixel predicted as true.
Recall can be calculated by dividing the number of correctly
classified pixels by the pixel annotated as true. And F1 score
is a harmonic average of precision and recall. Precision,
recall and F1 score are suitable for not only applying to
imbalanced dataset, but also evaluating performance for
each class [32]. In addition, precision-recall curve and
average precision were adopted to assess performances of
models themselves. Precision-recall curve can graphically
show the relationship between precision and recall for
different threshold [33]. And average precision is the area
under the precision-recall curve, which can quantify the

relationship between precision and recall. Average precision
is in the range from 0 to 1. It is regarded as the better
the performance when average precision close to 1. In this
paper, we intend to employ these quantitative metrics to
evaluate the classification performance of each model as well
as individual classes. Moreover, we will examine the trends
in performance variations according to the proportion of the
classes, thus demonstrating how the proposed model can be
effectively applied.

III. STUDY DATASET
In this study, we utilized 2020 satellite-derived land cover
dataset generated using Sentinel-2 bands of blue (490nm),
green (560nm), red (665 nm), and NIR (842 nm) [27].
2020 satellite-derived land cover dataset were produced for
Seoul, Gyeonggi-do, Gangwon-do, and Chungcheong-do,
Korea. The study dataset was constructed using Sentinel-
2 L1C data captured over the area during the periods of
September to November 2019, March to June 2020, March
to August 2019, and December 2019 to February 2020.
Only images with cloud coverage of less than 25% were
selected [27]. The data are constructed in 300 pairs of input
images and the annotation data from those area. The size of
input images is the 512 × 512 with 4 bands, which are blue,
green, red and NIR bands from Sentinel-2 data, which spatial
resolution is 10 m as same as that of Sentinel-2. The classes
of the land cover dataset are annotated by totally 6 classes,
which are building, road, paddy field, dry field, forest, and
unclassified area.
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TABLE 1. Annotation criteria for 2020 satellite-derived land cover
dataset.

Table 1 showed the brief information of the annotation
criteria [26]. Every class was annotated only if they met the
annotation criteria except for unclassified class. Unclassified
class indicates the areas where the conditions (Table 1) are
not satisfied. There is also an annotation criterion about
minimum area or width of the objects. The minimum area
for building, paddy field, upland field and forest classes were
10,000, 50,000, 50,000, and 100,000m2 respectively. And the
minimum width of the road class was 36 m. If the minimum
areas or width are not satisfied, the areas were labeled as
unclassified class. Thus, some unclassified areas may include
actual building, road, paddy field, upland field, and forest
areas. In other words, the well-trained deep learning model
may detect actual classes, though those were labeled as
unclassified in annotation data. And it can affect the final
classification performance.

Figure 3 showed the examples of 2020 satellite-derived
land cover dataset included in test dataset. Figure 3 (a1∼h1)
and (a2∼h2) illustrate the true color and color-infrared
imagery of some input data. And the label data paired with
the input images as shown in Figure 3 (a3∼h3). Road network
could be recognized in the white box on Figure 3 (a).
However, it is annotated as the unclassified class since the
width does not exceed 36 m. Most of class can be found on
Figure 3 (b, e, g, h). Especially, the linear pattern and the
angular boundary are conspicuous, as artificial structures are
distributed on wide area such as buildings and roads. Thus,
we expected that those can be used to qualitatively analyze
the edge-preserving classification performance of themodels.
On Figure 3 (c), there is the annotation error that forest area
of the white box was not annotated. The forest area is widely
distributed in Figure 3 (d) and (f). And Upland field class are
exquisitely rarely identified, which are located in the white
box of Figure 3 (b), (e), (f), and (g).

IV. RESULTS AND DISCUSSION
Table 2 showed the pixelwise proportions of each class.
The proportions for building, road, paddy field, upland
field, forest, and unclassified classes were about 5.38%,

FIGURE 3. Study dataset; (a1-h1) True color visualization (RGB map) of
input images; (a2-h2) color infrared visualization of input images; (a3-h3)
annotation data, which refers to a false-color composition using NIR, red,
and green spectral bands mapping to RGB respectively.

TABLE 2. Pixel-wise proportion of each class.

1.38%, 2.62%, 0.84%, 63.78% and 26.00% respectively.
Approximately 90% of the pixels are annotated into the forest
or unclassified classes, as well as only 0.84% of pixels are
annotated into upland field class. These data imbalance can
lead to classification performance difference for each class.

Correlation coefficients of each band are principal criteria
to design SiU-Net structure. To clarify our approach,
we compared the correlation coefficients of each band before
training deep learning models, although it is known that the
correlation between the visible and the NIR bands is low.
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TABLE 3. Correlation coefficient of each band.

Table 3 showed the correlation coefficients of each band,
which were calculated from the study dataset. Among the
visible bands, which are blue, green, and red bands, it showed
a high correlation of 0.9 or more as given by Table 3.
On the other hand, the correlation coefficient in the NIR and
visible bands are 0.64, 0.71, and 0.73 for blue, green, and
red bands respectively. From these correlation coefficients,
we verified NIR band of study data also contains independent
information against visible bands. Based on our hypothesis,
we anticipated that applying separated input nodes and
encoders for the RGB and NIR bands respectively would
enhance land cover classification performance.

To train each model and to compare the classification
performance, the training, validation, and test data were
randomly sampled at the rate of about 64% (192 patches),
16% (49 patches), and 20% (59 patches) respectively, which
do not overlap each other. As a forementioned at section III,
forest and unclassified classes are dominant. This data
imbalance can influence final classification performance.
However, the additional data balancing and augmentation
was not performed. Thus, we expected that the classification
performance of each class also skewed on the forest and
unclassified classes.

TABLE 4. The principal hyperparameters (kernel initializer, loss function,
optimizer, learning rate, and epoch) for training DeepLabV3+, U-Net, and
SiU-Net.

Table 4 showed the principal hyperparameters of
DeepLabV3+, U-Net, and SiU-Net. He normal initializer
was adopted since the activation function of the models
is ReLU. For the loss function, cross entropy loss was
adopted because it is the most commonly used function for
the task of semantic classification. After several iterative
trials, we empirically determined the optimizers and learning

rates, adopting NAdam with a learning rate of 0.00001 for
DeepLabV3+, and Adam with a learning rate of 0.0001 for
U-Net and SiU-Net, respectively. This decision was guided
by a rule of thumb, reflecting our practical experience and
judgment in optimizing model performance [34], [35]. And
we trained the models using training data from the scratch
by repeating 800 epochs. After training of 800 epochs, the
pixel accuracies of validation data were converted into a
second decimal place, which were 0.86, 0.91, and 0.96 for
DeepLabV3+, U-Net and SiU-Net respectively. U-Net
and SiU-Net converged well when applied with the same
optimizer and learning rate. However, DeepLabV3+ did not
exhibit the same behavior. This discrepancy is understandable
given that U-Net and SiU-Net structures are akin, whereas
DeepLabV3+ significantly diverges from the other two
models. These structural differences justify the variation
in hyperparameters for effective training. Consequently,
U-Net and SiU-Net were optimally trained with identical
hyperparameters, whereas DeepLabV3+ required different
settings for optimal performance.

FIGURE 4. Land cover classification maps using (a1-h1) DepLabV3+,
(a2-h2) U-Net, and (a3-h3) SiU-Net.

The final models for DeepLabV3+, U-Net and SiU-Net
structures were selected by comparing pixel accuracy of
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every epoch. Figure 4 illustrated the land cover classification
map from test data of a 2020 satellite-derived land cover
dataset using the best fitted models for DeepLabV3+, U-
Net and SiU-Net. From the Figure 4, we can find that the
models well localized each class commonly. Nevertheless,
the most significant difference of classification results for
each model was the performance on the semantic edge (the
boundaries between the classes). DeepLabV3+ could not
clearly segment semantic edge and blurred at the boundaries.
As shown in Figure 4 (a1-c1, e1-g1), the roads were scarcely
classified if the road is narrow. Similarly, it is not well
classified that the boundaries of the angular artificial objects
such as building, paddy fields and upland fields. On the other
hand, the localization and classification of the region were
well performed. For example, although the detailed edge
information was lost in the Figure 4 (a1-h1), The objects
distributed in a wide area such as forests, buildings, paddy
fields, and unclassified could be distinguished well. Even
the misannotated area shown in the white box of Figure 4
(c1) could be classified accurately. It indicates that the
encoder of DeepLabV3+ can extract sufficient information
for distinguishing the objects. However, the decoder fails to
restore the original spatial resolution of the input data since
the final classification map is generated by using the feature
maps with 4 and 16 times degraded spatial resolution.

Compared to the classification maps of DeepLabV3+, U-
Net (Figure 4 (a2-h2)) and SiU-Net (Figure 4 (a3-h3)) clearly
distinguish the boundaries of each class. U-Net and SiU-
Net properly restored the linear pattern of the road networks,
even the roads that were not annotated due to their narrow
width could be detected. In addition, it can be identified that
the artificial structures, such as buildings, road, paddy fields,
and upland fields, is more clearly distinguished than those
of DeepLabV3+ (Figure 4 (a2-h2), (a3-h3)). It indicates that
the edge information of final classification maps was well
maintained due to the decoder utilizing full-resolution feature
maps to generate them. Especially, SiU-Net surpassed U-
Net in restoring edge information and detecting the objects.
At Figure 4 (b2), and (g2), False alarms of the road class
can be found. The road objects classified by U-Net showed
the noisy and disconnected pattern. Besides the boundaries
of paddy fields was not classified clearly. From those, we can
recognize that its angular edge information was lost. On the
other hand, the false alarm and misclassification of roads
classified by SiU-Net are lower than those of U-Net in
the qualitative comparison. The angular characteristics of
paddy fields also well recovered in the final classification
maps of SiU-Net. Furthermore, SiU-Net could detect the
objects which U-Net cannot localize from input data. Upland
field area was classified by SiU-Net in the small white
boxes on the Figure 4 (b3), (e3), (f3), and (g3), even
though they are mis-detected on the final classification
maps of U-Net (white boxes on the Figure 4 (b2), (e2),
(f2), and (g2)). It indicates that two encoder of SiU-Net
extracted independent information from visible andNIR band
respectively.

FIGURE 5. Precision-recall curves of (a) DeepLabV3+, (b) U-Net, and
(c) SiU-Net; AP and mAP mean average precision and mean average
precision respectively.

The precision-recall curve and average precision (AP)
score were adopted for comparing the model ability to
classify each class. The higher AP, which is area under the
precision-recall curve, means the contrast of dividing the
class is bigger. Thus, it is related to the performance of
segmenting the semantic edge. Precision-recall curves and
AP for each model and class were generated by comparing
annotation data and final classification maps of test dataset
as given by Figure 5. The mean APs (mAP), the weighted
mean of each AP, for the DeepLabV3+, U-Net and SiU-
Net were about 0.921, 0.970 and 0.976 respectively. The
proportion of forest class was overwhelmingly high. Thus,
the mAPs of each model were similar each other, which
were affected by AP of forest class. The AP of road class
in DeepLabV3+ (Figure 5 (a)) was about 0.179, which were
more than 3 times lower than those of U-Net (Figure 5
(b)) and SiU-Net (Figure 5 (c)). The AP differences except
for the road and forest class were approximately reached
to 0.2 comparing U-Net and SiU-Net. Only forest class
of DeepLabV3+ showed similar performance with U-Net
and SiU-Net. The low APs of DeepLabV3+ trained by
2020 satellite-derived land cover dataset were due to its poor
classification performance on the semantic edge. The APs of
SiU-Net were about 0.026 to 0.155 higher than those of U-
Net except for the forest class. The APs of upland field for
SiU-Net and U-Net were about 0.565 and 0.413 respectively,
which showed the largest AP difference of about 0.152.
The AP differences of road and paddy field were 0.133 and
0.055 respectively, showing the next largest differences.
Meanwhile the differences of AP for building, forest, and
unclassified area are only 0.027, 0.000 and 0.026 respectively.
From the AP difference between U-Net and SiU-Net, we can
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find the relation between the difference and the pixel-wise
proportion of the classes, which is that AP differences are low
as the pixel-wise proportion of the classes increases. And it
can be identified that the efficiency of SiU-Net was higher
when the proportion of the classes was lower.

TABLE 5. Performance evaluation indices of the DeepLabV3+, U-Net, and
SiU-Net using pixel accuracy (Acc.), precision (Prec.), recall (Rec.), F1
score, and mean F1 score.

An additional quantitative analysis was performed to verify
the effect of input separation of RGB and NIR data in
deep learning model structure for land cover classification.
Table 5 summarized performance evaluation indices for
DeepLabV3+, U-Net, and SiU-Net, which are pixel accu-
racy, precision, recall, F1 score, and Mean F1 score. Same
as precision-recall curves, performance evaluation indices
were calculated by comparing annotation data and final
classification maps of test dataset. The pixel accuracy for
DeepLabV3+, U-Net, and SiU-Net were 0.878, 0.905, and
0.930 respectively. Since the class of the data is largely
skewed to the forest and unclassified areas, the pixel accura-
cies depend on the pixel accuracy of those classes. Thus, pixel
accuracies of each model were similar to each other. Unlike
pixel accuracy, the F1 score, which is a harmonic average of
precision and recall, can be utilized to evaluate quantitative
performance on the imbalanced data. The best F1 score can be
found at the SiU-Net. All F1 scores of SiU-Net for each class
were higher than that of DeepLabV3+ and U-Net. While
DeepLabV3+ showed worst F1 score for each class. Mean
F1 scores for DeepLabV3+, U-Net, and SiU-Net were 0.541,
0.720, and 0.797 respectively. SiU-Net and DeepLabV3+
showed best and worst performance respectively.

FIGURE 6. The relationship between the proportion of each class and F1
score; (a) The variation of F1 score according to proportion of the classes;
(b) The variation of F1 score difference against SiU-Net according to
proportion of the classes.

Data balance has the most important influence on the
unbiased performance of the deep learning model. From the
AP difference we found the relation between the difference
and the pixel-wise proportion of the classes. Similar pattern
can be found on F1 score of each class. Figure 6 showed
the relationship between the proportion of each class and F1
score, which were referred on Table 2 and 5. The shapes and
the colors of symbols indicates models and class respectively
(Figure 6). From Figure 6 (a), F1 scores of upland fields,
which has lowest proportion, were especially lowest among
them of the classes in common for all models. Besides, the
F1 score of each class commonly showed an increasing trend
along to the proportion, although the trend variations are
different in each model. This ascending trend is influenced
by data imbalance of each class. The F1 score differences
between forest and upland field classes were about 0.903,
0.509, and 0.384 for DeepLabV3+, U-Net and SiU-Net
respectively. In addition, standard deviations of F1 scores for
DeepLabV3+, U-Net and SiU-Net are about 0.333, 0.167 and
0.125 respectively. SiU-Net showed not only the highest F1
score, but also the most stable performance for each class.

Based on the stable performance for each class, it would
be seemed that SiU-Net may reduce skewed classification
performance according to classes due to data imbalance.
Figure 6 (b) showed the variation of F1 score difference
against SiU-Net for DeepLabV3+ and U-Net according to
proportion of the classes. As given by Figure 6 (b), the F1
score difference between SiU-Net and other models showed
a descending trend as the proportion of the class increased
except for the road class of DeepLabV3+. DeepLabV3+
has lost its detailed information, and it is difficult to extract
spatially linear information of the road. Thus, the road class
of the model is out of the declining trend. Meanwhile, F1
score differences of upland field against SiU-Net were about
0.538 and 0.134 for DeepLabV3+ and U-Net respectively.
F1 score differences of the forest, the most dominant
class, were converged to nearly zero, which are 0.019 and
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0.009 for DeepLabV3+ and U-Net respectively. In other
words, the performance improvement of SiU-Net seems to be
greatly affected by the number of training data. The number
of training data increases, the magnitude of performance
improvement by input separation decreased. Consequently,
it is expected that, SiU-Net can be a good alternative model
if the data imbalance is severe and insufficient quantity of the
training data.

V. CONCLUSION
Satellite based RGB and NIR data have been successfully
used for mapping land cover. CNN-based deep learning
approach accelerate the pace of the improvement. Most
recent studies have been adopted the single encoder-decoder
structure to segment land cover from the multi-spectral data,
which leads to losing independent spectral information from
each multi-spectral band.

In this study, we implemented separated-input-based U-
Net in the consideration of correlation between RGB andNIR
bands. We trained the models using 2020 satellite-derived
land cover dataset, which contains RGB and NIR bands,
from AI Hub, NIA, Korea. And we verified the effectiveness
of input separation by comparing DeepLabV3+, and U-
Net. Precision-recall curve, average precision, precision,
recall, F1 score were adopted as performance evaluation
indices. The mean APs for DeepLabV3+, U-Net, and SiU-
Net were about 0.921, 0.970, and 0.976 respectively. The AP
differences except for the forest class were approximately
0.15 or more comparing U-Net and SiU-Net. The AP
differences, which calculated from AP of SiU-Net and U-
Net, of upland field and forest were about 0.152, and
0.000 respectively. Mean F1 scores for DeepLabV3+, U-Net,
and SiU-Net were 0.541, 0.720, and 0.797 respectively, and
SiU-Net showed the best performance in AP and F1 score.
The F1 score differences between forest and upland field
classes were respectively about 0.903, 0.509, and 0.384 for
DeepLabV3+, U-Net and SiU-Net. And standard deviations
of F1 scores for DeepLabV3+, U-Net and SiU-Net are about
0.333, 0.167 and 0.125 respectively. SiU-Net showed most
stable performance for each class. In other words, SiU-Net
might reduce data imbalance problem. F1 score differences
of upland field against SiU-Net were about 0.538 and
0.134 for DeepLabV3+ and U-Net respectively. And F1
score differences of the forest, the most dominant class, were
0.019 and 0.009 for DeepLabV3+ and U-Net respectively.
From that, we can conclude the effectiveness of SiU-Net is
more emphasized when the training data are not sufficient.

Finally, we can summarize as (1) DeepLabV3+ is not
suitable for segmenting land cover from satellite-based RGB
and NIR data due to the low spatial resolution of the final
classification map; (2) SiU-Net is effective to segment land
cover from satellite-based RGB and NIR data with 0.930,
0.976, and 0.797 of pixel accuracy, mAP, and mean F1 score;
(3) The efficiency of SiU-Net is more emphasized as the
number of data is smaller; (4) SiU-Net can reduce the biased
classification performance caused by data imbalance.

Furthermore, this research has certain limitations. Typ-
ically, the independence between RGB and NIR, a well-
established concept in remote sensing, guided the qualitative
design of the two encoders. However, in this study, we only
separated input node with a qualitative criterion of correlation
coefficients. Thus, it is still unsolved that a qualitative level
of the correlation coefficient can effectively enhance the
classification performance by input separation. Future studies
that quantitatively determine the number of encoders based
on the correlation coefficient of spectral bands are expected
to enhance the effectiveness of land cover classification using
multi-spectral satellite data.
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