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ABSTRACT In this manuscript, we propose a motion strategy for manipulating strings with unknown
properties. Our approach iteratively refines its motion generation based on parameters estimated from
observed string behavior, without the need for real-time feedback. This strategy has been shown effective in
achieving several motion objectives using uniform strings of similar lengths. In this research, we improve
upon this strategy by addressing the challenges posed by varying string lengths and non-uniform strings.
For this, we utilize a non-uniform string model and address various string properties to demonstrate the
feasibility of our proposed motion strategy. Experiments conducted with different string types and lengths
(between 300 to 610mm), including some with non-uniform mass distributions, demonstrate our method’s
effectiveness. Results show that our proposed method functions effectively with various kinds of strings,
regardless of length and mass distribution, without requiring precise model parameters. Unique to this
approach is its ability to adapt to various string characteristics through parameter estimation and motion
generation, significantly reducing the need for real-world manipulation trials. Our findings illustrate the
potential of our method for use in advanced robotic applications that require handling deformable objects.

INDEX TERMS Robotic manipulation, dexterous manipulation, unknown string, deformable objects.

I. INTRODUCTION we aim to examine casting manipulation as a method for

The manipulation of deformable objects is a crucial area of
inquiry as such materials’ inherent highly nonlinear charac-
teristics greatly influence manipulation. Studies have been
conducted on a variety of deformable materials, including
fabrics, cables, and clothing [1]. Historically, cable insertion
and knotting/untying operations have been the primary focus
of string manipulation studies. However, these studies have
been largely limited to small or slow-moving deformations.
Recently, studies have tackled the dynamic manipulation
of strings. String’s weaving method, material, and memory
effect of materials can greatly impact the deformation
behavior of the strings during dynamic manipulation, making
it a particularly difficult problem to solve. In this study,
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dynamic string manipulation. Casting manipulation involves
robots using a string to extend their reach, by gripping the
string and reaching its end towards distant targets.

Il. RELATED WORKS

Previous work on casting manipulation includes the work
by Suzuki et al., who fabricated a casting manipulator by
attaching a cable to a single-degree-of-freedom linkage and
modeled the cable as a multi-link system [2], [3]. Arisumi
et al. constructed a device with an end-effector attached to a
string to collect samples in craters on the Moon that robots
cannot access [4]. Fagiolini et al. designed a casting manip-
ulator that can reach 3D positions and presented a control
scheme appropriate for the flight of the end-effector [5].
Recently, Lim et al. proposed a self-supervised learning
framework Real2Sim2Real to realize casting manipulation
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in a two-dimensional plane [6]. However, the casting
manipulation was performed on a desk in the study [6],
thus it was not influenced by the direction of gravity.
In contrast, in [2] and [5], specialized casting manipulators
were developed, making it difficult to apply motion planning
to traditional robot arms. In this study, we assume that a
robot arm performs manipulation by grasping a string on the
ground. Then, we aim to accomplish the casting manipulation
of a target object on a two-dimensional plane under the
influence of gravity.

In general, in research on robot motion planning, it is
crucial to minimize the gap between simulation and reality
(sim2real). Sim2real achieves motion objectives by acquiring
a motion policy in simulation, manipulating the target based
on the policy, and then bridging the gap between simulation
and reality. A typical approach to achieve this is to construct
an accurate physical model and identify its parameters.
Lang et al. modeled the deformation of a deformable object
by a discrete Green’s function matrix and estimated the
model using a specialized facility (The Active Measurement
Facility) [7]. Chen et al. developed a friction measurement
device to accurately depict contact between a garment and
an object on a computer [8]. Caldwell et al. represented
the flexible loop as a chain of rigid links connected by a
torsional spring and identified the stiffness characteristics
of the model based on forces and displacements during
manipulation by the robot [9]. While, in many cases, the
gap between simulation and reality is very small for models
estimated based on actual measurements, and the models
can represent a wide range of nonlinear characteristics; it
is not rare for special tests to be necessary to identify the
model. Therefore, it is inappropriate for situations where
the robot is to grasp a string and immediately manipulate
it at home. Lee et al. proposed imitation learning based on
force information when manipulating flexible objects [10].
Ma et al. attempted to detect key points and extract features
using G-doom, a recurrent neural network [11]. Mate et al.
proposed a task-agnostic algorithm based on deep learning
that avoids explicitly modeling cloth behavior and does not
require reward shaping for convergence [12].

In [13] and [14], quasi-static motion, dominant for strings
and cloth, is used. Therefore, the nonlinear characteristics of
the string do not affect its motion.

Dynamic manipulation for strings and cloth has also been
explored in various studies. Jangir et al. utilized reinforce-
ment learning to demonstrate the importance of velocity
and trajectory in dynamic manipulation and investigated the
effectiveness of different cloth state representations [15].
Nah et al. successfully identified the optimal action for
manipulating a whip by encoding control based on dynamic
primitives [16]. Yamakawa et al. demonstrated that the
motion of a string follows the trajectory of the robot
arm’s tips only if the robot arm’s tips move at a constant
speed and high velocity, which can be utilized to realize
dynamic manipulation of the string [17]. Several other works
have realized dynamic manipulation [18], [19]; however,
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these studies are limited in their applicability. These studies
are applicable only to their targeted strings and motions,
as they only consider them in simulations or introduce
strict assumptions. In practice, the characteristics of strings
can greatly vary depending on their weaving method and
material. Therefore the aforementioned studies can only be
applied to a limited small subset of strings.

In an effort to address these limitations, some studies
have adjusted simulations from multiple string and robot
arm motion samples to generate motions that take into
account the characteristics of the string. For example, [6]
used differential evolution to ensure that the trajectory of the
string motion in the simulation matched the actual trajectory
and utilized a tuned simulator to generate a large data
set to bridge the gap between the simulation and reality.
Similarly, Yang et al. trained their model using recurrent
neural networks and synthetic data generated by simulation
and implemented an efficient differential evolution algo-
rithm for parameter identification. They showed that the
performance was comparable to models trained on real-world
data [20]. Chi et al. also employed a learning framework,
Iterative Residual Policy, for dynamic manipulation of linear
objects, optimizing manipulation by online prediction of the
deformation of the flexible object when small changes are
made to the previous manipulation [21].

Ill. CONTRIBUTION OF THIS PAPER

The authors have realized several motion objectives for
strings with unknown properties by repeating motion gen-
eration, actual manipulation, and parameter estimation [22],
[23], [24]. Specifically, our proposed method differs from
previous research as it does not acquire training samples
by manipulating the robot in the real world in advance,
as in previous studies. Instead, the first manipulation uses a
randomly configured model of the string to generate a motion
that achieves the desired action. The robot arm then executes
the generated motion and estimates the characteristics of the
cord based on the resulting motion, significantly reducing
the number of times manipulation is performed in the real
world. We emphasize that our approach does not estimate true
model parameters. The strong point of our approach is that
it aggressively uses model redundancy and iterates motion
generation and model parameter estimation like heuristic
approaches. Through several iterations, model parameters
that satisfy expressing the actual string movement will be
estimated, and a motion that achieves motion objectives will
be generated.

Our previous work has been limited to a few kinds of
string lengths of approximately 300mm, which obscured
the feasibility range of our proposed method. It also did
not consider non-uniform mass distribution. The difference
in mass distribution can lead to changes in deformation
properties, making strict model identification complicated.
Machine learning-based algorithms require a significant
amount of learning data to address these issues. To overcome
these challenges, we expanded our proposed method to
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FIGURE 1. String model for motion generation.

include mass values as string model parameters, thus
enhancing model redundancy. Conventional models, which
assume uniform mass, cannot accurately represent the move-
ment of non-uniform strings. By combining our proposed
motion strategy (motion generation, actual manipulation,
and parameter estimation) with the expanded string model,
we can manipulate various kinds of strings. In this paper,
we address strings ranging in length from 300mm to 610mm
with non-uniform mass distribution. The results demonstrate
that our proposed method was effective with all strings used
in the experiments.

For these reasons, we believe that our research contributes
to expanding the feasibility of the manipulation of deformable
objects with unknown properties. In this work, we show the
effectiveness of our proposed motion policy (iterative motion
generation, actual manipulation, and parameter estimation).

IV. PROPOSED MOTION STRATEGY AND STRING MODEL
A. STRING MODEL

The string model used for motion generation and parameter
estimation is depicted in Fig. 1. Table 1 enumerates the
parameters. In addition to the 10 parameters shown, the
mass of each point is also considered an unknown parameter.
For kj and ¢y, different parameters were used depending
on the direction of string tensile and compression. In this
paper, the parameters for the tensile direction are denoted
as kg, csn, and the parameters for the compression direction
are kj, ¢, (See upper left of Fig. 1). The mass parameters
differ only at the location where the weight is attached.
We assumed that the location of the weight can be determined
via a camera or other means. It is important to note that
this model is not a true physical model. For example, when
calculating the bending force, the equation of equilibrium
is established at adjacent masses. For an object such as a
string, which can be approximated as an n-dimensional serial
link, motion is computed by adding the accelerations from
the robot’s grasping position to the tip. As mentioned, the
proposed string model is not a true physical model, but it does
satisfy the balance of forces. The proposed model is mainly
employed to represent hair and strings in CG space due to its
very low computational load.
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FIGURE 2. Proposed motion strategy.

B. OUR PROPOSED MOTION STRATEGY

Fig. 2 illustrates our proposed motion strategy. Our proposed
method repeats the process of motion generation, actual
manipulation, and parameter estimation. Initially, the user
specifies the parameters of a random string and initiates
motion generation. When a movement that satisfies the
objectives of the manipulation is generated, the motion
generation is terminated. Subsequently, the generated motion
is executed by a robotic arm that grasps the string. The string
movement is captured using a camera, and the coordinates
of each quality point are recorded via image processing.
Then, parameters are estimated such that the motion of
the string model is consistent with the actual motion of
the string. The estimated parameters are used to generate
motion once more. This process is repeated until the motion
objective is achieved. This research does not intend to obtain
a strictly accurate model of the string. Rather, we estimate
the combination of parameters that can express the specific
string motion based on the specific string motion that occurs
during actual manipulation. The estimated parameters may
be redundant depending on the string motion, but if, for
example, the string deforms significantly during bending,
the parameters related to bending are estimated with high
sensitivity, and their characteristics are reflected in the motion
generation in the simulation.

V. MOTION GENERATION METHOD

A. FIRST MOTION GENERATION

Manipulation trajectory is generated through the generation
of randomized velocity curves for each joint. As depicted
in Fig. 3, the motion generation process begins with the
utilization of a Bezier curve to generate a velocity curve
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TABLE 1. String model parameters.

Force Coefficient(String model parameters) Explanation of parameter
F P Elastic force
$ s between the mass points
Fy o Damping force }
between the mass points
Fy ky(Compression direction),k;(Tensile direction) FOrces;‘i:::nbgléifrf:?rll:;)sn;(‘;gi;?smem
Fy cp(Compression direction),c;(Tensile direction) Force ;2?;ZiE{h?iiizgaﬂniz?ggnﬁomem
F. Cc1, Cc2(Squared term) Air resistance at the mass point
F - Gravitational force
F k Torsional spring moment between
ph ph the robot hand and grasped mass point
F Force caused by torsional damper moment between
phe Cph the robot hand and grasped mass point

for each joint. The motion time denoted as 7 is randomly
determined within a range of 0.2 to 1.2 seconds. The motion
time is then divided by the number of control points N, in the
Bezier curve, and the height of each control point is calculated
using equation (1).

Vi=Vici+orAt, At=tpy —ty—1, k=1...N (1)

The resulting velocity curve is subsequently integrated to
determine the amount of rotation for each joint. If the
calculated rotation exceeds the robot joint’s limit, the velocity
curve is regenerated. If the rotation amount is within the
robot’s motion constraints, the initial angles of each joint are
randomly determined within the movable range. By utilizing
the robot’s initial posture and the determined velocity curve,
the paw trajectory is calculated, and a string movement
simulation is performed to assess whether the desired
objective has been achieved. If the objective is achieved,
the motion generation is terminated, otherwise, the process
returns to the initial step.

B. MOTION GENERATION OF THE SECOND AND
SUBSEQUENT MANIPULATION

In the second and subsequent motion generation, the robot’s
initial posture is taken over from the posture obtained in the
initial motion generation. The velocity curves for each joint
are generated in a similar manner as in the first phase. The
height of the control points in the Bezier curve, generated
during the initial phase, are randomly altered within a range
of £0.5 rad/s of their previous position, and the Bezier curve
is regenerated based on these modified control points. This
process is repeated until the desired motion is achieved. The
reason for adopting this approach is that the proposed method
utilizes parameters derived from the actual manipulation
of the robot arm, thus the parameters are estimated to the
specific motion of the string. Therefore, if the direction of the
force applied to the string differs significantly, the estimated
parameters may not be valid, as demonstrated in [22].

C. METHOD FOR GIVING A MOTION OBJECTIVE
In motion generation, the objective is defined as being
achieved when the tips of the string hit the target object. The
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FIGURE 3. Procedure of motion generation.

target object is positioned at (xyf, yrer), and the robot arm
employs the previously outlined motion generation method
to determine whether the objective has been attained while
the string is in motion.

Vi. PARAMETER ESTIMATION

During manipulation, a camera captures the string’s actual
movement and the profile of each joint angle of the robot.
These two sources of data are used for parameter estimation.
The image of the string is extracted by centering on the
grasping point of the robot arm. Each string model parameter
is randomly selected. The actual motion of the robot arm is
used to simulate the string motion. Specifically, the robot’s
movement is simulated in the simulator according to the
profile of each joint obtained from the simulation. Then,
based on the simulated robot’s movement, the string model
is simulated using Euler’s method. The point positions of the
string model obtained from the simulation are compared with
the actual string movement image series, and the evaluation
value E is calculated. This process is iteratively repeated
while changing the parameters. After a specified number of
iterations, the parameter with the lowest evaluation value is
output as the estimated parameter. It should be noted that
the evaluation value E assesses the difference between the
actual positions of the string and those predicted by the
simulator. Therefore, we select the parameters that result
in the smallest difference, meaning the lowest evaluation
value.
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A. PARAMETER SELECTION METHOD

When determining the value of each parameter of the string
model, the exponential form is utilized to randomly select it.
This results in a wide range of parameters. In order to expedite
parameter convergence, the parameter estimation range is
gradually narrowed through the application of the following
equation,

Pax X
Pa: min \ .5 ,OSmel (2)
Pmin
X0
Xm = Xbest + Mﬂm -RAND(—1, 1) (3

where M is the number of actual string manipulations, let m
be the number of parameter changes times and P, denote a
specific parameter. The maximum value Pj,,, and minimum
value P,,;, of the parameters are predetermined. The initial
value yq is selected when determining y,,. The function
RAND(-1,1) means random numbers within the range of -
1 to 1. The value of B is slightly less than 1, and is utilized
to gradually constrict the search range during each iteration
of the parameter update. The xp.s; denotes the final estimated
parameter value (exponent) from the previous manipulation.
The properties of deformable objects can exhibit a wide range
of characteristics, necessitating a broad search range for each
parameter. Therefore, we divide the parameter search space
logarithmically and specify x,, to enable exploration across
a vast space. As indicated by Equation (3), x;, is selected
around the xpesr, Which may sometimes exceed the defined
domain (0 < x,; < 1). In our method, if x,, falls below 0,
it is set to 0, and if it exceeds 1, itis setto 1.

B. EVALUATION VALUE E CALCULATION METHOD

Fig. 4 shows the method of Evaluation value calculation. The
distance between the position of each mass point on the actual
string (x4, yr;) and the position on the simulation (xg;, ys;) is
d;, and the evaluated value E is calculated by comparing the
actual position with the simulated position. The average value
of d; per image frame for a mass point i is E;, and £ is the total
number of images taken. The farther away from the grasping
position, the greater the motion of the mass point of the string.
Therefore, we weight the image using the weight w toward the
tip of the string. The overall matching ratio was calculated
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VII. CASTING MANIPULATION WITH NON-UNIFORM
STRINGS

A. USED STRING AND THE TARGET POSITIONS IN THE
EXPERIMENT

In order to evaluate the feasibility of the proposed method
for non-uniform strings, seven different types of strings were
used in the experiments.

As depicted in Fig. 5, the strings used have different
lengths (300, 510, and 610 mm) and were partially weighted
with 10 [g] of oil clay. In particular, string types 6 and
7 were attached to the plastic pipe so that they exhibit
different stiffnesses. The experiments were also conducted
with five different target positions, as shown in Fig. 6. Table 2
presents the range of parameters employed in the estimation
process, with the minimum value of each parameter being
utilized to initiate the motion generation of the robot
arm.
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TABLE 2. Parameter ranges at casting manipulation with non-uniform
string.

TABLE 3. Repetitions until achieving manipulation with the proposed
method.

Each parameter | Minimum values | Maximum Values
ks[N/m/kg] 1000 1000000

cs[Ns/m/kg] 1.0 10.0
kn[Nm/rad/kg] 0.001 10.0
cp[Nms/rad/kg] 0.001 10.0
kgn[Nm/rad/kg] 0.0001 1.0
cgn[Nms/rad/kg] 0.0001 1.0
Cc1[Nm/s/kg] 0.000001 10.0
Ce2[Nm/s/kg] 0.000001 10.0
kpn[Nms/rad/kg] 0.001 0.01
Cpn[Nms/rad/kg] 0.001 0.01

String type | Repetition times String type | Repetition times
1 2 4 2
2 2 5 3
3 2 6 2
7 2

—Actual tips string tips trajectory
400 _Simulated string tips trajectory

Enlarged view

0.09[s] 0.18[s] 0.27[s]

Target Object

!
o015 |

o

(b) 2nd manipulation

o1, I

FIGURE 7. Manipulation with string type1 with target position
(Xref > Yred) = (500, 500)mm.

B. EXPERIMENTAL RESULTS OF NON-UNIFORM STRINGS

String type 1 (a string with 10 g of oil clay attached to
the tip of the string) is taken as an example to illustrate
the changes before and after parameter estimation (Fig. 7).
When the initial parameters were used to generate the motion,
the tips of the strings did not hit each other, as shown in
Fig. 7a. However, after the estimation, the tip of the string
reaches the target object, as shown in Fig. 7b. Fig. 8a shows
a comparison between the motion of the tip of the string in the
successful casting operation and the estimated tip motion of
the string model. It can be seen that the motions of both are
matches. This result shows that after parameter estimation,
the string motion becomes consistent between simulation
and reality In addition, the robot arm tip trajectories before
and after parameter estimation are shown in Fig. 8b. After
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parameter estimation, the trajectory of the robot arm is longer
than before estimation. This is considered to be because
the actual string does not expand or contract more than the
initial parameters, and casting manipulation is realized by
making the robot arm move more widely. This indicates
that the trajectory was modified by reflecting the actual
string characteristics to the motion generation via parameter
estimation.

We investigate the manipulation feasibility toward other
strings (2, 3,..., 7). In particular, manipulation results
with strings 5 and 7 are shown in Fig. 9 and Fig. 10,
respectively. This shows that simulated and actual string
movements become similar via parameter estimation in
all string types. This result shows the proposed sim2real
strategy (repeating to motion generation, actual manipulation,
parameter estimation) is functioning within a string length
range that is 300 to 610 mm. Table 3 shows the proposed
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TABLE 4. Estimated mass weight.

String type Attaching weight 1 Attaching weight 2 Others
1 m10=9.1 - 1.0
2 my =1.0 1.0 11
3 ms=17 - 43
4 m13=3.5 m15=20 1.0

m12=9.1, m13=6.1
5 me=18 (pipe part m12 and m13) 1.0
m13=1.9, m14=4.0, m15=4.8
6 : - 1.0
(pipe part m13, mi4 and m1s)
7 mg=11 - 1.0

FIGURE 9. Manipulation with string type 5 (2 times repetition).

\\H\ff

0.0[s] 0.20[s] 0.40[s 0.60[s]

0.0[s] 0.20]s] 0.40]s] 0.60]s]

FIGURE 10. Manipulation with string type 7 (1 time repetition).

repetition times from the first manipulation to achievement
manipulation. The proposed method can achieve casting
manipulation with unknown strings without numerous trials
and learning data. It should be noted that the repetition
times of the proposed method vary depending on the
complexity of the manipulation. Manipulation with complex
string movement makes it difficult to estimate feasible string
parameters, and thus may require more than several trials.

VIIl. DISCUSSION ON PARAMETERS ESTIMATED FOR
CASTING MANIPULATION AT EACH TARGET POSITION

A. DISCUSSION ABOUT ESTIMATED PARAMETERS

We examined the estimated string parameters through the
following experiments. We used string type 1 to execute
casting manipulation towards target positions 1, 2, and 3.
Fig. 11 shows the estimated parameters at these three target
points. The estimated parameters were different for each
target point. This result indicates that the string parameters

69348

ad /ke] (Tensile dir

otk [Nom

effic;

A 2 > 2 2
S S S E S o o

o o
Ng N N A© N
¥ < e <& e

e
@&9‘?

(a) Estimated string parameter kx(ks) and ci(csn)

1010,

3

0 0
A 1y
o o o o o o
o RS KRG R R R
<% < < <o ¥

(b) Estimated string parameter k; and c¢;

FIGURE 11. Estimated string parameter with each target position.

were estimated as feasible parameters for expressing this
string movement. While the parameters are not unique, they
suffice to generate robot arm motions considering the string
properties.

B. DISCUSSION OF ESTIMATED MASS M; PARAMETERS

Table 4 shows estimated mass parameter m; with each
string types. All strings’ attached masses were 10g of oil
clay. However, the estimated mass parameters were not the
same. In String 5, very light plastic tubes were attached to
mio> to m3. The estimated values near them were mj; =
9.1 and m, = 6.1, which were larger than those of the other
parts. This discrepancy arises because the proposed method
estimates parameters based on the actual motion of the string.
This trend was also true for string 6. The effect of the plastic
part with different stiffness was interpreted by the model
as a segment that remains undeformed due to its estimated
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mass. Consequently, since the equation of motion relies on the
relationship between force, acceleration, and mass, variations
in mass can seemingly alter the string’s stiffness. Based on the
above, we can argue that while the proposed method does not
strictly model real-world objects; it does achieve the motion
objective with a minimal number of trials by focusing on
the actual movement of string observed during the motion
process.
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