
Received 17 April 2024, accepted 12 May 2024, date of publication 15 May 2024, date of current version 22 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3401129

Improved Dung Beetle Optimizer Algorithm With
Multi-Strategy for Global Optimization and
UAV 3D Path Planning
LIXIN LYU 1,2, HONG JIANG1, AND FAN YANG 1,2
1School of Information and Artificial Intelligence, Anhui Business College, Wuhu, Anhui 241002, China
2College of Industrial Education, Technological University of the Philippines, Manila 1000, Philippines

Corresponding author: Lixin Lyu (Lixin_Lyu@abc.edu.cn)

This work was supported by the Key Research Project of Natural Sciences in Colleges and Universities, Anhui Province of China, under
Grant 2023AH052298.

ABSTRACT In high-dimensional scenarios, path planning is a challenging and computationally complex
optimization task that requires finding optimal paths within complex domains. Metaheuristic (MH)
algorithms offer a practical approach to addressing this issue. The Dung Beetle Optimizer (DBO),
categorized as a MH algorithm, takes inspiration from the biological behaviors exhibited by dung beetles.
However, DBO exhibits limitations, including inadequate global search capabilities and a tendency to
converge on local optima. To address these challenges, this paper proposes a multi-strategy Improved Dung
Beetle Optimization algorithm (IDBO) for UAV 3D path planning. Initially, cubic chaos mapping is applied
for population initialization, enhancing diversity. Subsequently, a novel global exploration strategy replaces
the DBO’s original rolling phase, improving information exchange and minimizing parameter dependence.
Third, an adaptive t-distribution is introduced to adjust dung beetle positions, balancing exploration and
exploitation. Finally, an enhanced population update strategy is proposed, utilizing varied behavioral logic
at different algorithm stages to improve solution quality and search efficiency. Additionally, performance
comparisons with six advanced algorithms on the CEC2017 test suite, and the validation of IDBO’s
effectiveness via theWilcoxon rank-sum and Friedmanmean rank test. Meanwhile, in UAV 3D path planning
experiment, IDBO achieves the best cost index, which is 1.34% higher than the best cost of original DBO,
and is also significantly better than the most advanced algorithms such as WOA, GSA, HHO, COA, and the
standard deviation is reduced by 99.93% compared with DBO algorithm, which proves the effectiveness and
robustness of IDBO in UAV 3D path planning.

INDEX TERMS Dung beetle optimizer, metaheuristic, global optimization, UAV 3D path planning.

I. INTRODUCTION
The use of Unmanned Aerial Vehicles (UAVs) in diverse
applications is rapidly expanding due to their high autonomy,
cost-effectiveness, real-time responsiveness, flexibility in
deployment, and scalability. These vehicles are equipped
with sophisticated sensors and advanced navigation tech-
nologies [1], enabling them to perform complex flight
missions across varied environments. Over recent years,
technological advancements and the increasing commercial
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use of drones have significantly enhanced their practical
significance [2]. UAVs are now applied in many scenarios,
including agricultural monitoring, forest fire detection,
rescue operations, and infrastructure inspection. However, the
expanding range of application domains has made traditional
two-dimensional trajectories insufficient for the complex
requirements of today’s tasks, highlighting the importance
of three-dimensional trajectory planning [3]. This task is
challenging as it involves navigating through diverse terrains
and obstacles, considering airborne entities, and identifying
an optimal or near-optimal flight path. The growing diversity
of UAV types and models, along with a broader range
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of flight missions, has significantly widened the scope of
path selection solutions, presenting a complex optimization
challenge [4]. As a result, solving the three-dimensional
path planning problem for UAVs has become a classic
NP-hard problem, leading to a focus on swarm intelligence
optimization algorithms as a primary research approach to
address these intricate issues [5].

Metaheuristic (MH) algorithms, inspired by natural biolog-
ical behaviors, harness patterns found in nature to iteratively
refine solutions, aiming for efficient outcomes within con-
strained timeframes [6], [7]. Their simplicity, versatility, and
ease of use have made them applicable across a variety of
domains, including but not limited to image segmentation [8],
path planning [9], [10], agricultural monitoring [11], forest
fire detection [12], rescue operations [13], rotor system [14],
and cubic transmission [15]. This broad utility underscores
their value in addressing diverse optimization challenges,
particularly where traditional deterministic methods fall
short.

When tackling 3D path planning for UAVs, an NP-Hard
problem, the limitations of traditional algorithms become
clear due to the task’s complexity and dynamic condi-
tions [16]. This difficulty is heightened by changing obstacles
and various constraints in UAV path planning, making quick
solution finding tough [17], [18]. MH algorithms are more
effective here, known for their ability to closely approximate
the best solutions efficiently [19]. Their adaptability and
quick performance are key for large-scale 3D UAV tasks,
backed by empirical studies [20], [21] [22]. J. Sanchez-
Garcia et al. proposed a new distributed dynamic particle
swarm optimization algorithm for UAV network (dPSO-U)
to generate the trajectory of UAV network in the disaster
scenario search task. Compared with the optimal trajectory
planning algorithm covering the entire disaster scenario, the
proposed algorithm can find victims faster and converge
faster [23]. Gewen Huang et al. proposed a multi-UAV path
planning model with the energy constraint (MUPPEC). The
proposed method considers the energy consumption of the
UAV in different states such as acceleration, cruising speed,
deceleration and hovering to minimize the total monitoring
time [24].

The No Free Lunch (NFL) Theorem reminds us there’s no
one perfect algorithm for every problem [25]. It highlights
the importance of customizing algorithms for specific tasks.
Thus, developing MH algorithms tailored for 3D UAV path
planning is crucial for better efficiency [26], aligning with the
NFLTheorem and stressing the need for specific solutions for
complex problems.

The DBO algorithm, a meta-heuristic approach, was
conceived by Professor Shen Bo’s team in 2023. It draws its
inspiration from the five distinct behaviors of dung beetles:
rolling balls, dancing, breeding, foraging, and stealing [27].
DBO is characterized by its straightforward structure,
minimal parameter requirements, and robust prospecting
and exploration abilities. It finds extensive applications in

tackling optimization issues in areas like high-dimensional
feature selection and data clustering [28]. Nevertheless,
despite these attributes, DBO exhibits limitations such
as slower convergence rates and a propensity to become
entrapped in local optima. Furthermore, if UAVs path
planning is reduced solely to factors like flight distance
and time, it risks oversimplification, potentially failing
to capture the optimal flight path in practical scenarios.
To date, only a handful of researchers have experimented
with applying DBO to three-dimensional UAVs trajectory
planning. Like all optimization algorithms, achieving an
optimal balance between exploration and exploitation is vital
for determining the ideal flight path [29]. In essence, as a
nascent algorithm, DBO necessitates additional investigation
and refinement to more effectively address the intricate
demands of three-dimensional path planning.

In the research of modern optimization algorithms, finding
an effective strategy to balance exploration and exploitation
is always one of the core problems. Kahraman et al. [30] pro-
posed a selection method based on Fitness Distance Balance
(FDB) to solve the problem of premature convergence in the
selection process of metaheuristic algorithm. This approach
optimizes the selection strategy of the population by consid-
ering the fitness of the candidate solution and its distance to
the global optimal solution. In addition, in order to better deal
with constrained optimization problems, Ozkaya et al. [31]
introduced the Fitness-Distance-Constraint (FDC) model and
the dynamic guidance mechanism. These methods have
shown excellent performance in improving the performance
of the algorithm in the constrained environment. Kahraman
et al. [32] uses NSM score instead of fitness value to design
the updatemechanism. Although the computational complex-
ity is increased, the results show that the NSM version has
obvious advantages in finding the optimal solution. Although
these advances have promoted the performance of the
algorithm on static and standard test problems, there are still
many challenges when dealing with dynamic and complex
practical application problems, such as UAV path planning.

To improve the convergence speed and exploration capabil-
ities of the DBO algorithm, this paper introduces an advanced
version of DBO, incorporating a novel global search strategy
and an adaptive t-distribution. Initially, Cubic chaos mapping
is employed to augment the randomness and diversity during
the population initialization of DBO. Subsequently, the newly
devised global search strategy replaces the conventional DBO
rolling phase, facilitating improved information exchange
among DBO entities, diminishing parameter dependency,
and bolstering global exploration effectiveness. Furthermore,
the integration of an adaptive t-distribution perturbation
approach during the dung beetle foraging phase ensures
a balanced interplay between exploration and exploitation.
Lastly, the implementation of a contemporary population
update strategy, which infuses adaptive factors and elements
of randomness, substantially upgrades the algorithm’s overall
performance.
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Experimental findings utilizing 29 functions from the
CEC2017 benchmark suite demonstrate that the IDBO
algorithm markedly enhances the global optimization capa-
bility. This advancement effectively boosts both the con-
vergence rate and the precision of the algorithm. The
results demonstrate that the new algorithm proposed in this
study outperforms three competing algorithms: GSA [33],
GWO [34], WOA [6], HHO [35], DMO [36], COA [37]
and the original DBO algorithm [27]. Through solving the
UAVs three-dimensional path planning problem, it is verified
that the IDBO algorithm also possesses high applicability for
engineering problems.

In response to the limitations of DBO, this paper
introduces the IDBO algorithm and applies it to address
three-dimensional path planning for UAVs. The key contri-
butions of this research are as follows:

1) To address the limitations of traditional DBO, we’ve
enhanced the algorithm with several key improve-
ments: the implementation of a Cubic chaotic map,
a new global search strategy, an adaptive t-distributed
perturbation strategy, and a novel adaptive and random
population update method.

2) We rigorously tested the enhanced IDBO’s exploration
and exploitation abilities using the CEC 2017 bench-
mark for optimization. The tests clearly showed the
algorithm’s skill in navigating and utilizing the solution
space effectively.

3) Additionally, we evaluated IDBO’s practical value by
applying it to 3D path planning for UAVs. This test
highlighted the algorithm’s capability to efficiently
solve complex real-world engineering challenges with
high accuracy.

The second part introduces the improvement work of DBO
algorithm and MH algorithm in UAV trajectory planning.
Section III outlines the structure of the original algorithm and
introduces the proposed method. In Section IV, we carry out
pertinent experimental tests and provide an in-depth analysis
of the proposed algorithm. The fifth part is the application
analysis of IDBO algorithm in UAV three-dimensional
trajectory planning. The sixth part is the summary of the
paper.

II. RELATION WORKS
In recent years, with the widespread application of UAVs
in various fields, the field of UAV three-dimensional path
planning has aroused widespread research interestC [38].
Effective path planning is essential for drones to fulfill
their missions safely and efficiently. Faced with the NP-hard
complexity inherent in three-dimensional UAV trajectory
planning and the necessity for real-time combat capabil-
ities, numerous researchers have delved into an array of
optimization algorithms and strategies. Among these, swarm
intelligence optimization algorithms have gained prominence
in UAV trajectory planning [39], attributed to their high
efficiency and swift response. Typically inspired by natural

behaviors and phenomena, these algorithms demonstrate
significant potential in identifying optimal or near-optimal
solutions for intricate path planning challenges. This section
aims to explore recent developments in this area, emphasizing
enhancements to the DBO and the utilization of various
heuristic algorithms in addressing three-dimensional path
planning issues in UAV operations.

Fang Zhu and their research team employed an optimal
point set strategy that takes into account the convergence
and dynamic balance of egg-laying and foraging insect
behaviors. Additionally, they integrated a t-distribution
mutation strategy, inspired by quantum computing principles,
to enhance the DBO. This enhancement greatly improved
the algorithm’s ability to overcome local optima [28]. Shen
and their research team utilized the Beta distribution to
dynamically generate reflection solutions and incorporated
the Levy distribution to manage particle crossings of bound-
aries. This algorithm incorporates two distinct crossover
operators to enhance the update phase, expedite algorithm
convergence, and strike a balance between exploration and
exploitation capabilities [40]. Additionally, Wang Zilong and
team proposed a multi-strategy DBO algorithm, known as
GODBO, which leverages the current population’s optimal
value for directional migration and reverse learning, thereby
boosting the algorithm’s exploratory power [41]. Longhai Li
and associates introduced a fitness-distance balance strategy
and implemented a spiral foraging approach to refine the
algorithm’s search precision, expand its exploratory ability,
and circumvent local optima. By integrating an optimal
dimension Gaussian mutation strategy, they increased pop-
ulation diversity and hastened the algorithm’s convergence
speed [42]. Concurrently, Xu-ruo Wei and others merged
the Simulated Annealing (SA) algorithm with the DBO
algorithm to diminish the likelihood of converging to
local extremes [43]. Furthermore, Zhang Zhanyou and
their research collaborators introduced an optimal point-set
strategy. They integrated the spiral search method with the
whale optimization algorithm to achieve a balance between
local and global search capabilities. Additionally, they
leveraged Levi’s flight strategy to enhance the algorithm’s
capacity to escape local optima [44]. Shuong Li et al.
developed an improved DBO algorithm that integrates an
adaptive t-distribution strategy [45], thereby augmenting the
local search efficiency in the algorithm’s later stages. Zhang
Haiyang and colleagues implemented TENT chaotic map-
ping and reverse learning technology to intensify population
randomness. They optimized the weight of the algorithm
using the Levy flight strategy and further refined this strategy
to maintain a high level of global development capability,
ultimately aiming to expedite the optimization process [46].
A novel method for updating addresses was also introduced.
Ran Zhang et al. incorporated sinusoidal chaos mapping
into the DBO’s initial population, which enhanced both
the initial population’s quality and the algorithm’s stability.
Subsequently, they employed sinusoidal chaotic mapping in
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combination with DBO [47] to address the objective function
of task allocation.

Recent advancements in UAV path planning have seen
various innovative approaches. Shi Jiaqi and colleagues
enhanced the grey wolf optimization algorithm with a
spiral update position method, significantly reducing UAV
flight times by 22.8%, improving convergence speed, and
smoothing flight paths [48]. Zhu Hongyue’s team boosted
the PSO algorithm by integrating an improved nonlinear
dynamic inertia weight, adaptive speed adjustment, and
chaotic initialization, leading to faster convergence and
smoother paths [49]. Hu Gang and associates enhanced
the HBA algorithm using the Bernoulli shift map and
other strategies, applying it successfully to UAV path
planning [50]. Pan and colleagues proposed a golden eagle
optimization algorithm with a dual-learning strategy, proving
effective in power detection tasks for UAVs [51]. Jiang’s
research team introduced a sophisticated 3D path planning
group optimization algorithm, featuring a segmented fitness
strategy [52]. Additionally, Zhang and colleagues presented a
novel Drosophila optimization algorithm incorporating phase
angle coding and mutation adaptation [53]. Finally, Chen and
team’s flower pollination algorithm, based on neighborhood
global learning, offered a novel solution to UAV path
planning [54]. Yılmaz et al. [55] proposed an innovative
adaptive evolutionary optimization algorithm to deal with
the routing optimization problem of multiple drones and
truck delivery systems. It is called Fitness-Distance Balance-
based Evolutionary Algorithm (FDB-EA). The algorithm is
especially designed to solve the high geometric complexity
and multiple local solution trap problems encountered in
the Traveling Salesman Problem and Unmanned Aerial
Vehicle (TSP-D). These diverse methodologies underscore
the dynamic progress in UAV path planning, focus-
ing on efficiency, accuracy, and adaptability to complex
environments.

While many researchers have done extensive work
in employing metaheuristic algorithms to address UAVs
path planning, some have improved evolutionary algo-
rithms and achieved favorable outcomes. However, although
DBO has been applied in various domains, research
in the context of UAVs path planning remains limited.
To achieve optimal path planning, a deeper investiga-
tion into the two core mechanisms of swarm intelli-
gence algorithms, exploitation and exploration, is still
necessary.

In our study, the improved IDBO algorithm by integrating
multiple strategies can effectively strikes a balance between
exploration and exploitation processes. Experimental results
demonstrate that the improved algorithm outperforms recent
algorithms, including GSA [33], GWO [34], WOA [6],
HHO [35], DMO [36], COA [37] and the original DBO
algorithm [27]. The enhanced algorithm yields superior
results in the context of three-dimensional trajectory planning
for UAVs.

III. THE PROPOSED METHODOLOGY
This section briefly describes the behavior of the original
DBO and the correspondingmathematical model. In addition,
this section highlights the proposed IDBO algorithm, which
contains Cubic chaotic map, global exploration strategy of
Osprey optimization algorithm, and adaptive t-distributed
perturbation strategy.

A. THE ORIGINAL DBO
The DBO algorithm draws inspiration from diverse dung
beetle behaviors, encompassing ball rolling, dancing, forag-
ing, stealing, and reproduction. In DBO, the population is
categorized into four distinct types of search agents, each
governed by unique update rules:

1) BALL-ROLLING DUNG BEETLE
Dung beetles roll their feces into balls and use celestial cues
such as the sun and moon to navigate efficiently. When
encountering an obstacle, dung beetles will often climb onto
the ball and dance to determine a new direction of movement.
The location update formula is as follows:

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b× 1x (1)

1x =
∣∣xi(t) − Xw

∣∣ (2)

where, the current iteration number is represented by t , and
xi(t) denotes the position of the ith beetle at that iteration. The
deflection coefficient k , a constant within (0, 0.2], influences
the beetle’s directional changes, while b, another constant
in the range (0, 1), plays a part in position calculation. The
natural coefficient α, which is set to either 1 or -1, adds
variability to the update process. The global worst position in
the optimization context is represented byXw, and1x models
changes in light intensity.

When a dung beetle encounters an obstacle during its ball-
rolling journey, it executes a distinctive behavior referred to
as a ‘dance’ to reorient itself and discover an alternative path.
This dance behavior is emulated in the algorithm through
the use of a tangent function, mimicking the beetle’s process
of determining a new direction for rolling when faced with
an obstacle. Consequently, the update for the position of the
rolling dung beetle is defined as follows:

xi(t + 1) = xi(t) + tan(θ) |xi(t) − xi(t − 1)| (3)

where, θ is the angle of deflection represented by radian and
θ ∈ [0, π].

2) BROOD BALL
Some of the dung balls collected by the beetles are used as
food, and the other is pushed to a safe place to lay eggs,
which are used as brood balls to breed the next generation.
The boundaries of the brood balls are strictly restricted as
follows:

Lb∗
= max(X∗

× (1 − R),Lb)

Ub∗
= min(X∗

× (1 − R),Ub) (4)
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wheres, the current local best position is represented by X∗,
which is akin to the dung beetle’s ideal spawning site. The
lower bound (Lb) and upper bound (Ub) of the egg-laying
area are defined to replicate the range within which dung
beetles select their egg-laying locations. The factor R =

1 − t/Tmax adjusts these bounds over time, accounting
for the progression of the algorithm through its iterations,
where t is the current iteration and Tmax is the maximum
number of iterations. This adjustment reflects the dung
beetle’s decreasing range of choices as conditions evolve.
Additionally, the overall search space has its boundaries
defined by Lb and Ub, representing the broadest area within
which the dung beetles operate.

After pushing the brood ball to the defined spawning area,
females lay eggs in it, and each female lays only one egg per
iteration. The position of the brood ball is updated as follows:

Bi(t + 1) = X∗
+ b1 × (Bi(t) − Lb∗) + b2 × (Bi(t) − Ub∗)

(5)

In the model, Bi(t) represents the position of the ith sphere
(analogous to the egg ball laid by the dung beetle) at the
tth iteration. To introduce randomness and variability in
the model, akin to the unpredictability in natural processes,
two independent random vectors are used: b1 and b2.
These vectors have a size of 1 × D, where D denotes the
dimensionality of the problem.

3) SMALL DUNG BEETLE
When the small beetles in the brood ball are mature, they
will come out to search for food. Therefore, it is necessary to
establish the optimal foraging area to guide them to search for
food to achieve the purpose of space exploration. The optimal
foraging area boundary is defined as follows:

Lbb = max(Xb × (1 − R),Lb)

Ubb = min(Xb × (1 − R),Ub) (6)

where, Xb signifies the global optimal position, with the
lower and upper bounds of this optimal foraging area
represented as Lb andUb, respectively. As a result, the update
for the location of the small dung beetle is defined as follows:

xi(t + 1)=xi (t) + C1 × (xi(t) − Lbb) + C2 × (xi (t) − Ubb)

(7)

where, xi(t) denotes the position of the ith dung beetle at the
tth iteration of the algorithm. Additionally, C1 is a random
number that follows a normal distribution. C2 is a random
vector whose values lie within the range of (0, 1).

4) THIEF DUNG BEETLE LOCATION UPDATE
While not all dung beetles exert strong effort in pushing,
some resort to stealing dung balls. Assuming that the global
optimal position serves as the most suitable target for theft,
the position update formula for the thief dung beetles is

expressed as follows:

xi (t + 1) = Xb + S × g× (|xi(t) − X∗
| + |xi (t) − Xb |)

(8)

where, xi(t) signifies the location of the i-th ‘thief’ (a
metaphorical agent in the algorithm) at the t-th iteration.
The variable g is a random vector that follows a normal
distribution. This vector has a dimension size of 1 × D,
where D represents the dimensionality of the problem. S is
a constant value used in the algorithm.

B. THE PROPOSED IDBO
Considering the aforementioned analysis, we improved the
DBO algorithm from three perspectives:

1) The Cubic chaos mapping is used to initialize the
positions of the dung beetles. Utilizing its nonlinear
and dynamic characteristics, this method can generate
a more diverse set of initial solutions, aiding the
algorithm in searching through a broader solution
space.

2) A new global search strategy is proposed, which
reduces the dependence on algorithm parameters and
enhances the global search capability.

3) During the foraging phase of dung beetles, the foraging
behavior of smaller dung beetles is perturbed with a
t-distribution, balancing exploration and exploitation,
thereby improving the convergence speed.

4) An improved population update strategy is proposed,
which adopted different population update methods in
different stages of the algorithm to cope with the search
requirements of different stages and explore a wider
solution space.

1) IMPROVED POPULATION INITIALIZATION WITH CUBIC
CHAOTIC MAP
A discrete, high-quality initial population can accumulate
rich search experience for DBO, laying the foundation
for intelligent searches in heuristic algorithms. Existing
algorithms commonly utilize pseudorandom numbers to
initialize candidate solutions. Such configuration can max-
imize the algorithm’s global performance. However, the
strong randomness means the algorithm can’t maintain stable
objective optimization accuracy. Furthermore, relying on
pseudorandom number initialization can lead to insufficient
population traversal, leading to a decline in population
diversity. To enhance exploration capabilities and elevate
the level of population diversity [56], we use chaotic
maps to improve the population initialization. Chaotic
map is a kind of mathematical map showing dynamic,
complex and unpredictable behavior, and Cubic chaotic
map is one of the commonly used forms [57], [58]. The
Cubic chaotic map refers to a type of mathematical map
characterized by cubic nonlinearity, which is often used in
chaos theory and nonlinear dynamics. The map is defined by
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the recurrence relation:

xn+1 = µ · xn · (1 − x2n ) (9)

where xn is a number between 0 and 1 that represents the
system state at iteration n, and µ sets a constant multiplier for
the cubic map. In this case, it’s set to 1.0, which means it does
not change the scale of the result. This chaos is characterized
by its sensitivity to initial conditions, leading to a behavior
that appears random and unpredictable.

In the population initialization phase, a matrix named
Cubic is initialized with random values between 0 and 1 for
each member of the population (N ) across all dimensions
(dim). For each individual in the population, the Cubic chaos
equation is iteratively applied across all dimensions. The
chaos parameter µ, set to a value of 1.0 in this case, governs
the chaotic behavior of the map. The iterative process updates
each dimension of an individual based on the previous
dimension’s value, thereby introducing a chaotic sequence in
each dimension. The resulting matrix Cubic, now filled with
values generated by the chaotic process, serves as the initial
population for the DBO algorithm. This population exhibits
a high degree of diversity due to the inherent unpredictability
and randomness of the Cubic map.In the comparison of
the initialization population distribution shown in Fig.1,
we can observe that after using Cubic chaotic map for
population initialization, the population distribution obtained
is significantly more dispersed. This result highlights the
effectiveness of Cubic chaotic map in optimizing the
population distribution and provides a broader exploration
basis for the subsequent search process.

In summary, the utilization of Cubic chaos mapping during
the initialization phase of the DBO guarantees that the initial
population covers an extensive solution space. This mitigates
the risk of premature convergence towards a local optimum.
Furthermore, by diversifying the initial population, the DBO
algorithm can explore a broader spectrum of the search space,
thus enhancing the probability of discovering the global
optimal solution.

2) NEW GLOBAL SEARCH STRATEGY
For low-dimensional test functions, the introduction of
the aforementioned strategy somewhat balances the global
exploration and local exploitation processes. However, when
applied to large-scale complex optimization problems, the
singular search pattern of DBO can easily lead the dung
beetle population into local optima traps. Hence, enriching
the search mode of random individuals is another crucial
approach to improving the global search performance of
heuristic algorithms. Jui and Ahmed [59] in AMVO-SCA
rely on the average of multiple locations and mathematical
guidance steps defined by trigonometric functions to provide
a smoother and more globally aware search process, but
increase the computational complexity. Mohd Tumari et al.
[60] proposed an improved marine predators algorithm to
determine new search points by calculating the average of
the optimal solution and the current solution, promoting a

FIGURE 1. Initial population distribution.

balance between exploration (deviation from the current path)
and exploitation (optimization around the best solution). As a
result, local optima are avoided. But direct use of averaging
does not inherently include radically changing trajectories
close or far away, and while averaging can help mitigate
rapid convergence in non-optimal regions, it may not be as
effective in environments with changing landscape dynamics
or extremely rugged environments.

In order to overcome the limitations of ball rolling in
DBO that only depends on the worst solution and lack
of communication with other dung beetles, as well as the
problem of complex parameter settings [61], we propose a
new global search strategy. In this paper, the new global
exploration strategy is used to randomly detect the position of
one of the fecal balls and roll it. The new global exploration
strateg in the first stage is formulated as follows:

xp1i,j = (1 − ri,j) · xi,j + ri,j · (SFi,j − Ii,j · xi,j) (10)

wheres, xP1i,j denotes the position vector of the ith dung beetle
individual in the current iteration. xi,j represents the position
vector of the i dung beetle individual in the previous iteration.
ri,j is random number in the range [0,1]. SFi,j represents a
better solution selected from the current population based on
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the fitness value, if no solution is found that is better than
the current individual, SFi,j is set to the global optimum.
If there exists at least one better solution, then with 50%
probability the global optimal solution is chosen directly and
with the other half probability one of these better solutions is
randomly selected as SFi,j. Ii,j is a randomly generated integer
(1 or 2) that randomly decides whether tomove closer (if Ii,j is
1) or farther (if Ii,j is 2) toward SFi,j during the update process.
In the initial stage, a novel global exploration strategy sup-

plants the original position update formula of the dung beetle
algorithm during the rolling phase. This strategy introduces
randomness and enhanced global search capabilities into the
DBO, enabling the simulated dung beetles to update their
positions not solely based on the poorest solution, but also to
explore other potentially superior locations at random. Such
enhancements significantly mitigate premature convergence
and facilitate a more efficient exploration of the solution
space, consequently elevating the likelihood of identifying
the global optimum.

Furthermore, diminishing the quantity of parameters
bolsters both the practicability and stability of the algorithm.
In optimization contexts, an excess of parameters can escalate
the complexity of calibration and potentially diminish the
algorithm’s adaptability to particular problems. Streamlining
these parameters enhances the algorithm’s flexibility and
user-friendliness.

3) ADAPTIVE T-DISTRIBUTED PERTURBATION STRATEGY
Adaptive t-distribution is an improved probability distribu-
tion that is commonly used in optimization algorithms to
enhance exploration and convergence performance [62], [63].
The foraging behavior of the dung beetle is modified by
the t-distribution mutation perturbation, where the iteration
number variation formula acts as a flexible parameter for the
t-distribution. This approach equips the Dung Beetle Opti-
mizer (DBO) with enhanced global development capabilities
during the initial iterations and superior local exploration
prowess in the latter stages. Such a strategy accelerates
the algorithm’s convergence rate. The detailed method for
location updating is outlined below:

X jnew = X jbest + t(Citer ) · X jbest (11)

Citer = 1/exp(−4 × (t/M )2) (12)

In the equation: X jnew denotes the position vector of the ith
dung beetle individual in the current iteration.X jbest represents
the global best solution found in the current iteration phase.
Citer is the parameter of the adaptive t-distribution, t(Citer ) is
a random number generated from an adaptive t-distribution.
M represents the maximum number of iterations.

The adaptive t-distribution modulates the randomness in
the dung beetle’s movement based on the current iteration
count, a key factor in augmenting the exploration and
convergence potential of the DBO. This adaptive technique
harmonizes the algorithm’s exploratory and developmental
capacities, accelerates its convergence rate, and enhances

both its efficiency and effectiveness in addressing optimiza-
tion challenges.

4) POPULATION UPDATE STRATEGY BASED ON
ADAPTATION AND RANDOMNESS
To further balance the global exploration and local develop-
ment capabilities of the algorithm and to prevent convergence
on local optima, a novel population update strategy is
employed. This strategy aims to elevate the algorithm’s
overall performance by incorporating adaptive factors and
randomness. It enhances the algorithm’s functionality at var-
ious stages, employing distinct behavioral logic to improve
solution quality and search efficiency. The precise method for
location updating is outlined below:

X jnew = X j + r1 · (X jbest − X jworse)/(fmax − fmin) (13)

X jnew = X j + r1 · (X jbest − X jworse) + r1 · (X jbestself − X j)

(14)

X jnew = X j + r1 · (X jbest − X jworse) + r1

· (X jbestself − X j) + r2 · 1X j (15)

Among them, X j represents the position vector of the ith dung
beetle individual in the current iteration. X jbest is the global
best solution found in the current iteration phase. X jworse
represents the global worst solution found in the current
iteration phase. r1 is a random number between 0 and 0.5,
r2 is a random number between 0 and 0.2, X jbestself represents
an individual’s historical optimal position,1X j Is the amount
of change in the position of the individual in the last iteration.

In the first iteration of the algorithm, the position update of
each individual follows the following logic: Each individual
has a 50% chance to choose Eq. (13) or Eq. (14) to update
the population position, and this random selectionmechanism
provides the algorithm with the ability to initially explore
the solution space. In Eq. (13), the individual positions are
updated according to the difference between the global best
and worst positions. This method aims to guide individuals
to move towards the optimal solution region, while taking
into account the information of the worst solution to increase
diversity. In Eq. (14), the individual position considers both
the global optimal position and the individual historical
optimal position. This approach combines global information
and individual experience to facilitate meticulous search
within known favorable regions.

From the second iteration, a new component is added to
the update strategy of individual position. Each individual
has a 50% chance to choose Eq. (13) or Eq. (15) to update
the population position. In Eq. (15), the change of the
individual position in the previous iteration is introduced.
This element incorporates information based on the previous
step’s position change, thereby enhancing the algorithm’s
exploration capacity and preventing it from getting trapped
in local optima.

This strategy combines the best global, worst-case, and
historical positions to explore solutions broadly in the early
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stage. In later stages, it delves deeper into promising areas by
considering past location changes. The strategy adapts based
on the algorithm’s progress, responding flexibly to different
search requirements. The introduction of random elements
increases search process diversity, exploring a wider solution
space.

The enhanced population update strategy, discussed in
this section, effectively boosts the optimization algorithm’s
performance on complex problems. It achieves this by
incorporating distinct behavioral rules for different algorithm
stages. This approach not only improves the algorithm’s
ability to explore globally but also ensures its effective
progression in local regions, thereby enhancing the chances
of discovering high-quality solutions.

5) IDBO ALGORITHM DESCRIPTION
In the enhanced IDBO, Cubic chaos mapping is employed to
attain a superior initial solution quality. Furthermore, a novel
global search strategy replaces the original position update
approach during the rolling phase. This change enhances
information sharing among individuals, simplifies parameter
selection, and yields better global search performance.
Following the location update, to achieve a more balanced
exploration-development trade-off, an adaptive t-distribution
is introduced to update the positions of certain dung beetles.
This adjustment leads to obtain a higher fitness evaluation.
An enhanced population update strategy is proposed, which
uses different behavioral logic in different algorithm stages
to improve solution quality and search efficiency. The
detailed process of IDBO is depicted in Fig.2, with the
implementation steps outlined as follows:

1) Define the maximum number of iterations as M ,
the dimension as D and the population size as N .
Utilize Uubic chaos mapping for population initializa-
tion and subsequent calculation of individual fitness
values.

2) Update the location of the pushing dung beetle. If
λ < γ , for barrier-free state, use Eq. (10) to update the
position; otherwise, if it is in obstructed state, update
according to Eq. (3), where λ ∈ [0, 1] and γ = 0.8.

3) Update the location of brood ball by Eq. (5) and use the
upper and lower bounds in Eq. (4) to constrain the new
position.

4) The t-distribution variation perturbation is performed
on the foraging behavior of dung beetles by Eq. (11)
and Eq. (12).

5) Update the location of little dung beetle by Eq. (7).
6) Update the location of the thief dung beetle by Eq. (8).
7) Update the global optimal position Xb and the worst

position Xw.
8) Update the position of each dung beetle. If t = 1, λ <

β, for each dung beetle, use Eq. (14) to update the
location; otherwise, update by Eq. (13); If t > 1, λ <

β, for each dung beetle, use Eq. (15) to update the
location; otherwise, update by Eq. (13). where λ ∈

[0, 1] and β = 0.5.

9) Check whether the algorithm has reached the specified
number of iterations. If it has, halt the execution and
return the optimal position. If not, proceed to the next
step (2) to continue searching for the optimal solution.

C. COMPUTATIONAL COMPLEXITY OF IDBO
The computational complexity of the IDBO algorithm is pri-
marily influenced by two key factors: solution initialization
and the execution of core functions. These core functions
encompass fitness function calculations and solution updates.
The computational complexity is influenced by crucial vari-
ables, including the number of solutions (N ), the maximum
iteration limit (T ), and the problem’s dimension (D). Specif-
ically, the complexity of initializing solutions is represented
as O(N ), indicating its direct relationship with the number
of solutions. As N increases, the computational complexity
of the initialization phase also rises accordingly. The overall
time complexity for the core functions of the algorithm is
O(T ×N ×D), considering the number of iterations (T ), the
count of solutions (N ), and the problem dimension (D). IDBO
modifies this with Eqs. (9), (10), and (11)-(15), including
enhancements to population diversity using the Cubic chaos
mapping, adoption of new global search strategy to reduce
parameter dependence and enhance information exchange,
the introduction of a population adaptive update based on the
t-distribution variation perturbation and population update
strategy based on adaptation and randomness. The Cubic
chaos mapping strategy, which requires computation for
each individual, exhibits a complexity of O(N ). The update
process delineated in Eq.(10) hinges on the population size,
search dimension, and the upper limit of iterations, leading
to a time complexity of O(T × N × D). Similarly, the
updates as per Eqs. (13)-(15) are contingent upon the same
factors — population size, search dimension, and maximum
iterations — yielding an identical time complexity of O(T ×

N ×D). Furthermore, the computational complexity for both
Eq. (11) and Eq. (12) is also O(T × N × D). Consequently,
the overall time complexity of IDBO isO (IDBO) = O (N )+

O (T × N × D) + O (T × N × D) + O(T × N × D) =

O(T × N × D), consistent with the original algorithm.

IV. ALGORITHM PERFORMANCE TESTING AND
ANALYSIS
The simulation environment of this study runs on a Windows
11 64-bit operating system, with a CPU model of AMD
Ryzen 74800H, a base frequency of 2.30GHz, and equipped
with 16GB RAM. The algorithms were implemented on the
Matlab 2023b platform.

A. TEST FUNCTIONS AND PARAMETER SETTINGS
To assess the efficacy of the newly proposed IDBO algorithm,
it was tested using the CEC2017 test function set (Dim = 30).
The CEC series comprises a diverse array of fundamental
test functions, serving not only as benchmarks for comparing
the performance of various optimization algorithms but also
as tools to emulate the complexity of real-world problems.
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FIGURE 2. Flow chart of IDBO.

TABLE 1. Parameter configurations for competing algorithms.

This set includes 29 CEC2017 test functions, each composed
of different basic test functions. Specifically, f 1 and f 3 are
unimodal functions, f 4 to f 10 are multimodal functions,
f 11 to f 20 are hybrid functions, and f 21 to f 30 are composite
functions. The f 2 function is omitted due to its instability in
higher dimensions. The search domain for the CEC2017 test
function set is uniformly set to [−100, 100]D.
The efficacy of the Improved Dung Beetle Optimizer

(IDBO) algorithm was validated against six highly-cited
algorithms: GSA [33], GWO [34], WOA [6], HHO [35],
DMO [36], COA [37] and the original DBO algorithm [27].
Table 1 offers a detailed summary of the parameters used
in these seven distinct MH algorithms. The compared
algorithms are consistent with the parameter Settings in the
original literature.The experimental outcomes are meticu-
lously documented, including the average (denoted as ‘Ave’)
and standard deviation (Std) for each algorithm. To enable
a clear performance comparison, the best results among
the 13 algorithms are emphasized in bold within the table.
In these tests, the population size(N ) of each algorithm
was fixed at 30, and the maximum iteration count(T ) was
set to 500. Every experiment was independently conducted
30 times, with the optimumfitness value from each trial being
systematically recorded.

B. ABLATION EXPERIMENT
In this section, we conduct a thorough analysis of the
impact of four proposed enhancement strategies on the
DBO algorithm. These strategies encompass the utiliza-
tion of Cubic chaos mapping, the introduction of a
novel global exploration strategy, the incorporation of an
adaptive t-distribution strategy, and the implementation of
an improved population update strategy. Based on these
improvements, four new algorithm variants are named:
CDBO for the Cubic chaos mapping, GDBO for the
new global exploration strategy, TDBO for the adaptive
t-distribution strategy, and PDBO for the new improved
population update strategy. According to the experimental
results in Fig.3, all four strategies significantly enhance
the convergence accuracy and speed of DBO, with IDBO
showing particularly notable performance.

Across each benchmark function, the IDBO uniformly
attains optimal or near-optimal performance, distinguished
by its swift convergence and exceptional precision. While the
optimization outcomes of the CDBO and the original DBO
show comparable consistency, CDBO notably achieves faster
initial convergence. This improvement is credited to cubic
chaos mapping, which furnishes DBO with enhanced initial
solutions, facilitating more rapid convergence in the initial
phases of optimization. In contrast, the TDBO introduces
only minimal improvements and, in some instances, degrades
performance across several benchmarks. This could be
attributed to the fact that, although randomness introduced
by TDBO can enhance population diversity and help
circumvent local optima, excessive randomness might cause
the algorithm to deviate from its path, undermining its
capacity to capitalize on valuable information. This, in turn,
potentially diminishes its efficiency in achieving global
optimality. On the other hand, both the PDBO and the
GDBO significantly uplift DBO’s optimization capability,
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FIGURE 3. Comparison of different improvement strategies.

demonstrating steady performance across a spectrum of test
functions. Notably, in complex mixed-mode functions, the
performance enhancements from PDBO and GDBO are even
more evident, underscoring the success of the introduced
global search and population update strategies. The IDBO
algorithm, encapsulating these four strategic advancements,
consistently excels in optimization tasks. Overall, IDBO
adeptly navigates the hurdles of local optima and premature
convergence, marking a notable leap in convergence velocity
and accuracy. These findings illuminate paths for the
continued refinement and practical deployment of the DBO
algorithm.

C. COMPARATIVE ANALYSIS OF IDBO AND OTHER
ALGORITHM
The CEC2017 series of functions is a valuable tool for
simulating the complexity of real-world problems, offering
valuable insights for the development of new algorithms.

In this study, we compared the algorithm proposed in this
research with seven other competitive algorithms: GSA [33],
GWO [34], WOA [6], HHO [35], DMO [36], COA [37]
and the original DBO algorithm [27]. To ensure consistency
in the experimental setup, parameters such as the number
of runs, population size, test dimension, and maximum
number of iterations were kept consistent with those detailed
in Section IV-A. The experiments were conducted with
30 independent runs, and the best fitness values were
recorded for each set of trials. Table 2 presents the best
fitness average (Ave) and standard deviation (Std) obtained
from 30 repeated experiments for GSA [33], GWO [34],
WOA [6], HHO [35], DMO [36], COA [37] and the original
DBO algorithm [27] and IDBO. A comprehensive statistical
analysis highlights the superiority of the IDMO algorithm.
The first line compiles the Friedman average scores of all
algorithms, reflecting their performance, while the second
line provides information on the overall rankings through the
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final Friedman rankings. These tables prominently showcase
the top results, underscoring their exceptional performance.
Within each set of test functions, the algorithm with the
lowest average and standard deviation is highlighted in bold,
indicative of its superior performance.

In a performance comparison experiment against seven
other prominent algorithms using the CEC2017 test set,
IDBO emerged as the top-performing algorithm. It secured
the leading position in ten out of the 30 test functions
and achieved near-optimal scores on the remaining test
functions, without recording the worst scores on any of the
tested functions. From a statistical standpoint, the IDBO
leads the ranking with an average position of 2.46 in
the Friedman rankings. This result indicates that IDBO
delivers superior overall performance compared to the other
algorithms tested, showcasing its adaptability across diverse
problem scenarios. In summary, the results affirm that the
IDBO algorithm excels in various tests, both in terms of
individual test function performance and the comprehensive
statistical ranking across all tested functions. These findings
underscore that IDBO is an efficient and dependable
optimization algorithm well-suited for diverse optimization
challenges.

The Wilcoxon rank sum test was conducted to evaluate
the statistical significance of the IDBO in comparison to
other algorithms, setting the significance threshold at 5%.
A test outcome of p < 5% indicates a statistically significant
difference between IDBO and the comparative algorithm,
whereas p ≥ 5% implies no significant difference. The
interpretation of these results is based on the rank sum test:
symbols ’+’, ’-’, and ’=’ represent IDBO’s optimization
performance as superior, inferior, or equivalent to other
algorithms, respectively. The comprehensive results of the
Wilcoxon rank sum test are detailed in Table 2.

The statistical results from the Wilcoxon rank sum test
reveal that IDBO outperforms the 7 advanced algorithms
in the CEC2017 function suite, showcasing its superior
performance. These results also attest to the robustness of
IDBO.

To further analyze the convergence speed and iterative
process of the aforementioned algorithms, 7 different types
of test functions were selected for comparison. As shown in
Fig.4, IDBO outperforms other algorithms in both conver-
gence speed and accuracy, reveals that IDBO consistently
achieved the quickest convergence rate and maintained the
highest level of accuracy in convergence. These results
underscore IDBO ’s exceptional proficiency in both global
exploration and local exploitation. Collectively, these find-
ings solidify the effectiveness and superiority of IDBO as an
optimization tool.

In summary, IDBO emerges as an intelligent optimization
algorithm capable of consistently achieving high-quality
solutions. It exhibits robust stability, rapid convergence, high
precision in convergence, and an impressive capability to
avoid local optima.

V. IDBO ALGORITHM PRACTICAL ENGINEERING
APPLICATION
This section is dedicated to examining the real-world
application of the IDBO algorithm, specifically its utilization
in three-dimensional trajectory planning for UAVs. To gauge
the performance of the IDBO algorithm, simulations of
UAV flight trajectories in intricate mountainous terrains
were conducted. These simulations vividly illustrate the
considerable potential of the IDBO algorithm in addressing
challenging path planning tasks. The outcomes of the
simulations validate the algorithm’s proficiency in navigating
complex environments, affirming its appropriateness for path
planning applications.

A. UAVS PATH PLANNING MODEL
1) FLIGHT DISTANCE COST
In UAV trajectory planning, the cost associated with flight
distance primarily relates to fuel consumption during the
UAV’s journey. Assuming the UAV achieves and maintains
a constant operating speed throughout its mission, fuel
consumption becomes directly proportional to the total flight
distance covered by the UAV [64]. To quantify this cost,
a formula has been devised that accurately reflects this
relationship, considering the total distance traversed by the
drone. The calculation formula for the flight distance cost is
as follows:

frange =
ε

Qr

n∑
i=1

Li (16)

In the equation: ε is the fuel consumption per unit flight
distance, Qr is the total amount of fuel carried by the UAVs,
and Li represents the length of the ith flight segment.

2) FLIGHT ALTITUDE COST
The likelihood of a drone being affected by low temperatures
increases with altitude, To manage these risks, maximum
(hmax) and minimum (hmin) flight altitudes are set. Assuming
the UAVs fly at an altitude hi, the cost function for flight
altitude can be expressed as:

fHi =


hi − hmin

hmax − hmin
, hmin < hi < hmax

∞ , others
(17)

faltitude =
1
n

n∑
i=1

fhi (18)

3) FLIGHT RISK COST
The UAVs’ flight path might pass through areas with various
risks, such as difficult terrain, extreme weather conditions,
or military operations. The risk cost is evaluated based on
the proximity of the UAVs to these risk points during flight.
If a particular flight path segment Li is divided into m
sub-segments and approaches a risk point k , the risk cost
function for that segment due to the risk point is calculated
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TABLE 2. Test results for CEC 2017.
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FIGURE 4. Comparison of convergence curves with different algorithms.

accordingly. The flight risk cost function for segment Li due
to risk point k can be expressed as:

fni,k =
1
m

(
Pk

(
dk,1

)
+ Pk

(
dk,2

)
+ · · · + Pk

(
dk,m

))
(19)

In the equation: ni represents the ith segment Li in the
trajectory planning; Pk is the destruction probability of
the UAVs by the k-th threat point; dk,m is the distance
from the k-th threat point to them-th sub-segment in segment
Li. The total threat cost incurred by the UAVs’s flight path
planning can be expressed as:

frisk =
1
n
1
k

n∑
i=1

k∑
i

fni,k (20)

4) PERFORMANCE MEASUREMENT FUNCTION OF
MULTI-UAVS COLLABORATIVE PATH PLANNING
The overall trajectory planning for UAVs considers three
main costs: flight distance, flight altitude, and flight risk.

Each of these costs is assigned a weight coefficient (ω1,
ω2, and ω3, respectively). As a result, the objective function
for UAV trajectory planning is established as a weighted
sum of distinct cost components. This formulation is
designed to achieve an equilibrium among diverse factors to
ascertain the most efficient flight path. The objective function
for trajectory planning involving UAVs is defined in the
following manner:

f = ω1frange + ω2faltitude + ω3frisk (21)

B. SIMULATION AND ANALYSIS OF UAVS 3D PATH
PLANNING
1) ALGORITHM APPLICATION AND EXPERIMENTAL
SIMULATION
To showcase the practical application of our proposed
algorithm, we performed simulation tests for 3D UAV path
planning using the Matlab platform. The scenario for the
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FIGURE 5. 3D topographic map and best two-dimensional path planning by each algorithm.

simulation was set in a space measuring 100 km by 150 km
by 3km. The starting point of the UAVs was designated at
coordinates (10, 90), with the target point at (130, 10). Table 3
in our documentation provides detailed two-dimensional
coordinates for various risk areas within this scenario. In our
simulations, these risk areas are visually represented in pink,
as illustrated in Fig.5(a).

For comparative purposes, the original DBO algorithmwas
also applied to the same three-dimensional path planning
problem. The parameters for DBO were established as
follows: a population size (N) of 30 and a maximum
iteration count (T) of 200. For the parameter configuration
of the optimized IDBO algorithm, please see Section IV-A.
The results from these simulations are visually depicted in
our figures: Fig.5(b)-Fig.4(i) presents the outcomes for the
two-dimensional track plan, and Fig.6(a)-Fig.5(h) displays
the results for the three-dimensional track plan. Additionally,
Fig.6(i) offers a comparative analysis of the convergence

TABLE 3. 2-D coordinate parameters of risk area.

curves for six different algorithms. This comprehensive set
of simulations and analyses underscores the effectiveness of
the IDBO algorithm in navigating complex environments and
its potential advantages over other algorithms in UAV path
planning.

C. ANALYSIS OF SIMULATION RESULT
Combining the paths given by different algorithms in Fig.5
and Fig.6 can be analytically concluded: The analysis of
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TABLE 4. Statistics of UAVs three-dimensional path planning results.

FIGURE 6. Best 3D path planning by each algorithm and comparison of convergence curve.

experimental results indicates that the flight paths generated
by theDBO algorithm tend to be longer, resulting in increased
fuel consumption. More critically, its flight trajectories are
closer to risk zones, posing significant safety hazards and
increasing the likelihood of flight accidents. The flight paths
of GSA and COA algorithms not only cross risk areas but
also exhibit disordered trajectories, substantially increasing
flight distance and risk. Although the flight routes planned
by HHO and WOA algorithms avoid risk zones, their paths

are not smooth and have significant turns, which increases
the flight distance. In contrast, the optimized IDBO algorithm
successfully mitigates these issues. While GWO and DMO
planned routes appear similar on a 2D track plan, the 3D
track plan shows that the flight altitude planned by the
IDBO algorithm is lower, allowing the UAVs to fly closer to
mountainous terrain. This effectively avoids risks associated
with high-altitude cold and oxygen depletion. Overall, IDBO
not only shortens the flight distance but also effectively
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avoids risk areas with smoother flight routes, significantly
reducing the risk associated with task execution.

Observing the changes in the convergence curves, the
improved IDBO algorithm demonstrates the lowest initial
best fitness value and the quickest convergence rate. From
this, we can conclude that the improved IDBO algorithm not
only starts from a more optimal position but also reaches its
target solutionmore efficiently than the compared algorithms,
highlighting its superior optimization capability. Overall,
for the UAVs three-dimensional path planning, the IDBO
algorithm, improved by the integration of multiple strategies,
performed superiorly, further validating the achievements of
the enhancement strategies proposed in this study.

Under the same testing conditions, this study conducted
30 independent simulation experiments for six algorithms.
A statistical analysis is also performed on the composite cost
models of these two algorithms, with the related statistical
data listed in Table 4.

The analysis of eight sets of experimental data con-
sistently demonstrates that the IDBO algorithm surpasses
other algorithms across various metrics, including optimal
cost, worst cost, average cost, and standard deviation.
These results emphasize the exceptional optimization per-
formance of the IDBO algorithm, especially in the domain
of three-dimensional path planning, where it showcases
increased stability in optimization outcomes. Regarding
average running time, all other algorithms, except GSA,
exhibit similar performance, with IDBO being notably
efficient in terms of runtime. Wilcoxon rank sum test results
show that IDBO shows a statistically significant performance
improvement in most comparison algorithms, except that the
P-values of GWO and DMO indicate that the performance
is nearly the same as IDBO. Notably, the IDBO algorithm
starts with a significantly lower initial optimal fitness when
compared to other algorithms, indicating its proximity to the
global optimum. This characteristic significantly diminishes
the likelihood of the algorithm becoming trapped in local
optima. The rapid convergence rate and advantageous initial
positioning render the IDBO a dependable and stable choice
for optimization tasks. This stability and reliability are crucial
in practical applications. In conclusion, the IDBO algorithm
has emerged as the favored choice for three-dimensional path
planning in UAVs.

VI. CONCLUSION
In this study, we conducted an exhaustive analysis of the
DBO algorithm, identifying its computational challenges and
limitations. To address these, we proposed and integrated four
strategic enhancements: cubic chaos mapping, a novel global
exploration strategy, the adaptive t-distribution perturbation
technique, and a dynamic population update strategy. This
integration not only augments the DBO algorithm’s global
search capabilities but also refines its precision during
local optimization phases, leading to significantly faster
convergence rates.

The efficacy of the IDBO was rigorously evaluated
against advanced optimization algorithms such as GSA,
GWO, WOA, HHO, DMO, COA and the original DBO
algorithm. Benchmarking on the CEC2017 dataset revealed
that IDBO consistently surpasses these counterparts, show-
casing remarkable improvements in convergence speed,
stability, and robustness. These results underscore IDBO’s
superior optimization performance, particularly highlighted
by its application in complex real-world problems such as
three-dimensional path planning for UAVs. In this study,
IDBO demonstrated exceptional optimization outcomes,
further substantiating the algorithm’s practical applicability
and potential for broader scenario applications.

The ability of IDBO to outperform existing algorithms
in challenging scenarios highlights its potential as a general
tool for solving a wide range of optimization problems.
This adaptability makes it promising to be applied to more
complex constraint problems, indicating its practical value in
fields that require both high accuracy and high efficiency.

Future research will aim to further this potential. We’re
particularly interested in exploring the application of IDBO
in diverse domains, such as logistics, healthcare, and
energy management, where its optimization capabilities can
be leveraged to address complex challenges. Additionally,
we plan to refine IDBO’s algorithmic structure to enhance
its performance further and explore its integration with other
computational techniques, such as machine learning models,
to create hybrid approaches. This future work aims not just to
push the boundaries of algorithmic optimization but also to
contribute practical solutions to the pressing problems faced
in various industries.
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