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ABSTRACT This work proposes a sub-optimal method based on a two-layer structured meta-deep
reinforcement learning (MDRL) approach to address the hardware impairment (HWI) optimization issue
in large intelligent surface (LIS) systems. This method, designed for distributed LIS systems with reflection
matrices, effectively enhances the system capacity and performance despite HWIs. Building upon existing
techniques of dividing large-area LIS systems into multiple small-area subsystems, the simulated results
demonstrate that sub-optimal LIS performance can be achieved with fewer samples in diverse dynamic
wireless environments. This innovative approach enhances the adaptability of distributed LIS systems and
offers an effective HWI management strategy, paving the way for future LIS system optimization.

INDEX TERMS Large intelligent surface, distributed system, hardware impairment, reflection matrix
design, fewer samples, meta-deep reinforcement learning.

I. INTRODUCTION
The Multiple Input Multiple Output (MIMO) system is
currently undergoing extensive research as a key catalyst
for efficient access in wireless communication systems and
the Internet of Things (IoT), where billions of devices
are expected to communicate [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. To achieve enhanced throughput and
expansive cell coverage while conserving power through
high-gain arrays, the adoption of Large Intelligent Surface
(LIS) technologies has emerged as a vital development
of the traditional MIMO framework. Serving as a cost-
effective medium, LIS manipulates electromagnetic waves
to facilitate extraordinary energy concentration in three
dimensions, potentially enabling vital applications including
wireless charging, high-precision remote sensing, and the
transmission of significant data volumes [2], [3], [4], [5].

A typical LIS system consists of a planar array with
numerous reflective elements. These elements interact with
electromagnetic waves, acting as phase shifters to control the
direction of reflected signals. Through this mechanism, they
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not only alter the propagation paths of signals but also directly
impact the quality of communication [6], [7]. Consequently,
optimizing the LIS reflection matrix is crucial for enhancing
communication quality and increasing data throughput,
thereby improving overall system performance. There are
two primary approaches to LIS reflection matrix design and
optimization: The first approach estimates the LIS-assisted
channel at the transmitter/receiver through one-by-one train-
ing, demanding extensive computational resources due to the
complex interactions of numerous elements during signal
reflection [8], [9].The second approach involves choosing the
matrix from quantized codebooks based on online reflection
estimation. This method eliminates the need for explicit
channel estimation, but potentially results in diminished
performance [10], [11]. Most recent studies indicate that
employing the on-off scheme in channel estimation reduces
training overhead. Additionally, a three-stage technique for
cascaded channel estimation improves efficiency. However,
these approaches often underutilize existing knowledge of
the shared channel, highlighting opportunities for future
advancements [12].
Deep learning has demonstrated promising capabilities

in formulating reflection matrices for LIS systems, yet it
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encounters significant challenges when managing extensive
training datasets, particularly with respect to high training
costs and hardware limitations [11], [12], [13], [14]. These
challenges become increasingly noticeable in the context
of big data, highlighting the need for more research and
optimization. Additionally, the dynamic nature of wireless
environments requires frequent retraining, affecting their
operational efficiency and adaptability. Meanwhile, optimiz-
ing the number and effectiveness of training samples to boost
system efficiency and flexibility is a critical research priority.
Deep Reinforcement Learning (DRL) methods have demon-
strated considerable promise in overcoming challenges
associated with deep learning applications in LIS systems.
For instance, a DRL-based method for dynamic reflection
matrix design in LIS has been introduced [15]. Concurrently,
a LIS-assisted multiple-input-single-output (MISO) systems’
optimal design has been investigated [16], suggesting a deep
transfer learning (DTL)-based low-complexity algorithm for
co-designing transmission beams and phase-shift matrices.
This approach employs migration learning to reduce base
station transmitting power, thereby optimizing the reflected
beam and decreasing reliance on labeled data and tackles
hardware constraints by incorporating discrete phase shift
constraints [16].
Despite DRL methods’ effectiveness in optimizing LIS

systems, they face limitations due to high computational
resource demands and reliance on quality training data in
practical applications [15], [16], [17]. This becomes partic-
ularly challenging in practical applications, especially when
considering hardware impairments (HWIs). The majority
of existing LIS research assumes ideal hardware condi-
tions, often overlooking the impact of HWIs on system
performance. However, HWIs in LIS systems, including RF
interference, quantization errors, amplifier nonlinearities, and
time-frequency synchronization errors, present significant
challenges [18], [19], [20], [21], [22]. The large number
of cells in LIS results in capacity and utility degradation
due to HWIs, particularly when these impairments are
severe. To address this, distributed LIS strategies have
been proposed [20]. They involve dividing a large-area
LIS system into smaller subsystems, thus mitigating HWIs’
impacts and effectively increasing system capacity. While
the distributed LIS strategy enhances capacity, it also raises
the synchronization and synthesis costs for each subsystem.
Recently active LIS have been found being more effective in
scenarios with a smaller number of elements, whereas passive
LIS more suitable for environments with a larger element
count [23].
However, delays in convergence can impact the synchro-

nization and synthesis of the receiving signals during the
adaptation to a specific sub-LIS environment. Conversely,
calculating the equivalent noise density and utility for
predicting reflected beamforming vectors in a distributed
LIS involves extensive sampling and complex computations,
making the reduction of training samples critical [11], [13],
[15], [24]. To further optimize system performance, this

work proposes a novel deep reinforcement learning approach
tailored to address reflection matrix design in distributed
LIS systems with HWIs. Recent studies identify the signif-
icant potential for cooperative passive beamforming across
inter-LIS channels in communication systems supported by
multiple LISs [25]. This study employsmeta-learning to com-
prehend the multi-LIS environments, focusing particularly on
the dynamics of inter-sub-LIS channels. With pre-acquired
knowledge of the environment, deep reinforcement learning
is then applied to train the sub-LIS channel, effectively
reducing both the learning duration and the number of
training samples required.

This work offers a detailed exploration of optimizing
reflection matrices in distributed LIS systems under HWI
conditions. Specifically, it introduces a novel DRL-based
method to enhance the performance of the reflected beam-
forming matrix in a distributed LIS with HWIs. The main
contributions of this paper are as follows:

• The study addresses the distributed LIS matrix design
optimization with the constraint of HWIs, proposing a
structured method to enhance the rate performance and
efficiency of reflected beamforming matrices.

• A sub-optimization method utilizing a two-layer meta-
deep reinforcement learning (MDRL) architecture
is developed, substantially reducing training sample
requirements and nearing the distributed LIS system’s
maximum capacity with HWIs.

• The proposed method’s effectiveness is validated,
achieving high performance with fewer samples across
various HWI scenarios, demonstrating its adaptability to
diverse dynamic wireless environments.

The paper is organized as follows: Section II introduces
the distributed LIS communication system with HWI’s and
discusses the optimal reflection matrix design. Section III
presents an MDRL-based algorithm designed to minimize
training sample requirements for distributed LIS, leveraging
the interrelations of various sub-LIS systems. Section IV
demonstrates the performance of the two-layer MDRL
algorithm, showcasing simulation results across diverse HWI
scenarios. Section V provides a comprehensive summary.

II. LIS SYSTEM MODEL
Research has demonstrated that the design of the LIS reflec-
tion matrix and its interaction with wireless environments
can be modeled as a Markov Decision Process (MDP) [16],
[17]. This study focuses on designing the interaction process
between individual sub-LIS in a distributed system and the
environments, as illustrated in Fig.1. It is assumed that the
direct link between the transmitter and receiver is obstructed,
with either the transmitter or receiver equipped with a single
antenna.

A. SYSTEM MODEL FOR HWI OF A DISTRIBUTED LIS
Let the power at the transmitting point be P, and the signal
wavelength λ, according to [20], the uplink signal received at
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the LIS surface point is

m(x, y) =
√
Pht (x, y)g+

√
Pu(r)ht (x, y)g+ n(x, y), (1)

where g represents the transmitted signal. ht (x, y) denotes the
uplink channel gain from the transmitter point t(x0, y0, z0)
to the LIS’ position point (x, y). Here, n(x, y) signifies the
system’s Gaussian noise,with a power spectral density of N0.
And u(r) represents the influence of HWIs on the received
signal, which follows a Gaussian process.

Given the environmental correlation where each sub-LIS is
deployed, each exhibits a Markovian dependency [26], [27].
This implies that the actions of current and previous sub-LISs
significantly influence the action strategies of subsequent
sub-LISs. The dependency within the distributed LIS system
can thus be modeled using a Markov model, rendering its
optimization process can be seen as a MDP [26].

B. ANALYSIS OF MDP MODEL FOR ELEMENT FOR LIS
Initially, the interaction between the LIS and its environments
is modeled as a MDP to maximize the user rate in LIS com-
munication. The optimization variable in focus is the LIS’
reflection matrix, with our design based on reinforcement
learning techniques. In Fig.1, the LIS is portrayed as an agent
autonomously interacting with the environments, striving to
achieve the objectives of the reflectionmatrix design. The LIS
wireless environments, comprising the transmitter, receiver,
and wireless channel, represents the agent’s interaction
domain. The agent observes the environments’ current state
s and adopts a random action corresponding to state s. The
environments, in response to action A, generates a reward
R and transitions to a new state s0 for the agent.The LIS
interacts with the wireless environments of the communi-
cation system, and the agent gradually learns the optimal
reflection matrix strategy π0 to maximise the expected
reward.

To reduce the complexity of the system, the entire
LIS surface is designed to include two types of sensing
elements [11]: 1) a large number of passive reflecting
elements; 2) a few active channel sensing elements. In this
study, active channel sensing elements are employed to gather
environmental descriptor parameters. Despite their limited
number, the active channel elements are highly representative
of the entire LIS, owing to the smaller area of the distributed
sub-LISs [3], [28], [29].
State Space:

1) ACTIVE CASCADED CHANNEL

ht (x, y) =
1
2

√
z0
π
η
−

3
4

t exp(−
2π j
√
ηt

λ
), (2)

ηt = z20 + (y− y0)2 + (x − x0)2, (3)

where ηt denotes the distance between the transmitting point
and the LIS’ position point. The channel gain hr (x, y), from
the LIS position point (x, y) to the receiver point rj(xj, yj, zj)
can be similarly defined [1]. Additionally, ηj represents the

distance between the receiver point and the LIS position
point.

hr (x, y) =
1
2

√
zj
π
η
−

3
4

j exp(−
2π j√ηj

λ
), (4)

ηj = z2j + (y− yj)2 + (x − xj)2, (5)

The received signal at the receiver can be expressed as,

y(x, y) =
√
PhTr (x, y)9ht (x, y)g+ w(z, y),

=
√
P(hr (x, y)⊙ ht (x, y))Tψg+ w(x, y), (6)

where 9 denotes the LIS reflection beamforming vector,
with its diagonal matrix representation 9 = diag(ψ), and
w(x, y) represents the HWI noise. The cascaded channel can
be derived as follows,

h(x, y) = hr (x, y)⊙ ht (x, y), (7)

Consider a distributed LIS comprising M sub-LISs, and
let’s define the active cascade channel for the mth sub-LIS
as,

hm(x, y) = hmr (x, y)⊙ h
m
t (x, y), (8)

2) HWI NOISE
The HWI noise is defined as [20],

w(x, y) =
√
Pu(r)h(x, y)g+ n(x, y), (9)

where u(r) is a zero-mean Gaussian random variable which
has a non-negative variance as a function of f (r) [20],

f (r) = α ∗ r2β , (10)

r =
√
x2 + y2, (11)

where α represents the overall HWI impact factor, β indicates
the LIS area size impact factor, and r denotes the distance
from the LIS position point to its centre. The surface area of
the square LIS is defined as S, with its side length being l. The
power spectral density of the HWI noise is calculated as [20],

Ñ ≈ N0 +
4β−1Pαl2β

(β + 1)z20π
β+1

, (12)

Consider a distributed LIS composed of M sub-LISs.For
the mth sub-LIS, the power spectral density of the HWI noise
can be described as,

Ñm ≜ Nm
0 +

4β−1Pα
( l
M

)2β
(β + 1)z20π

β+1
, (13)

where Nm
0 represents the power spectral density, character-

ized by a Gaussian distribution.

VOLUME 12, 2024 69361



Y. Mao et al.: Capacity Optimization of LIS With HWI Based on Meta-Deep Learning

FIGURE 1. A structure of the distributed LIS system configuration enabled by deep reinforcement learning.

3) OBSERVABLE STATE VECTORS
The mth sub-LIS’ active cascaded channel and HWI noise
constitute the observable state vector om. These vectors,
in turn, create the distributed LIS system’s state vector
sequence {o1, o2, . . . , om}.
The mth observable state vector and its elements are,

om = f (hm, Ñm), (14)

omi = (hmt (i)+ n
m
t (i)) ∗ (h

m
r (i)+ n

m
r (i)), (15)

For each active acquisition element i, nmt (i) =
√
Ñm
i ∗ (e +

k ∗ j), where e, k are normally distributed random variables.
Similarly, nmr (i) follows this pattern. Refer to (15), for the
mth sub-LIS in a distributed LIS system, the active cascaded
channel and HWI noise collectively generate a sequence of
state vectors {o1, o2, . . . , om}.
Policy and Action Space: Defining the mth sub-LIS of

the reflection beamforming vector to the selection strategy
πm0 , the LIS distributed system forms a strategy sequence
{π1

0 , π
2
0 , . . . , π

m
0 }, and all the selection strategies constitute

the strategy space π . Each sub-LIS, guided by its selection
strategy πm, sequentially outputs the sequence action am,
where m = 1, 2, . . . ,M . In the LIS, each individual
element is implemented solely with phase shifters, under
the assumption that every reflection vector represents a
phase shift, i.e., ψm

= ejφm . The interaction vector is
called the reflection beamforming vector, and each reflection
beamforming vector is controlled by a phase shifter. However,
due to hardware limitations, these phase shifters cannot shift
signal by exact phase required and typically have a set
of quantized angles [11], [30]. To satisfy the phase shifter
constraints, the reflection beamforming vector ψ can only

be selected from a predefined codebook B. The assumption
is that each codeword in the codebook B, representing a
potential reflection beam, utilizes a quantized phase shift to
meet the constraints of the phase shifters [11], [30].

ψ ∈ B, (16)

The whole system generates a codebook of the same size
as the number of LIS elements. In this codebook B, each
column represents a reflection beamforming vector, totalling
M candidate vectors.

B =

ψ
1
1 · · · ψM

1
...

. . .
...

ψ1
M · · · ψM

M

 , (17)

The primary objective of the LIS system is to interact
with incoming signals to optimize utility, with each sub-LIS
aiming to maximize its data rate. Consequently, selecting
the optimal beamforming vector through specific strategies
is essential to achieve the highest possible gain. Define the
set of actions A = {am}, where am ∈ {1, . . . ,M},m =
1, 2, . . . ,M , each action is defined as an index of codewords
in the codebook B, with each action bringing current rewards
referring to the rate and long-term rewards referring to the
utility.

4) STATE EVALUATION VALUE
The state of the system is related to the active channel and
noise of the environments, and the value of the state that
the system is in determines the high or low starting point
for future state transfer, which is an evaluation that seeks to
maximize long-term goals. The utility of the LIS distributed
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system serves to assess the system’s current state value. The
channel’s utility is defined as [20],

γ =

∣∣∣∣∂C∂S
∣∣∣∣ = P

8l(Ñ + ρP)
·
ρ

Ñ
·
∂Ñ
∂l
, (18)

where C is the capacity of the LIS. In the presence of HWI
noise, the channel’s utility is,

γ =
P

8l(Ñ + ρP)

(
2τ

πz0
√
2τ 2 + 1(τ 2 + 1)

−
ρβ4β−

1
2Pαl2β−1

(β + 1)z20π
β+1N0 + 4β−1Pαl2β

)
, (19)

The channel’s utility upper bound can be expressed as,

γ0 =
1

4z20
·

1

arctan
(

τ 2√
2τ 2+1

) · 1
√
2τ 2 + 1(τ 2 + 1)

, (20)

where τ = lm
z0

is the normalized length of mth sub-LIS.
Greedy algorithm [26] is used to achieve the maximum

rate of a sub-LIS. This approach however could lead to
a new state in the entire distributed system that either
diminishes future rewards or prolongs the convergence time.
To overcome this shortcoming, this study utilizes utility
to improve state transitions in the distributed LIS system.
During network training, the utility evaluates each sub-LIS’
transitional state, and the utility’s upper bound constrains
future state transitions.

5) ACTION EVALUATION VALUE
In contrast to the distributed LIS system, which utilizes utility
to assess state value, the sub-LIS aims for the maximum LIS
rate, employing this rate to determine the value of actions.
The state value estimates the value of the current action,
which is a kind of evaluation that pursues the local maximum.

Define the action evaluation value of the sub-LIS as the
actual rate of the system Rm, and the capacity as the upper
bound rate. The capacity of the sub-LIS is,

Cm
= log

(
1+

ρ P
M

Ñm

)
, (21)

where ρ = 1
π
arctan

(
τ 2√
2τ 2+1

,

)
. Based on the active

cascaded channel, the reflection beamforming vector ψm of
the passive element on the mth sub-LIS is related to the
corresponding rate Rm as,

ψm
∗ = max

ψ∈B
log2

(
1+ SNRm · |(hmt ⊙ h

m
r )

Tψ |2
)
, (22)

where SNR represents the signal-to-noise ratio, and ψm
∗ is

obtained by searching over the entire codebook B. Based on
the system model previously outlined, the maximum rate for
the mth sub-LIS is defined as follows,

Rm∗ = max
ψ∈B

log2
(
1+ SNRm · |(hmt ⊙ h

m
r )

Tψ |2
)
, (23)

FIGURE 2. LSTM neural network structure.

FIGURE 3. Seq2seq neural network structure.

This study treats the normalized capacity of a noise-free
channel as the upper bound for the rate,

Um
∗ = log2

(
1+ |(hmt ⊙ h

m
r )

T
·

1
Hmax

|
2
)
, (24)

Each row ofUm
∗ is normalized individually, whereHmax =

max
((
hmt ⊙ h

m
r
))T

.Um
∗ is the upper bound on the rate, which

is the sub-LIS capacity Cm.
The sub-LIS outputs action am under the guidance of its

selection strategy πm. For the sub-LIS, it is to select the
reflection beamforming vectorψm, and the environments will
give the sub-LIS the corresponding action evaluation value
after executing the action.

After each sub-LIS executes its selection of action am,
the system gives the sub-LIS with corresponding immediate
reward rm. The overall goal of the sub-LIS is to maximize
the total rewards Rm =

∑
i r
i after the sub-LIS executes

step i. Action value is determined by defining an action
evaluation value, which quantifies the immediate reward’s
magnitude. From a global perspective, the new state sm+1

impacts the future rewards. Therefore, the state evaluation
value is defined to quantify the extent of long-term rewards.

III. CAPACITY OPTIMIZATION OF THE LIS BASED ON
MDRL
A. NEURAL NETWORK EXPRESSION OF THE ALGORITHM
In this study, the MDRL algorithm is applied to address the
MDP model, where both input and output are sequential.
To accurately represent and adapt to the environments
and strategies, a Long Short-Term Memory (LSTM) neural
network is utilized, as depicted in Fig. 2.

For managing long data sequences effectively, sev-
eral LSTM neural networks are linked to form a
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sequence-to-sequence (seq2seq) network, depicted in Fig. 3.
In this configuration, the encoder and decoder each comprises
two LSTM networks. Machine learning is effective for one-
to-one mapping problems, yet sequential decision-making
integration is crucial when outputs influence subsequent
inputs. As illustrated in Fig. 3, Recurrent Neural Networks
(RNNs) are well-suited for seq2seq mapping, particularly in
encoding and decoding tasks. Among RNNs, LSTM excels
in capturing long-term dependencies and retaining essential
information due to its unique gating mechanism. This feature
enables LSTM to efficiently handle long sequences in
distributed LIS applications. Furthermore, layering multiple
LSTM units facilitates the construction of more complex and
deeper network architectures, thereby enhancing the model’s
ability to process complex sequence data.

All neural network parameters are denoted as θ , allowing
the conditional probability of generating the optimal policy
for action at state s to be represented asπθ (a|s). For each input
ti, the neural network employs its encoder for initial encoding,
facilitating learning and memory. Afterwards, the network’s
memory informs the processing of output dj through the
decoder. This output is then processed by two different
activation functions, corresponding to the output state value
function v(s) and the probability of the decision sequence
πθ (a|s), respectively.
To constrain the current training, the input sequence from

the distributed system is combined with the sub-LIS’ decoded
subsequence. This combination is transformed into a series of
embedded vectors, which are then fed into the LSTM neural
network as two-dimensional vectors. Fig. 3 illustrates that for
a sub-LIS, the encoder’s output vector c effectively captures
information from all inputs. Consequently, the encoder’s
final hidden state serves as the initial hidden state for the
decoder. This strategy requires the encoder and decoder to
have an equal number of hidden layers and units, ensuring
efficient information transfer. In contrast, for an inter-LIS, the
decoder’s parameters are randomly initialized, reflecting the
environmental diversity and granting the model adaptability
to varied communication scenarios. Such an initialization
strategy imparts the required diversity for the model to
address diverse communication challenges effectively.

The encoder input mapping and decoder output mapping
are denoted as fenc, fdec respectively, and the encoded output
can be activated separately, with the intervening hidden state
as,

si = fenc(ti, d1, . . . , di−1), (25)

Following multiple mapping layers, the rate is calculated
using equation (23) based on the output from the decoding
section. This calculation yields:

di = fdec(sj), (26)

where ti represents the observable state, while dj corresponds
to the utility during training and the rate during prediction
stages, respectively.

The LSTM neural network outputs a vector d , with dimen-
sion n corresponding to the total number of LIS samples.
Following non-linear activation, this vector generates the
probability vector πθ and the evaluation function v(sj) in
the jth dimension, respectively. The probability vector πθ
corresponds to the probability that the decision action will
take a certain a, which sums to 1. At step j, the decision
action is determined as aj = argmaxa (πθ ), using the greedy
algorithm.

B. STRATEGY FITTING AND PARAMETER OPTIMIZATION
This work adopts a two-layer iterative algorithm architecture
with alternating action execution and state transfer to
enable parameter updates and policy optimization. In the
MDRL algorithm, the outer layer presents an environmental
representation of the distributed LIS system, encompassing
its contextual information and state transition process.
This layer guides the inner layer sub-LISs in adopting
specific strategies. The outer layer primarily focuses on
the association and synchronization between sub-LISs and
pursues the channel’s utility of the overall distributed system.
Meanwhile, the inner layer is dedicated to maximizing the
rate of each individual sub-LIS. The relationship between
these two layers is characterized as follows,

1) The input sequence is formed by combining the
channels of each active element with the context of
the sub-LIS in the outer loop. Merging these with
the decoded optimal codebook index results in output
sequences. Together, these sequences provide a repre-
sentation of the distributed LIS system’s environmental
conditions.

2) Once the inner loop acquires initial environment
knowledge, each sub-LIS employs the LSTM deep
neural network. The purpose of this network is
to ascertain the maximum rate and the appropriate
codebook index for each sub-LIS.

3) The inner layer computes the utility of each action.
Subsequently, it communicates both the maximum rate
and the calculated utility value to the outer layer.

4) The outer layer integrates the action’s utility and the
maximum rate received from the inner layer with the
current observable state, forming a comprehensive new
state.

5) The inner and outer layers perform iterative cal-
culations. After stabilization of the neural network
parameters, each sub-LIS outputs the optimal strategy
based on these parameters.

During the training stage, the algorithm passes the upper
utility limit sequence of the decoded sub-LISs to each sub-
LIS, treating it as an environmental factor. The utility upper
bound of the decoded LIS as an internal state is combined
with the observable state as the system’s current state as sm,
which is used as a label for training.

sm = {om; γ 1
0 ; γ

2
0 ; . . . ; γ

m−1
0 }, (27)
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During the prediction stage, the action of each decoded
sub-LIS, specifically the execution of its beamforming vector,
will cause the transfer of the outer state. The optimal
codebook index value from the decoded subsequence serves
as the internal state, combined with the observable state to
form the system’s current state as sm for prediction,

sm = {om;ψ1
;ψ2
; . . . ;ψm−1

}, (28)

In the inner layer, when the mth sub-LIS executes an
action by selecting the beamforming vector ψm, the reward
magnitude of action am is evaluated based on the rate. This
action also induces a state transition in the outer distributed
LIS system, moving from themth system state to the (m+1)th

state, sm → sm+1. The subsequent state, sm+1 is evaluated
using the utility.

The primary reason behind employing a two-layer loop is
to provide each sub-LIS with an initial adaptive foundation,
tailored to its specific wireless environment, through the
distributed LIS system’s learning of the overall environments.
This approach reduces the need for extensive repetitive
training of individual sub-LISs from the ground up, thereby
accelerating their learning convergence.

In this study, the Adam algorithm [31] is employed for
gradient updating to facilitate neural network parameter
adjustments. For the distributed LIS system, the objective
function is defined as follows,

J = E(R), (29)

E represents the expectation, R refers to the rate of LIS.
Based on the sequence expression of the neural network, the
objective function J (θ ) can be defined as

J (θ ) = Eθ (R(θ )), (30)

θ represents all parameters in the neural network, according
to the law of the large numbers [32],

J (θ ) ≈
1
N

M∑
m=1

(
N∑
i=1

Ri(θm)

)
, (31)

where N is the number of samples sampled. Under the
constraint of the utility, J (θ ) ≈

1
N

∑M

m=1

(∑N

i=1
Ri(θm)

)
γ (i) ≤ γ0

, (32)

Next, based on the iterative transfer of the combined
state, the Adam optimizer is used to optimize the network
parameters.

∇θJ (θ ) =
1
M

M∑
m=1

(
∇θJ (θm)

)
, (33)

The gradient update formula of the neural network
parameters in the inner loop is,

θmi = θ
m
i−1 + α1∇θJ (θ ), i = 1, 2, . . . ,M (34)

where α1 represents the training coefficient, which is also the
learning rate. When the neural network parameters converge
iteratively, the output of the MDRL algorithm is the optimal
decision.

C. ALGORITHMS
The following two pseudocode diagrams respectively depict
the MDRL algorithm, as well as its associated data sourcing
and validation processes.

Algorithm 1MDRL Algorithm for Distributed LIS
1: Input: Given the observation space ρ(T ) of the dis-

tributed LIS
2: Output: Collect sub-LIS sequence samples from
ρ(T ) to obtain the sub-LIS sequence sample set
{T0, T1, . . . , Ti, . . .}

3: Randomly initialize the state and action evaluation values
γ 0 and R0

4: for Tm ∈ {T0, T1, . . . , Ti, . . .} do
5: Use the sampling strategy πm to collect the state

trajectory D = (τ1, τ2, . . .) from Tm
6: for τm ∈ {τ1, τ2, . . . , } do
7: Train the LSTM neural network on τm using

Adam algorithm
8: Predict the rates corresponding to all beam-

forming vectors in the codebook, and calculate
the corresponding rate and utility

9: Execute the greedy algorithm to obtain the max-
imum rate Rm∗ and the corresponding utility,
and obtain the index number n of the correspond-
ing beamforming vector ψm

∗

10: end for
At this point, the system moves to the next state
sm→ sm+1, let m← m+ 1

11: end for

After training, validation data is input into the neural
network with optimized parameters to obtain a sub-optimal
reflection beamforming vector. The inner loop can rapidly
converge with fewer samples and iterations in scenarios
where the signal environment changes, leveraging the
meta-strategy defined by the outer loop.

IV. RESULTS AND DISCUSSION
The simulation contains various parameters, including the
parameters of the MDP model, neural network, DeepMIMO
dataset and LIS array. A list of simulation parameters is
presented in Table 1.

This study examines the effectiveness of the MDRL algo-
rithm in assessing the performance of large-scale Uniform
Planar Array (UPA) LIS systems in the presence of HWI
effects. Additionally, it aims tominimize the required training
sample sizes. Two deployment strategies, P1 and P2, are
applied to a 32 × 32 large-scale LIS. Strategy P1 segments
the LIS into sixteen 8 × 8 sub-LISs, whereas P2 divides it
into four 16 × 16 sub-LISs. The simulation utilizes training
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Algorithm 2 Data Sources and Validation Procedures
1: Input data:
2: Outer layer: Active cascade channel with HWI, i.e.,

observable state vectors om

3: Inner layer: Sub-LIS observable state vectors combined
with context constraints equal sm

4: Learning strategy:
5: Outer layer: Number of sub-LIS
6: Inner layer: Greedy algorithm
7: Output action:
8: Outer layer: Polling sub-LIS
9: Inner layer: Codebook reflection beamforming vector

selection
10: Evaluation data:
11: Outer layer: State evaluation, long-term rate, cumulative

sum of each sub-LIS rate.
12: Inner layer: Action evaluation, sub-LIS immediate rate

Rm∗ .
13: Performance upper bound:
14: Noise-free channel capacity Um

∗ for performance com-
parison.

TABLE 1. Simulation parameters.

sample sizes of 22 (small sample), 220 (tenfold the sample
size), and 2200 (hundredfold the sample size). The LSTM
neural network is chosen as the fundamental basis for the
deep learning model to conduct a thorough examination. The
objective is to evaluate the predictive accuracy of the MDRL
algorithm in estimating the performance rate of LIS systems
under the influence of HWIs. Preliminary findings from this
work indicate that the MDRL algorithm effectively decreases
the necessary amount of training data needed to accurately
predict the achievable rates in LIS systems affected by HWIs.

The modelling section of this research utilized the
‘‘O1’’ outdoor ray tracing scenario from the Deep MIMO

FIGURE 4. The achievable rate of 4 LISs for small samples.

FIGURE 5. The achievable rate of 4 LISs for 10x samples.

dataset [33], as the foundational framework. Within this
scenario, Base Station 3 (BS 3) was set up as a UPA LIS
system. The transmitter’s location was fixed at row 850 and
column 90. To simulate receiver conditions, data from rows
1000 to 2000 in the ‘‘O1’’ scenario were used, with each row
comprising 181 points, totalling 36,200 reception points. The
active elements on the UPA antenna were randomly chosen
to reflect real-world operating conditions.

This work investigates the performance of the LIS system
under various HWI scenarios, utilizing the MDRL algorithm.
The main focus is on evaluating the MDRL algorithm’s
effectiveness in reducing the dependency on extensive
training samples, particularly in comparison to traditional
machine learning techniques that often require substantial
data volumes for training.

In scenarios with severe HWI, noise levels have been
observed to significantly affect the LIS system’s perfor-
mance. Simulations indicate that the LIS system’s maximum
capacity averages around 7 bps/Hz. Utilizing the MDRL
algorithm, the system achieves a prediction rate of 0.2 bps/Hz
even with limited samples. By increasing the sample size by
factors of 10 and 100, the prediction rates are enhanced to
2.5 bps/Hz and 3 bps/Hz, respectively. This trend emphasizes
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FIGURE 6. The achievable ate of 4 LISs for 100x samples.

FIGURE 7. The achievable rate of 16 LISs for small samples.

the critical role of larger sample sizes in improving the
precision of predictive modelling.

The MDRL algorithm is highly effective in reducing the
number of training samples needed in scenarios involving
minor HWIs. The simulation results, depicted in Fig. 7,
8, and 9, demonstrate that the average prediction rate
is 1.9 bps/Hz across various sample sizes. The MDRL
algorithm consistently produces accurate predictions, even
with smaller sample sets. Comparatively, strategy P1 exhibits
less fluctuation in prediction accuracy and the upper capacity
limit than strategy P2, highlighting the model’s stability in
less severe HWI conditions.

Fig. 7 shows that using a limited number of active elements
for LIS channel sensing can decrease rate performance in
certain situations. Although this method accurately estimates
the channel in various cases, it can lead to errors in some
estimations. The primary issue arises from the unknown
channel characteristics of passive elements, which depend
on the detection outcomes from nearby active elements. This
dependence can result in estimation inaccuracies, especially
with significant discrepancies between adjacent channels,
directly impacting rate prediction accuracy. To explore this
issue, simulations were conducted by dividing the LIS into

FIGURE 8. The achievable rate of 16 LISs for 10x samples.

FIGURE 9. The achievable rate of 16 LISs for 100x samples.

64 sub-LISs and changing the proportion of LIS active
elements. Fig. 10 shows subdividing the LIS into additional
sub-LIS segments enhances the system’s resilience to HWI.

However, employing all active elements in LISs increases
power while also exacerbating the negative impacts of HWIs,
resulting in a decreased SNR. A distributed strategy that
employs sub-LISs interconnected by inter-sub-LIS sequences
presents an effective solution. Enhanced by meta-learning,
this strategy refines channel sensing accuracy and mitigates
HWIs by reducing sub-LIS component counts. Such mod-
ifications greatly accelerate the convergence of the model
and lower the need for training samples. The simulations
presented in Fig. 10 demonstrate that a distributed sub-LIS
configuration significantly improves rate performance.

The MDRL approach presented in this study strategically
assesses the channel by randomly adjusting active LIS
elements within each sub-LIS, thereby acquiring crucial
prior environmental knowledge. This dual-layer deep learn-
ing strategy exhibits superior adaptability over traditional
machine learning techniques [11], [15], [34], [35], resulting
in significant reductions in both training time and sample
requirements. Achieved via meta-learning optimization of
the distributed LIS, this methodology marks a considerable
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FIGURE 10. The achievable rate of 64 LISs for 10x samples.

FIGURE 11. The achievable Rate of 16 LISs (6 Active Elements per LIS) for
10x samples.

advancement in channel estimation and LIS optimization in
complex environments.

Traditional machine learning approaches typically depend
on extensive training data, frequently consisting of hundreds
or tens of thousands of samples, to reach comparable levels
of accuracy in predicting the reachability rates of LIS
systems [11], [15], [34], [35]. Nevertheless, the MDRL
method reduces the need for big datasets, maintaining
high prediction accuracy even with limited data. This
characteristic is particularly beneficial in real-world scenarios
where collecting vast amounts of data is expensive or when
data availability is restricted.

A comprehensive analysis of the results in Fig. 4, 5, 6,
and Fig. 7, 8, 9 demonstrates that the MDRL algorithm
significantly reduces the number of required training samples
and improves sample efficiency in diverse HWI scenarios.
Significantly, the algorithm is capable of achieving com-
mendable prediction rates with only hundreds of data points
in scenarios with 4 sub-LISs. Furthermore, the model’s
capacity to predict stability has been enhanced in the context
of 16 sub-LISs, especially when the influence of HWIs is
minimised.

For strategy P2, especially under severe HWI conditions,
a marked increase in training sample requirements is

FIGURE 12. The achievable Rate of 16 LISs (12 active elements per LIS)
for 10x samples.

FIGURE 13. Convergence process of MDRL algorithm state transfer (small
sample size training).

FIGURE 14. Convergence process of MDRL algorithm state transfer (10x
sample size training).

observed. This trend is depicted in Fig. 13 and 14, showing
the Root Mean Square Error (RMSE) curves’ variations
for both training and validation datasets across different
iterations. The data trends in these figures highlight the diffi-
culties in accurately evaluating channel information in noisy
HWI environments, leading to inaccuracies in the model’s
predictions and deviations from the system’s maximum
achievable rate. The study indicates that in environments
with high noise, an increased number of training samples
is crucial for improving prediction accuracy. This highlights
the importance of expanding the sample size to address
challenges in complex scenarios where noise significantly
affects the results.

The study in Fig. 11 and Fig. 12 examine channel
characteristics by varying the number of active elements
within each distributed sub-LIS. Findings indicate that even a
few active elements can effectively capture the environmental
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context due to the smaller coverage area of each sub-
LIS. Simulations shown in Fig. 11 and 12, conducted with
consistent power usage, reveal that six active elements in
a sub-LIS yield the most efficient configuration, while
increasing to twelve active elements decreases performance.
This decrease is mainly due to the fact that more active
elements increase the system’s power and amplify the effects
of HWIs, thus diminishing the SNR.

Comprehensive study in this work shows that entirely pas-
sive LIS underperform due to inadequate channel detection
and limited environmental comprehension. Within specific
power constraints, the strategic addition of active elements is
identified as an effectivemethod to reduce HWIs and improve
channel detection accuracy. Furthermore, dividing the LIS
into more sub-LISs and reducing the number of elements per
sub-LIS efficiently mitigates HWI effects. Integrating active
elements in this manner not only elevates the signal-to-noise
ratio but also substantially minimizes double fading, thus
boosting LIS-based system performance.

The proposed two-layer MDRL algorithm significantly
improves environmental perception accuracy in this study.
This is achieved by strategically deploying a designated
number of active elements on sub-LISs within a distributed
LIS and utilizing channel data for model input. Importantly,
the algorithm effectively addresses the amplification of HWIs
that often results from the overuse of active elements,
thus substantially enhancing system performance. These
outcomes highlight the vital importance of the number and
strategic placement of active elements in LIS system design.
Furthermore, the MDRL algorithm’s success in refining
LIS configurations offers valuable perspectives for the
development of future communication systems, showcasing
its potential to advance network functionalities.

The study findings demonstrate that the MDRL algorithm
performs exceptionally well in managing distributed LIS sys-
tems across various HWI scenarios. Compared to traditional
machine learning methods, the MDRL substantially reduces
reliance on large training data sets, improving data efficiency
and system flexibility. This research lays the foundation
for further optimization of LIS systems in data-limited
communication settings, leading to innovative developments
in algorithm optimization despite significant HWI obstacles.

V. CONCLUSION
This study tackles the optimization challenges in distributed
LIS systems in the face of HWIs by employing a novel
learning approach. Demonstrating significant adaptability
and robustness in diverse HWI conditions, this method
markedly reduces dependency on large training samples
while maintaining high predictive performance. It empha-
sizes the importance of increasing sample sizes in high-noise
environments, showcasing the MDRL algorithm’s superior
data efficiency and adaptability. This study is based on
narrowband systems, and suggests that its methods could
be extended to multi-carrier broadband systems and multi-
antenna configurations. These findings open new avenues for

optimizing LIS systems in data-constrained communication
environments and set the stage for further research, especially
in algorithmic optimization in HWI environments.
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