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ABSTRACT In recent years, research based on anchor-based two-stage detectors has achieved great
performance improvements in aerial object detection tasks. However, they still have two significant problems
in the detection of tiny objects: 1) The preset fixed anchor is not conducive to assigning positive and
negative samples in RPN when dealing with tiny objects, resulting in low-quality samples. 2) When
the detector encounters tiny objects lacking structural details, it fails to accurately represent features,
causing divergence in object features and hindering network learning. In this work, we propose the Anchor
Adaptation and Feature Enhancement Strategies (AFS) to alleviate the above two problems. AFS contains
two optimized modules: Anchor Adaption RPN Head (A2RH) and Feature Enhanced Attention Module
(FEAM). Specifically, A2RH performs anchor adaptive learning by establishing a new anchor bias learning
branch from the feature map, enabling higher-quality positive and negative sample assignments in RPN.
FEAM introduces global features and mask attention based on FPN, and presents Gaussian mask supervision
for attention to obtain stronger feature representation. Experiments show that our method improves the
average precision by 1.8% on the baseline model, and achieves state-of-the-art results on AI-TOD dataset.
Moreover, validation on AI-TOD-v2 and VisDrone2019 datasets also confirms the effectiveness of our
method. The code will soon be available at https://github.com/gravity-lhg/AFS.

INDEX TERMS Deep learning, aerial images, tiny object detection, anchor adaptation, feature enhancement.

I. INTRODUCTION
Object detection is one of the fundamental tasks in the field
of aerial image interpretation. It aims to accurately locate and
identify objects that need to be detected in aerial images,
such as pedestrians, vehicles, and aircraft, through image
algorithms [1]. It is essential in various practical applications
such as military reconnaissance, field search and rescue.
Recently, with the decrease in cost and increase in the
number of high-altitude aircraft such as drones and remote
sensing satellites, the number of aerial images has increased
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exponentially. This has propelled the aerial object detection
task into a stage of rapid development.

Nowadays, deep neural networks have demonstrated
strong computing representation and learning capabilities and
achieved outstanding results in various application scenarios.
In the field of aerial object detection, several typical
detection networks such as Faster R-CNN [2], RetinaNet [3],
YOLO [4], and FCOS [5] have been adapted and utilized,
leading to remarkable detection performance. However, there
is still a challenge in detecting tiny objects in aerial images.
The reason is that most detectors are designed for regular-
sized objects. When encountering tiny objects that lack
structural details due to their small size, fixed anchors and
common feature representations impede network learning.
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FIGURE 1. The average precision of different base scales anchor on
AI-TOD dataset. Faster R-CNN is used as the detector. The base anchor
scale is a hyper-parameter used to generate fixed regular anchors. t and
vt represent tiny and very tiny respectively, which are more detailed
classifications of object size by AI-TOD.

Specifically, the sensitivity of the intersection and union
(IoU) to tiny objects [6], [7], [8] causes the detection network
with fixed anchor cannot perform high-quality assignment of
samples in Region Proposal Network (RPN).Moreover, since
the tiny object has fewer visual features, it is easy to diverge
during the feature representation process. Currently, Some
works are considered from a metric perspective and enhance
detection performance of detector by designing metrics
suitable for detecting tiny objects, such as DotD [6], DDR
[7], and NWD [8]. There are also some works focused on
enhancing the feature representation capability by employing
specific strategies to fuse feature maps from different layers,
such as Feature Pyramid Network (FPN) [9] and some of its
variants PAFPN [10], BiFPN [11], etc.

Our work focuses on the detection of tiny objects in aerial
images. As shown in Figure 1. Based on Faster R-CNN,
we found through experiments that the presetting of anchor
extremely impacts the detection performance of tiny objects.
On AI-TOD [12] dataset, we set the base anchor scale to 8,
6, 4, and 2 to conduct comparative experiments. The result
shows that the Average Precision (AP) and the AP of tiny
objects increase from 8-scale to 4-scale but decrease from
4-scale to 2-scale, while the AP of very tiny objects gradually
increases from 8-scale to 2-scale. This is because smaller
anchors can provide higher-quality positive and negative
samples for tiny objects. However, this may decrease the
quality of samples for larger-scale objects. It indicates that
fixed anchors are not optimal for detecting tiny objects.
Some works, such as GA-RPN [13] and Cascade RPN [14],
focus on optimizing anchors for regular-size objects. But
their designs are complex and perform poorly when it
comes to tiny objects. Besides, as shown in Figure 2.
We observed that when the structural information of the

FIGURE 2. Visualization of some sample features in AI-TOD dataset.
Faster R-CNN is used as the detector, and the heatmap is obtained by the
first layer features output by FPN after channel dimension max pooling.

object is ambiguous or when the background of the image
is complex, it leads to divergence in object features. The lack
of noticeable distinction between foreground and background
in the feature map hinders the convergence of the detection
network. A series of feature enhancement methods, such
as FPN [9], PAFPN [10] and BiFPN [11], all improve
detection performance by feature fusion. However, none of
them approached the problem from the perspective of feature
differentiation.

In response to the above existing problems, we proposed
effective anchor adaptation and feature enhancement strate-
gies (AFS) for aerial tiny object detection. It is based on an
arbitrary anchor-based two-stage detector and includes two
optimized modules: Anchor Adaptation RPN Head (A2RH)
and Feature Enhanced Attention Module (FEAM). A2RH
achieves flexible anchors by designing an anchor adaptation
strategy on RPN to mitigate the issue of low-quality positive
and negative samples. FEAM improves the feature represen-
tation of tiny objects by implementing a feature enhancement
strategy on FPN to facilitate effective learning of sub-tasks.
In A2RH, anchor adaptation is accomplished by constructing
an anchor bias learning branch from feature maps using a
standard 2-D convolution and embodied by learned anchors.
Learned anchors are obtained by decoding the original anchor
with the bias learned by the anchor bias learning branch, and
are used for the assignment of samples in RPN. In FEAM,
context enhanced module and mask attention module are
designed for feature enhancement to alleviate the problem
of feature divergence of tiny objects. They are achieved by
global average pooling [15] and deformable convolution [16],
respectively. Inspired by SCRDet [17], we provide effective
2-D Gaussian mask supervision for attention, helping the
network learn stronger feature representation capabilities
for tiny objects. Furthermore, in the experimental section,
we perform ablation experiments to validate the effectiveness
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of the two modules and achieve state-of-the-art results on
AI-TOD dataset. Our method also demonstrates performance
improvements on other aerial tiny object datasets.

To sum up, the main contributions of our work as follows:
• We propose AFS for anchor-based two-stage object
detectors to improve prediction precision on aviation
tiny object detection task.

• We present the A2RH, which appends the anchor
bias learning branch to obtain flexible learned anchors
to alleviate the problem of low-quality positive and
negative samples in RPN.

• We devise the FEAM with context enhancement and
mask attention, which is supervised by Gaussian masks
to achieve stronger feature representation of tiny objects
in aerial images.

• Our method achieves state-of-the-art detection preci-
sion on AI-TOD dataset and also shows performance
improvements on other aerial tiny object datasets.

II. RELATED WORK
A. OBJECT DETECTION
With the development of object detection technology in
recent years, detectors based on neural networks have pro-
liferated. Detectors are classified as one-stage detectors [3],
[4], [5] and two-stage detectors [2], [18] according to whether
they contain region proposals stage. Depending on whether
the anchors are used, they are categorized into anchor-based
detectors [2], [3], [19] and anchor-free detectors [5], [20],
[21]. Since DETR [22] brought the Transformer [23] into
the object detection task in 2020, various detectors [24],
[25], [26], [27] based on DETR have also been proposed
rapidly and have achieved excellent performance in the object
detection task.

Detectors in aerial field are mostly designed based
on the aforementioned regular detectors. They adapt to
the requirements of object detection in aerial scenes by
appending or optimizing certain modules on top of reg-
ular detectors. For instance, existing works such as RoI
transformer [28], Oriented R-CNN [29], Oriented RepPoints
[30], etc., build upon regular detectors like Faster R-CNN,
RepPoint, etc. by designing various rotation box learning
strategies to achieve high-precision oritented object detection
in aerial images. KLD [31] and TRD [32] mitigate the
significant scale differences in aerial images by designing
a new metric and employing Transformer-based feature
aggregation, respectively. However, compared with the above
problems, there are few attentions on the challenging problem
of tiny object detection in aerial images.

B. ANCHOR OPTIMIZATION
The anchor serves as a shape and position hypothesis,
which guides the detectors to locate and classify objects.
However, the artificially preset anchors are discretely
distributed and lack continuity similar to the distribution
of ground truth boxes. This results in low-quality sam-
ples, thereby affecting the network’s detection precision.

GA-RPN [13] utilizes semantic features to guide anchoring
and alleviates feature inconsistency through a feature adap-
tation module. Cascade RPN [14] implements multi-stage
proposals refinement on a single anchor at each position by
designing adaptive convolutions. Yolov5 [33] uses clustering
methods in advance to obtain initial anchors on specific
datasets and then applies them to network learning. Never-
theless, the methods mentioned above are primarily designed
for objects of regular sizes, strongly tied to the dataset, which
lead to poor performance when applied to tiny objects. Our
proposed anchor adaptation strategy can mitigate the issue of
low-quality sample assignment in two-stage detectors when
dealing with tiny objects.

C. TINY OBJECT DETECTION
Due to the limited visual information inherent in tiny
objects and the restricted adaptability of detectors to different
scenes, regular detectors often exhibit insignificant detection
performance on tiny objects. Recently, some works [8], [12],
[34] constructed favorable tiny object datasets for aerial
images, providing new benchmarks for research. Essentially,
most model-wise works attempt to address this issue from
two approaches: feature enhancement and assignmentmetrics
improvement.

1) FEATURE ENHANCEMENT
Feature enhancement refers to achieving a stronger feature
representation of tiny objects through the design of fusion or
alignment methods. FPN [9] is a typical solution for feature
enhancement. It achieves scale fusion by up-sampling high-
level features with richer semantics and integrating them into
low-level features with lower semantics, thereby enhancing
feature representation. Besides, several variants have been
proposed based on FPN, such as PAFPN [10], BiFPN [11],
etc., all of which are further explored on the fusion approachs
of inter-layer. Besides, Wu et al. proposed a features and
spatial alignment network named FSANet [35], which adjusts
interpolation to promote feature alignment by similarly
learning the spatial transfer information between adjacent
feature maps. Wu et al. [36] proposed a divergent activation
module to improve the response intensity of low-response
areas and a similarity module to improve feature distribution
and suppress background noise. YOLOv5Imprv [37] captures
small features by adding a new feature fusion layer with
a smaller receptive field in the feature pyramid part of
YOLOv5 [33]. MA2-FPN [38] promotes the aggregation of
tiny object features through large-kernel convolution and
hierarchical mask mechanism. In this work, we propose
a feature enhancement strategy to obtains more essential
feature representation through mask attention supervision.

2) ASSIGNMENT METRIC IMPROVEMENT
Assignment metric improvement is aimed at addressing the
issue of low-quality sample assignment in anchor-based
detectors when encountering tiny objects. Due to the
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FIGURE 3. The network structure of AFSNet, which is optimized from Faster R-CNN based on our proposed AFS for tiny object detection in aerial
images, includes A2RH and FEAM. In A2RH, the anchor bias learning branch provides the anchor with adaptive capabilities and obtains learned
anchors. The regression branch predicts the offset from learned anchors to ground truth. In FEAM, features are fed for context enhancement and
mask attention to obtain stronger feature representation.

sensitivity of the IoU-based metric to position deviation,
subtle position perturbations under a specific threshold may
cause sample label inversion, which is very detrimental to
stable network learning. DotD [6] simply uses the center
points distance between bounding boxes and ground truth
boxes to obtain higher-quality samples. NWD-RKA [8]
introduces the normalized Wasserstein distance, focusing on
more entire bounding box information than DotD. Moreover,
it uses the top-K mechanism, which alleviates the problem
of inflexible sample assignment. DDR [7] adopts the idea
of normalization and uses the line segment ratio metric
instead of the area ratio metric, which reduces the sensitivity
without introducing any hyper-parameters. However, the
above methods all focus on optimizing metrics and do not
consider the adverse effects of suboptimal anchors on detec-
tor performance. RFLA [39], proposed replacing anchors
with Gaussian receptive fields and improved the region
proposal capability for tiny objects through hierarchical
label assignment. But it requires complex calculation of the
receptive field of each layer and discards natural normalized
metrics such as IoU-basedmetric. In this work, we propose an
anchor adaptation strategy to mitigate the issue of low-quality
sample assignment in RPN by optimizing anchors.

III. METHODOLOGY
A. OVERVIEW
In this work, the two-stage detector Faster R-CNN [2]
is selected as the main baseline model. This network is
divided into four parts: backbone, neck, RPN, and R-CNN.
For the fixed anchor limitations and poor representation
ability of the network for tiny objects, we optimize the
Faster R-CNN network by AFS, called AFSNet, shown in
Figure 3. The optimization is in two parts. First, we design

A2RH based on RPN. It eliminates the fixity of preset
anchors, making anchors more adaptive for each scale object.
Second, we present FEAM based on FPN, which introduces
context enhanced module and mask attention module to get
stronger feature representation ability for the network. See the
following two subsections for specific details.

B. ANCHOR ADAPTION RPN HEAD
1) REGION PROPOSAL NETWORK
The Region Proposal Network [2] (RPN) is a key component
in the two-stage object detector, and its main task is
to generate candidate object regions to provide effective
suggestions in the second stage of object classification and
bounding box regression. RPN generates a set of anchor
boxes A in the image dimension based on the downsampling
rate of each layer’s feature map. Each anchor box a is
represented by a 4-tuple form as a = (ax , ay, aw, ah), where
x, y represents the center of the box, w and h are the length
and width of the box, respectively. The regression branch
aims to predict the transformation δ from the anchor box a
to the ground truth box t, which is implemented through the
encoding as follows:

δx = (tx − ax)/aw, δy = (ty − ay)/ah,

δw = log(tw/aw), δh = log(th/ah). (1)

Here, the regression branch f takes image features x as input
and outputs predictions δ̂ = f (x) to minimize the bounding
box loss:

Lreg(δ̂, δ) =
∑

k∈{x,y,w,h}

L1(δ̂k − δk ), (2)

where L1(·) means L1 loss. According to the decoding box
process of inverse transformation of (1), the regression anchor
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FIGURE 4. Stochastic visualization of original and learned anchors. The
original anchor has strong regularity (first row), and the learned anchor is
more flexible and can adapt to the tiny instance (second row). Notice that
the visualization is performed on a small random portion of anchors for a
clear view.

box can be simply inferred as follows:

a′x = δ̂xaw + ax , a′y = δ̂yah + ay,

a′w = aw · exp(δ̂w), a′h = ah · exp(δ̂h). (3)

where exp(·) represents the exponential function. Then,
the set of regression anchors A′ =

{
a′

}
is filtered by

non-maximum suppression (NMS) to produce a sparse set of
proposal boxes P:

P = NMS(A′, S), (4)

where S is the set of proposal box confidences learned by the
classification branch.

2) DESIGN OF ANCHOR ADAPTION
We design A2RH based on RPN, which adopt an anchor
adaptation strategy to alleviate the problem of low detection
performance for tiny objects caused by fixed anchors. Its
idea is to generate learned anchors, which can assign higher
quality positive and negative samples to tiny objects by
learning a certain bias toward the ground truth from the
original anchor. The learned anchor participates in the loss
calculation and region proposal of the regression branch as a
formal anchor. As shown in Figure 3, we introduce the anchor
bias learning branch in RPN to generate learned anchors. The
input of this branch is the feature of each layer, and the output
is the bias of each anchor of the layer, which supervised by
a trend bias of ground truth. Specifically, the original anchor,
the learned anchor, and the ground truth are represented as a,
l, and t, respectively. The anchor bias learning branch predicts
the transformation ϑ from a to l, which can be expressed as
follows:

ϑx = (lx − ax)/aw, ϑy = (ly − ay)/ah,

ϑw = log(lw/aw), ϑh = log(lh/ah), (5)

where x, y,w, h represents the box’s center coordinate, width
and height. Similar to the regression branch, anchor bias
learning branch f ′ takes the image feature x as input and

outputs the prediction ϑ̂ = f ′(x) for bias optimization. Since
bias learning has a trend towards the ground true, we use ε

times δ to approximate the target ϑ for supervised anchor bias
stable optimization learning, expressed as fellow:

Lab(ϑ̂, ϑ) = L(ϑ̂, εδ) =
∑

k∈{x,y,w,h}

L1(ϑ̂k − εδk ), (6)

where Lab is the loss calculation function for anchor bias. δ
is the transformation from the original anchor to the ground
truth (see Section III-B1). ε is the bias rate of the anchor,
and its value range is [0,1]. When ε is 0, A2RH degenerates
into an RPN head, and when ε is 1, the proposal boxes are
completely contributed by the anchor bias learning branch.
We set ε to 0.5 through ablation experiments to obtain the
best detection results.

Then the learned anchor is used to replace the original
anchor to calculate the transformation δ∗ to the ground truth.
The δ∗ is expressed as:

δ∗x = (tx − lx)/lw, δ∗y = (ty − ly)/lh,

δ∗w = log(tw/lw), δ∗h = log(th/lh). (7)

Likewise, the minimum bounding box loss for regression
branch predictionOδ is as follows:

L∗reg(δ̂, δ∗) =
∑

k∈{x,y,w,h}

L1(δ̂k − δ∗k ). (8)

where L∗reg represents the new bounding box regression loss.
The other parts of A2RH remain the same as RPN. As shown
in Figure 4, the anchor can adapt to tiny objects based
on image information and obtain more effective samples
after adopting the anchor adaptation strategy. Follow-up
experimental results also show that this strategy can improve
network detection accuracy effectively.

C. FEATURE ENHANCED ATTENTION MODULE
1) MODULE STRUCTURAL DESIGN
In order to alleviate the problem of feature divergence
to tiny objects, we established a feature representation

FIGURE 5. Structure of the FEAM, Ci and Pi are the input and output
feature maps of the i -th layer of FPN, C ′

i and C ′′

i are the middle feature
maps in FEAM. ‘‘Conv’’, ‘‘DeforConv’’, ‘‘GlobalAvgPool’’, ‘‘AvgPool’’ and
‘‘Proj’’, respectively represent conventional convolution, deformable
convolution, global average pooling, conventional average pooling and
projection operation.
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FIGURE 6. Illustration of different masks. (a) is the visualization of the ground truth on the picture, (b) is the Binary mask corresponding to the
ground truth of the image, the value is either 0 or 1. (c) is the Gaussian mask corresponding to the ground truth of the image, which value is
taken as [0∼1]. In the mask image, black represents the background area and white represents the foreground area.

capability enhancement module based on FPN [9], called
FEAM. It comprises two sub-modules: context enhanced
and mask attention (see Figure 3). The context enhanced
module introduces richer contextual information by globally
coordinating features; the mask attention module learns
effective mask attention through mask supervision to obtain
stronger feature representation. The detail of the module
design is shown in Figure 5. In the context enhanced module,
we use global average pooling and point convolution to
globally coordinate the features of each layer output by the
backbone and then add the feature after the first projection
layer of FPN. It can be expressed as follows:

C ′i ← proj(Ci)⊕ Conv1×1(GlobalAvgPool(Ci)), (9)

where Ci represents the input feature map, C ′i represents
the output feature map by the context enhanced module,
Proj(·), Conv1×1(·) and GlobalAvgPool(·) represent the
FPN projection layer, point convolution and global average
pooling respectively. In the mask attention module, we use
deformable convolution and point convolution to generate
mask attention, and then dot-multiply it on the features output
by FPN. They can be expressed as follows:

C ′′i ← proj(C ′i ⊕ C
′

i+1), (10)

offset ← Conv
c=18

1×1(AvgPool5×5(C
′′
i )), (11)

M̂Ai← Conv
c=1

1×1(DeforConv(Ci, offset)), (12)

Pi← C ′′i ⊗ M̂Ai, (13)

where C ′′i represents the original output feature map of FPN,
which obtained by adding the middle feature map C ′i+1 of the
previous layer andC ′i of the current layer through a projection
layer. Pi is the output feature map of FEAM. DeforConv(·)
represents deformable convolution, and its input is ci and
offset. The offset is obtained by C ′′i through AvgPool5×5 and
Conv,AvgPool5×5(·) represents conventional average pooling
with a kernel size of 5. M̂Ai represents the mask attention map

obtained by FEAM. It is noteworthy that the c in upper right
corner of Conv is the dimension of the convolution output.
If not indicated, it means that the input and output dimensions
of Conv are the same. Besides, mask attention is supervised
by the ground truth mask, which is inspired by SCRDet [17].

2) SUPERVISION FOR MASK ATTENTION
To effectively eliminate the interference of background noise
and focus on feature learning for the objects that require
attention, we introduced mask supervision for the mask
attention module and further improved it. Generally, the
binary mask is a common mask form of supervision strategy.
It uses two forms, either 1 or 0, to represent the spatial
distribution information of the object and background in the
image. As shown in Figure 6 (b), where 1 (white) denotes the
object and 0 (black) denotes the background, all object area
information in the mask is obtained from the corresponding
ground truth. However, we found that the detection accuracy
gain brought by the binary mask is not significant through
experiments. This is likely caused by the introduction of too
much background noise in the object boundary area, which
seriously affects the feature representation of tiny objects that
originally lacked structural information. Therefore, we make
improvement to the supervised mask and propose the
probability-based 2-D Gaussian mask. It converts the binary
mask corresponding to each ground truth into a Gaussian
mask through the following formula:

f (Xj | µ, 6) =
exp

[
−

1
2 (Xj − µ)T6−1(Xj − µ)

]
2π |6|1/2

, (14)

where f (Xj | µ, 6) ∈ [0, 1]. Xj is a vector (x, y) representing
j-th 2-D coordinate within the ground truth. µ and 6 are
the mean vector and co-variance matrix of the Gaussian
distribution. Therefore, the ground truth mask MA can be
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expressed as follows:

MA′i =
M∑
j=1

(I0i ⇐ f (Xj | µ, 6)), (15)

MA← MA′[MA′ > 1] = 1, (16)

where MAi is i-th ground truth mask, MA and M̂A have the
same dimensions and size. M is the number of ground truth
for each image. I0i is a template initialized to 0 of the same
size as MAi, and (I0i ⇐ f (Xj | µ, 6)) means placing
the conversion result of each ground truth at the position
corresponding to I0i . In order to deal with the overlapping
of ground truth boxes, we use a selection mechanism to set
the mask value ≥1 to the maximum value of 1 that the mask
should have. Thus, the loss function for optimizing mask
attention can be expressed as:

Lma =
1
N

N∑
i=1

CEL(m̂i,mi), (17)

where Lma represents the loss of mask supervision, CEL(·)
denotes Cross Entropy Loss, N is the number of all mask
samples, m̂i and mi denote the probability of the predicted
attention mask and the ground truth mask respectively.
Furthermore, because the ground truth is a horizontal box,
it can be modeled as a 2-D Gaussian distribution N (µ, 6)
with

µ =

[
cx
cy

]
, 6 = γ ·

[
w2

4 0
0 h2

4

]
, (18)

where (cx, cy), w, and h indicate the center coordinates,
width, and height of the ground truth box, respectively.
It is noteworthy that during the experiment, we added an
adjustment coefficient γ in 6 to adjust the size of the
Gaussian mask to obtain a more effective supervision mask.
After the ablation experiment, we set the γ in the experiment
to 0.8, and the corresponding Gaussian mask visualization is
shown in Figure 6 (c). It can be seen that compared with the
binary mask, the Gaussian mask distinguishes instances more
obviously and weakens the noise feature contribution of the
edge part of the object.

D. LOSS FUNCTION IN TRAINING
Any anchor-based two-stage detector based on AFS use
multi-task loss to train in an end-to-end manner. The specific
expression can be expressed as follows:

Ldet = Lcls + λ1L∗reg + λ2

C∑
τ=1

Lτ
ma + λ3Lab, (19)

where Ldet , Lcls, L∗reg, Lma and Lab are the total detector
loss, classification loss, bounding box regression loss, mask
supervision loss, and anchor bias loss, respectively. In this
work, cross-entropy loss is used to Lcls and Lma for
classification and mask supervision, and L1 or SmoothL1 [40]
loss is used to L∗reg and Lab for bounding box regression and

anchor bias learning. They are balanced by λi, and λ1, λ3 are
set to 1 and λ2 is set to 2. In addition, τ is the index of layers
where the feature is located, and C is the total layers involved
in mask supervision. The maximum of C can be 5. Finally,
C is set to 2 to trade-off the performance of detector in this
work.

IV. EXPERIMENT
A. DATASETS
1) AI-TOD
AI-TOD [12] is a challenging dataset proposed to advance
research in the detection of tiny objects in aerial images.
Specifically, this dataset comprises 28,036 aerial images,
encompassing 8 categories and 700,621 object instances.
AI-TOD dataset is generated by regular sampling from
the DOTA [41] and VisDrone [34] datasets, incorporating
a significant amount of remote sensing and drone optical
images, aligning better with the characteristics of aerial
imagery. Moreover, the average size of objects in AI-TOD is
12.8 pixels, with over 80% of instances having an average
size of less than 16 pixels, making it more suitable for
research in the detection of tiny objects when compared
to the DOTA dataset, which has an average object size of
53.3 pixels. Additionally, AI-TOD dataset is partitioned into
training, validation, and test sets in a 4:1:5 ratio, facilitating
consistent training and testing comparisons.

2) AI-TOD-V2
AI-TOD-v2 [8] is an enhanced version of AI-TOD dataset,
maintaining the same number of images and average
instance sizes as AI-TOD. It alleviates issues such as
missing annotations and positional errors in the dataset,
promoting more reliable network training and resulting in an
approximately 1% improvement in mAP on the test set.

3) VISDRONE2019
VisDrone2019 [34] dataset was collected by the AISKYEYE
team from the Tianjin University Machine Learning and Data
Mining Laboratory. It aims to facilitate the rapid deployment
of camera-equipped drones in various application fields such
as agriculture, aerial photography, rapid delivery, and surveil-
lance. The benchmark dataset comprises 288 video clips,
totaling 261,908 frames, and 10,209 still images. These were
captured by diverse drone cameras, encompassing a broad
spectrum of locations, environments, objects, and density.

B. IMPLEMENTATION DETAILS
In this work, all experiments are conducted using the
PyTorch deep learning framework and theMMDetection [42]
library. Training and inference tests were performed on a
computer equipped with a single NVIDIA RTX 3090 GPU.
Specifically, we fine-tune our models using a ResNet-50
[43] backbone pretrained on ImageNet [44]. We adopt the
1x learning strategy from MMDetection, which entails a
total training process of 12 epochs, with an initial learning
rate set to 0.005. Learning rate decay was applied at the
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TABLE 1. Comparative experimental results on the learning way of
anchor on AI-TOD dataset. Bold denotes the best result for each AP.

8th and 11th epoch with a decay factor of 0.1. In the
early training phase, a warm-up is set to 500 iterations
with a warm-up ratio of 0.001. All experiments employ
stochastic gradient descent (SGD) as the optimizer, with a
momentum parameter of 0.9, a weight decay parameter of
0.0001, and a batch size of 2. During inference, we utilize
a predefined threshold of 0.05 to filter out background
boxes and apply non-maximum suppression (NMS) with a
threshold of 0.5 to generate the top 3000 bounding boxes
ranked by confidence. All training on AI-TOD dataset in
this work is on trainval set, and verification is on test set.
The aforementioned training strategy, inference strategy and
parameters are applied consistently across all experiments
unless otherwise specified.

C. EVALUATION METRICS
All experiments in this work are evaluated using the Average
Precision (AP), which is associated with the IoU. Generally,
the value of AP can vary significantly at different IoU
thresholds. Following the COCO [45] standard, AP is
calculated as the mean over IoU values sampled within the
range of 0.5 to 0.95 with a 0.05 interval. AP50 represents
the AP value at the IoU of 0.5, and AP75 represents the
AP value at the IoU of 0.75. APs, APm, APl represent
AP values in different object size ranges: [2, 32], [32, 96],
[96, +∞], where +∞ means positive infinite. Notably, the
COCO standard can not adequately reflect the detection
performance of tiny objects. Therefore, AI-TOD provides a
more detailed breakdown of object sizes: [2, 8], [8, 16], [16,
32], [32, +∞], referred to as very tiny, tiny, small, medium,
corresponding to APvt , APt , APs, APm, respectively. In this
work, all evaluations are based on the finer-grained standards
of AI-TOD [12]. Meanwhile, we also conducted statistics
on the computational cost (FLOPs), number of parameters
(#Params), and inference speed in Frames Per Second (FPS)
for each detection network to fully demonstrate the overall
detection performance of each network.

D. ABLATION STUDY
1) THE LEARNING WAYS OF ANCHOR
In A2RH, the learning form and attributes of the anchor
represent two modes of anchor adaptation. The learning
form of the anchor refers to whether the anchor’s bias is
learned from a bunch of randomly initialized parameters
or obtained from features through convolution. In Table 1,
‘‘Learnable Tensor’’ denotes the initialization parameters as

TABLE 2. Comparative experimental results on the learning attributes of
anchors on AI-TOD dataset. Bold denotes the best result for each AP.

TABLE 3. Anchor bias ratio ablation experiments. ε is the bias amplitude
of the learned anchor from original anchor to the ground truth. Bold
denotes the best result for each AP.

Tensor, and ‘‘Conv from Feature’’ denotes establishing a
convolution branch in RPN. They all end up with a bias set
of the same length as the anchor set, and anchor adaptation
is achieved by decoding the original anchor box. The ‘‘Conv
from Feature’’ mode is significantly better than the ‘‘Learn-
able Tensor’’ mode but is still slightly inferior to the baseline.
Therefore, we added bias supervision for effective learning
of anchor adaptation. The supervision information of the
bias supervision uses the offset from the original anchor to
the ground truth. The results show that bias supervision is
effective and improves 0.8%AP. This work adopted the form
of ‘‘Conv from Feature’’ + bias supervision. In addition, the
anchor’s learning properties refer to the anchor’s scale, center,
length, and width. In Table 2, ‘‘Scale’’, ‘‘Center’’, ‘‘Width &
Height’’ and ‘‘All of the above’’ represent individual and joint
attribute learning, respectively. We performed comparative
experiments and observed that learning different attributes
yields certain performance gains. Moreover, learning all
attributes results in the most significant improvement. This
work adopts all attributes of anchor for adaptation.

2) ANCHOR BIAS RATIO
In anchor bias learning, bias supervision is a very important
component. It can provide a certain directionality for anchor
learning and make anchor adaptation stable and effective.
Initially, we used the offset from the original anchor to the
ground truth for supervision. However, this way will weaken
the ability of the regression branch, causing the anchor bias
learning branch to take on more offset learning. This is
inconsistent with the original intention of the anchor bias
learning to serve only as an auxiliary branch. To balance the
capabilities of the two branches and make the anchor bias
learning branch gain adaptability toward the ground truth.
We introduce the anchor bias ratio parameter ε and multiply
it by the bias from the original anchor to the ground truth to
obtain the supervision information of the anchor bias learning
branch. In Table 3, we found that when the offset learning of
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FIGURE 7. Comparative analysis visualization. Includes attention visualization using Binary Mask Supervision (second column) and Gaussian Mask
Supervision (third row), feature visualization of the baseline model (fourth column), and baseline model with FEAM. Feature visualization is
obtained by the first layer features output by FPN after channel dimension max pooling.

TABLE 4. Results of Gaussian mask factor ablation experiments. γ is the
factor of the Gaussian mask co-variance matrix. They are conducted based
on the baseline with A2RH. Bold denotes the best result for each AP.

the two branches is divided equally, ε is 0.5, the maximum
accuracy gain of 0.4%AP can be obtained. Finally, the value
of ε in this work is set to 0.5.

3) GAUSSIAN MASK FACTOR
Since the performance impact brought by binary mask
supervision is not significant, we design a 2-D Gaussian
mask through analysis. It is a supervised mask containing
probability, which can provide a more effective supervision
signal for mask attention. Considering the influence of
boundary noise, we introduce the Gaussian mask factor γ ,
an adjustment factor attached to the Gaussian co-variance
matrix that can control the size of the Gaussian mask area.
In Table 4, we set γ to 1.5, 1.0, 0.8, and 0.6 for experiments,
respectively, and found that their precision is higher than
the binary mask method. When γ is 0.8, we achieve a
performance improvement of 0.7%AP. As shown in Figure 7,

TABLE 5. Ablation study of each module in the proposed AFS on AI-TOD
dataset. A2RH means Anchor Adaption RPN Head and FEAM means
Feature Enhanced Attention Module. Bold denotes the best result for
each AP.

the first column are images. The second and third columns
indicate BinaryMask Supervision (BMS) andGaussianMask
Supervision (GMS). The attention using GMS is stronger
than the attention using BMS, which can effectively alleviate
the interference problem of noise features. The fourth and
fifth columns represent the features before and after using
FEAM. It can be seen that after using FEAM, the background
noise is relatively less, and the features of the object are more
prominent.

4) THE EFFECTIVENESS OF A2RH AND FEAM MODULES
In this part, we apply A2RH and FEAM to the baseline model
separately or jointly to verify the effectiveness of eachmodule
and the combination of modules. As shown In Table 5, A2RH
and FEAM each have a performance improvement of more
than 1% AP when used in the baseline model. From the data
point of view, A2RH is more friendly to very tiny objects, and
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TABLE 6. AFS is experimentally compared with a anchor-based two-stage
network that also optimizes anchor. Bold denotes the best result for
each AP.

FEAM is more friendly to tiny objects. Moreover, combining
the two modules has a performance superposition, and the
total AP increase can reach 1.8%, which means that the two
modules have the ability to promote each other and improve
detectors performance.

5) COMPARISON OF OTHER TWO-STAGE ANCHOR
OPTIMIZATION METHODS
To validate the performance advantages of this work,
we compared experimentally with a similarly targeted anchor
optimization method for two-stage detectors, including GA-
RPN [13] based on guidance boxes and Cascade-RPN [14]
based on multi-stage refinement. As shown in Table 6.
Since GA-RPN and Cascade-RPN are designed for regular
scales, the detection precision on AI-TOD dataset is worse
than that of Faster R-CNN. However, we propose that
AFS achieves highly adaptable anchors and a stronger
feature representation for tiny objects, demonstrating excel-
lent precision improvement in Faster R-CNN with AFS
on AI-TOD.

E. COMPARE WITH OTHER METHODS ON AI-TOD
To verify the detection performance of the AFS-based two-
stage detector, we conducted several comparative experi-
ments with other detectors on AI-TOD dataset, including
some regular detectors, such as RetinaNet [3], RepPoints
[46], FCOS [5], YOLO [33], SSD [19], CenterNet [21]. And
M-CenterNet [12] and FASNet [35], which are optimized for
tiny objects. We also compared the state-of-the-art detectors
for tiny objects based on Faster R-CNN, Cascade R-CNN,
and DetectoRS metric improvements. In Table 7, entire table
is divided into two groups. The first group (upper part)
shows the performance of regular object detection networks,
while the second group (lower part) presents the performance
of anchor-based two-stage detection networks, which were
utilized as the base networks in our work.

In the first group, it can be seen that FCOS using the
P2 layer has the best performance among regular detectors,
especially in tiny and very tiny scales. M-CenterNet is
based on CenterNet and optimizes the center point sampling
method. FASNet is a one-stage detector based on FCOS
and optimizes the alignment of features and spatial. Both
of them work on tiny objects and have made significant
performance improvements but still at a low level. In the
second group, (s4) indicates the results after parameter tuning
for tiny object detection. DotD [6], NWD [8], NWD-RKA
[8], and RFLA [39] are relatively outstanding methods in

the aviation tiny object detection task in recent years. DotD,
NWD, and NWD-RKA are metrics for tiny objects on a
two-stage detector to alleviate the problem of low-quality
RPN positive and negative sample assignment caused by
IoU sensitive to tiny objects. They all have significant
performance improvements compared to the baseline with a
base anchor scale of 8, but they are all solved from the metric
perspective and do not consider the suboptimal anchor issue.
RFLA replaces anchors with receptive field calculations to
avoid problems caused by IoU. This concept is commendable,
but it is complex and requires calculating and converting
the receptive field in advance and transforming the box into
a 2-D Gaussian representation. For tiny objects, the preset
anchors of detectors have a particularly extreme impact on
the detector’s performance, and the suboptimal anchor is a
significant factor influencing the assignment of positive and
negative samples in RPN. The AFS we proposed can make
the anchor adaptive to tiny objects and enhance the feature
representation of the network. On the baseline model with a
base anchor scale of 4, our method improved 1.8%, 2.0%, and
1.1%APon Faster R-CNN,CascadeR-CNN, andDetectoRS,
respectively. Looking at the entire results, our method has
achieved the best results except for APm, especially in very
tiny and tiny scales, which have an improvement of about 1%
in AP compared to the ranked second method. Noticeably,
due to the complex design of the backbone and neck of
the DetectoRS, we only adopted the A2RH module on it.
Nevertheless, it achieved state-of-the-art detection results on
the AI-TOD dataset.

As shown on the right side of Table 7, It is apparent that
the inference speed of detection networks such as YOLOv5
is particularly fast, but the detection accuracy is too low.
On the other hand, the anchor-based two-stage detection
networks do not have advantages in terms of computation
amount, network parameters, and inference speed, but the
detection AP can reach about twice than regular detection
network. Furthermore, based on our proposed AFS detection
network, while the detectionAP is significantly improved, the
inference speed has not been greatly reduced, indicating that
the AFS strikes a good trade-off between precision and speed.
Moreover, Figure 8 displays sample inference visualizations
on the AI-TOD dataset. The first row showcases results
from the baseline detection network, while the second row
presents results from the detection network based on AFS.
It is evident that compared to the baseline network, the
AFS-based network detects more tiny objects and reduces the
number of false negatives (FN). Additionally, it demonstrates
better detection performance in oblique scenarios.

F. VALIDITY VERIFICATION OF AFS ON OTHER DATASETS
To verify the generalization ability of our proposed AFS,
we conducted comparative experiments on two aerial tiny
object datasets, AI-TOD-v2 and VisDrone2019. In Table 8,
for AI-TOD-v2, the precision of the detector increases after
adopting the AFS. Faster R-CNN, Cascade R-CNN, and
DetectoRS have 0.7%, 0.6%, and 0.5% AP improvements,
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TABLE 7. Comparison of the proposed AFS with previous state-of-the-art methods on AI-TOD. Training used AI-TOD trainval set and validation used
AI-TOD test set. ‘‘FR’’, ‘‘CR’’, ‘‘DR’’, respectively indicate Faster R-CNN, Cascade R-CNN, and DetectoRS. Bold denotes the best result for each AP. Underline
denotes the ranked second result for each AP. P2 represents that the lowest layer of FPN is used. s4 indicates that the base scale of the anchor is 4. –
means the data was not obtained. The test image size for FPS is 800 × 800, and experimental settings unchanged.

FIGURE 8. Visualization of sample test results on AI-TOD dataset, comparing the baseline detector (first row) with the AFS-based detector (second
row). True positive (TP), false positive (FP), and false negative (FN) predictions are represented by green, blue, and red boxes in images, respectively.
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TABLE 8. Comparison of detection results on AI-TOD-v2 dataset. Training used AI-TOD-v2 train set and validation used AI-TOD-v2 val set. Bold denotes
the best result for each AP.

TABLE 9. Comparison of detection results on VisDrone2019. The train and val sets of VisDrone2019 are used for training and validation, respectively.

respectively. In Table 9, for VisDrone2019, the precision
of the detector based on AFS is significantly improved.
The improvement of Faster R-CNN, Cascade R-CNN, and
DetectoRS can reach 2.1% AP, 2.1% AP, and 1.7% AP,
respectively. Same as above, DetectoRS only uses A2RH.
Judging from the experimental results, our method effectively
improves precision at tiny and very tiny scales.

V. CONCLUSION
In this work, we propose AFS to mitigate the issues of
suboptimal anchors and poor feature representation of tiny
objects in aerial images. First, we build the A2RH based
on RPN. By appending the anchor bias learning branch, the
originally fixed anchors become flexible and have stronger
adaptability, which helps RPN obtain higher-quality samples
of tiny objects. Second, we present the FEAM based on
FPN, which is implemented by designing Context Enhanced
and Mask Attention modules. It uses Gaussian masks for
attention supervision and can improve the network’s feature
representation ability for tiny objects. We have proven
the effectiveness of the above two improvements through
ablation experiments. Meanwhile, our method improves the
baseline AP by 1.8% on AI-TOD dataset and achieves
state-of-the-art detection performance. And it also shows
performance improvements on the two other aviation tiny
object datasets.
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