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ABSTRACT Colorectal cancer (CRC) is a significant global health concern, ranking as the second most
common cancer worldwide. Accurate classification of CRC is crucial for clinical practice and research.
Deep learning-based methods have gained popularity in computer-aided CRC classification tasks. However,
existing methods often overlook discriminative features at different local granularities, leading to suboptimal
classification results. In this paper, we propose a novel Colorectal Histopathological Image Classification
Method Based on Progressive Multi-granularity Feature Fusion of Patch (PMFF). Our method combines
global features of CRC with features at different local granularities, enhancing the classification process.
PMFF employs a progressive learning strategy to guide the model’s attention towards information with
locally different patch granularity at different stages, culminating in feature fusion at the final stage. The
classification method encompasses an information communication mechanism between patches, a feature
enhancement strategy, and a feature extraction network for the progressive learning strategy. We conducted
evaluations on three public datasets, and the experimental results demonstrate that our method outperforms
existing CRC classification methods, achieving classification accuracies of 96.6% and 92.3%, Precisions of
96.5% and 92.4%, Recalls of 96.3% and 92.3%, as well as F1-scores of 96.4% and 92.3%, respectively.

INDEX TERMS Colorectal cancer, progressive learning, multi-granularity, feature extraction network.

I. INTRODUCTION
Cancer has always been a leading cause of increasing
mortality worldwide. Colorectal cancer (CRC) has emerged
as the second most prevalent cancer globally, posing a
significant threat to human health. In terms of incidence,
it ranks third. It is projected that the number of CRC cases
will reach 3.2 million by 2040, presenting a major global
public health challenge [1]. Early screening, prevention, and
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treatment can effectively reduce the fatality rate of CRC
and enhance patient survival. Therefore, there is an urgent
need for precise classification techniques to develop accurate
treatment plans during the diagnostic process, ultimately
improving patient survival outcomes. Different types of
CRC vary in etiology, pathology, clinical presentation, and
treatment. Utilizing computer-assisted techniques to analyze
histopathological images and achieve accurate classification
is crucial for both clinical practice and CRC research.

Computers rely on deep learning techniques for pathology
image classification. In recent years, in the field of deep
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learning, Hong et al. proposed a high-resolution domain
adaptation network [2] for the cross-city semantic segmenta-
tion task, as well as SpectralGPT [3] andMultimodal artificial
intelligence foundation models [4] for processing spectral
remote sensing data. All the above works have promoted the
application of deep learning techniques in the field of images.

For CRC, in the early conventional classification methods,
several scholars have proposed traditional classification
methods, such as stain normalization, stain enhancement,
and domain adaptive or domain generalization techniques,
for cancer cell classification and detection tasks [5], [6].
Ciompi et al. [7] emphasized the importance of staining
normalization in colorectal tissue classification tasks. They
successfully mitigated staining differences between differ-
ent images through normalization, thereby enhancing the
accuracy and reliability of the network in colorectal tissue
classification. However, these methods do not focus on the
feature extraction work of CRC, which makes it challenging
for pathologists to interpret the lesion’s status. To address
this issue, Wu et al. [8] proposed a model that combines
deep and manual features to improve the prediction of the
mutation status of colorectal tissues. It is worth noting that the
manual feature extraction method used in the classification of
pathology images is expensive and prone to errors.

To overcome the limitations of traditional classification
methods, some scholars have explored the use of deep
learning to address challenges such as color enhancement
and manual feature extraction. Recent studies have demon-
strated the effectiveness of deep learning, particularly neural
networks, in addressing medical image problems including
diagnosis, segmentation, and classification prediction [9],
[10]. For instance, Ohata et al. [11] applied transfer learning
from convolutional neural network architectures, extracting
features from images and utilizing support vector machines
(SVMs) for classification. Their method achieved strong
performance and provided interpretability for colorectal
cancer (CRC) prediction results within the field of deep
learning. Rachapudi et al. [12] discussed the application
of ‘‘improved convolutional neural networks (CNN-5B)’’
for histopathological image classification. Vuong et al. [13]
proposed a novel self-supervised contrast learning framework
named IMPaSh, which leverages the ResNet50 encoder
to extract domain-shift resistant image representations and
employs other domain generalization techniques for classify-
ing colorectal tissue images across domains. Kather et al. [14]
utilized a combination of feature extraction techniques and
SVM (FE-SVM) algorithms to analyze pathological section
images of colorectal cancer patients, aiming to identify
specific features and correlate themwith the patients’ survival
status. Furthermore, deep learning methods, such as image
generation techniques [15], [16], have been widely applied
to the classification of CRC. In recent works, Nergiz [17]
converted a new generalized visual representation learning
method the Big Transfer model, and six classical deep
learning methods into a federated version. The proposed
model was tested for single learning, centralized learning, and

federated learning and achieved good classification perfor-
mance. Yu et al. [18] described an innovative discriminative
manifold distribution alignment(DMDA)method specifically
designed to improve medical image diagnosis of colorectal
cancer. DMDA goes beyond traditional methods of data
analysis, focusing on local and global distribution alignment
and learning the inherent geometric features that exist in
manifold spaces through complex learning.

Despite the significant advantages of deep learning meth-
ods over those using staining enhancement and handcrafted
features, they still have some limitations. The aforementioned
methods primarily rely on the effectiveness of deep learning
in processing image features, which can cause the network
to prioritize salient discriminative features of a global nature,
such as cell clusters of CRCs, while disregarding discrimina-
tive local features of varying sizes, such as scattered nuclei
and mesenchyme. It is important to note that the interior
of CRCs consists of complex components, including nuclei,
mesenchyme, and secretion, and these local features play a
crucial role in the classification of CRCs.

As shown in Fig. 1 the CRC image, which includes
five common types of CRC labeled as (a)-(e). The green
rectangular region in the figure represents features with larger
local granularity, while the blue rectangular region represents
features with smaller local granularity. Despite the variations
in the sizes of each CRC category, they still exhibit two
distinct levels of granularity. In the adipose tissue example
shown in Fig. 1(a), the green region contains round and oval
regions surrounded by mesenchyme, while the blue region
contains the nucleus and mesenchyme. In the mucus tissue
example in Fig. 1(b), there is a greater accumulation of
secretion within the green region and a relatively smaller
amount of mesenchyme within the blue region. In the muscle
tissue example in Fig. 1(c), the green region has a larger area
occupied by the mesenchyme and cell population compared
to the blue region. In the case of the stomach tumor tissue
shown in Fig. 1(d), the green area represents a closed area
formed by cup cells surrounded by glandular cells, while the
blue area contains scattered cells. Finally, in the colorectal
tumor tissue example in Fig. 1(e), the tumor tissue within
the green area is larger, while the accumulation in the blue
area is relatively smaller. During the learning process, if only
global features are extracted, both local granularity levels will
be considered. However, if the learning process is divided
into different granularity levels and features are learned
separately, it will facilitate the detailed extraction of features.
In addition to the above features, CRC also exhibits unique

FIGURE 1. Characteristics and morphological features of CRC at two grain
sizes.
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morphological characteristics. Notably, the mesenchyme
often compresses and distorts the cells, as depicted by the
line-like distribution of mesenchyme in Fig. 1(b) and the
deformation of the nucleus by the mesenchyme in Fig. 1(c).
Overall, CRC displays a relatively intricate organizational
structure. To comprehend this complexity, themodel must not
only extract global features but also learn the detailed features
indicated in the figure at different levels of granularity, based
on the morphological attributes of CRC.

Existing methods only learn CRC in a single pass,
and can only learn global features with discriminative
properties, which makes it difficult to cope with the
above-proposed feature forms. To address the limitations of
current classification methods and based on the features of
CRC pathological images, we propose a novel colorectal
histopathological image classification method called Pro-
gressive Multi-granularity Feature Fusion of Patch (PMFF).
The flowchart of PMFF is shown in Fig. 2, which utilizes
the unique features of CRC pathological images and employs
a progressive learning strategy that consists of three phases.
By processing patches with different granularity, we can
extract global features and effectively fuse the information
from various local features.

FIGURE 2. Flowchart of the proposed approach.

The main contributions of this paper can be summarized as
follows:

• We propose a new CRC classification method that
categorizes input features into three categories: local
coarse-grained feature learning, local fine-grained fea-
ture learning, and global feature learning. We utilize a
progressive learning strategy to guide the network in
learning the original image as a whole and two different
local granularities. Finally, we fuse these features.

• We propose information communication mechanisms
for local coarse-grained and local fine-grained Patch.
These mechanisms are divided into two modules:
Channel Interaction and Shifting Module (CISM) and
Group Weighted Fusion Module (GWFM). Addition-
ally, we design the Stage-adaptive Feature Enhancement
Module (SAFEM) to enhance the original image and the

features under two local granularities. This enhancement
helps the model locate important information more
efficiently.

• We developed a feature extraction network called
Progressive Multi-Feature Extraction Network (PMEN)
to learn the local features within each patch accurately
based on the morphological characteristics of CRC.
This network avoids mixing up patch information and
effectively extracts multi-granular features of CRC.

II. RELATED WORK
A. PROGRESSIVE LEARNING
Progressive learning is a method that learns information at
different granularities in an image step by step. Rather than
learning from all granularities at once, this method enables
the network to first uncover the overall structure of the image
distribution and then focus on smaller granularities. This
progressive learning process can ultimately assist the model
in capturing more detailed features. Initially introduced in
the field of generative adversarial networks [19], progressive
learning has gained widespread adoption [20], [21].

In recent years, researchers have begun to apply pro-
gressive training methods to image classification tasks and
have observed that this method exhibits superior performance
in this area. In 2020, Du et al. [22] pioneered a multi-
granularity-based progressive training method that attempts
to improve fine-grained classification performance using
jigsaw data augmentation. The method divides the training
process into multiple stages, and at each stage, the model
learns feature representations with different granularities and
fuses the multi-granularity features in the final stage. The
experimental results show that the progressive training strat-
egy can significantly improve the fine-grained classification
performance and the visualization results demonstrate that
progressive learning can better capture small and complex
detailed features in images. Subsequently, Zhang et al. [23] in
2021 proposed a stepwisemethod of learning to pay attention,
which allows the model to gradually focus on fine-grained
information. This method allows the model to first focus
on global features and then gradually increase the attention
to detail to finally improve performance by fusing multi-
granularity features. In 2023, Cao et al. [24] applied a pro-
gressive learning strategy to the task of classifying non-small
cell lung cancer by successively learning vesicular structure
features at different granularities, followed by feature fusion.
Experiments and visualization images demonstrate that the
fusion of features at multi-granularity through progressive
learning can also learn features in pathology images well.

The above work fully validates the effectiveness of
fusing multi-granularity features using a progressive learning
strategy, which is better able to learn complex features.
Inspired by the above work, in this work, we draw on the
above idea of progressive learning to design a single network
that can learn information at different granularities through a
series of training stages.
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B. SPATIAL FEATURE RECONSTRUCTION
Spatial feature reconstruction is an effective method for
training networks that divide an image into multiple local
regions and then recombine them, which can result in
new feature forms and feature representations of different
granularity. The method of dividing or recombining images
has been widely used in several domains, including image
enhancement [25], weakly supervised tasks [26], and jigsaw
puzzles [27]. Not to be overlooked, this method plays an
important role in image classification tasks as well, and its
main advantage lies in its ability to fully exploit and utilize
the spatial relationship information in the image during the
training process.

In previous research, methods for segmenting an image
into several identical segments have been widely used in
image classification tasks. A typical example is a method
called ‘‘Tokens-to-Token ViT’’ proposed by Yuan et al. [28]
in 2021, which allows Vision Transformer (ViT) models
to be trained from scratch on large-scale image datasets
such as ImageNet. The key idea of the method is to divide
pixel-level images into a set of small image chunks, and
then convert these image chunks into tokens, similar to
vocabulary in natural language processing. These tokens are
encoded through an embedding layer and then fed into a
Transformer model for processing, and the authors validated
the effectiveness of this method through experiments on
ImageNet. It is also possible to go a step further and
recombine the segmented image chunks into new features
for better transformer performance. In 2022, Ren et al. [29]
describe how to use a new positional encoding scheme, the
Masked Jigsaw Puzzle (MJP), in the Visual Transformer.
MJP simply divides a pair of images into grids and randomly
disrupts the grid’s order, so that each position corresponds
to a random position. Experiments have shown that MJP can
achieve better performance in a variety of visual tasks by this
method.

The above work has shown that spatial feature reconstruc-
tion methods can be effective in facilitating and improving
performance in classification tasks. However, these methods
segment the image into regions of the same size throughout
the training process, which means that it is difficult to utilize
multi-granularity regions. In this work, we instead form
features at two granularities with the above idea of spatial
feature reconstruction and work with progressive learning to
limit the granularity of the regions learned at each stage.

III. METHOD
To improve the classification accuracy, a novel colorectal
histopathological image classification method called PMFF
is proposed. As shown in Fig. 3, the proposed method utilizes
a progressive learning strategy that divides the learning
process into three stages. In these stages, the input original
image F is sequentially passed through stage 1, stage 2, and
stage 3. The main objective of the first two stages is to extract
information from different local granularities. Stage 3 focuses

on training the feature extraction ability of the network at the
granularity level of the original image and fusing the feature
information from different local granularities.

In the first stage, our method focuses on extracting local
large-grained information. The original image F is initially
processed using a Patch-wise Spatial Restructuring Strategy
(PSRS) to combine the spatial features into patches. These
patches are then transformed into a linear representation
through patch embedding. The CISM and SAFEM are
subsequently employed for information transfer and feature
enhancement, respectively. The features extracted by PMEN
are finally fed into Classifier 1 for classification.

The ability of the PMEN to extract finer features is trained
in stage 2. Since the extraction ability of PMEN for local large
granularity features is trained in stage 1, it provides a suitable
starting point for stage 2. In stage 2, PMEN focuses on
smaller granularity based on the previous training. After F is
segmented by PSRS, local features with smaller granularity
are formed using Patch-wise Feature Matching Strategy
(PFMS) and patch embedding. Our PMEN then adaptively
mines discriminative information from smaller local details
due to the limited receptive domain and representational
capability of small regions. The features are successively
passed through the GWFM and SAFEM for information
transfer and feature enhancement, respectively, before being
passed into PMEN. After learning, the features are passed
into Classifier 2 for classification.

In the third stage, the main focus is to learn the global
features of the CRC. The network has already been able to
extract information at different local granularities through
learning and parameter updating in the first two stages.
Initially, the original image undergoes a linear mapping
operation called patch embedding, followed by augmentation
of the global features using SAFEM. PMEN can preserve the
spatial structure features of CRC while extracting the global
features from the original image. After learning, the two types
of information with different local granularities learned in
the first two stages are combined in the original image to
adaptively fuse the features at different granularities.

To guide the network in extracting diverse features at
different granularities, classification loss is added at all three
stages. The prediction results are computed by Classifier L,
the classification layer. For each stage output, the loss is
computed using the true label y and the prediction results. The
cross-entropy loss function is used for computing the loss,
which introduces smoothing noise on the labels of the training
data through label smoothing. This reduces overfitting and
improves model generalization. Label smoothing is achieved
by adjusting the One-Hot coding of the true label y from 1 and
0 to values slightly less than 1 and slightly greater than 0,
respectively.

LCE (yL , y) = −

∑K

i=1
yi logyLi (1)

where L = {1,2,3} denotes the three stages to which it
belongs. The loss function for the first stage is L1CE , which is
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FIGURE 3. Overall structure of the proposed method.

calculated from the prediction result y1 with the real label y
in the first stage and represents the classification loss of large
granularity information. The loss function of the second stage
is L2CE , which is calculated from the prediction result y2 with
the real label y and represents the loss of small granularity
information. The loss function in the third stage is L3CE ,
which is calculated from the prediction result y3 with the
true label y, and represents the loss obtained by classifying
the information in the fusion of the global features and
the two local granularities of size. Subsequently, the partial
derivatives of the loss function and the prediction results are
computed at each stage to update the parameters, and in this
way, the network can be trained to extract features of different
granularity.

A. PATCH-WISE SPATIAL RESTRUCTURING STRATEGY
The features of CRC are typically described in terms of two
different local granularities, with variations in the relative
sizes presented by each category. For instance, in mucus, the
accumulation demonstrates a larger granularity compared to
the mesenchyme, while in the tumor, the tumor tissue exhibits
a larger granularity relative to the accumulation. Despite these
differences, they still share the characteristics of different
levels of granularity. The key step that makes the progressive
learning strategy effective in capturing the local features of
CRCs with different granularity levels is the reconstruction
of spatial features in the images. The designed PSRS models
the input feature map as a patch with a large granularity, and
the first stage in progressive learning focuses on learning the
features at that granularity.

The workflow of PSRS is illustrated in Fig. 4. The main
task of this module is to slice image F into multiple patches
based on their spatial locations and then recombine them.
The objective is to effectively remodel the spatial locations
of the image. It is important to note that if the size of the first

FIGURE 4. PSRS workflow (shaded areas indicate non-existent areas).

segmented patches is too small, it will result in a significant
loss of information in each patch. To address this issue,
we choose to divide it equally into four larger patches, namely
‘a’, ‘b’, ‘c’, and ‘d’.

In order to avoid slowing down training and having
incomplete information, we take into account the variability
between features. Our design is partly inspired by the Graph
Convolutional Network (GCN) [30] in the field of image
processing, which represents image pixels as nodes in a
graph. In this method, nodes pay more attention to the
information from their neighboring nodes during information
transfer, while the more distant information is relatively less
important. This confirms that pixels within a neighborhood
have stronger correlations with each other compared to
diagonal neighborhoods. We have borrowed and applied
this idea in our design by combining patches with large
differences in features. This allows the network tomore easily
distinguish and learn more specific features. Specifically,
we combine the features of ‘a’ and ‘d’ into FPSRSout1 , and the
features of ‘b’ and ‘c’ into FPSRSout2 , which enables the network
to make better use of the feature differences between the
patches to enhance the recognition of different local regions.
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Considering that PSRS directly splits the space into
4 patches will destroy the original continuous features, and
the cut-off feature part will not only lead to incomplete
information in the current patch but also become interfering
information in other patches. To avoid this situation, we add
a trainable parameter α to control the size of the spatial
partition. HP and WP are the height and width of the large
patch, and they satisfy the following equation 2:{

HP = f (H , α) = α × H

WP = f (W , α) = α ×W
(2)

Considering that the complexity of the network cannot
be increased after spatial grouping, we consider α = 0.5 as
the original region of patch, which can be regarded as
the minimum criterion for spatial grouping. the part of
α > 0.5 will be regarded as the extended region of patch.
By dividing the feature map into two groups of spatial
regions, the dimensionality of the feature map is tripled. The
feature information within each group of regions is reduced
to half of the original one. To balance the parameter increase
due to spatial grouping, we reduce the output dimension
to half of the original one. In terms of computation, since
the spatial dimension is reduced, the two groups of features
can be reasonably matched to reduce the computation. The
computational amount of FLOPs before spatial grouping is
represented by the following equation 3:

FLOPs = C ′
× K 2

× H ×W × C ′′ (3)

where C ′ denotes the current number of input channels,
C ′′ denotes the current number of output channels andK is the
size of the convolution kernel. After dividing into two groups
by space, the computation is represented by the following
equation 4:

FLOPs = 2C ′
× K 2

× (α × H ) × (α ×W ) ×
C ′′

2
× 2

= 2α2(C ′
× K 2

× H ×W × C ′′) (4)

From equations 3 and 4, the amount of calculation is
2α2 times the original. To not increase the computational
effort, only 2α2 < 1 i.e. α <

√
2
2 is required, and hence

an upper limit of α less than
√
2
2 is reasonable. Among the

values slightly less than
√
2
2 , 0.7 is a suitable choice, i.e.,

α ∈ [0.5, 0.7]. When α=0.5, the calculation is reduced to
1
2 of the original. When α = 0.7, the computation shrinks to
the original 49

50 . In summary, the overall computation can be
reduced by 1

2 to 49
50 times by PSRS.

As shown in Fig. 5 and Fig. 6, the image is uniformly
divided into four patches when α =

1
2 , and each patch

contains information from the other three patches when
α > 1

2 . This method achieves the adaptive patch size
adjustment of the network for different image features
during the training process to facilitate spatial communication
between individual patches while avoiding the destruction of
the original continuous features. Such a spatial segmentation

FIGURE 5. The range of values of α.

FIGURE 6. Comparison of effect of α=0.5 and α=0.7.

method not only facilitates the network to have the ability
to extract large granularity information but also can learn
continuous features.

B. PATCH-WISE FEATURE MATCHING STRATEGY
In the second stage, the network is trained to extract features
with smaller local granularity. To achieve this, the large
patches are once again sliced and grouped. Each group of
feature maps is divided into four smaller patches based on
spatial regions, labeled as ’1’, ’2’, ’3’, ’4’. Similarly, feature
maps ’1’ and ’4’ are combined into one group, while ’2’
and ’3’ form another group. These smaller patches help the
network in extracting smaller granular regions. However,
it is important to consider the spatial communication of the
small patches at this stage. As the network goes deeper, the
size of the patches gradually decreases, resulting in reduced
information within it. This lack of effective communication
between the groups may lead to a decrease in classification
accuracy. Fig. 7 illustrates that when α is approximately 0.5,
‘a’ and ‘d’ tend to learn independently, with minimal
interaction with the information from ‘b’ and ‘c’.

Based on the above appearances, we designed PFMS to
combine the spatial features of the image after reconstructing
them. As shown in Fig. 7, the PFMS combines all the ’1’
and ’4’ regions to form FPFMSout1 after segmenting the features
of the large patches again, and at the same time combines
all the ’2’ and ’3’ regions to form FPFMSout2 . This splicing
strategy aims to prevent the merging of contiguous regions,
allowing small patches to stand alone. By doing so, the
initial four patches are reduced to two, enhancing the forward
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FIGURE 7. PFMS workflow.

propagation speed of the network and facilitating information
exchange between ‘a, b, c, d’. In stage 1, each patch initially
contained approximately 50% of the input information. With
the addition of PFMS in stage 2, each patch still retains about
50% of the input information. However, the granularity of the
patch for each subgroup decreases, making it more extensive
and comprehensive in terms of information. This also leads to
the gradual merging of local features and their convergence
towards global features.

C. PATCH EMBEDDING
The main purpose of patch embedding is to perform linear
transformations in order to enhance the expressiveness and
perceptual range of the input data. This operation is widely
used in the transformer family of models [31], [32], [33].
In our approach, by applying linear transformations to the
global features in stage 3, we can further enhance the
expressive power of the data. Without feature transformation
in stage 1 and stage 2, the original images cannot directly
communicate with features. Hence, patch embedding is
designed to transform the input data into a linear feature
representation by applying different weight matricesW to the
input data.

The process of operation still does not confuse the features
under local granularity. Taking the output of the feature from
PFMS as an example, the patches in FPFMSout are weighted to
adjust their importance for adaptive feature fusion and feature
selection. The Fembeddingout in equation 5 is the result after this
operation in stage 2.

Fembeddingout = FPFMSout ⊗W p
out (5)

where p denotes the number of patches in the set of features.

D. PATCH-WISE INFORMATION COMMUNICATION
Progressive learning strategy has been effective in enabling
the network to learn features at various levels of granularity.
However, these strategies have somewhat weakened the
connection between patches. While spatial information
transfer still exists, its impact is limited. For instance, when
α = 0.5 or similar, the feature maps within each group are
only influenced by the input of the corresponding patch.
As a result of the lack of connection between different

patches, the learned features are constrained and may result
in information loss. Therefore, we propose enhancing the
information interaction between different patches at the
channel level.

The before and after comparisons of performing informa-
tion interaction are shown in Fig. 8. In Fig. 8(a), which is
the case without information interaction, it can be seen that
there is always no interaction among the three patches after
PMEN operates on the input features. In Fig. 8(b) after the
information interaction, each patch contains the information
of other patches internally but still focuses on its features,
and the output features after PMEN are the features after the
interaction.

FIGURE 8. Before and after information interaction.

Due to the difference in the size and number of patches
in stage 1 and stage 2, although the design idea is the same,
there are still big differences in the specific design process.
We specifically divide the channel communication part for
stage 1 and stage 2 into the CISM and GWFM.

1) CHANNEL INTERACTION AND SHIFTING MODULE
In stage 1, PSRS spatially divides the feature map into two
groups, each containing two patches. CISM ensures that most
of the features within its own patch are included in each
group. This is achieved by moving a portion of the channels
from the first patch to the back of the last patch, or a portion of
the channels from the last patch to the front of the first patch.
This operation allows the transfer of information between
channels without introducing features from other patches
or causing confusion in channel information. The trainable
parameter β controls the number of channels moved.
Regarding the value of β, we believe that in the early stages

of feature extraction, it is important that the characteristics
of each patch dominate and minimize interference from
other patches. This helps preserve the uniqueness of each
Patch. However, we also recognize the need for information
interactions between patches to capture useful information
effectively. Therefore, we choose a relatively balanced value
of β between 0 and 0.3 to satisfy these requirements in
practical applications. In Fig. 9, when β = 0.25, the number
of channels in a patch is shifted by approximately 25%. This
means that each group contains 75% of its own features
and 25% of features from another patch when convolution
is performed again.
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FIGURE 9. Design of CISM.

2) GROUP WEIGHTED FUSION MODULE
In stage 2, the features after PFMS also form two groups, but
the number of patches contained in each group becomes eight,
so β alone does not achieve mutual communication among
the eight patches. We borrowed the idea of ShuffleNet [34],
and the two groups of features are Unfolded from 1D to 2D by
channel in terms of the number of patches, and then Flattened
to 1D after transposition. Fig. 10 shows the feature map
FPFMSout1 as an example, the number of patches in FPFMSout1 is 8,
and after unfolding, transposing and flattening, the feature
map shuffle1 is formed by mixing all the patches.

FIGURE 10. F PFMS
out1 transposed(T) to form a shuffle1.

Unlike ShufflNet, our model requires fully exploring
the features of each patch and integrating the information
of other patches at the same time, so instead of using
shuffle1 directly for learning, we choose to fuse FPFMSout1 and
shuffle1. Classical feature fusion methods, such as channel
splicing, and additive and multiplicative operations, not only
increase the parameters and computational complexity of the
model but also confuse the information between patches,
making it difficult to reflect their relative importance in the
model. Therefore, we adopt a grouped weighted summation
strategy to fuse FPFMSout and shuffle into a new feature
FGWFMout to achieve full interaction between patches. The
fusion process is carried out in batch mode, as shown in
Fig. 11, where FPFMSout1 and shuffle1 are divided into 8 batches
according to the Patch boundary, and the cosine similarity of
the corresponding batches is subsequently calculated.

In the process of calculating the cosine similarity, we added
a trainable parameter λ to increase the error tolerance, and the
initial value of λ is 1. This is in order not to change the results

FIGURE 11. F PFMS
out1 and shuffle1 calculate the cosine similarity.

of the first-time similarity calculation, and the value of λ is
adjusted during the training process to adjust the error of the
similarity calculation.

Similarity

=

∑p

i=1

∑n
j=1 (F

PFMS j
out × shuffleji)√∑n

j=1 (F
PFMS j
out )

2
×

√∑n
j=1 (shuffle

j
i)
2

× λ

(6)

n denotes the dimension of the input features. As in
Equation 7, we use two parameters η and γ to control the
weight of FPFMSout and shuffle in the output FGWFMout of the
GWFM, respectively.

FGWFMout =

∑p

i=1
(ηi × FPFMSout + γi × shuffle) (7)

The values of γ are derived by mapping the results of
the cosine similarity calculation through a Sigmoid function,
η = 1 - γ , and they take the values shown in Fig. 12(a). Since
we want to dominate the original features in FPFMSout , we set
the upper limit of the value of γ to 0.5, as a way to ensure that
γ cannot exceed η.

FIGURE 12. Values of η and γ (left) and Sigmoid function curves under
the control of θ (right).

The Sigmoid function is not directly applicable, as the
sigmoid curve in Fig. 12(b), when the result of cosine
similarity calculation is negative it indicates that the two
feature maps are negatively correlated, however, the Sigmoid
function still maps the value of Similarity to be large in
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some cases. To solve this problem, we added a trainable
parameter θ . As shown in Fig. 12(b), θ is a value between
0.3 and 1.0, γ = f (sigmoid(Similarity), θ), which is used to
scale the values of γ by compressing the Sigmoid function.

γ =


θ

1 + e−Similarity
, 0 <

θ

1 + e−Similarity
≤ 0.5; (0.5 ≤ θ ≤ 1)

0.5,
θ

1 + e−Similarity
> 0.5

(8)

E. STAGE-ADAPTIVE FEATURE ENHANCEMENT MODULE
At different stages of the network, after the first stage of
PSRS and CISM and the second stage of PFMS and GWFM,
the Patch contains more complex information. The third
stage deals with features at the granular level of the original
image, which also introduces complexity to the information.
In order to quickly capture important information at each
stage, we introduce a layer of attentional mechanisms in each
stage to enhance the features within. However, traditional
attention mechanisms [35], [36], [37] did not meet our
specific needs. We not only require enhancing the feature
information at different stages but also personalizing the
enhancement process based on the characteristics of each
stage’s features. Therefore, to solve this problem, we propose
the SAFEM.

FIGURE 13. SAFEM workflow.

The workflow of SAFEM in Fig. 13 takes the feature
FCISMout1 output from CISM in stage 1 as an example. Firstly,
we obtain the channel position corresponding to each patch,
and then take the maximum value and average value on
the channel of each feature point; after that, we fuse these
two results, adjust the number of channels by using the
convolution with the number of channels as 1, and then
perform one operation with the Sigmoid function. At this
point, we obtain the weights s1 and s2 of each feature point
in the two patches. To reduce the computational complexity,
we no longer add the convolution layer to upgrade its
dimension, but the s1 and s2 are stacked until the number
of channels is the same as that of the corresponding patch.
Finally, they are all stitched together to form weights of the
same dimension as the input features, Sp. As in equation 9,
multiplying Sp by the original input feature layer completes
the information enhancement for each Patch individually.

FSAFEMout = {FCISMout ,FGWFMout } ⊗ {s1, s2, . . . ., s2p}

= {FCISMout ,FGWFMout } ⊗ S2p (9)

FIGURE 14. Effect of SAFEM on different granularity features.

SAFEM enhances the features of each patch based on its
internal characteristics. Fig. 14 illustrates the feature regions
enhanced by two local granularity patches after applying
SAFEM. Fig. 14(a) represents the input original image,
Fig. 14(b) represents the region enhanced based on local
large-grained features, and Fig. 14(c) represents the region
enhanced based on local small-grained features. It can be
observed that the patches in Fig. 14(b) focus on larger
epithelial and mesenchymal features, while the patches in
Fig. 14(c) focus on densely distributed and less extensive
cellular regions. This method of feature enhancement enables
the network to accurately capture features at different
granularities in colorectal cancer tissues.

F. PROGRESSIVE MULTI-FEATURE EXTRACTION NETWORK
We develop a network called PMEN to address the need
for maintaining independence between individual patches in
order to perform fine-grained learning for each Patch. This
network is specifically designed for the progressive learning
method and enables feature extraction.

We choose to utilize the 3×3 convolution as the primary
method for feature extraction in our study. This decision is
made due to the fact that 3×3 convolutions have fewer param-
eters compared to larger kernel sizes. By reducing the number
of parameters and computational complexity, we are able to
mitigate the issue of overfitting. Additionally, stacking and
combiningmultiple 3×3 convolutions allows us to effectively
extract multi-granularity features. This method has been
successfully employed in various well-known convolutional
neural networks such as VGG [38], GoogleNet [39], and
ResNet [40], which have demonstrated exceptional perfor-
mance. Considering that the progressive learning strategy
requires learning features at different local granularities and
global features consecutively, it often demands significant
computational resources. Therefore, we have also taken
into account the optimization of parameter amount and
computational workload during the network design process.
The number of parameters and computation amount for one
layer of 3×3 convolution are as follows:

Params = C ′
× 32 × C ′′ (10)

FLOPs = C ′
× 32 × h× w× C ′′ (11)

h and w are the height and width of the current input,
respectively. When a 1×1 convolution is added before and
after the 3×3 convolution for lifting and lowering dimensions
respectively, the number of parameters and computation are
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as follows:

Params = C ′
× 12 ×

C ′′

2
+
C ′′

2
× 32 ×

C ′′

2

+
C ′′

2
× 12 × C ′′

=
2C ′

+ 11C ′′

4
× C ′′ (12)

FLOPs = C ′
× 12 × h× w×

C ′′

2

+
C ′′

2
× 32 × h× w×

C ′′

2

+
C ′′

2
× 12 ×

h
2

×
w
2

× C ′′

=
4C ′

+ 19C ′′

8
× C ′′

× h× w (13)

By looking at equations 10 and 12, we find that the
number of parameters after adding the 1×1 convolution is
2C ′

+11C ′′

36C ′ times the original number. To reduce the number
of parameters, it is necessary to satisfy 2C ′

+11C ′′

36C ′ < 1.
The number of input channels and the number of output
channels conform to the relation C ′′

C ′ < 34
11 , i.e., when the

output channels are approximately three times the number
of input channels or less. Observing equations 11 and 13,
we find that the amount of computation is 4C ′

+19C ′′

72C ′ times
the original amount, and the same calculation shows that the
amount of computation is reduced when the number of input
channels and the number of output channels conform to the
relationship C ′′

C ′ < 68
19 , i.e., the number of output channels

is approximately 3.6 times or less than the number of input
channels.

Based on the above analysis and the patch features output
from each stage, we design a method called patch-wise
convolution that performs convolution according to the
features of each patch separately. Specifically, the input
features are divided into p groups for convolution separately
based on the number of patches p, which can both reduce
computational resources and target each block of patch
features for targeted learning. Fig. 15 shows an example
diagram of patch-wise convolution, assuming that the number
of input patches is 2 and the number of its input channels
is C. Fig. 15(a) is the first 1 × 1 patch-wise convolution
for halving the dimensionality to reduce the number of
parameters and computation generated by the subsequent
computation. Fig. 15(b) is the 3 × 3 patch-wise convolution,
which is the main part of the feature extraction, and its input
and output channels are kept the same. Fig. 15(c) is the
second 1×1 patch-wise convolution, which is used to reduce
the number of channels to the dimension that is originally
intended to be output. It can be seen that in the design for the
channel aspect, the output channels of all the convolutional
layers are kept at twice or less the number of input channels,
thus conforming to the reduced number of parameters and
computations.

The number of parameters and the amount of com-
putation for patch-wise convolution are represented by

FIGURE 15. Patch-wise Convolution.

equations 14 and 15:

Params = (
2C

′

p + 11C
′′

p

4
×
C ′′

p
) × p

= (
2C ′

+ 11C ′′

4
× C ′′) ×

1
p

(14)

FLOPs = (
4C

′

p + 19C
′′

p

8
×
C ′′

p
× h× w) × p

= (
4C ′

+ 19C ′′

8
× C ′′

× h× w) ×
1
p

(15)

Patch-wise convolution reduces the number of parameters
and computation to 1

p of the previous one.
To enhance the performance of the model, We divide

PMEN Block into Part1 and Part2 and incorporate
deformable convolution [41] in Part1. This convolution
allows the network to downsample the feature map based
on its morphological features. Deformable convolution
involves adding an offset, learned by the model, to the
normal convolution. In order to better accommodate the
characteristics of colorectal cancer, we carefully analyzed
the images and observed that the internal mesenchyme often
exhibited a strip-like structure resembling papillae and villi.
Additionally, the cells tended to deform in a similar manner
after being extruded. Therefore, we modified the deformable
convolution to account for this feature by increasing the offset
in the transverse and longitudinal directions. This adjustment
enables the overall offset to quickly adapt to the structure
of colorectal cancer. This modified convolution, referred to
as patch-wise deformable strip convolution (patch-wise DS
convolution), is still applied individually to each patch.

y(p0) =

∑
pn∈R

w(pn) ∗ x(p0 + pn + 1p̃n) (16)

p0 is each point on the output feature map, y(p0) is the
specific value of each point on the output feature map,
pn represents the offset of each point in the convolution kernel
concerning the centroid, and w(pn) represents the weight
of the corresponding position on the convolution kernel.
x(p0 + pn) is the specific value of each point on the output
feature map that corresponds to the region of convolution
sampling on the input feature map. 1p̃n = 1pn + τ ,
where 1pn denotes the offset against the input feature map,
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FIGURE 16. Standard Convolution, Deformable Convolution and
Patch-wise DS Convolution.

and τ denotes the additional offset in the direction of the
horizontal and vertical axes. In deformable convolution,
the output needs to learn the parameter doubled in the
convolution kernel, with the front denoting the horizontal
axis coordinates and the back denoting the vertical axis
coordinates. τ is a learnable parameter that is used to
add additional offsets in the horizontal and vertical axis
directions. As can be seen in Fig. 16, compared to the
standard convolution Fig. 16(a) and deformable convolution
Fig. 16(b), the deformable strip convolution in Fig. 16(c)
exhibits two different convolutional trends based on the
morphological characteristics of the CRCs pointed out above,
which can be adaptively selected during the learning process.

To gain a better understanding of the impact of patch-wise
DS convolution, we selected two representative samples that
align well with the two forms of patch-wise DS convolution
mentioned earlier. As depicted in Fig. 17, we applied standard
convolution, deformable convolution, and patch-wise DS
convolution to the two CRC images Fig. 17(a). We observed
that when deformable convolution Fig. 17(c) is used, the net-
work is able to more effectively incorporate cellular features
compared to standard convolution Fig. 17(b). Conversely,
our patch-wise DS convolution Fig. 17(d) facilitated the
network in capturing the structural characteristics of the
CRC in an exceptional manner, resulting in remarkably clear
mesenchyme and cellular morphology.

FIGURE 17. Comparison of the effects of Standard convolution,
Deformable convolution and Patch-wise DS convolution.

In summary, 1 × 1 patch-wise convolution, 3 × 3 patch-
wise convolution, and 3 × 3 patch-wise DS convolu-
tion together form the basic feature extraction module.
As shown in Fig. 18, the PMEN Block consists of Part1
and Part2, which are used for downsampling and feature
extraction tasks, respectively. The whole PMEN uses only

FIGURE 18. PMEN Block.

the 3 × 3 patch-wise DS convolution with step size 2 in Part1
for downsampling and also incorporates the normalization
and ReLU activation functions.

The output images from stage 1 are divided into two
groups, each containing two patches. To ensure that the net-
work could learn the features of these patches independently,
the parameter p in PMEN is set to 2. In stage 2, the number
of patches in each group is increased to 8. The parameter p in
PMEN is then set to 8 to allow the network to learn 8 small
patches independently. The design of PMEN ensures that the
information between the patches is not confused, while also
reducing the number of references and computational effort.
After learning about the two local granularities, PMEN is
still used in stage 3 to learn the features at the granularity
level of the original map and combine the information from
the two local granularities in the original map. Since stage 3
is performed in the original map, it focuses on the global
features of CRC under the guidance of PMEN.

IV. EXPERIMENT
A. DATASETS
To further validate the effectiveness of the proposed method,
we selected three public datasets for our experiments. These
are 11977 image patches of hematoxylin and eosin-stained
human colorectal cancer histological samples [14], 100 col-
orectal adenocarcinoma images [42], and 5000 colorectal
cancer histological images obtained by Aperio digital pathol-
ogy scanner [43].

The 11977 image patches of the first dataset contain
3 major categories that can be subdivided into 6 subcate-
gories. These are 3977 sparse non-tumor tissue (ADIMUC);
4000 dense non-tumor tissue (STRMUS); and 4000 tumor
tissue (TUMSTU). All images are PNG images of 512 ×

512 size. The type of the second dataset contains a colorectal
adenocarcinoma and the images have a larger size of 1000 ×

1000 pixels. We use the first dataset as a training set, and due
to the large number and relatively small number of types in
this dataset, to further increase the difficulty of classification
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FIGURE 19. Datasets.

as well as to test the generalization ability of the model, the
second dataset is cropped to 400 images of 512 × 512 size
and merged into the TUMSTU of the validation set and
the test set, respectively. the two larger-sized datasets are
referred to as Large Image Dataset (LID), such as the LID
in Fig. 19.

The third dataset contains 5000 histological images of
colorectal cancer with a size of 150× 150 pixels. This dataset
is acquired with the Aperio Digital Pathology Scanner and
has more categories and smaller image sizes than the first
two datasets, thus having a higher classification difficulty.
By analyzing this dataset, the aim is to assess whether
the proposed method can show good performance in the
face of greater classification difficulty. The dataset has
625 images of each type, including eight colorectal cancer
types, namely adipose (ADI), background (BACK), debris
(DEB), lymphocytes (LYM), normal colon mucosa (NORM),
cancer-associated stroma (STR), colorectal adenocarcinoma
epithelium (TUM) and complex stroma (COMP). Call this
dataset Small Image Dataset (SID) as in Fig. 19.

B. EXPERIMENTAL SETTINGS AND EVALUATION METRICS
We choose the efficient deep learning framework PyTorch
to implement our proposed classification method, and the
training and testing of the models are performed in a GPU
environment with an NVIDIA GeForce RTX 3090 graphics
card. The LID is randomly cropped to 224×224 size in
training and the SID is not cropped due to its smaller size, and
data enhancement operations such as random flipping, color
enhancement, greyscaling, and normalization are applied to
both types of data. The classification loss is calculated using
the cross-entropy loss function together with label smoothing,
stochastic gradient descent is used as the optimizer, the initial
learning rate is set to 0.001, the weights are decayed to 5e-4
and the momentum is 0.9.

In this paper, all experiments are trained with 200 epochs,
and the classification performance of the model is evaluated

using several commonly used metrics in medical image
classification, namely Accuracy, Precision, Recall, and F1-
score. Accuracy represents the proportion of correctly
classified samples of the model to the total number of
samples. Precision denotes the proportion of all positives
predicted by the model that is correctly predicted; Recall
denotes the proportion of all true positives that are correctly
predicted by the model; F1-score combines the results of
Precision and Recall outputs. The meaning of each indicator
is as in equations 17, 18, 19 and 20:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(17)

Precision =
TP

TP+ FP
(18)

Recall =
TP

TP+ FN
(19)

F1-score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(20)

where TP indicates true positive, FP indicates false pos-
itive, TN indicates true negative, and FN indicates false
negative.

C. PARAMETER DETAILS
The progressive learning strategy is an integral part of PMFF.
In Tables 1, 2, and 3, we provide the general structure of
PMFF for learning three kinds of granular information in
three stages. This includes detailed data on the variation of
output size and number of channels, the number of spatial
groupings, and the number of patches in each group. The
table assumes that the size of the input image is 224 × 224
and its downsampling operation occurs only in Part1 of PSRS,
PFMS, and PMEN Block. Patch embedding, CISM, and
SAFEM do not change the dimension of the feature maps.
PMEN consists of three PMENBlocks stacked on top of each
other.
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TABLE 1. Overall composition of Stage 1.

TABLE 2. Overall composition of Stage 2.

TABLE 3. Overall composition of Stage 3.

TABLE 4. Comparison of number of parameters and computation before
and after considering computational complexity.

D. COMPUTATIONAL COMPLEXITY EXPERIMENTS
The progressive learning strategy performs multiple learning
of features, which improves performance but also involves
computational complexity. The computational complexity
optimization of the algorithm is considered during the
segmentation operation of PSRS and the design of PMEN.
In order to visually present the effect comparison before
and after the computational complexity optimization, Table 4
takes a 224×224 pixel RGB image as an example to exhaus-
tively show the change of the number of parameters and the
computational amount. Where PSRS is the case assuming
α=0.7, after considering the computational complexity at
the design time, although the number of parameters is not
reduced, the computational amount is reduced by 0.01G.
On the other hand, after considering the computational
complexity of PMEN, both the number of parameters and
the computational amount are significantly reduced. The
combination of the two forms the final PMFF, where both
the number of parameters and the computational volume are
substantially optimized.

TABLE 5. Comparison with progressive learning strategy used for
classification tasks.

We compare this with some progressive learning strategies
PMG [22] and PJGC-Net [24] for classification tasks in terms
of computational complexity. Where PMG provides several
base models, the higher the number of layers in the network,
the higher the complexity will be, the authors used resnet-
50 as the default base model. As can be seen from Table 5,
the progressive learning strategy we designed is much lower
than the existing progressive learning strategies both in terms
of the parameters and FLOPs.

E. ABLATION STUDY
1) PARAMETER SETTINGS
In the method section, we detail some of the important
parameters applied in the proposed method and emphasize
their role in feature extraction. Next, we will further verify
whether these elements are indeed effective in improving
the performance of the model through experimental results.
The experiments use two types of datasets as well as four
evaluation metrics.

The performance comparison results after the introduction
of α in the experiments are presented in Fig. 20. Fig. 20(a)
and Fig. 20(b) show the experimental results on two types
of datasets, respectively. It is evident from the figure that the
introduction of α leads to performance improvement in all
four evaluation metrics. This result intuitively confirms the
effectiveness of learning continuous features for enhancing
performance.

FIGURE 20. Before and after the use of α on two types of datasets.

Moving on, we focus on the experimental validation of β

and cosine similarity in Fig. 21. Firstly, we test the role of β

under CISM, and the results demonstrate that the introduction
of β further enhances the system performance. Similarly,
the use of cosine similarity under GWFM for feature fusion
shows significant performance enhancement. This suggests
that by cleverly incorporating elements such as β and cosine
similarity in the process of message communication, the
model exhibits superior performance in both aspects.
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FIGURE 21. β and cosine similarity before and after use.

FIGURE 22. λ, η, γ , and θ before and after use.

When using cosine similarity for feature fusion, the
parameters λ, η, γ , and θ are added. As shown in Fig. 22,
λ serves to increase the error tolerance of the cosine similarity
computation, while θ is used to scale the Sigmoid function
curves, which play a role even though their enhancement is
relatively small. η and γ , which exist as a whole, serve to
ensure that patch’s original features make up a major portion
of the features, which are validated from the evaluation
metrics and are verified to be effective.

In the design of PMEN, a parameter τ is added to improve
the deformable convolution. τ serves to adapt the deformable

FIGURE 23. τ before and after joining.

convolution to the morphological features of CRC faster.
From Fig. 23, it can be seen that the addition of τ achieves
some effect, and all four indexes are slightly improved.

2) ABLATION EXPERIMENT OF PROGRESSIVE LEARNING
STRATEGY
In this subsection of the experiment, we compare the
learning effects of the three stages of progressive learning,
namely CISM, GWFM, SAFEM, and PMEN. Stage 3 is an
indispensable part as it combines the information of two local
granularities to better preserve the spatial structure features
of the CRC on the original map. The experimental results
in Table 6 show that when stage 3 is used alone to learn the
global features of the original image, the overall performance
is approximately 92.8% and 85.9%, respectively. However,
when stage 1 is added to train the ability of the network to
capture information at a higher level of granularity., there
is an improvement of around 1.3% and 2% in performance.
Similarly, when stage 2 is added, the network gains the
ability to extract smaller granularity information, resulting
in higher performance compared to using only stage 3 for
global feature extraction. The best performance is achieved
when all three stages (stage 1, stage 2, and stage 3) are
used together, allowing the network to effectively fuse global
features and features at different local granularities. This
leads to an improvement of about 3.7 and 6.4 percentage
points over using only stage 3.

3) VISUAL ANALYSES AT ALL STAGES
To assess the impact of progressive learning, we utilize a
heatmap [44] to visualize the CRC tissues in Fig. 24. The
results show that during the training process of stage 1,
the network focuses on features with larger granularity,
such as the cup cells in the stomach tumor along with
the surrounding glandular cells and the tumor tissue in
the colorectal tumor. In contrast, the focus of the network
shifts to features of smaller granularity during stage 2
training, such as the mesenchyme in adipose and the scattered
nuclei in stomach tumors. Stage 3 further emphasizes global
features, as it simultaneously learns two parts with different
granularity. For example, in the stomach tumor, it learns
both the cup-shaped cells and the scattered cells. The final
concatenation represents the most discriminative region of
interest after combining the features learned in the three
stages. This region typically exhibits continuous and non-
redundant features.
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TABLE 6. Performance comparison of progressive learning stages.

TABLE 7. Stage 1 ablation experiment results.

TABLE 8. Stage 2 ablation experiment results.

FIGURE 24. Comparison of results by stage.

4) ABLATION EXPERIMENTS AT VARIOUS STAGES
Given the previous experiments that have demonstrated
the superiority of progressive learning, we proceeded to
conduct ablation experiments on each stage within the
progressive framework. In an ablation experiment, a specific
stage is isolated while the modules from the remaining
stages are retained. We first conduct ablation experiments
on stage 1, where PSRS, patch embedding, and the feature
extraction network PMEN are employed as Backbone1.
The experimental results, presented in Table 7, reveal that

Backbone1 achieves an accuracy of 94.2% and 86.6% on
the two types of datasets, respectively. When CISM is
introduced, there is increased interaction of information
between each patch, leading to improved performance.
Furthermore, the overall performance is further enhanced
by more than 1% with the addition of SAFEM, particularly
in capturing larger local granularity features like tumor
tissue.

In the second stage of the experiment, Backbone2,
consisting of PSRS, PFMS, patch embedding, and PMEN,
is utilized. The experimental results are presented in
Table 8, demonstrating that Backbone2 achieves an accu-
racy of 94.4% and 87.3% on the two types of datasets,
respectively. Furthermore, when GWFM is incorporated,
the local smaller granularity features, which initially lack
sufficient information, are effectively interacted with. This
interaction leads to an overall performance improve-
ment of 0.6% and 1.25%. Additionally, the inclusion of
SAFEM to enhance smaller-grained local features, such as
piles, further enhances the overall performance by 0.8%
and 2.5%.

In stage 3, PMEN serves as the Backbone3 to evaluate the
impact of patch embedding and SAFEM. The experimental
results are presented in Table 9, indicating that Backbone3
achieves an accuracy of 94.5% and 89.4% on the two
types of datasets, respectively. The inclusion of patch
embedding leads to a slight improvement in performance,
validating the continued usefulness of linear transforma-
tion of global features. Furthermore, the incorporation
of SAFEM enhances the global features of the image,
resulting in an improvement of over one percentage point in
performance.
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TABLE 9. Stage 3 ablation experiment results.

TABLE 10. Comparison of results with some existing CRC classification methods on two types of datasets.

F. COMPARISONS WITH EXISTING CLASSIFICATION
METHOD
Table 10 compares the four evaluated metrics with several
existing methods for classifying colorectal cancer [11], [12],
[13], [14], [15], [16], [17], [18], [45], [46] and progressive
learning strategy for classification tasks [22], [24]. PMFF
achieved the accuracy of 96.6% and 92.3% and the f1-score
of 96.4% and 92.3% on the two types of datasets. It outper-
formed the second-place finisher by 0.3% in accuracy and
0.1% in f1-score. Additionally, it outperformed the existing
methods listed in the table overall, with improvements of
0.2% and 0.1% in f1-score, and 0.2% in precision on LID.
In SID, the precision of DMDA is equal to that of the
proposed method, indicating the superiority of focusing on
local and global distribution alignment used by DMDA.
Slightly inferior to PMG in recall, illustrating the superiority
of progressive learning strategy and multi-granularity feature
fusion.The proposed method not only accurately classifies
images but also maintains a good balance between accuracy
and recall. PMFF demonstrates consistent performance
across all evaluation metrics, indicating that the fusion of
global features and different local granularity features ensures
stable and reliable classification.

The data in experiments will inevitably be affected by
degradation, noise, or variability, leading to deviations in
classification accuracy for existing and proposed meth-
ods. To mitigate these factors, we utilized various public
datasets for our experiments, yet encountered challenges.
Hong et al. [47] simulated spectral variations in different
environments and suggested solutions to address them.
In future research, we plan to leverage the methods outlined
in this paper to explore ways to minimize the impact of
data degradation, noise, variability, etc., to enhance the

robustness and generalization capabilities of classification
models.

V. CONCLUSION
In this paper, we propose a novel method called PMFF for
the classification task of colorectal histopathological images.
Our method adopts a progressive learning strategy, which
enables the model to learn different granularity features
and fuse information from different granularity levels in
the final stage. PMEN is specifically designed to capture
the morphological features of CRCs in different stages.
It effectively addresses the challenge of capturing complex
morphological features. Additionally, CISM and GWFM
facilitate information transfer between patches to compensate
for the information transfer insufficiency caused by PMEN,
thereby enhancing the model’s learning ability. SAFEM is
employed to expedite the model’s ability to locate important
information, thereby improving the learning efficiency.
Experimental results on multiple datasets demonstrate the
effectiveness of PMFF. Furthermore, ourmethod outperforms
existing CRC classification methods in terms of several
evaluation metrics, providing a reliable solution for accurate
CRC classification.

Accurate colorectal cancer (CRC) classification is crucial
in clinical practice for optimizing diagnosis and treatment
pathways and achieving precision medicine. It aids in
providing more precise diagnoses, preventing treatment
delays or over-treatment resulting from misclassification.
Furthermore, accurate CRC classification can alleviate the
workload of healthcare professionals and enhance work
efficiency. The CRC classification method introduced in this
study is innovative in its approach and design, offering a fresh
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theoretical perspective and practical approach to pathology
image classification.

Although our method shows better performance in classi-
fication tasks targeting CRC, there are still some limitations.
First, the model relies on labeled data for training data.
Second, the computational resources consumed by stage 3
are not as light as those of stage 1 and stage 2. In the future,
we will focus on improving themodel from these two aspects.
On the one hand, we will implement a semi-supervised
approach to alleviate the problem of the lack of labeled
pathology images. On the other hand, we will reduce
the computational overhead to improve the classification
efficiency of pathology images for better application in
medical diagnosis.
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