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ABSTRACT The rise of convolutional networks in computer vision, especially for generic object detection,
has led to the emergence of a myriad of efficient and precise object detection models. Typically, deep
learning-driven object detectors operate in two phases: initially, they utilize convolutional networks to extract
compact feature embeddings from images; subsequently, these embeddings are used to pinpoint localized
object positions. Rooted in convolutional networks, these generic object detection models have the capability
to learn from vast datasets that comprise hundreds of thousands of images with thousands of objects. This
vast data training gives them unparalleled generalization capabilities, setting them apart from traditional
methods. With the swift pace of research, new object detection models are frequently unveiled, each striving
for state-of-the-art performance on renowned benchmarks. Given the abundance of viable models, selecting
the optimal one can be a daunting task. In this paper, we offer a succinct overview of widely recognized
object detectors, emphasizing their architectural distinctions, and presenting a quantitative comparison in
terms of accuracy and inference speeds using the popular 2017 Common Objects in Context dataset.

INDEX TERMS Object detection, deep learning, convolutional neural networks, transformers, quantitative
analysis.

I. INTRODUCTION
Object detection deals with the localization and classification
of existing objects within a given image. Deep learning-based
object detection has revolutionized the field of computer
vision by significantly advancing the capabilities of auto-
mated object identification and localization within images.
Traditional object detection methods relied on hand-crafted
features and shallow learning algorithms, which limited
their ability to handle complex visual data and achieve
high levels of accuracy. However, with the advent of
deep learning techniques, particularly convolutional neural
networks (CNNs), object detection has undergone a transfor-
mative shift. Deep learning models can automatically learn
hierarchical representations of features directly from raw
pixel data, enabling them to capture intricate patterns and
relationships within images with unprecedented accuracy.
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The impact of deep learning-based object detection extends
across various domains, including healthcare, robotics,
surveillance, and agriculture. In healthcare, these models
facilitate automated analysis of medical images for diagnosis
of diseases and treatment planning. In robotics, they enable
robots to perceive and interact with their environment,
enhancing autonomy and versatility. In surveillance, deep
learning-based object detection systems play a crucial role in
ensuring public safety and security by detecting and tracking
objects of interest in real time. Furthermore, in agriculture,
these models aid in crop monitoring, pest detection, and
yield optimization, contributing to sustainable and efficient
farming practices.

Nowadays, there are many object detection models to
choose from and use in applications or research projects.
Whilst many models show promising results, they can also be
sub-optimal models for different applications. For example,
a model can provide extremely high classification and
localization accuracy, but due to the nature of the architecture,
it also requires a relatively high amount of processing power.
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Alternatively, some applications may be indifferent to the
computational burdens of a model and require only the
highest level of accuracy. Some applications might require a
trade-off between high accuracy and robust inference speeds.

In this paper, we provide a comparative study between
established object detection models, highlighting their archi-
tectural and methodical differences. In addition to discussing
architectural innovations, we perform evaluation methodolo-
gies for popular object detection models and compare their
performance in terms of precision and inference speed on the
CommonObjects in Context (COCO) dataset [1] (a collection
of high-quality large-scale datasets for use as a benchmark
against generic object detection models). We explore metrics
such as precision, recall, average precision (AP), average pre-
cision (AP) on different scales, intersection over union (IoU)
and inference speed which provide quantitative measures of
detection accuracy. Additionally, we examine computational
efficiency metrics, including inference speed and model size,
which are crucial for real-time applications and resource-
constrained environments.

Through a systematic review and analysis of these
methodologies, we aim to provide researchers, practitioners,
and developers with a comprehensive understanding of quan-
titative analysis techniques for deep learning-based object
detection models. By evaluating the model performance
metrics, we seek to empower the research community tomake
informed decisions in model selection, optimization, and
deployment for a wide range of computer vision applications.
Our goal is to provide researchers and developers with a
concise and easy-to-digest overview of state-of-the-art object
detection models, with performance analysis in terms of
general accuracy, their performance against different-sized
objects, and their inference speeds.

The remainder of the paper is organized as follows. In Sec-
tion II we review existing studies on deep learning-based
object detection techniques. Section III discusses the general
structure of a deep learning-based model for computer
vision and object detection. In Section IV, we present
various state-of-the-art deep learning-based object detectors,
providing an overview of their architecture and contributions.
In Section V, we present a comparative analysis on their
performance on the COCO dataset benchmark based on some
key measurements. We finally provide closing remarks and in
Section VI.

II. RELATED WORKS
To perform object detection, a model must output the
location of each desired object, which is possible via various
image processing techniques. For example, edge detection
can localize the object by utilizing the pixel intensities of
the image. There are certain cases [2], [3] where objects
have consistent pixel intensities, allowing for a delineation
between a foreground object and the background; potentially
denoting the edge of an object. After accumulating all edges
or contours of the object, the object can be isolated and
detected. This technique, although promising under the right

constraints [4], is nontrivial and highly dependent on the
object being simple and the image having satisfactory lighting
conditions.

For a complete object detection model, a feature extractor
can be combined with edge detection, where the first
is responsible for acquiring a classification based on the
features of the object, while the latter can localize the object.
A feature extractor involves extracting information from the
image, such as scale-invariant-feature-transform (SIFT) [5],
[6], [7] features, that best describe various object classes.
Afterward, future images are compared against these feature
representations, and if similar, the image is said to contain the
respective object class. Numerous other techniques exist that
can perform object detection, such as corner detection [8],
threshold segmentation [9], and the use of other feature
descriptors, such as Speeded-up Robust Features (SURF)
[10], SIFT [5], [6], [7], and Histograms of Oriented Gradients
(HOG) [11].
All of these feature descriptors suffer from different

issues. For example, El-Gayar et al. [12] found that while
SIFT is invariant to illumination and affine transformations,
it suffers from being slow and providing poor performance
with scaling changes. In the same study, it was found that
while SURF is faster than SIFT with similar performance,
it is unstable when exposed to rotational or illumination
changes. In contrast, deep learning techniques provide an
end-to-end solution where features are extracted, and objects
are localized within the same pipeline. Objects that are
under various lighting conditions partially occluded, and
generally within different context features can be learned and
processed in a fraction of a second on today’s hardware.
‘‘Neocognitron’’ [13] is one of the first variations of what
are today known as Convolutional Neural Networks (CNNs),
but it falls short without any sort of supervised learning
algorithm. It was not until LeCun et al. [14], [15] showed that
backpropagation [16] could be used to train CNNs. CNNs
fell out of style shortly after the 1990s as much interest
had pivoted towards Support Vector Machines (SVMs).
It wasn’t until the conception of the ImageNet [17] database,
an image database with 3.2 million labeled images, that
CNNs started to regain traction. CNNs are a type of deep
neural network architected in a way that is optimal for the
analysis of any kind of data with a grid-like topology [18].
AlexNet [19] sparked a significant amount of attention
towards the application of deep learning for computer vision
by providing a model capable of accurate classification
within the massive ImageNet dataset, which at the time
of its creation consisted of 3.2 million labeled images and
has since grown to 14.2 million labeled images at the
time of writing this paper. AlexNet showed that CNNs are
capable of learning and distinguishing between thousands of
classes using supervised learning (training the model on the
annotated dataset that contains the image and its respective
classification ground truth) and back-propagation. It should
be noted that feature selection is completely autonomous in
CNNs; all that is provided is the annotated dataset during
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the learning phase, and the CNN is completely responsible
for all feature processing outside of the pre-processing stage
and learning. Object detection models have since leveraged
CNNs to generate compact feature embeddings of an image,
often using a CNN trained on the ImageNet database. And
then further training separate, but connected, CNNs on
Localization, Classification, and Segmentation tasks.

Since the early 2000s, there have been a plethora of
surveys on the object detection landscape. However, it has
not been until recently that deep learning techniques began
to accumulate a phenomenal amount of interest from the
research community. As such, in the last decade, a large
number of surveys have been published focusing primarily
on object detection based on deep learning [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. Liu et al. [20]
and Jiao et al. [22] provide a very in-depth review of deep
learning for generic object detection, covering milestone
models such as R-CNN [31], Fast R-CNN [32], Faster R-
CNN [33], YOLO [34], [35], [36], [37], [38], [39], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], SSD [49], etc.
Their study provides a very in-depth comparison of various

object detection models and backbone networks, includ-
ing the highlights of their contributions, their advantages,
disadvantages, and results on popular benchmarks such as
Microsoft COCO [1] and the PASCAL Visual Object Classes
(VOC) [50]. They also cover the class-imbalance problem
in object detection and discuss various applications where
object detection is applied. Masita et al. [21] review the
results of multiple research indicating that the use of
deep learning in object detection far outperforms traditional
approaches that focus on manually created and learned
characteristics. Microsoft COCO [1] is known for common
objects in Context that use per-instance segmentations to
label objects, which helps with accurate object localization.
The dataset includes images of 91 different classes that
are claimed to be easily recognized by a 4-year-old child.
The MS COCO benchmark was produced using unique user
interfaces for category recognition, instance spotting, and
instance segmentation, with a total of 2.5 million labeled
instances in 328k photos. The benchmark provides a thorough
statistical analysis by comparing the dataset to PASCAL,
ImageNet, and SUN. and presents baseline performance
analysis for segmentation detection and bounding box results.
The PASCAL Visual Object Classes (VOC) Challenge [50]
serves as a benchmark in the recognition and detection of
visual object categories, giving the communities of machine
learning and vision access to a common dataset of images and
annotations, as well as common evaluation methods. From
2005 to the present, the challenge and its related dataset have
been held up as the industry standard for object detection.
The study also describes the dataset and evaluation process
and examines some of the state-of-the-art approaches that
have been tested for classification and detection, determining
whether they are statistically distinct or not.

Sharma and Mir [25] review the relationship between
traditional approaches to object detection, HOG [11],

SIFT [5], [6], DPM [51], [52], etc., and deep learning-
based approaches. Similarly, [20] and [22] review backbone
architectures, commonly used datasets for benchmarking,
different proposal methods, and object detection applications.
Aziz et al. [26] provides a comprehensive survey of recent
advances in visual object detection with deep learning-based
object detection models [36], [37], [53] while also maintain-
ing the same pattern as previously discussed papers.

Xiao et al. [28] provides an empirical analysis of various
two- and one-stage detectors. The authors also go into
significant detail about the common loss functions used to
train object detection networks.

III. DEEP LEARNING-BASED OBJECT DETECTION
Methods for deep learning-based object detection usually fall
into two categories: region-based proposal (i.e., often referred
to as two-stage network) and regression/classification (i.e.
often referred to as one-stage networks). Efficient; In both
terms of accuracy and performance, object detection is
perhaps the most crucial necessity for the success of most
intelligent vision-based applications. The biggest advantage
of deep learning approaches to object detection is their
performance and ability to generalize, while also avoiding the
complexity of engineering features by hand that are difficult
to design and limited in their ability to be represented in a
way that a computer can practically understand.
Convolutional Networks:
Convolutional Neural Networks (CNNs) are the basis

for almost all state-of-the-art object detection/classification
algorithms. Designed to prosper (maybe change) when
workingwith a grid-like topology, most of the recent practical
computer vision applications involving object detection,
classification, and segmentation without the involvement of
CNNs.

Convolution is a mathematical operation on two functions
that produces a third function which describes how the shape
of one is modified by the other. Convolution is described by
Eq. 1

s(t) =

∫
x(a)w(t − a)da (1)

where in terminology relating to convolutional networks, the
function x is the input and the function w is the kernel;
s is the feature map. While t does not always represent a
variable within a time domain, in the case that it does, you
can think of convolution as a weighted average of the function
x(a) where a is some free variable. However, we are more
concerned with discretized convolution on multidimensional
array inputs; thus (1) is rewritten as:

S(i, j)z =

∑
m

∑
n

I (m, n)K (i− m, j− n) ≡ S(i, j)

=

∑
m

∑
n

I (i− m, j− n)K (m, n) (2)

Convolution uses three important ideas that help improve
the performance of CNNs. These ideas are sparse inter-
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FIGURE 1. Example of basic convolution in CNNs (adapted from [18]).

actions, parameter sharing, and equivariant representa-
tions [18]. This is opposite to regular DNNs, where each
output unit interacts with each input unit. The idea of sparse
connectivity (interactions) is that instead of using an entire
feature set as a densely connected input space, we would
convolve over a subset of that feature set with a kernel
that is smaller than the input. This allows us to store fewer
parameters, thus resulting in better use of memory and
it actually increases the statistical efficiency of the model
inference [18]. A visual representation of the convolution can
be found in Fig. 1.

Parameter sharing involves using the same parameter for
more than one node in the network. In a normal deep neural
network, each individual weight is used only once when
computing the output of an individual layer. The sharing
of parameters in convolutional neural networks means that
instead of learning a separate set of parameters for every
individual location in an image, only one set is needed. This
also does not affect the run time, but significantly reduces
memory requirements. Two visual examples of parameter
sharing can be found in Figures 2-3.

Equivariance is a relatively simple concept. We say that a
function f (x) is equivarient to a function g(x) if f (g(x)) =

g(f (x)). Therefore, the output changes when the input
changes.

The final core step to CNN is pooling. A pooling function
replaces the output of the network at a certain node with
a summary statistic of the nearby outputs [18]. One of the
most popular methods of pooling is max pooling. The max
clustering reports the maximum output within a rectangular
neighborhood [18]. The main advantage of pooling is that
it helps make the representation image roughly invariant to
small translations in the input image. This means that if we
were to nudge the image a small amount to the left or the
right, the values of most of the pooled outputs would remain
the same. An example of max pooling can be seen in Fig. 4

FIGURE 2. The concept of parameter sharing, as you can see when a
convolution is performed with a kernel of width 3, only three outputs are
affected by one input. This is opposite to the bottom image where
convolution isn’t performed and all outputs are affected by a single
input [18].

FIGURE 3. An example of the receptive field as a convolutional neural
network grows deeper. This displays that even though direct connections
in CNNs are sparse, nodes in deeper layers can be indirectly connected to
all or most of the input image. Found in [18].

FIGURE 4. An example of how a max-pooling layer would work [18].

In a convolutional network, these steps are generally
grouped together into what is called a convolutional layer;
with the network itself consisting of thousands of these
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FIGURE 5. An example of a generic convolutional network layer [18].

compositions. An example of a generic convolutional net-
work layer can be seen in Fig. 5.

IV. DEEP LEARNING BASED OBJECT DETECTORS
A. ANCHOR BASED VS ANCHOR FREE DETECTION
This section will discuss anchor-based object detection vs
Anchor Free Detection. Some of the popular Ancho based
object detection techniques are YOLOv2 [35], YOLOv3
[36], YOLOv4 [37], Scaled-YOLOv4 [38], YOLOv5 [40],
PP-YOLO [41], PP-YOLOv2 [42], YOLOR [39], Faster
R-CNN [33], FCN [54], RetinaNet [55], SSD [49], Effi-
cientDet [53], etc. Some of the popular Anchor Free
Detection techniques are YOLOv1 [34], YOLOX [43],
PP-YOLOE [44], YOLOv6 [45], YOLOv7 [46], DAMO-
YOLO [47], YOLOv8 [48], CornerNet [33], FCOS [56] etc.

1) ANCHOR BASED DETECTION
Anchor-based object detection was proposed in [33] with
the introduction of regional proposal networks. A Region
Proposal Network (RPN) takes as input a feature map
from a subsequent convolutional layer and outputs several
object proposals [33]. In [33] these object proposals were
rectangular; each with their own respective objectness score.
The objectness score of an object proposal estimates the
association between the object proposals class, where there
are two categories, object and non-object. This objectness
score estimates whether the image segment associated with
the object proposal contains a valid object as opposed to the
segment belonging to the background class. However, this
introduces a class imbalance problem within the detection
pipeline as the total number of object proposals containing
the background class significantly outnumber those that do
not. More information on this is available in [57].
In [33], the authors implemented the RPN as a single

convolutional layer and an intermediate fully connected
layer that feeds into two fully connected layers. Where

the convolutional layer extracted features relevant to the
generation of object proposals, the two fully connected layers
handled box classification and regression, respectively [33].
A key component of RPNs is reference boxes, or what
we often refer to in the literature as anchor boxes (or
anchors). In the most basic sense, anchor boxes help the
RPN produce more precise object proposals. Every object
proposal produced is parameterized relative to several anchor
boxes, where the anchor boxes themselves are specifically
predetermined in advance at different scales and aspect ratios
tailored for generic object detection.

2) ANCHOR FREE DETECTION
Anchor-free object detection does not rely on anchor boxes
as reference points for regressing bounding boxes and
instead uses alternative methods for learning a model to
produce accurate and robust detections. FCOS [56] treated
the problem as a per-pixel detection problem, where every
individual pixel is responsible for detecting an object.
To suppress low-quality bounding boxes, a ‘‘centerness’’
branch was introduced, which was tasked with regressing an
estimate for how close to the ground truth center the pixel
is. YOLOv1 [35] divided an image into a S × S grid, each
grid is responsible for regressing B(= 2) bounding box pre-
dictions, confidences for the boxes, and C class probabilities.
CenterNet and CornerNet [58] focus on keypoint detection
to regress bounding boxes for objects as shown in. Instead
of using anchor boxes as references, CornerNet regresses the
corners (pair of keypoints) that encapsulate objects whereas
CenterNet regresses the center-points of objects and builds
the bounding box around them using basic transformations.
In this section, we will discuss established object detectors in
research, explaining their architecture and how they function.

B. TWO-STAGE DETECTORS
1) R-CNN
Region-based Convolutional Neural Network (R-CNN), is a
pioneering approach in object detection that integrates the
strengths of both region proposal algorithms and convolu-
tional neural networks. The primary workflow of R-CNN
begins by generating potential bounding box proposals for
objects in an image using a region proposal algorithm. Each
of these proposals is then resized to a fixed dimension and
passed through a pre-trained CNN, typically designed for
image classification, to extract feature vectors. Following
feature extraction, these vectors are fed into a set of classi-
fiers, usually support vector machines (SVMs), to determine
the class of the object within each region. Additionally,
a regression model refines the bounding box coordinates
to better fit the object. While R-CNN achieved significant
improvements in accuracy compared to previous object
detection methods, it was computationally intensive due to
the need to process multiple region proposals independently.
This drawback led to the development of faster variants like
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Fast R-CNN and Faster R-CNN, which enhanced both speed
and accuracy.

2) FAST R-CNN AND FASTER R-CNN
One of the first ‘‘real-time’’ networks was Fast R-CNN [32].
The detection network could achieve inference rates of
0.3 seconds per picture at the time Fast R-CNN was
published. Object detectors that use region-based detection,
such as R-CNN [31], performed better than any other model
to date. The basic concept is to suggest various zones of
interest throughout the image and then search for items inside
these regions. Fast R-CNN focuses on the latter, creating a
Region of Interest (RoI) layer that analyzes possible regions
of interest and detects objects inside them.

The model starts the object proposal process with an image
and possible regions of interest as inputs. The image’s feature
map is retrieved initially by sending it via the backbone
network until the fully connected and classification layers
are reached. Following that, the regions of interest are
extracted from the full image’s feature map, resulting in
multiple feature maps, each pertaining to a distinct region.
Every extracted region’s feature map is subjected to a max
pooling operation, after which the feature maps are shrunk
to fixed-length feature vectors. These new feature vectors are
smaller and easier to examine while yet preserving significant
regional characteristics. Where the first layer classifies the
object within the region, the second regresses the bounding
box coordinates.

Faster R-CNN improves on Fast R-CNN by incorporating
a CNN-based region proposal network (RPN) for region
proposal prediction. The Fast R-CNN architecture [32] uses
these region suggestions to generate class probabilities and
bounding boxes. The RPN creates a collection of RoIs from
a feature map generated by a neural layer, each with its
own ‘‘objectness’’ score. The chance that a RoI includes
an object is estimated by its objectness score. The model
initially propagates an image through the backbone network,
generating a feature map from which the RPN generates
region suggestions. A sliding window then moves across said
feature map, extracting the feature and transforming them
into a fixed length feature vector.

The faster R-CNN then passes the feature vector to two
separate fully connected layers. The first layer regresses the
bounding box coordinates, while the second classifies the
objects included inside the proposed region. An anchoring
operation is performed for each window of the original
feature map throughout this procedure. Because the RPN’s
output is region recommendations rather than detections,
the output areas of interest are utilised as input for the
Fast R-CNN model, which conducts object detection and
classification.

3) MASK R-CNN*
Mask R-CNN [59], an extension of Faster R-CNN, was
designed, for example, for segmentation tasks. In computer
vision, the goal of a segmentation task is to produce a

FIGURE 6. Mask-RCNN’s model is divided into a detection branch and a
segmentation branch.

segmentation mask in which each pixel belongs to a specific
class.

Consider a picture of a cat standing on grass; each pixel
may be classified as cat or grass. Pixels belonging to the cat
class would have a value of 0 in the segmentation maps, but
pixels belonging to the grass class would have a value of
1. The term ‘‘instance segmentation’’ refers to segmenting
particular instances within an image rather than the whole
image. Mask R-CNN does this by detecting objects and
segmenting the image within each detection box.

The architecture of Faster R-CNN, examined in the
previous section, is adopted in Mask R-CNN. As highlighted
in Fig. 6, the RoI layer extracts the feature map of every
proposed region of interest within the image using a ResNet
backbone. They send the feature maps to a fully connected
layer, which classifies them and regresses their bounding
box coordinates. The main distinction in this model is
that it conducts segmentation in addition to bounding-box
regression through a second, fully convolutional branch.
Extracted RoI feature maps are sent into an FCN. As a
result, the final output includes the bounding box of the
detected item, its categorization, and the mask inside the
bounding box. With the inclusion of the mask, Mask R-CNN
becomes an all-around framework capable of performing
instance-level tasks like microscope image analysis.

C. ONE-STAGE DETECTORS
(REGRESSION/CLASSIFICATION)
1) SSD*
For general object recognition, the single shot multi-box
detector (SSD) [49] was one of the first to employ a pyramidal
feature hierarchy method. The fundamental concept behind
this technique is to take a backbone network1 and add extra
convolutional layers that are responsible for both bounding
box classification2 and regression using features obtained
from multiple feature maps of varying sizes. As a result, the
size of these additional layers gradually decreases, from high-
to low-resolution featuremaps, with higher-resolution feature
maps being responsible for identifying smaller items and

1VGG-16 [60] is used in the paper, however, any backbone network is
feasible, as the approach is agnostic to the backbone architecture used.

2Classification based on the training data being used - not the objectness.
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lower-resolution feature maps for detecting larger objects.
Each cell in the feature map containing anchor boxes k has
been chosen to serve as input for the regression/classification
layer. To illustrate, a feature map of size 38× 38 would have
anchor boxes 38 × 38 × k in total.3 In [49] 8732 anchor-box
based detections are produced per class in total.

2) YOLOV1 *
You Only Look Once (YOLO) is a class of object detectors
first introduced by Redmon et al. [34] in 2016. The main
design philosophy of YOLO is to divide an input into a
grid and perform the detection task within these grid spaces.
This allows the model to forfeit the use of a region proposal
network, unlike previous object detectors, which leads to
notably higher performance speeds. These real-time rates are
accomplished by dividing a picture into a two-dimensional
grid with a hyperparameter that determines the grid size
(typically 7×7). Every grid cell has a predetermined number
of bounding boxes and confidence scores, which denotes
the likelihood of a grid cell containing an item and the
intersection over union (IoU) of the ground-truth box. Every
bounding box has five regressions: the bounding box’s center
coordinates, width and height, and confidence. The class
probability map, which allocates a set of class probabilities
to each grid cell, is used to determine the bounding box class.
The class with the highest class-specific confidence score is
often chosen.

3) YOLO9000 *
For YOLOv2 [35] the authors proposed a novel approach
to simultaneously train joint classification and detection
models. They used the COCO data set to learn the bounding
box coordinates and the ImageNet data set to expand the
categories for detection. During training, both data sets were
combined, so the detection network was backpropagated with
detection training images, and the classification part of the
architecture was backpropagated with classification training
images. This yielded a YOLO model capable of detecting
more than 9000 categories, hence YOLOV2 is also named
YOLO9000.

4) YOLOV3 *
As with all object detectors, YOLOv3 [36] needs a backbone
to obtain a feature map of the input image. Unlike other
models, however, YOLOv3 continues to use the DarkNet
architecture, as it presents performance consistent with
popular models often employed for feature extraction, but
with fewer floating-point operations. Multi-scale object
detection is another important feature of YOLOv3. They
utilized the last three stages of the DarkNet53 backbone for
predictions instead of the feature map retrieved after the
final convolutional process. Using numerous outputs from

3Note that the number of channels does not impact the number of anchor
boxes.. It solely relies on a predetermined number of anchor boxes and the
W × H of the feature map.

different stages improves detections since larger items are
easier to identify later in the process, while smaller objects
are better identified early. They, like Faster R-CNN, forecast
anchor boxes for the extracted feature maps, preserving the
boxes with the highest confidence ratings. Multiple bounding
boxes can be regressed for a single item, which is a problem.
To deal with this, all predicted boxes are sorted by confidence,
and the IoU between the box with the greatest confidence
score and the rest of the bounding boxes is calculated. The
other bounding box is discarded if the IoU exceeds a certain
threshold. This process is called non-maximum suppression.

5) YOLOV4 *
YOLOv4 [37] uses the same anchor-based detection as
YOLOv3 and focuses on optimizing other parts of the
model. YOLOv4 integrates CSPNet withDarknet53 for a new
CSPDarknet53 backbone, adding spatial pyramid pooling
(SPP), a path aggregation network (PAN), and a modified
spatial attention module (SAM). The SPP module [61],
based on spatial pyramid matching [62], takes feature maps
from a convolutional layer as input and applies a pooling
operator at various spatial sizes. These pooled feature maps
are concatenated and used as input for the later layers
in the model. This operation has been shown to improve
the precision of CNN models. The training process is
enhanced by the introduction of new data enhancement
approaches. When picture modifications are applied, data
augmentation helps to expand and diversify the training data
set. Simple augmentation techniques, such as flipping and
rotating the image, are utilized. Furthermore, mosaic and
Self-Adversarial Training (SAT) are introduced in YOLOv4.
Mosaic augmentation combines four random images from the
dataset into a single new image, allowing the objects to be
seen in diverse contexts and therefore improving the model’s
performance. SAT augmentation is divided into two stages:
In the first, the neural network alters the picture itself rather
than weights, and in the second, the network learns this new
alteration.

6) YOLOR: YOU ONLY LEARN ONE REPRESENTATION *
YOLOR [39] is a unified network that can encode both
implicit and explicit knowledge to complete various tasks
through a general representation. This architecture achieves
better performance by adding kernel space alignment,
prediction refinement, and multi-task learning in the learning
process of implicit learning. A unified network is designed to
encode implicit knowledge and explicit knowledge together,
just as the human brain can learn knowledge from normal
learning as well as subconscious learning. The unified
network can accomplish multiple tasks simultaneously by
generating a unified representation. By incorporating implicit
knowledge into the neural network, the model achieves better
performance. The unified network provides the ability to
understand the physical meaning of multiple and different
tasks by utilizing implicit knowledge.
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7) SCALED-YOLOV4 *
CSP approach based YOLOv4 object detection neural
network scales both upwards and downwards. It can maintain
optimal speed and accuracy and can be applied to small- and
large-scale networks. A Network scaling approach modifies
not only the depth, width, resolution, but also the structure of
the neural network [38]. The YOLOv4-large model achieves
a speed of 16 FPS on the Tesla V100 GPU with 55.5%
AP (73.4% AP50) for the MS COCO dataset which is
state-of-the-art. With test time augmentation YOLOv4-large
model achieves 56.0% AP (73.3 AP50). The YOLOv4-tiny
model can achieve up to 22.0% AP (42.0% AP50) at a
speed of 443 FPS on GPU RTX 2080Ti. YOLOv4-tiny
can achieve 1774 FPS by using TensorRT, batch size =

4 and FP16-precision. YOLOv4 is redesigned to a new
architecture called YOLOv4-CSP. Scaled YOLOv4 is a
further modification of YOLOv4-CSP where the upper and
lower bounds of linear scaling models are provided. Factors
affecting small and large models are revisited and tuned
for model scaling in Scaled YOLOv4 to systematically
design YOLOv4-large and YOLOv4-tiny models. These
modifications allow Scaled YOLOv4 to reach the most
optimal combination of speed and accuracy.

8) YOLOV5 *
The backbone of the YOLOv5 [40] is a customized version
of CSPDarknet53, starting with a Stem comprising a strided
convolutional layer with a large window size aimed at
reducing memory usage and computational demands. Fol-
lowing this, a series of convolutional layers extract pertinent
features from the input image. Subsequently, the SPPF
(spatial pyramid pooling fast) layer, along with subsequent
convolution layers, process these features at various scales,
while upsample layers enhance the resolution of the feature
maps. The SPPF layer enhances computational efficiency by
pooling features of different scales into a fixed-size feature
map. Each convolutional operation is accompanied by batch
normalization (BN) and SiLU activation. The neck of the
model incorporates SPPF and a modified CSP-PAN, while
the head structure resembles that of YOLOv3. In YOLOv5,
numerous augmentations are employed, including Mosaic,
copy paste, random affine, MixUp, HSV augmentation,
random horizontal flip, alongside other augmentations from
the albumentations package. Additionally, improvements
have been made to grid sensitivity to ensure stability against
runaway gradients.

9) PP-YOLO *
PP-YOLO [41] (abbreviated PaddlePaddle-YOLO) was a
paper released by Baidu researchers in July 2020. At the
time, PP-YOLO achieved better results than YOLOv4 with
an arguably more simplistic architecture design. The authors
replaced the common Darknet53 backbone that was used in
the two previous (and most popular) YOLO iterations (v3
and v4, respectively) with a modified ResNet50 backbone.

This modified ResNet50 backbone; ResNet50-vd-dcn [41],
is based on the ResNet-50-D [63] architecture and training
scheme with the added modification of having all 3 ×

3 convolution layers in the last stage (C5) of the network
replaced with deformable convolution layers [64]. From the
backbone, features are then forwarded to a generic feature
pyramid network (FPN), and finally predictions are made
using the YOLOv3 head. Aside from exemplifying the
feasibility of using a ResNet-based backbone with a FPN
neck and YOLOv3 head, PP-Yolo also uses a significant
amount of what the authors call ‘‘tricks’’. These ‘‘tricks’’
consist of data augmentation techniques for training and
modifications (or ‘‘injections’’ as stated in the paper) to layers
of the neck and head of the model.

10) YOLOX *
YOLOX [43] builds uponYOLOV3 by incorporating five sig-
nificant enhancements: adopting an anchor-free architecture,
utilizing multi positives, implementing a decoupled head,
refining label assignment techniques, and integrating robust
augmentations. Achieving state-of-the-art performance in
2021, YOLOX attains a remarkable balance between speed
and accuracy, delivering 50.1% AP at 68.9% FPS on Tesla
V100. Its key alterations compared to YOLOv3 include
transitioning to an anchor-free approach, employing center
sampling for multi positives, implementing a decoupled
head for improved task alignment, introducing a simplified
label assignment method inspired by the Optimal Transport
problem, and incorporating potent augmentations likeMixUP
and Mosaic. These modifications collectively lead to signif-
icant improvements in average precision (AP) compared to
YOLOv3.

11) PP-YOLOE *
PP-YOLOE [44] opts not to utilize operators such as
deformable convolution and matrix NMS to ensure com-
patibility across various hardware platforms. Additionally,
it boasts the capability to seamlessly adapt to various hard-
ware configurations with differing computing capabilities,
enhancing its versatility for widespread deployment. The
overall architecture of PP-YOLOv2 comprises a ResNet50-
vd backbone with deformable convolution, a PAN neck
featuring SPP layer and DropBlock, and a lightweight
IoU aware head. In PP-YOLOv2, the ReLU activation
function is used in the backbone, while the neck utilizes the
mish activation function. Similar to YOLOv3, PP-YOLOv2
assigns only one anchor box for each ground truth object.
Furthermore, in addition to classification loss, regression
loss, and objectness loss, PP-YOLOv2 incorporates IoU loss
and IoU aware loss to enhance its performance.

12) YOLOV6 *
The architecture of YOLOv6 [45] comprises an efficient
backbone utilizing RepVGG or CSPStackRep blocks, a PAN
topology neck, and a decoupled head using a hybrid
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channel strategy. Additionally, the paper introduces advanced
quantization methods like post-training quantization and
channel-wise distillation, leading to faster and more precise
detectors. YOLOv6 demonstrates superior performance com-
pared to previous cutting-edge models in terms of accuracy
and speed, including YOLOv5, YOLOX, and PP-YOLOE.
A novel backbone named EfficientRep, based on RepVGG,
is introduced, employing increased parallelism compared to
prior YOLO backbones. The neck utilizes PAN enhanced
with RepBlocks or CSPStackRep Blocks for larger models,
while an efficient decoupled head is developed following the
approach of YOLOX. Label assignment is facilitated using
the Task Alignment Learning approach from TOOD, with
new classification and regression losses implemented, includ-
ing a classification VariFocal loss and SIoU/GIoU regression
loss. A self-distillation strategy is used for regression and
classification tasks, along with a detection quantization
scheme utilizing RepOptimizer and channel-wise distillation,
contributing to the achievement of a faster detector.

13) YOLOV7 *
YOLOv7 [46] introduced a set of architectural adjustments
and enhancements known as ‘‘bag-of-freebies,’’ which
improved accuracy without sacrificing inference speed, albeit
leading to longer training times. One notable enhancement
is the Extended Efficient Layer Aggregation Network (E-
ELAN), designed to facilitate more efficient learning in deep
models by effectivelymanaging gradient paths. YOLOv7 also
introduced a concatenation-based model scaling approach,
ensuring proportional scaling of block depth and width to
maintain optimal model structure. Additionally, YOLOv7
incorporated techniques such as Planned Re-parameterized
Convolution and refined label assignment strategies to further
optimize training. Furthermore, batch normalization in conv-
bn-activation was implemented to streamline the inference
process.

14) DAMO-YOLO *
Utilizing the MAE-NAS technique, DAMO-YOLO [47]
autonomously identifies efficient architectures. Drawing
inspiration from GiraffeDet, CSPNet, and ELAN, AMO-
YOLO integrates an Efficient-RepGFPN neck tailored for
real-time performance. Acknowledging the effectiveness of
a large neck paired with a small head, AMO-YOLO adopts
the ZeroHead strategy, retaining just one linear layer for
classification and regression tasks. To tackle the challenge
of misalignment between classification and regression in
dynamic label assignment, AMO-YOLO introduces the
AlignOTA approach. This method incorporates focal loss into
classification costs and utilizes IoU metrics to assign soft
labels, ensuring the selection of aligned samples for each
target and resolving the issue holistically.

15) YOLOV8 *
YOLOv8 [48] is built upon YOLOv5’s backbone introducing
modifications in CSPLayer, now called the C2f module.

This module improves detection accuracy by combining
high-level features with contextual information. Unlike its
predecessors, YOLOv8 adopts an anchor-free model with a
decoupled head, allowing independent processing of object-
ness, classification, and regression tasks, thus improving
overall accuracy. The objectness score activation function
in YOLOv8 utilizes the sigmoid function, representing the
likelihood of objects within bounding boxes, while softmax
function indicates class probabilities. Additionally, YOLOv8
integrates CIoU and DFL loss functions, enhancing object
detection performance, especially with smaller objects.

16) YOLO-NAS *
YOLO-NAS is designed for real-time edge-device appli-
cations, focusing on detecting small objects, improving
localization accuracy, and optimizing performance-per-
compute ratio. It offers an open-source framework for
research purposes. Key features include the introduction of
Quantization-aware modules (QSP and QCI) to minimize
accuracy loss during post-training quantization, automatic
architecture design facilitated by AutoNAC, and a hybrid
quantization method that selectively quantizes specific parts
of the model. It also adopts a pre-training regimen utiliz-
ing automatically labeled data, self-distillation, and large
datasets. The AutoNAC system assists users in identifying
optimal structures considering factors like data, hardware,
compilers, and quantization. Additionally, RepVGG blocks
are integrated into themodel architecture during theNAS pro-
cess, resulting in the creation of three architectures—YOLO-
NASS, YOLO-NASM, and YOLO-NASL—by adjusting the
depth and positions of QSP and QCI blocks.

17) EFFICIENTDET *
EfficientDet [53] aims to tackle two challenges in the
object detection landscape, namely efficient multiscale
feature fusion and model scaling. The proposed solutions
to these two challenges introduced bidirectional cross-scale
connections and weighted feature fusion (BiFPN) and joint
resolution/depth/width scaling for object detectors. BiFPN
took the ideas proposed in [65] and [66] and improved upon
them. Concisely, these improvements included the removal
of feature layers with minimal contribution to the fusion
of features within the network, skip connections from input
features (P4 to P6) to the bottom-up feature aggregation path
(skipping the intermediate top-down layer), and treating each
top-down bottom-up path as a single layer within a larger
feature network.

The model also learns a weighting mechanism which lets
the network determine the contribution an input (feature,
channel, or pixel) has on the final output feature map(s).
EfficientDet introduced this after realizing that certain fea-
tures at specific resolutions can contribute more discernible
information than others with respect to the output feature
map(s).
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Compound scaling is applied to the backbone, neck
(BiFPN), and head (classification and regression) networks.
The depth (number of layers), width (number of channels)
and resolution (size of the input image) are scaled according
to a predetermined coefficient φ. The backbone network is
unchanged from [67], that is, EfficientNet-B0 through B6 is
used forφ ∈ {0, 1, . . . , 6}. The depth of the BiFPN network is
determined by 3+φ, the width of each layer within the BiFPN
network was chosen to be 1.35φ

· 64, where 1.35 was chosen
through the grid search as the optimal scaling factor. Finally,
the input image resolution is scaled according to 512+φ ·128.

18) CORNERNET
CornerNet [58] approached the object detection problem
by modeling the encapsulation of an object as a pair of
keypoints4 from which a bounding box would then be
constructed. Each pair of keypoints represents the top-left
and bottom-right corners of a bounding box containing an
object. These key points are encoded using a heat map,
H ∈ RH×W×C , where C is the number of channels (classes).
So each index Hi ∈ RH×W , i = 1, . . . ,C , encodes a heat
map of estimated locations for which a keypoint exists for
class iwhenmapped back to the original input. Indices within
the heat map will be highly active if they are estimated to
contain a keypoint. Interestingly, heat maps for the top-left
and bottom-right corners are learned independently of each
other. Since multiple top-left and bottom-right corners can
exist for the same class, a method was needed so associations
could be made for pairs of keypoints that belong together.

In order to make these associations, the model was learned
to regress an embedding for each individual keypoint [58].
If two key points belong together, the respective embeddings
for these two individual key points should have a small
distance between the two of them. Conversely, key points that
don’t belong together should have a considerable distance
between their respective embeddings.

When attempting to estimate corners for an object, a prob-
lem arises in layers of themodel with lower resolution (higher
stride relative to the input image). The local information
diminishes in these lower-resolution layers. Thus, it becomes
harder to learn the location of the receptive field relative to
an object. Imagine looking at an image through a pinhole
without having visualized the entire image. It would be
(virtually) impossible to determine exactly where within the
image you are looking. One can imagine how this might lead
to a problem, especially when your goal is to determine a
relative location that will generate a bounding box of best
fit; like for a person whose top-left corner would be a slight
offset from the 90-degree angle of their head and right/left
shoulder. Which, when looking at in 2D space through a
pinhole, would inherently look empty - or void of any object.
More formally, the lack of local information prevents the
model from rationalizing whether a given receptive field is
supposed to contain a corner.

4Synonymous with top-left and bottom-right corners.

As a result, as we move deeper in the model we capture
more semantic information at the loss of fine-grained spatial
information important for the localization of an object -
which is especially important when attempting to predict the
corners of objects. In order to overcome this, a pooling layer
called ‘‘corner pooling’’ [58] is introduced. Corner pooling
essentially applies horizontal and vertical max pooling.
Where the horizontal max pooling pools from right to left
across the entire input space, the vertical max pooling pools
from bottom to top. This allows for the model to receive
in some measure more global information about the relative
location of an object for the current receptive field.

CornerNet also regresses offsets to rectify the loss of
precision that can be incurred when mapping the predicted
keypoint heat maps back to the original image. This precision
loss results from the downsampling of the input space
through convolution. As a result, offsets are predicted for
each keypoint prior to mapping back to the original image.
These offsets are regressed in parallel to the heat maps and
embeddings.

19) FCOS
Fully Convolutional One-Stage Object Detection [56]
(FCOS) jettisoned the orthodox approach of using anchor
boxes for One-Stage object detection frameworks by treating
the problem as a per-pixel regression. That is, every pixel
(x, y) on a given feature map [65] Pi, i = 3, . . . , 7,
is responsible for regressing a bounding box and classifying
an object type. Every pixel that falls into a ground truth
bounding box is labeled as a positive sample and assigned the
respective object class for the given ground truth box; along
with the class, a four-dimensional target vector is regressed,
where each index of the target vector represents an offset
from the given pixel to the sides of the ground truth bounding
box. The loss function is the sum of focal loss [55] for class
predictions and IoU loss for offset regressions.

The model makes use of an FPN for multi-scale pre-
dictions to minimize the number of pixels that intersect
multiple ground-truth boxes while also improving the best
possible recall of the model as a whole. When it comes
to reducing the overlap between ground-truth boxes and
individual pixels, each level in the FPN is assigned a
hyper-parameter representing the maximum distance that
pixels within that feature level are required to regress. If an
offset regression for a given pixel satisfies the given threshold
max (l, t, r, b) > mi or max (l, t, r, b) < mi−1 where, mi =

[0, 64, 128, 256, 512, ∞], then said pixels offset regression
is ignored (the pixel is set to a negative sample). E.g. Feature
map P6 would have the bounds [256, 512].
As in [55] the head of the network is shared across all

feature levels.5 One problem with regressing offsets from
every single pixel within a ground-truth bound box is that
pixels further from the centre of the object produce deplorable

5That is, the same convolutional subnet is applied iteratively to each level
within the feature pyramid network.
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offset regressions. In order to mitigate this, the authors
introduced a single convolutional branch in parallel with the
classification branch of the network6 with the main goal
of predicting the centre-ness of a pixel location relative to
the ground-truth bounding box. The centre-ness of a pixel
cex,y ∈ [0, 1] is trained with binary cross entropy loss and is
used as a weighting factor (centre-ness× classification score)
when ranking the final bounding boxes that are to be chosen
(i.e., bounding boxes with a low centre-ness score weeded out
through NMS.

20) RETINANET *
RetinaNet [55] (published in 2017) is a fully convolutional
one-stage network. RetinaNet has a relatively simple archi-
tecture, using a ResNet-X-FPN7 backbone and a parallel
classification and box regression head. The classification and
box regression heads are small fully convolutional networks
(see Fig. 7) responsible for predicting the probability of
the type of object and bounding box location at each
spatial position. The regression of the location of the
bounding box uses the concept of anchors, which are
predetermined (outside of the forward pass of the network)
bounding boxes at various locations with varying sizes, the
aforementioned spatial positions are merely features at each
level of the feature pyramid network.8 However, while the
model itself was not novel and relatively simplistic, the
loss function introduced was. This loss function, coined
Focal Loss, aimed to remedy the foreground and background
class imbalance problem (for a more detailed description
refer to [57]). Where the focal loss function FL (pt) =

− (1 − pt)γ log (pt) assigned more weight to hard examples
(negative examples, the classifier fails). Here pt represents the
estimated probability of the one-hot ground truth label. When
γ = 0 the loss function degrades to generic cross-entropy
loss; note too that as pt → 0 the loss function converges to
generic cross-entropy loss and when pt = 0 again degrades
to generic cross-entropy loss.

21) TRANSFORMERS
Transformer networks, introduced in [69] described a new,
groundbreaking architecture for sequence transduction tasks;
the transformation of input sequences to output sequences.
Sequence transduction tasks were often highlighted within
the natural language processing (NLP) domain. Finding
use within text-to-speech, speech recognition, and machine
translation tasks to name a few. Before the introduction of
Transformer networks, all SOTA sequence transduction tasks
were presided over by recurrent neural networks (RNNs).

6Note: the architecture of the network is identical to that in [55]. Also,
when we say in parallel, what is meant is that the two branches share the
same input features.

7The RetinaNet paper, Focal Loss for Dense Object Detection, doesn’t
claim a specific depth for the ResNet model used in conjunction with the
feature pyramid network. However, common implementations use ResNet-
50 and ResNet-101.

8Refer to Page 8 of [68] for a more detailed description of what is meant
by the spatial position.

FIGURE 7. Classification and Bounding Box Regression FCN heads used in
RetinaNet [55].

The authors of [69] noted that when focusing on these SOTA
sequence transduction models, a common pattern emerged;
encoder and decoder networks almost always used some
kind of attention mechanism [69]. Hence, [69] proposed to
eliminate the complexities of recurrences by removing them
altogether and rather focus on a network that was based solely
on an attentionmechanism for generating global relationships
between input and output sequences [69].

This Transformer network uses stacked self-attention
layers and pointwise fully connected layers for both the
encoder and decoder networks [69]. The attentionmechanism
employed is the Scaled Dot-Product Attention (Eq. 3) and
Multi-Head Attention (Eq. 4).

F (Q,K ,V ) = σ

(
QKT
√
dk

)
Vσ (xi) =

exi∑
j e
xj

(3)

G (Q,K ,V ) = Concat (h1, h2, . . . , hn) ·WO (4)

hi = F(Q ·WQ
i ,K ·WK

i ,V ·WV
i ) (5)

where W {Q,K ,V }

i are learned linear projection matrices with
WQ
i ∈ RN×dk and W {K ,V }

i ∈ RM×dk . Note that Q ∈ RN×dk ,
K ∈ RM×dk and V ∈ RM×dv , hence F(Q,K ,V ) ∈ Rdm×dv .
The dimensionsN ,M , dk , and dv are hyperparameters, where
M represents the number of elements to ‘‘attend’’ and N
represents the number of queries. In [69], N = M = 512,
and dk = dv = 64.

You can think of Eq. 3 as a weighted sum on all the
elements that the network considers, scaled by 1

√
dk

to
counteract the possible saturation of the SoftMax function.
And Eq. 4 as intermediate embeddings of the input and output
tokens.

Again, we reiterate that while this summary of the
Transformer network is believed to provide the reader with
enough knowledge to understand the following sections of the
paper, it is highly encouraged by the authors that the original
paper [69] is read in detail.

a: DETECTION TRANSFORMER
The DEtection TRansformer (DETR) [70] introduced an
incredibly straightforward end-to-end object detection frame-
work using transformers [69], capable of on-par performance
with the traditional Faster R-CNN framework [33]. Initially,
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a CNN backbone would slide across the input image,
extracting compact feature embeddings f ∈ RC×H×W . The
encoder then applies a 1 × 1 convolution to f , reducing the
C dimension of the feature embeddings to f0 ∈ Rd×H×W .
As the transformer architecture expects a sequential input,
f0 is collapsed into a single dimension of d × H × W .
When fed into the attention layer, these feature embeddings
are combined with fixed positional encodings, mitigating the
permutation-invariance of the transformer architecture, and
providing each attention layer with positional information of
the input feature embedding. The decoder takes as input the
output of the encoder as well as N input embeddings trans-
forming them in parallel at each decoding layer. Akin to the
encoder, the decoder is also permutation invariant. As such,
for the N input embeddings to produce different results,
they must be different. Hence, the N input embeddings
are learned positional encodings that are referred to in the
literature as object queries. These N object queries are added
to the output of the encoder and then transformed into output
embeddings, which are independently decoded into bounding
box coordinates and class labels using a feedforward network,
which predicts the normalized centre coordinates, height, and
width of the bounding box with respect to the input image,
and the class labels using a SoftMax function. This results in
N final predictions, where the literature refers to N = 100.
Note that it is of importance that N is significantly larger than
the typical number of objects within an image.

On top of the transformer encoder-decoder, DETR also
uses a set prediction loss function via bipartite matching
that forces unique matching between predicted and ground
truth boxes [70]. The loss function used to train the DETR
transformer encoder-decoder is defined by:

L(y, ŷ) =

N∑
k=1

[
− log(p̂σ̂ (k)(ck )) + 1{ck ̸=∅}Lbbox(bk , b̂σ̂ (k)

]

where y =
{
yk = (ck , bk ) : bk ∈ R4

}M
k=1 denotes the set ofM

ground truth objects and ŷ =
{
ŷk

}N
k=1 the set ofN predictions

made by the transformer encoder-decoder. Note that ck is
the target class label and can take the value of ∅, i.e., is a
background class, or no object. For a given prediction index
σ (k), p̂σ (k)(ck ) represents the probability of class ck and the
predicted bounding box is represented by b̂σ (k).
Since DETR approaches the training regime using bipartite

matching between y and ŷ, the lowest cost permutation
of N elements σ ∈ SN needs to be found to train the
transformer encoder-decoder. This lowest cost permutation
(optimal assignment) is labeled as σ̂ and defined by

σ̂ = argmin
σ∈SN

N∑
k=1

Lmatch(yk , ŷk )

=

N∑
k=1

−1{ck ̸=∅}p̂σ (k)(ck ) + 1{ck ̸=∅}Lbbox(bk , b̂σ (k))

which is a pair-wise matching cost between the ground truth
yk and a prediction with index σ (k) [70]. The Hungarian
algorithm is used in practice to compute this lowest cost
permutation. Lbbox is a weighted linear combination of the
ℓ1 and Liou = G-IoU loss, and is defined by

λiouLiou(bk , b̂σ (k)) + λL1||bk − b̂σ (k)||1

where the weights λiou, λL1 ∈ R are hyperparameters,
providing the ability to fine-tune which of two loss functions
is given more preference towards the overall loss.

b: PVT-{V1, V2}
The Pyramid Vision Transformer (PVT) [71], [72] extends
Vision Transformer (ViT) [73] for dense prediction tasks.
PVT constructs hierarchical feature maps, a structure that
is employed by most CNN backbones, using a Transformer
architecture. Doing so in a way that removes the requirements
for any sort of end-to-end convolution. Similar to the work
done in [73] the input image is treated as a sequence of
patches, as such, there is no need for any sort of convolution
to extract compact feature embeddings and reduce the
dimensionality of the input space.

Since the PVT uses a pyramid-like structure, each stage
consists of a similar architecture [71]; a patch embedding
layer and Transformer encoding layers. Initially, an input
image I ∈ RH×W×3 is divided into HW/42 patches. Each
patch Pi ∈ R4×4×3 is then flattened and linearly projected,

producing patch embeddings Pe ∈ R
HW
42

×C1 . These patch
embeddings are passed through a Transformer encoding layer
to produce the initial feature map F1 ∈ R

H
4 ×

W
4 ×C1 , this

process is repeated 3 more times, producing feature maps

F2, F3, &F4. Where Fi ∈ R
H

2i+1 ×
W

2i+1 ×Ci . With each feature
map reducing in size up to a stride of 32 relative to the
original input image by the final feature map F4. Every
transformer encoding stage within this pipeline follows a
similar architecture to that in [69], [70], and [73], the number
of encoder layers at each level, Li of the feature pyramid
grows linearly with the depth, that is, at the first layer L1 there
is a single encoder layer and at L4 there are 4 encoder
layers.

The PVT [71] does include an addition to the generic
multi-head attention mechanism found in [69], [70], and [73],
specifically, what the authors refer to as spatial-reduction
attention. Spatial-reduction attention (SRA) works similarly
to multi-head attention (MHA) but ‘‘spatially’’ reduces the
key (K) and value (V) inputs to the multi-head attention
mechanism. The intuition behind this addition is to reduce the
computation/memory overhead [71] of the model, a common
drawback of transformer-based architectures. SRA is defined
as follows [71]

SRA(Q,K ,V ) = Concat (h1, h2, . . . , hn) ·WO

hi = Attention
(
Q ·WQ

i , SR (K ) ·WK
i , SR (v) ·WV

i

)
SR(x) = Norm

(
Reshape (x,Ri) ·W S

)
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Reshape(x,Ri); x ∈ R(HiWi)×Ci 7→ x ∈ R
HiWi
R2i

×
(
R2i Ci

)
WQ
i ∈ RCi×dk , WO

∈ Rhi×dh , WK
i ,WV

i ∈ RCi×dh ,

and W S
∈ R

(
R2i ·Ci

)
×Ci

The dimension of each head, dh, is equal toCi/Ni, whereNi
is the number of Transformer encoder heads in the ith stage.
Ri denotes the reduction ratio of the attention layers at a given
stage i. Note that Attention(·) is equivalent to (3) and W S is
a linear projection that reduces the dimension of the input
sequence to Ci [71].
PVTv2 [72] improved the base architecture of PVTv1

[71] by adding overlapping patch embeddings, convolutional
feed-forward networks, and linear complexity attention
layers [72]. Significantly improve PVT in classification,
object detection, and segmentation tasks. The main issues
that arose from the original PVT architecture were three-fold.
First, when treating the input image as a series of independent
sequential patches, it is possible that you might lose some
pixel-wise correlations. This is not a problem in CNNs
because of the ‘‘growing receptive field’’, where deeper lay-
ersmay interact with larger portions of the input space, learn-
ing any sort of statistical significance thatmight exist between
pixels. To mitigate this lack of local continuity, PVTv2 uses
overlapping patch embeddings to tokenize images. Rather
than splitting an image into an SxS grid of equal-sized
patches, every patch embedding overlaps with neighboring
patches, with zero-padding applied tomaintain the same input
resolution. In PVTv2 this is done using convolution with zero
paddings [72].
The second issue with PVTv1 arises because fixed-sized

positional encoding is used to provide encoder layers with
positional information of the input feature embeddings.
To mitigate this issue, the fixed-size positional encodings in
the feedforward layer of the encoder are removed entirely and
zero-padded positional encodings via depth-wise convolution
are added in place.

The third and final issue with PVTv1 had to do with
computational complexity when processing high-resolution
inputs, limiting the performance of PVTv1 on most
vision-based tasks when compared to traditional CNN-
based approaches. To mitigate this problem, PVTv2 replaces
SRA with Linear Spatial Reduction Attention (L-SRA),
using an average pooling operation, to reduce the spatial
dimensionality of the input keys (K) and values (V). Where
originally the dimension of the input x was reduced to x ∈

R
HiWi
R2i

×Ci
, L-SRA reduces the dimension of the input x to

x ∈ RP2×Ci , where P is the pooling size of the L-SRA (7 by
default) [72].
Similar to [53], [67], [71], and [72] scale the model(s)

by modifying the hyper-parameters, a detailed table
regarding the values for the hyper-parameters in PVTv1
can be found on page 6 in [71] and for PVTv2 on
page 4 in [72].

c: SWIN-T
Swin Transformer [74] or Shifted-Window Transformer is a
hierarchical Transformer whose representation is computed
with shifted windows. Swin Transformer follows a similar
approach to PVT-{v1, v2}, but unlike the initial PVT
framework (v1); Swin Transformer operates locally and is
able tomodel the high correlations often foundwithin images.
That is, Swin Transformer also constructs hierarchical feature
maps using a Transformer architecture.

The Swin Transformer architecture works by first spitting
an input image I ∈ RH×W×3 into non-overlapping patches
Pi ∈ R4×4×3. A linear embedding, similar to the approach
in the PVT architecture, then projects this feature map to
an arbitrary dimension C . Swin Transformer blocks are then
applied to these patch tokens. The number of tokens is
reduced by ‘‘patch merging’’ layers as the network grows
deeper. In the Swin Transformer architecture, the first patch
merging layer concatenates the features of each group of 2×

2 neighbouring patches and then applies a linear feed-forward
layer to the concatenated features. This reduces the number
of tokens by a multiple of 2. Again, similar to PVT the ith

stage within the Swin Transformer architecture produces and

output shape OSi ∈ R
H

2i+1 ×
W

2i+1 ×Ci . Swin Transformer blocks
are then again applied to the downsampled features afterward
for feature transformation [74]. With multiple stages applied
in succession, this creates a hierarchical feature map structure
akin to traditional CNN-based architectures.

Swin Transformer blocks replace the traditional multi-
head self-attention mechanism utilized in [69], [70], and
[73] with an attention module that uses ‘‘shifted windows’’.
The use of global self-attention as is done in [69], [70],
and [73] leads to a quadratic complexity w.r.t the number
of tokens. This is an issue for high dimensionality input
spaces - a common experience when working within vision.
As such, the Swin Transformer architecture applies multi-
head self-attention to local M × M windows containing
non-overlapping image patches with a total dimensionality of
h × w. This allows for the Swin Transformer architecture to
computemulti-head self-attention in a linear-time complexity
whenM is fixed. To capture the high correlation found within
visual signals, successive layers within Swin Transformer
blocks shift the window partitioning, where a number of
the new window partitions overlap with regions contained
by preceding window partitions. Every successive layer
within a Swin Transformer block adopts a windowing
configuration that displaces the windows by

(
⌊
M
2 ⌋, ⌊M2 ⌋

)
from the initial feature map partitioned into

(
⌈
h
M ⌉, ⌈ w

M ⌉
)

windows of sizeM ×M . Note that, in a similar fashion to all
other approaches described, when computing self-attention,
a relative positional encoding is provided to the input of the
Attention(·) operation.

The base model of the Swin Transformer architecture
(Swin-B) contains the hyper-parameters of C = 128, and the
number of layers = {2, 2, 18, 2} for Stages 1-4 respectively.
Swin-{T, S} simply modifies these hyper-parameters. With

VOLUME 12, 2024 70037



K. Elgazzar et al.: Quantitative Analysis of Deep Learning-Based Object Detection Models

SWIN-S modifying C = 96 and SWIN-T modifying C =

96 and reducing the number of layers in the third stage from
18 to 6.

V. PERFORMANCE EVALUATION OF DEEP LEARNING
BASED OBJECT DETECTORS
We evaluate performance of the state-of-the-art deep learning
based object detection models and present a quantitative
analysis based on a set of evaluation metrics such as
average precision (AP) on different threshold levels of
Intersection over Union (IoU), different levels of scales and
Inference Speed. Comparison of YOLO-based deep learning
object detection models used for generic object detection is
presented in Table 1. Comparison of popular deep learning
models for generic object detection like Fast-R-CNN, Mask-
R-CNN, Cascade Mask R-CNN, RetinaNet, EfficientDet-
D, FCOS, FCOS-RT and DetectoRS is presented in Table 2.
Transformer-based deep learning object detection models
used for generic object detection are presented in Table 3.

A. AVERAGE PRECISION (AP)
Average Precision (AP) in object detection is a commonly and
widely used metric to evaluate the performance of an object
detection model. AP represents the accuracy of the model
in localizing and classifying objects within an image. For
each class, the model produces a set of detections along with
their confidence scores. These detections are sorted based
on their confidence scores. For each confidence threshold,
precision and recall are calculated. Precision is the ratio
of true positive detections to the total number of predicted
positives and recall is the ratio of true positive detections to
the total number of actual positives as shown in Equation (6)
and (7) respectively. AP provides a comprehensive measure
of how well an object detection model performs across
various confidence thresholds. Higher AP indicates better
performance.

Precision =
True Positive

True Positive+ False Positive
(6)

Recall =
True Positive

True Positive+ False Negative
(7)

We computes AP at different threshold of the Intersection
over Union (IoU) to evaluate the accuracy of object detection
and object localization. IoU is calculated by dividing the area
of intersection by the area of union as shown in Equation (8).

Recall =
Area of Overlap
Area of Union

(8)

It’s expressed as a ratio between 0 and 1. IoU helpsmeasure
the overlap between the predicted bounding box and the
ground truth bounding box. A high IoU indicates a strong
overlap, meaning that the predicted bounding box is close
to the ground truth, while a low IoU indicates poor overlap,
indicating a significant discrepancy between the predicted
and ground truth bounding boxes. In object detection tasks,
IoU is commonly used as a threshold to determine whether a

detected object is considered a true positive or a false positive.
For example, if the IoU between a predicted bounding box
and the ground truth bounding box exceeds a certain threshold
(often 0.5 or higher), the detection is considered a true
positive; otherwise, it’s considered a false positive. Here,
APbbox represents AP calculated with an IoU threshold of
1.00. Where as AP50 and AP75 measures the AP with an IoU
threshold of 0.50 and 0.75 respectively.

YOLOv8-640 has the highest APbbox 59.3% among
YOLO-based object detection models as shown in Table 1.
EfficientDet-D7X achieves the highest APbbox which is
54.3% among all other deep learning-based object detection
models other than YOLO-based models, as shown in Table 2.
Among transformers, Cascade Mask R-CNN with Backbone
Swin-S and Swin-B achieved the highest APbbox 51.9%
among transformer-based object detection models as shown
in Table 3.

B. AVERAGE PRECISION (AP) ACROSS SCALE
We also compare popular deep learning based object
detection models based on Average Precision (AP) across
scales to evaluate the performance of a model in detecting
objects of various sizes within an image. It’s particularly
relevant when objects in the dataset exhibit a wide range
of scales or sizes. In traditional object detection evaluation,
AP is computed using a fixed set of detection thresholds
and then averaged over all object categories. However, this
approach may not adequately capture the performance of a
model across different scales, as objects of different sizesmay
require different detection thresholds for accurate detection.
To address this, we use AP across different scales, which
involves evaluating the performance of the model separately
for objects of different sizes or scales. We consider subsets
of the dataset corresponding to three specific scales small,
medium and large objects to compute AP individually for
each subset represented by APS , APM and APL respectively.
By computing AP across scale, we get insights into how
well a model performs for objects of different sizes and
identify any potential biases or limitations in its scale-
invariance capabilities. This can be particularly important
for applications where objects may vary significantly in size
or where accurate detection of objects at different scales
is critical, such as in aerial imagery analysis or medical
imaging.

C. INFERENCE SPEED
Inference speed in object detection refers to the time it
takes for a trained model to process an input image and
produce predictions about the presence, location, and class of
objects within that image. It is a critical metric for assessing
the real-world applicability of object detection models,
especially in scenarios where timely detection is important,
such as in autonomous driving, surveillance, or real-time
video analysis. The inference speed is typically measured
in terms of frames per second (FPS) or inference time per
image as shown in Equation (9). A higher FPS or lower
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TABLE 1. A comparison of popular YOLO models used for generic object detection.
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TABLE 2. A comparison of popular models used for generic object detection.

inference time indicates faster processing and is generally
desirable, as it allows the model to analyze images more
quickly, enabling real-time or near-real-time applications.
Achieving a balance between inference speed and detection
accuracy is crucial when deploying object detection models
in real-world applications, as the optimal trade-off may vary
depending on the specific use case and requirements.

Inference Speed =
1

FPS
(9)

Several factors can influence the inference speed of
an object detection model. Model architecture: Different
object detection architectures have different computational
requirements and inference speeds. Some architectures are
optimized for faster inference at the expense of slightly
lower accuracy, while others prioritize accuracy over speed.
The choice of hardware can significantly impact inference
speed. GPUs are commonly used to accelerate deep learning

inference due to their parallel processing capabilities, but
specialized hardware may offer even greater speed improve-
ments. Techniques such as model quantization, pruning, and
architecture optimization can reduce the computational com-
plexity of a model, leading to faster inference times without
sacrificing accuracy. Processingmultiple images with a larger
batch size simultaneously can improve GPU utilization and
inference speed, but excessively large batch sizes may lead to
memory constraints and slower performance. Lowering the
input resolution of the images can speed up inference at the
cost of reduced spatial accuracy. On the contrary, higher input
resolutions may improve detection accuracy, but require more
computation and time.

Among all the YOLO-based deep learning models with
a APbbox equal or higher than 52.0%, YOLO-NAS-640
has the lowest inference speed which is 0.006 as shown
in Table 1. YOLOv8-640 stands in the second place after
YOLO-NAS-640 with an inference speed of 0.007. Although
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TABLE 3. A comparison of popular transformer-based models used for generic object detection.

TABLE 4. Recommended models for various tasks.

YOLOX-Tiny-416 and YOLOv6-N-640 have the lowest
inference speed among all the YOLO-based object detection
models, they have a low APbbox which are 32.8% and
35.9% respectively. Other than YOLO-based object detec-
tors, EfficientDet-D5 has an inference speed of 0.108 with
a APbbox that is equal or higher than 50.0% as shown in
Table 2. In this table, RetinaNet having a SpineNet-49S
backbone has the lowes inference speed which is 0.011 with

a APbbox of 39.2%. DETR with a ResNet-50-FPN backbone
has the lowest inference speed of 0.036 seconds with a
APbbox of 42.0% among all the popular transformer-based
object detection models as shown in Table 3. Cascade
Mask R-CNN with a backbone of PVTv2-b2-linear-FPN
has the lowest inference speed of 0.138 seconds among
transformers with a with a APbbox equal or greater
than 50.0%.
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D. TRADE-OFF BETWEEN ACCURACY AND INFERENCE
SPEED
Table 4 shows the recommended models for various
tasks. For convolutional network-based (C) object detection
models, YOLOv8-640 with YOLOv8CSPDarknet backbone
shows highest accuracy in terms of APbbox where as
the models YOLOX-Tiny-416 with backbone DarkNet53
and YOLOv6-N-640 with backbone EfficientRep shows
the lowest inference speed. We recommend YOLOv8-640
with YOLOv8CSPDarknet backbone as the best trade off
between the highest accuracy and lowest inference time for
convolutional network (C) based object detection models.
For transformer-based (T) object detection models, Cascade
Mask R-CNNwith Swin-S backbone shows highest accuracy
in terms of APbbox where as the models DETR with
backbone ResNet-50-FPN shows the lowest inference speed.
We recommend Deformable-DETR model with ResNet-50-
FPN backbone as the best trade-off between the highest
accuracy and the lowest inference time for transformer-based
(T) object detection models.

Balancing the trade-off between accuracy and inference
speed within object detectionmodels holds significant impor-
tance across various domains and applications. In scenarios
demanding real-time responsiveness, like autonomous driv-
ing or surveillance, swift detection of objects is paramount
for ensuring safety and making timely decisions. Here,
prioritizing high inference speed is crucial to rapidly process
environmental data. However, compromising accuracy for
speed could lead to critical errors such as missed detections
or false positives, ultimately compromising the reliability and
effectiveness of these systems.

In resource-constrained environments, such as edge
devices or IoT devices, optimizing inference speed becomes
imperative due to limited computational resources. While
sacrificing some accuracy might be acceptable to maintain
efficiency within these constraints, ensuring that the model
can operate effectively on the device is essential. For instance,
in mobile applications like augmented reality or image
recognition, users expect quick responses despite potential
minor decreases in accuracy.

Critical decision-making systems, such as medical diag-
nosis or security screening, prioritize accuracy due to the
significant consequences associated with object detection
errors. However, maintaining high inference speeds remains
crucial for timely diagnoses or responses. Striking a bal-
ance between accuracy and speed becomes paramount in
such applications to uphold reliability without sacrificing
performance.

In large-scale surveillance systems tasked with monitoring
vast areas or crowds, accurate object detection is essential
for identifying potential threats. Yet, processing extensive
amounts of video data in real-time necessitates high inference
speeds to promptly detect and respond to suspicious activi-
ties. Tailoring trade-offs between accuracy and speed to suit
the specific requirements of the surveillance environment is
therefore vital.

Even within the realm of machine learning research and
development, where experimentation and model iteration are
frequent, there exists a trade-off between training time and
model accuracy. Researchers often prioritize faster inference
speeds during prototyping and experimentation stages to
iterate rapidly on model architectures and hyperparameters.
Subsequently, more intensive training with a focus on
achieving higher accuracy may be pursued once promising
models are identified. Ultimately, finding the appropriate
balance between accuracy and inference speed is crucial to
ensuring optimal performance across diverse use cases and
applications.

VI. CONCLUSION
In this study, we discuss object detection powered by deep
learning. Leveraging the training capabilities of Convolu-
tional Neural Networks (CNNs), we can effectively identify
thousands of objects across diverse scenarios, including chal-
lenging lighting conditions and occlusions. The sheer volume
of training images available supports CNNs, enabling them to
achieve unmatched accuracy across a multitude of classes.

Modern object detectors that utilize CNNs excel in
pinpointing an object’s position within an image and
subsequently classifying it. We examine the architectures
of several leading object detection frameworks, highlighting
their unique contributions and how they differentiate from
other models. Our evaluation is based on tests conducted
using the COCO test-dev2017 dataset, where we compare
their performance in precision and inference speed.

This study provides an overview of deep learning-driven
object detectors, guiding computer vision practitioners in
choosing the appropriate tool for various applications.
Moreover, by contrasting the different architectures and their
results, we aim to inspire improvements in current designs or
even catalyze the creation of innovative models.
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