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ABSTRACT Facial action unit (AU) detection is a crucial step in the field of affective computing and
plays a crucial role in applications such as human-computer interaction, psychology, and social robotics.
Despite recent advances in the field, the problem of facial AU detection remains challenging, in particular in
real-world scenarios with diverse lighting conditions and head poses. This paper first presents a new, real-
istically challenging multi-modal and multi-view AU dataset, captured in a real-world vehicle environment.
Then we introduce a novel graph-based multi-modal multi-view fusion framework, tailored for challenging
environments such as those encountered in Advanced Driver-Assistance Systems (ADAS), which signifi-
cantly enhances AU detection performance under these difficult conditions. Our fusion model showcases
significant advancements over current single-modality methods, achieving a marked improvement in F1
scores across most AUs. Specifically, the fusion approach demonstrated a 9.0% improvement in overall
average F1 scores over the best-performing single-modality model. The results validate that integrating
multiple modalities and viewpoints substantially boosts the model’s robustness and accuracy under diverse
conditions, offering a meaningful advancement over the state-of-the-art.

INDEX TERMS Facial action unit detection, graph neural networks, multi-modal fusion, multi-view fusion,
deep neural networks.

I. INTRODUCTION
Human emotions understanding is becoming an increas-
ingly essential part of various real-world applications in
different areas such as human-machine interfaces [1], social
robotics [2], medical treatment [3], and advanced driver assis-
tance systems (ADAS) [4], [5]. Facial expression is one of the
most fundamental features to understand the human psycho-
logical state. To analyze facial expression, the Facial Action
Coding System (FACS) [6] is the most widely used method-
ology for objectively measuring facial muscle movements
associated with different emotions. FACS involves detecting
Facial Action Units (AUs) that correspond to specific facial
muscle movements, which can then be used to infer the
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emotional state of an individual. While physiological signals
like heart rate and skin conductance can provide valuable
insights into emotional arousal [7], [8], they may not capture
the full range of emotional expressions. AUs offer a more
direct and nuanced understanding of the facial muscle move-
ments associated with specific emotions. Furthermore, FAU
detection is non-invasive and can be performed using regular
camera sensors, making it more practical and scalable for
real-world applications like driver monitoring systems com-
pared to specialized physiological sensors. This foundational
understanding of AUs’ utility underscores their crucial role
in dynamic settings, where immediate and accurate interpre-
tation of emotional states is necessary.

AU detection in the wild is crucial for real-world appli-
cations such as ADAS because it can accurately recognize
the emotional state of drivers in complex and challenging
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driving conditions. By accurately detecting the emotional
state of drivers, ADAS systems can provide timely interven-
tions, such as alerting drivers who show signs of drowsiness
or distraction, thus enhancing safety on the roads. Besides
ADAS, AU detection also has broad relevance in various
scenarios including human-machine interfaces, healthcare,
and entertainment where challenging conditions may also
occur. Detecting AUs accurately from facial images in the
wild is a challenging task due to variations in head poses and
lighting conditions, which can affect the visibility and inten-
sity of AUs. The efficacy of AU detection, however, hinges
significantly on the methodologies employed, particularly in
uncontrolled environments.

In recent years, deep learning techniques have shown
remarkable progress in various human behavior understand-
ing applications, such as human gait recognition [9], [10],
hand gesture recognition [11], andAUdetection. Specifically,
for the task of AU detection, deep learning-based meth-
ods [12], [13], [14] have excelled in detecting AUs accurately
by learning discriminative representations of the face from
large-scale datasets such as extended Cohn-Kanade (CK+)
[15], BP4D [16], and DISFA [17]. Publicly available datasets
are essential for advancing AU detection research. However,
these public datasets only contain data collected from a labo-
ratory environment with a fixed head pose and good lighting
conditions. Developing AU detection algorithms based upon
such datasets restricts performance in real-world settings,
which are complicated by variations in illumination and
head movements. Illumination and head pose variations chal-
lenge AU recognition, by affecting the face detection and
facial feature extraction accuracy, which results in reducing
AU detection model performance in real-world situations.
To address these limitations, there is a growing emphasis
on innovative approaches that transcend traditional single-
modality methods.

Multi-modal facial expression detection has been an active
research area in recent years. Researchers aim to address
problems caused by illumination changes for FER sys-
tems by combining information from different modalities.
It has been shown that fusing different image modalities
such as thermal imaging, near-infrared imaging and depth
maps can provide more robust and accurate facial expres-
sion recognition results concerning variations in illumination
than using RGB images alone [18], [19]. Furthermore, it has
been shown in the area of face recognition that utilizing
multi-view data captured bymultiple cameras simultaneously
is an effective method for addressing pose variations and
their inherent challenges [20]. However, no studies to date
have investigated the effectiveness of utilizing multi-modal
or multi-view models for AU detection, particularly in the
context of real-world applications such as ADAS. This paper
aims to fill this gap by proposing a novel multi-modal multi-
view AU detection framework. The importance of this study
lies in its development of a robust AU detection system
that is critical for accurate emotion recognition in dynamic
settings such as driver monitoring, where driver attention

and decision-making abilities are directly influenced by
emotional states. The proposed method leverages the com-
plementary information from various image modalities and
multiple camera perspectives to enhance the robustness
and accuracy of AU detection under challenging real-world
conditions.

The main contributions and novelties of this paper include:
(1) Our work primarily focuses on addressing the chal-

lenges of varying illumination and head pose con-
ditions in AU detection. These factors significantly
impact the reliability and accuracy of AU detection,
especially in real-world environments.

(2) We propose a novel graph-based multi-modal multi-
view fusion AU detection framework that effectively
combines information from different image modali-
ties, such as RGB and near-infrared (NIR), as well
as data captured from multiple camera perspectives.
The graph-based nature of our framework allows for a
sophisticated integration of these diverse data sources,
leading to significant improvements in AU detection
performance under the varied and complex conditions
of illumination and head pose.

(3) We introduce a new multi-modal multi-view facial
action unit dataset collected under various real-world
scenarios, including diverse head poses, illumination
conditions, and facial expressions. This dataset will
serve as a valuable resource for the research community
working on AU detection, especially in the context of
real-world applications.

(4) We present an extensive evaluation of our proposed
framework on the new dataset, comparing it with
state-of-the-art methods for AU detection. The results
demonstrate that our multi-modal multi-view approach
significantly outperforms existing techniques, partic-
ularly under challenging conditions such as varied
lighting and head poses.

Our research, designed to perform well under these real-
istic, challenging conditions, extends beyond just Advanced
Driver-Assistance Systems (ADAS). Its utility is highly
generalizable, having relevance in diverse real-world appli-
cations like human-machine interfaces, healthcare, and
entertainment.

In the remainder of this paper, we first review related work
on AU detection, multi-modal and multi-view data fusion in
Section II. In Section III, we give an overview of the facial
action unit dataset collected in a real-world vehicle envi-
ronment and describe the data collection and pre-processing
steps. Then, we present our proposed graph-based multi-
modal multi-view AU detection framework in Section IV,
and Section V presents the experimental results and analysis.
Finally, we conclude our work and discuss future research
directions in Section VI.

II. RELATED WORK
AU detection has been an active research area, with numerous
methods proposed over the years. Traditional approaches
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utilize hand-crafted features extracted by methods such as
Gabor filters [21] and local binary patterns (LBP) [22].
With the advent of deep learning, these traditional meth-
ods have largely been replaced by Convolutional Neural
Networks (CNNs) for AU detection, showing superior per-
formance compared to traditional methods. Several works
have presented end-to-end deep learning frameworks for AU
detection, including those based on ResNet [23] and Trans-
former [24] architectures. Moreover, Attention mechanisms
have also been successfully applied to various computer
vision tasks, including facial AU detection, to enhance
model performance. For instance, Li et al. [25] introduced
an Enhancing and Cropping Net (EAC-Net) for AU detec-
tion that selectively attends to pre-defined facial regions to
improve the AU detection accuracy. Shao et al. [26], [27]
employed hierarchical region learning to incorporate various
structure and texture information for AUs in different local
regions through the use of attention maps for each AU.

Although deep learning has significantly advanced AU
detection capabilities, there remains an ongoing exploration
into utilizing graph-based methods to model and integrate
relationships among AUs into the detection process. Prior
research has shown that understanding and modeling the
relationships among AUs is crucial for their accurate detec-
tion [28], [29]. In recent studies, graph-based techniques
have been introduced to leverage the AU relationship in
the detection process. These methods have achieved state-
of-the-art performance in facial AU detection tasks on
benchmark datasets such as BP4D and DISFA. For example,
Liu et al. [30]manually defined a single graph topology for all
face images, relying on prior knowledge of AU co-occurrence
patterns. In another study, Luo et al. [31] represented all AUs
of the target face as a graph, with each AU depicted as a node
and the relationships between each pair of AUs described
by multi-dimensional edge features. However, a significant
limitation of these existing models is that they were primar-
ily developed based on the datasets collected in laboratory
environments with adequate lighting and frontal views only.
This limitation may hinder their generalization to real-world
scenarios with varying illumination and head pose variations.

To overcome challenges caused by illumination changes,
some FER studies have attempted to utilize multi-modal
fusion techniques by combining information from differ-
ent modalities. Multi-modal fusion models developed by
Wang et al. [18] and Chen et al. [19] have accomplished a
more robust and accurate facial expression recognition by
fusing different image modalities such as thermal imaging,
near-infrared imaging, and depth maps concerning variations
in illumination than using RGB images alone. On the other
hand, in the field of facial AU detection, researchers have
also explored multi-modal fusion techniques. For instance,
Yang et al. [32] and Zhang et al. [33] have developed methods
that fuse RGB, thermal, and depth images from the BP4D+

dataset [34]. These approaches have shown improved per-
formance compared to models trained on single-modal data.
However, it is important to note that the BP4D+ dataset

FIGURE 1. (a) Facial expression data collection set-up using multiple
cameras in vehicle (b) an example of collected images.

is collected in a lab-controlled environment, characterized
predominantly by good illumination and frontal views. Addi-
tionally, these models necessitate precise alignment of faces
across different modalities, a requirement that may not be
feasible in more dynamic, real-world scenarios. The above
limitations underscore the need for robust AU detection
methods that can accommodate the more variable and less
controlled conditions encountered outside of laboratory set-
tings, leading to the exploration ofmulti-view data utilization.

The use of multi-view data has become a promising
approach to handle the inherent challenges brought by pose
variations [20]. The term multi-view data refers to data
collected bymultiple cameras at different viewpoints simulta-
neously. By utilizing multiple viewpoints, the disadvantages
of a single viewpoint are mitigated since the system has
access to more information. In the study of face recogni-
tion, it has been demonstrated that the fusion of multi-view
face images can improve recognition accuracy [20], [35].
Researchers have also employed graph-based approaches in
multi-modal fusion, using graphs to model the relationships
between different modalities and their features. For instance,
Zhang et al. [36] and Yin et al. [37] developed Graph Neu-
ral Network (GNN) based multi-modal fusion approaches
for video action recognition and neural machine transla-
tion. These approaches modeled the dependencies among
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FIGURE 2. Example images captured by two cameras under different
(a) head poses and (b) lighting conditions.

visual, structural, and semantic features and fuse them using
GNNs. The resulting model demonstrated improved perfor-
mance compared with existing studies that utilize traditional
multi-modal fusion strategies such as feature concatenation.

To our best knowledge, there are nomulti-modal andmulti-
view facial action unit datasets with various illumination
conditions and head poses, nor studies exploring graph-based
multi-modal multi-view fusion approaches for AU detec-
tion. Such approaches could potentially improve performance
by leveraging the benefits of both GNNs and multi-modal
multi- view fusion techniques. Therefore, we construct a
novel multi-modal and multi-view facial action unit dataset,
consisting of data collected in a real-world vehicle (using two
cameras) with realistic illumination conditions and various
head poses. Furthermore, we propose a graph-based multi-
modal multi-view AU detection framework that leverages
the complementary information from various image modal-
ities and multiple camera perspectives, as well as exploits
graph-based techniques for improved robustness and accu-
racy under challenging conditions.

III. MULTI-MODAL MULTI-VIEW FACIAL ACTION UNIT
DATASET
Existing public datasets are often collected in constrained
laboratory settings, which limit their applicability. To address
this, our facial expression data collection was conducted
within a real-world vehicle environment.1 Our dataset
includes eight expressions (anger, disgust, fear, happiness,

1The multi-modal multi-view facial action unit datasets were created by
MESDAT lab at University of California, San Diego. The datasets will be
released upon publication of the paper. Informed consent has been obtained
from the volunteers.

TABLE 1. Dataset summary.

neutral, sadness, surprise, and yawning), captured by two
cameras from differing viewpoints. The dual-camera setup
ensures comprehensive data capturing in three modalities:
RGB, NIR, and Depth Maps, under varying natural lighting
conditions and across four different head poses. Additionally,
our dataset includes Facial Action Coding System (FACS)
annotations, thereby enriching the information about the
observed facial expressions. To optimize the dataset for
model training, extensive data pre-processing and augmen-
tation are performed. Further details about the data collection
process, FACS coding, and pre-processing steps are provided
in the subsequent sections.

A. DATA COLLECTION AND DATASET
Our realistic and diverse facial expression dataset was col-
lected within a real-world vehicle environment under natural
lighting conditions. As outlined in Sections I and II, the adop-
tion of a dual-camera setup mitigates information loss due
to head pose variations, contributing to a model more robust
against such variations. In our setup (Fig. 1(a)), two distinct
cameras were used: an Intel RealSense camera (Cam 1)
[38] mounted near the left mirror on the driver’s window,
and a Qualcomm Slim Camera (Cam 2) situated around the
rearview mirror. The reason for using two different cameras
is to avoid wave interference between the NIR sensors that
project light of same frequency [39]. Both cameras are facing
the driver. Images of the subject’s upper body are captured,
including RGB images, NIR images, and Depth Maps. The
Depth Map indicates the distance between the camera and
the subject. Examples of the collected images are shown in
Fig. 1(b).
The multiple cameras set-up ensures that at least one of

the cameras captures a substantial amount of facial data
under various head poses typically adopted by drivers. Par-
ticipants were instructed to mimic facial expressions during
different times - such as noon or evening - to ensure var-
ied lighting conditions. To facilitate more genuine posed
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FIGURE 3. A demo of the designed tool for AU annotation.

FIGURE 4. AU occurrence distribution of the dataset.

expressions, participants were presented with emotionally
evocative scenarios via a series of slides. For instance, when
asked to exhibit happiness, subjects were instructed to imag-
ine embarking on a month-long vacation. Informed consent
has been obtained prior to data collection, adhering to ethical
standards approved by our institutional review board (IRB
approval number #200345).

The dataset consists of four distinct head poses – left mir-
ror, front, rearview mirror, and right mirror, representing the
directions the subjects face within the vehicle. Each camera
captures images in three modalities, as depicted in Fig.2.
Data collection took place under two primary illumination
conditions: ‘‘Daylight’’ and ‘‘Night’’, signifying good and
dark lighting, respectively. It is crucial to note that both
‘‘Daylight’’ and ‘‘Night’’ conditions feature varying degrees
of illumination, such as partial shadow cover during the day
or different illumination levels at night. Fig. 2 displays sample
images taken from both cameras under differing head poses
and lighting conditions, while Table 1 provides a summary of
the dataset.

The data synchronization between the two cameras
employed the ‘‘clap method.’’ During data collection, sub-
jects were asked to clap multiple times. Both cameras were
able to capture these claps, which enabled us to synchronize
the timestamps of the images captured by aligning the frames
where the subject’s palms made contact.

B. FACS CODING
In addition to the eight facial expression labels, our dataset
also includes AU occurrence annotations. As the raw data was
captured in the form of video clips for each expression, the

TABLE 2. Description of the 12 selected AUs.

FIGURE 5. Face alignment and extraction for RGB images under good
lighting.

FIGURE 6. Face extraction for NIR, Depth Map and RGB images captured
by Slim Camera.

three most expressive frames from each clip were selected,
primarily from the mid-section, for AU annotation. A spe-
cialized annotation tool was developed, adapted from an
open-source PyQT GUI [40] to mark the presence of AUs
in each frame. Significant modifications were made to the
tool to tailor it for AU annotation. Fig. 3 offers a screenshot
of the annotation tool in use, demonstrating the coding of
an ‘‘Angry’’ facial expression with the occurrence of AU4
(Brow Lower) and AU42 (Eye Slit), referenced from the AU
images shown on the right. Fig. 4 outlines the distribution of
AU occurrence annotations in our dataset. From this distribu-
tion, we identified the 12 most frequently occurring AUs for
further analysis. It is important to note that AU25 (Lips part)
is excluded from this selection, as it represents a common
spontaneous facial muscle movement unrelated to specific
expressions. Table 2 provides a comprehensive description of
these selected 12 AUs.

C. DATA PRE-PROCESSING
The aim of our data collection is to develop a model that
can accurately detect AUs, therefore only the facial region
that showcases these muscle movements is of interest. Con-
sequently, the raw data undergoes pre-processing to identify
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FIGURE 7. GANN structure.

FIGURE 8. Architecture of the attention module.

and extract facial images. This extraction process is crucial
for obtaining the most valuable information from the raw
data.

We utilized a face normalization algorithm [41] on the
RGB images captured by the two cameras under good light-
ing conditions. This algorithm is designed to detect and
align facial landmarks, which allows for standardization of
the face. The face alignment and normalization process are
depicted in Fig. 5. Initially, the image is rotated in-plane
to position the line connecting the centers of the two eyes
horizontally. During the face cropping step, we ensure that
the distance between the mouth center and the centers of
the eyes accounts for 40% of the cropping window, with the
midpoints of the two centers located in themiddle of the crop-
ping window. This method of face alignment and cropping is
superior to simply detecting a face from the bounding box
offered by a face detector, as it eliminates noise caused by
head movements.

However, the NIR images, Depth Maps, and RGB images
under poor lighting collected by the Slim Camera present
challenges due to their low quality. It is difficult to accurately
detect landmarks in these images, and as a result, we opt to
detect and align faces fromNIR images instead. The cropping
bounding box acquired from the NIR image by the face
recognition tool [42] is used to extract the face part from
the corresponding Depth Map and RGB image, as shown in
Fig. 6. Likewise, for the data collected by the Intel Camera,
the face bounding box from the NIR image is aligned to its
corresponding RGB image (under poor lighting) and Depth
Map. Ultimately, all the cropped face images are resized to
224 × 224 pixels.

IV. PROPOSED MODEL
In this section, we present our innovative graph-based
multi-modal multi-view fusion model, aimed at significantly
enhancing AU detection capabilities. This model leverages
a graph-based neural network trained as a feature extractor,
using pre-processed image frames from multiple modalities
as input. The backbone network processes these different
image modalities to extract essential features, which then
form the basis for training our fusion model. This methodol-
ogy allows us to harness the power of multi-modal multi-view
data, achieving robust and precise AU detection even under
diverse and challenging conditions.

A. BACKBONE NETWORK TRAINING
This subsection illuminates the architecture and training pro-
cess of our backbone network, building upon advancements
in deep CNNs – specifically, ResNet [23]. A product of
enhanced computational power, ResNet dominates image
classification, addressing network degradation issues associ-
ated with increased depth.

In the interest of advancing feature extraction, the atten-
tion mechanism [24] is utilized into our model, allowing for
weighted assignment based on feature importance. Given the
proven effectiveness of ResNet’s structure and the attention
mechanism, coupled with the merits of graph-based tech-
niques in revealing AU relations, the Graph-based Attention
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Neural Network (GANN) is introduced as our backbone
network for image feature extraction. Figure 7 provides a
comprehensive illustration of the backbone network struc-
ture. The model, drawing inspiration from the graph-based
model introduced by [31], integrates an attention mechanism
for superior feature extraction. This network comprises two
primary components: the feature extraction and prediction
modules. Utilizing transfer learning, the network leverages a
pre-trained ResNet-50 on the extensive BP4D image dataset,
fine-tuning this on our unique multi-modal, multi-view facial
action unit dataset for adaptation to the specific character-
istics of different image modalities and views. The network
processes a single frame from an image modality as its input.
ResNet-50 is first deployed to extract a full-face represen-
tation (X) from the input frame. This representation then
enters the Attention Module (refer to Fig. 8) for extraction of
AU-specific features. Specifically, for each AU, an attention
module is applied to extract the AU-specific feature Vi, where
i represents the ith AU.
As shown in Fig.8, the attention module consists of two

parts: channel-wise and spatial-wise attention. Channel-wise
attention focuses on highlighting or suppressing certain chan-
nels (or feature maps) of the input tensor based on their
importance, thereby emphasizing channels that are more rel-
evant for the task at hand. On the other hand, spatial-wise
attention deals with the importance of each spatial location
in the feature map, allowing the model to focus on specific
regions of the image that are crucial for the task. The full-face
representation X ∈ Rb×c×h×w is initially passed through
a convolutional layer and a global average pooling layer to
generate a channel-wise feature f 1i ∈ Rb×c, where b, c, h,w
represents batch size, number of channels, height and width
respectively. The channel-wise attention weight wchi ∈ Rb×c

is computed by the fully-connected (FC) layer and sigmoid
layer as follows:

wchi = Sigmoid(qT fi) (1)

where qT is the parameters of the FC layer. Then the
channel-wise weighted feature f chi ∈ Rb×c×h×w is obtained
by channel-wise multiplication of the wchi and f 2i ∈

Rb×c×h×w.
The channel-wise weighted feature is then input to

the spatial-wise attention learning module. By processing
f chi with two convolutional layers and a sigmoid layer,
where the last convolutional layer is a one-channel down-
sampling operation, the spatial-wise attention weights wspi ∈

Rb×1×h×w is obtained. After that, the spatial-wise weighted
feature is calculated as:

f spi = wspi ∗ f 4i (2)

where ∗ denotes the element-wise multiplication of spatial-
wise attention weight and each feature map channel of f 4i ∈

Rb×c×h×w. By operating another convolutional and average
pooling layer, the AU-specific feature Vi ∈ Rb×c is obtained.

Following the feature extraction phase, N AU-specific rep-
resentations V = {V1,V2, . . . ,VN } are learned from the

full-face representation X respectively and treated as N node
features for the graph. Then the features’ similarity is calcu-
lated using dot product (Sim (i, j) = V T

i Vj) and choose the
K nearest neighbors of each node as its neighbors. An adja-
cency matrix A for the graph is constructed to represent the
connectivity between node features based on the result of the
similarity computation:

Aij =

{
1 if Vi, Vj are neighbors
0 otherwise

(3)

Then the produced graph is input to a Graph Convolutional
Network (GCN) layer to jointly update all the AUs activation
status. GCNs are effective for learning on graph-structured
data, capturing the relationships between connected nodes.
For each AU, the GCN will generate the updated activation
representation V g

i ∈ Rb×c, which incorporates informa-
tion from its connected nodes (AUs) as well as itself. The
updated representation V g

i is calculated using the GCN layer
as follows:

V g
i = ReLU [Vi + f (Vi,

∑N

j=1
h(Vj,Ai,j))] (4)

Here, f is a function that takes the node feature Vi and a sum
of its relationships h(Vi,Ai,j) with other nodes Vj, and Ai,j ∈

{0, 1} indicates the connectivity between Vi and Vj as shown
in formula (3).
To achieve the prediction of the ith AU, a similarity calcu-

lation layer (SC) is applied, which contains N trainable vector
S = {s1, s2, . . . , sN } , si ∈ Rb×c has the same dimension as
the V g

i . Then the occurrence probability of the ith AU can
be calculated by computing the cosine similarity between V g

i
and si:

pi =
(V g

i )
TReLU (si)∥∥V g

i

∥∥
2 ∥ReLU (si)∥2

(5)

According to the AU occurrence distribution shown in Fig. 4,
the dataset has imbalanced labels where some AUs occur
more frequently than others. To address this issue, we assign
weights to the asymmetric loss function inspired by [43]
during the prediction step. The weighted loss is formulated
as:

Lw = −
1
N

∑N

i=1
wi

[
yi log (pi) + (1 − yi) pi log

(
1 − pi

)]
(6)

where yi is the ground truth of the ith AU. wi is the weight of
the ith AU calculated by:

wi =
1/ri∑N
j=1 rj

(7)

where ri is the occurrence rate of ith AU computed from
the training set. The less frequently occurring AUs will have
higher weights during the training. It counterbalances the bias
introduced by the higher occurrence rates of some AUs in the
training set. By giving higher weights to loss values arising
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FIGURE 9. Multi-modal multi-view fusion model structure.

FIGURE 10. Example of how the graph-based fusion approach captures
the interrelations of AU features across different modalities and
viewpoints.

from less frequent AUs, the model is encouraged to better
learn these less common but equally important features.

The GANN is trained separately for each modality. Due
to low image quality, the Depth Map modality is not used in
this study. The data is divided into 5 folds for cross-validation
for person-independent cross-validation experiments, that is,
validate data of three randomly selected subjects and train on
the rest of the data. The backbone networks are first trained
to detect AU for each modality respectively, namely GANN-
RGB and GANN-NIR, which enable effective feature extrac-
tion from each modality.

B. GRAPH-BASED MULTI-MODAL MULTI-VIEW FUSION
MODEL
This subsection introduces the architecture of our multi-
modal multi-view fusion model, designed to improve model

robustness across diverse lighting conditions and head ori-
entations by integrating features from multiple modalities
and perspectives. The field of multi-modal fusion commonly
employs data fusion techniques for synthesizing information
from various modalities to achieve superior insights [44].

The proposed methodology addresses the complexities
introduced by varying lighting conditions and head poses
by fusing RGB and NIR images captured from two dis-
tinct viewpoints. Our framework synergizes these modalities,
leveraging RGB images for their detailed textural information
in well-lit conditions and NIR images for their illumina-
tion robustness. Besides, the dual-viewpoint approach is
pivotal for capturing a comprehensive range of facial expres-
sions, especially in scenarios where certain facial regions
may be obscured or distorted due to head movements. Our
graph-based fusion technique plays a crucial role here. It not
only models the relationships between different AU features
in the same modality but also effectively captures the inter-
relations of AU features across the RGB and NIR modalities
from different viewpoints.

Fig. 10 illustrates the advantages of the graph-based fusion
technique under diverse lighting conditions and from varying
viewpoints. For instance, the top two left images display RGB
andNIR images from one viewpoint with the driver facing the
rearview mirror in well-lit conditions. While the RGB image
captures certain AUs with high fidelity, the NIR image may
reveal additional AUs not as visible in the RGBmodality. This
demonstrates the complementary strengths of the modalities,
particularly under low-light conditions. For example, the bot-
tom two images on the left, taken from a different viewpoint
in dim lighting, illustrate the NIR’s superior performance in
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clearly detecting AUs. Crucially, different viewpoints provide
complementary views of facial AUs. When one viewpoint
may only reveal part of the AUs due to the driver’s head pose,
the alternative viewpoint may expose other facial regions,
ensuring a comprehensive capture of AUs. The right side
of Fig. 10 illustrates the framework’s intermodal and inter-
viewpoint synergies. Specifically, the graph nodes represent
AU features extracted from each modality and viewpoint,
while the edges define the relationships and interactions
between these features. The graph-based fusion model can
identify and emphasize the interdependencies between node
and edge features across modalities, facilitating a compre-
hensive understanding of AUs under varied conditions. This
approach allows for a dynamic and holistic analysis of AUs.
It not only addresses variations in lighting but also adapts to
different head poses, ensuring robust feature extraction and
accurate AU recognition.

There are two popular fusion strategies: early fusion at the
input level and late fusion at the feature or decision level [45].
This work advocates approaches capitalizing on both early
(image-level) and late (feature-level) multi-modal multi-view
fusion, as well as a hybrid fusion that harnesses the strengths
of both methods. The architecture of our proposed model is
illustrated in Fig. 9.

In the early image fusion model (shown in upper yellow
in Fig. 9), synchronized images from all modalities and per-
spectives are simultaneously processed by the GANN for
feature extraction. The image from each modality undergoes
data normalization before being input into the model. This
ensures that the input data for the GANN is not only consis-
tent but also of high quality. This preprocessing step is vital
for harmonizing variations in multi-view and multi-modal
data, thereby facilitating more accurate feature extraction
and subsequent fusion. For each modality under each view-
point, the GANN extracts features and feeds them into a
separate GCN, generating updated representations of all the
AUs as VG

Modality ∈ Rb×N×c as described in Section IV-A.
These updated representations are concatenated to generate
a fused feature VG

f ∈ Rb×N×4c. The fused features are
subsequently input to another GCN and a SC layer to obtain
the AU prediction results. The early fusion strategy combines
complementary information from different modalities (RGB
and NIR) at the input level. This mitigates modality-specific
limitations, such as the sensitivity of RGB images to illu-
mination changes. By fusing the modalities early, the model
can leverage the strengths of each modality to compensate
for weaknesses in others, resulting in more robust feature
extraction from the outset.

In the late feature fusion model (shown in lower yellow
in Fig. 9), a staged training approach is adopted. Initially, the
GANNs are trained on eachmodality independently to extract
features from each modality under each viewpoint before
fusion. This staged approach ensures stable and effective
learning as the network adapted to the complexity and rich-
ness of the combined data. Additionally, features extracted

from each modality were normalized prior to their fusion,
aligning their scales and distributions. This method ensures
that the fusion process is based on comparable and harmo-
nized feature sets, leading to more accurate and meaningful
integrations. Specifically, each synchronized data sample
from each viewpoint and modality is represented by the nor-
malized graph-updated feature VG

Modality ∈ Rb×N×c and its
corresponding adjacency matrix AModality, derived from the
final GCN of its backbone network (refer to Fig. 7). Since
the adjacency matrix represents the connectivity between
node (AU) features, it is beneficial to construct an adjacency
matrix that can represent connectivity between node features
among the modalities. For example, connectivity between a
pair of AUsmay be observable in the Slim-RGBmodality, but
absent in the Intel-RGB’s adjacency matrix due to head pose
limitations. Therefore, the graph-based fusion is proposed by
averaging the adjacency matrices from all the modalities so
that the fused adjacency matrix Af can better represent the
connectivity betweenAU pairs across all themodalities. Then
the features from various modalities are input to different
GCNs with Af to generate the updated representation, fol-
lowed by a concatenation to generate the fused feature VG

f .
The fused features are then fed into another GCN and a SC
layer to achieve the AU prediction results. The late fusion
approach integrates high-level semantic features extracted
independently from each modality. This allows the model to
leverage the respective strengths of different modalities in
handling varying poses and lighting conditions. For example,
NIR images may be less affected by illumination variations,
while RGB images could provide richer texture details under
good lighting.

Besides the early image fusion and late feature fusion,
a hybrid fusion model is also proposed which can utilize
the advantages of both fusion methods. As shown in Fig. 9
(shown in blue), the hybrid fusion model takes the fused
feature VG

f from both early and late fusion models as input.
Similarly, they will be passed to a GCN and SC layer to
generate AU predictions separately.

Research in multi-modal classification suggests that
multi-modal networks can be unstable and prone to over-
fitting due to the increased complexity tied to additional
modalities [46]. Our early and late fusion methods alone may
not be sufficient to counter this issue, potentially resulting in
significant variance in the detection performance of specific
AUs. To enhance the robustness of the hybrid fusion results,
two attention layers are incorporated to dynamically assign
weights to outputs from each fusion model. This strategic
weighting determines the influence of each fusion method on
the final hybrid fusion result, adapting dynamically to vary-
ing scenarios. For instance, in situations where early fusion
captures detailed facial features more effectively, it receives
a higher weight, whereas in other cases where late fusion
excels, the attention mechanism adjusts the weights accord-
ingly. This adaptive approach ensures optimal utilization of
both fusion strategies, enhancing the accuracy and robustness
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TABLE 3. F1 scores achieved for 12 AUs of single modality data trained on the GANN.

TABLE 4. Comparison with existing AU detection models: F1 scores achieved for 12 AUs of Slim-RGB and Slim-NIR data trained on existing models [8],
[27], and [31].

of AU recognition under diverse conditions. Each attention
layer consists of a FC layer and SoftMax layer, generating
attention weights for the early and late fusion model outputs
as wcle and wcll ∈ Rb×N . These weights are then applied
to their corresponding AU predictions through element-wise
multiplication. The final prediction is calculated by averaging
these weighted predictions.

The hybrid fusion model, combining early and late
fusion strategies through attention-basedweighted averaging,
enhanced the robustness of the overall model performance.
By dynamically adjusting the contributions of each fusion
stream based on the input data, the hybrid model could lever-
age the complementary strengths of early and late fusion,
mitigating their individual limitations and improving overall
AU detection accuracy across diverse scenarios. The train-
ing and validation of the fusion models adhere to the same
rigorous 5-fold person-independent cross-validation protocol
as used in the training of the single-modal models. We will
analyze the comparative results of different fusion models in
Section V.

V. EXPERIMENTAL RESULTS
In this section, we outline the experimental results
attained from our proposed models, with comparisons
in single-modal training scenarios against state-of-the-art

approaches. To begin with, we explore the performance of
our backbone networks, specifically the Graph-based Atten-
tion Neural Network (GANNs), when trained on individual
modalities. This analysis aims to underline the efficacy of
the GANNs and their capacity to discern and represent
features for various AUs. Subsequently, we present the
performance of our multi-modal multi-view fusion models.
These models harness features from various modalities and
perspectives, enhancing robustness in AU detection. Our
evaluation employs the frame-based F1 score, calculated as
F1 = 2 P.R

P+R , where P and R represent precision and recall
rate.

A. SINGLE MODALITY ANALYSIS
In this subsection, we delve into the experimental outcomes
of models trained on single-modality data. As described
in Section IV-A, the GANN enhanced by transfer learning
technique is used as the backbone network. The backbone
networks are trained as a classifier first on data of a single
modality. The results of the backbone networks trained on
each modality are shown in Table 3.

Notably, an appreciable F1 score (50.46) achieved in
the Slim-NIR data validates the proficiency of the GANN
backbone in representing AUs. However, this performance
decreases with the RGB data as illumination weakens,
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TABLE 5. F1 scores achieved for 12 AUs of different fusion strategies.

FIGURE 11. Best F1 scores achieved by of multi-modal multi-view fusion
(Hybrid Fusion w attention) and single-modal (Slim-NIR) models (GANN
and SOTA [31]).

underlining the persisting challenges in real-world AU detec-
tion using only RGB images, as articulated in Sections I
and II. Hence, to mitigate the illumination deficiencies of
RGB images, NIR images are incorporated in our approach.
However, the average F1 score for Intel-NIR lags behind
other modalities, due to the laser speckle noise prevalent in
Intel-NIR images.

Our investigations also encompass the training of two
existing AU detection models [27], [31] on the Slim-RGB
and Slim-NIR data. These models were chosen for their
prominence in the field and because they represent different
methodologies in AU detection: Model [27] utilizes the atten-
tion mechanism, while Model [31] employs graph-based net-
work structure. Additionally, the technique described in [8]
is implemented, which focuses on emotional state detec-
tion using electrodermal activity (EDA) processed through
graph signal methods. In this implementation, first the graph
and its corresponding adjacency matrix are derived from
the final GCN layer of the backbone network. Following
this, the graph feature extraction approach proposed by [8]
is applied to extract graph-, node- and edge- level features
for AU detection such as total triangle number, total degree
centrality and total flow centrality. The features are then
fed into a multi-label classifier as introduced in [8] for AU
detection task. The Slim-RGB and Slim-NIR modality are
selected for comparison because the Slim Camera provides
superior data quality compared to the Intel Camera, and the

NIR modality is not impacted by ambient lighting condi-
tions. These modalities offer the closest resemblance to the
controlled lab environments in which the existing models
were trained, thereby facilitating a fairer comparison. Table 4
summarizes the comparative results, revealing the superior
F1 scores achieved by our proposed GANN, outperform-
ing the state-of-the-art models [8], [27], [31]. Specifically,
when they are trained and evaluated on the Slim-RGB data,
our backbone model achieved the overall F1 score of 47.7,
improving by 31.2%, 30.2% and 2.1% over the models pro-
posed by [8], [27], and [31] respectively. Our backbonemodel
also achieved the highest average F1 score on the Slim NIR
data compared with the existing models. This bolsters the
effectiveness of our backbonemodel in AU feature extraction,
which further proves the effectiveness of feature extraction
ability for AUs of our proposed backbone model.

However, neither of the existing models or our proposed
model can address the various illumination conditions and
head poses challenges, evidenced by the inferior performance
on RGB data in comparison to NIR data. The F1 scores
obtained by our model, as well as those achieved by state-
of-the-art models trained on single-modal data, are indeed
lower compared to those reported onwidely used benchmarks
such as the BP4D and DISFA datasets. This difference is
primarily attributable to the more realistic and challenging
nature of our collected data, which includes a wide range
of illumination conditions and head poses. These factors
introduce additional complexities that are not as prevalent in
the controlled environments of the BP4D andDISFAdatasets,
hence the variation in F1 scores. To tackle these challenges,
as elaborated in Section IV-B, we utilize modalities from both
camera viewpoints into the multi-modal multi-view fusion
models.

B. MULTI-MODAL MULTI-VIEW FUSION ANALYSIS
In this subsection, we present the experimental results of
our multi-modal multi-view fusion models, demonstrating
their efficacy in addressing the complexities arising from
varied illuminations and head orientations. As outlined in
Section IV-B, our fusion model utilizes all available modali-
ties across both camera viewpoints.

A series of experiments were conducted to assess the per-
formance of the proposed early fusion, late fusion, and hybrid

69320 VOLUME 12, 2024



J. Chen, S. Dey: Graph-Based Multi-Modal Multi-View Fusion for Facial AU Recognition

TABLE 6. F1 scores achieved for 12 AUs with fusion of different modalities.

TABLE 7. F1 scores achieved for 12 AUs for the proposed fusion method and existing fusion methods.

fusion models. Table 5 illustrates the F1 scores achieved
by each fusion strategy. As can be seen from Table 5, the
hybrid fusion model with the attention layer outperformed
both the early and late fusion models, indicating its superior
ability to exploit the strengths of both strategies as explained
next. This result corroborates our initial hypothesis that a
hybrid approach could leverage the complementary advan-
tages of early and late fusion models to enhance the overall
performance. For instance, the hybrid fusion model tops
the F1 score rankings for AU 1, 4, and 43 among all the
fusion models. For AU 15, 17, 23 and 26, while early and
late fusion models have substantial variance in the detection
performance (one of them is much worse than the other),
the hybrid fusion model can still secure a commendable F1
score. And except for AU 14 and 15, our proposed hybrid
fusion model achieves superior performance compared with
those trained on single modality data. Notably, our hybrid
fusion model posts a superior average F1 score compared to
any single-modal models, improving by 9.0% over the best
single-modal model trained on Slim-NIR data. In another
set of experiments, the effectiveness of the attention layers
in the hybrid fusion was also evaluated. The hybrid fusion
model is trained without the attention layers and directly
averaging the outputs from the other two fusion strategies.
The results, as displayed in Table 5, reveal a significant drop
in performance, thereby underscoring the importance of the
attention layers in our model.

The significant improvement in F1 scores for most AUs
provided by the hybrid fusion model further validates our
approach of integrating multiple fusion strategies. It becomes
evident that the combination of early and late fusion methods
with attention layers can efficiently cope with the challenges
associated with diverse lighting conditions and head poses,
thereby facilitating more accurate AU detection. Fig.11. com-
pares the F1 scores achieved by our proposed hybrid fusion
model with the best F1 scores achieved by existingmodel [31]
and our single modality model trained on SLIM-NIR (which
is the best performing single modality model as seen from
Table 3 and 4). The bar plot clearly illustrates that our multi-
modal multi-view fusion approach outperforms not only the
existing state-of-the-art methods but also our single modality
GANN model.

C. ABLATION STUDY
In this subsection, we examine the impact of using only
multi-modal or multi-view fusion in our proposed hybrid
fusion model. We also compare our fusion model’s perfor-
mance with those reported in related works.

The hybrid fusion model is evaluated using exclusively
multi-modal fusion (combining different modalities from
the same viewpoint, such as Slim RGB + Slim NIR and
Intel RGB + Intel NIR) or multi-view fusion (combin-
ing the same modality from different viewpoints, such as
Slim RGB + Intel RGB and Slim NIR + Intel NIR). The
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results, presented in Table 6, indicate that employing only
multi-modal or multi-view fusion offers limited improve-
ments. For instance, the multi-modal fusion using the Slim
Camera (Slim RGB + Slim NIR) achieved an average F1
score of 50.66, which improved by just 0.3% compared to
using Slim NIR alone (50.46). On the contrary, our multi-
modal multi-view fusion achieves highest performance when
fusing all the modalities. These findings highlight the advan-
tage of using multiple image modalities from multiple view-
points in enhancing AU detection accuracy under real-world
conditions.

Furthermore, a comparative analysis is conducted with
other multimodal methods from the literature. We opted
not to compare with models from works [27], [28] due to
their dependency on precise face alignment across modal-
ities, a requirement not suited for our dataset collected
under diverse real-world conditions with varying lighting
and head poses. Instead, for a fair comparison that aligns
with the practical challenges of our research, two fusion
methods proposed by [18] are implemented —namely, SVM
decision-level fusion and SVM feature-level fusion—using
features extracted by our backbone network from all four
modalities. In the decision-level fusion, four multilabel lin-
ear SVM classifiers were employed initially to estimate
probabilities of AU occurrence from each modality. Subse-
quently, the detection results from all the modalities were
combined using another multilabel linear SVM to yield the
final AU detection results. In the feature-level fusion, the
feature vectors from all the modalities are concatenated into
a higher-dimensional vector, which was then fed into a mul-
tilabel linear SVM for classification. In the comparative
analysis of fusion strategies, the graph features derived from
the EDA-graph method [8] were also integrated, examin-
ing their efficacy in multi-modal fusion. Specifically, these
graph features were incorporated into both SVM feature-level
and SVM decision-level fusion strategies to assess their
impact on AU detection. The comparison results are shown in
Table 7.
Table 7 reveals that the SVM-based fusion models do

not outperform the results obtained by our proposed fusion
model or using Slim NIR alone. Table 7 shows that our
proposed fusion model demonstrates superior performance,
achieving the highest F1 score in 10 out of 12 AUs among all
the fusion methods. It outperforms the SVM decision level
fusion and feature level fusion methods by 11.3% and 16.3%,
respectively. Employing the SVM decision-level fusion strat-
egy, an overall F1 score of 49.44 is achieved using features
extracted by our backbone network. In contrast, the fusion
of features extracted via the EDA-graph method yielded
an overall F1 score of 41.81, demonstrating the differing
impacts of these feature sets on the fusion outcome. The
comparison results underline the effectiveness of our fusion
technique in capturing complex cross-modal and cross-view
interactions, which are crucial for AU detection in real-world
scenarios.

D. IMPLEMENTATION DETEAILS AND COMPUTATIONAL
RESOURCES
We trained our models on an NVIDIA 1080Ti GPU. For
the backbone network, we employed the Adaptive Moment
Estimation (Adam) method for optimization, with a weight
decay of 10−4. The learning rate was initialized at 0.0001.
We set the batch size for the backbone network training to 32.
This training process utilized approximately 10GB of GPU
memory and was completed in 30 epochs.

For the proposed graph-based fusion network, we used
the Adam optimization method with a weight decay of 10-3.
The learning rate for this network was initialized at 0.001.
This training process consumed approximately 1GB of GPU
memory and reached completion after 100 epochs. Themodel
size of the backbone network for a single modality was
approximately 700MB, while the model size of the proposed
hybrid fusion network was about 90MB.

VI. CONCLUSION AND FUTURE WORK
In this work, we have proposed a novel graph-based multi-
modal multi-view fusion framework for facial action unit
(AU) detection. Our approach effectively addresses the com-
plexities and challenges inherent in AU detection under
diverse lighting conditions and head poses. The introduction
of our new multi-modal and multi-view facial action unit
dataset, gathered in a real-world vehicle environment, adds
value by providing a realistic and challenging benchmark for
future research.

The proposed fusion models, namely early fusion, late
fusion, and a hybrid of both, have shown significant improve-
ments in AU detection performance compared to models
trained using single-modality data. Particularly, our hybrid
fusion model, which combines the benefits of both early
and late fusion methods, and employs attention layers for
robust result integration, outperforms the others in terms of
F1 scores across most AUs. This validates the efficacy of our
fusion strategy in enhancing the robustness and accuracy of
AU detection under diverse conditions.

The dataset we developed and used for this work is
representative of real-world scenarios, providing a robust
foundation for developing AU or facial expression detection
systems. Featuring a wide array of head poses and lighting
conditions typical in driving scenarios, the dataset reflects
the variability of everyday environments, from indoors to
outdoors. The use of multi-view cameras equipped with
multi-modal capabilities, akin to those in mobile devices and
surveillance systems, enhances the dataset’s relevance. These
cameras capture multi-modal data like RGB and NIR images
that are commonly used but vital for real-world applications.
By capturing such a range of data, our dataset not only
serves as a strong benchmark for testing real-world AU or
facial expression detection performance but also ensures that
our approach developed can be effectively applied to other
multi-modal datasets with varied lighting conditions or views,
confirming its broad utility in practical applications.
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The adaptability of our graph-based multi-modal multi-
view fusion framework extends beyond facial action unit
recognition, offering significant potential for diverse appli-
cations across multi-modal fusion domains that depend on
the intricate relationships between data modalities. In areas
such as social network analysis and video-based action
recognition, understanding the interconnections and depen-
dencies between various nodes—whether they be texts or
image frames—within or across modalities is crucial. Our
approach effectively leverages the relationships between dif-
ferent facial action units to enhance detection accuracy.
It can be adapted to analyze and interpret both intra-modal
and inter-modal dynamics in these fields, demonstrating
its broad applicability and potential for future research
extensions.

While our proposed multi-modal multi-view fusion frame-
work demonstrates promising results for robust facial AU
detection, there are certain limitations that warrant further
investigation. Firstly, our current approach primarily focuses
on frame-based AU detection, lacking a temporal aspect to
capture the dynamic nature of facial movements. Incorporat-
ing temporal information by inputting continuous frames or
video sequences could provide a more coherent and compre-
hensive representation of AUs over time. Secondly, although
our dataset is robust, it is limited to annotating only the three
most expressive frames from each expression clip. Expand-
ing the dataset with full video annotations could create a
larger and more comprehensive set of data samples, further
enhancing the generalizability and robustness of the trained
models.

Our future work will focus on several key areas to enhance
the robustness and applicability of our facial AU detection
framework. We aim to incorporate temporal dynamics into
our model by analyzing continuous frame sequences or video
data. This approach will allow us to capture the dynamic
nature of facial expressions over time, potentially employing
time-series analysis or sequential machine learning tech-
niques. Additionally, we plan to expand our dataset beyond
the most expressive frames to include full video annotations.
This expansion will provide a more comprehensive range of
data samples, significantly enhancing the generalizability of
our models. Recognizing the importance of dataset diversity,
future iterations of our study will seek to involve a wider
variety of participants. Moreover, we will explore more nat-
uralistic methods of emotional elicitation, such as immersive
environments or real-world scenarios, to elicit spontaneous
emotional responses. These enhancements aim to deepen
the authenticity and accuracy of AU detection, aligning our
study more closely with the complexities of real-world use
cases.
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