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ABSTRACT Bayesian inference provides a methodology for parameter estimation and uncertainty
quantification in machine learning and deep learning methods. Variational inference and Markov Chain
Monte-Carlo (MCMC) samplingmethods are used to implement Bayesian inference. In the past few decades,
MCMC sampling methods have faced challenges in being adapted to larger models (such as deep learning
models) and big data problems. Advanced proposal distributions that incorporate gradients, such as a
Langevin proposal distribution, provide a means to address some of the limitations of MCMC sampling for
Bayesian neural networks. Furthermore, MCMC methods have typically been constrained to statisticians,
and hence not well-known among deep learning researchers. We present a tutorial for MCMC methods that
covers simple Bayesian linear and logisticmodels, and Bayesian neural networks. The aim of this tutorial is to
bridge the gap between theory and implementation via Python code, given a general sparsity of libraries and
tutorials. This tutorial provides code in Python with data and instructions that enable their use and extension.
We provide results for selected benchmark problems showing the strengths and weaknesses of implementing
the respective Bayesian models via MCMC. We highlight the challenges in sampling multi-modal posterior
distributions for the case of Bayesian neural networks and the need for further improvement of convergence
diagnosis methods.

INDEX TERMS MCMC, Bayesian deep learning, Bayesian neural networks, Bayesian linear regression,
Bayesian inference.

I. INTRODUCTION
Bayesian inference provides a probabilistic approach for
parameter estimation in a wide range of models used
across the fields of machine learning, econometrics, envi-
ronmental and Earth sciences [1], [2], [3], [4], [5]. The
term ‘probabilistic’ refers to the representation of unknown
parameters as probability distributions rather than using
fixed point estimates as in conventional machine learning
models where gradient-based optimisation methods are
prominent [6]. A probabilistic representation of unknown
parameters requires a different approach to optimisation,
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which is known as sampling from a computational statistics
point-of-view [7].

Markov Chain Monte Carlo (MCMC) sampling methods
have been prominent for inference (estimation) of model
parameters via the posterior probability distribution. In other
words, Bayesian methods attempt to quantify the uncertainty
in model parameters by marginalising over the predictive
posterior distribution. Hence, in the case of neural networks,
MCMC methods can be used to implement Bayesian neural
networks that represent weights and biases as probability
distributions [8], [9], [10], [11], [12]. Probabilistic machine
learning provides natural way of providing uncertainty
quantification in predictions [13], since the uncertainties can
be obtained by probabilistic representation of parameters.
A probabilistic representation (Bayesian approach) enables
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one to obtain a set of predictions from the trained model,
rather than having a single prediction from single-point
estimate (Frequentist approach) using optimisation methods.
The inference procedure in the Bayesian approach can
be seen as a form of learning (optimisation) applied to
the model parameters [9]. In this tutorial, we employ
linear models and simple neural networks to implement
MCMC sampling methods. The probabilistic representation
of weights and biases in the respective models allows
uncertainty quantification on model predictions.

We note that MCMC refers to a family of algorithms for
implementing Bayesian inference for parameter and uncer-
tainty estimation in models. Bayesian inference applications
include statistical, graphical, and machine learning models.
The differences in the model complexity from different
domains have led to the existence of a wide range of
MCMC sampling algorithms. Some of the prominent ones
are Metropolis-Hastings algorithm [14], [15], [16], Gibbs
sampling [17], [18], [19], Langevin MCMC [20], [21], [22],
rejection sampling [23], [24], importance sampling [25], [26],
sequential MCMC [27], adaptive MCMC [28], parallel tem-
pering (tempered) MCMC [29], [30], [31], [32], reversible-
jump MCMC [33], [34], specialised MCMC methods for
discrete time series models [35], [36], [37], constrained
parameter and model settings [38], [39], and likelihood free
MCMC [40]. MCMC sampling methods have also been
used for data augmentation [41], [42], model fusion [43],
model selection [44], [45], and interpolation [46]. Apart from
this, we note that MCMC methods have been prominent
in a wide range of applications that include geophysical
inversions [47], [48], [49], geoscientific models [5], [50],
[51], environmental and hydrological modelling [52], [53],
bio-systems modelling [54], [55], [56], and quantitative
genetics [57], [58].

In the case of Bayesian neural networks, the number of
model parameters that emerge from large neural network
architectures and deep learning models pose challenges
for MCMC sampling methods. Hence, progress in the
application of Bayesian approaches to big data and deep
neural networks has been slow. Research in this space has
included a number of methods that have been fused with
MCMC such as gradient-based methods [22], [59], [60], [61],
[62], and evolutionary (meta-heuristic) algorithms which
include differential evolution, genetic algorithms, and particle
swarm optimisation [63], [64], [65], [66].
This use of gradients in MCMC was initially known as

Metropolis-adjusted Langevin dynamics [22] and has shown
promising performance for linear models [61] and has also
been extended to Bayesian neural networks [62]. Hamiltonian
Monte Carlo (HMC) sampling also employ gradient-based
proposal distributions [60] and has been effectively applied
to Bayesian neural networks [67]. In similar way, Langevin
dynamics can be used to incorporate gradient-based stepping
with Gaussian noise into the proposal distribution [61].
HMC avoids random walk behaviour using an auxiliary

momentum vector and implementing Hamiltonian dynamics
where the momentum samples are discarded later. The
samples are hence less correlated, which tend to converge
to the target distribution more rapidly. Another direction
has been the use of better exploration features in MCMC
sampling, such as parallel tempering MCMC with Langevin
proposal distribution and parallel computing [62]. These
have the ability to provide a competitive alternative to
stochastic gradient-descent [68] and Adam optimizers [6],
with the addition of uncertainty quantification in predictions.
These methods have also been applied to Bayesian deep
learning models such as Bayesian autoencoders [69] and
Bayesian graph convolutional neural networks (CNNs) [70],
which require millions of trainable parameters represented as
posterior distributions. Recently, Kapoor et al. [66] combined
tempered MCMC with particle swarm optimisation-based
proposal distribution in a parallelized environment that
showed more effective sampling when compared with the
conventional approach. However, we note that large deep
learning models can feature hundreds of millions to billions
of parameters, which brings further challenges to sampling
strategies, and hence the road is less travelled.

Variational inference provides an alternative approach to
MCMC methods to approximate Bayesian posterior distri-
bution [71], [72]. Bayes by backpropagation is a variational
inference method that showed competitive results when
compared to stochastic gradient descent and dropoutmethods
used as approximate Bayesian methods [73]. Dropout is
a regularisation technique that involves randomly dropping
selected weights in forward-pass operation of backpropaga-
tion. This improves the generalization performance of neural
networks and has been widely adopted [74]. Gal and Ghahra-
mani [75] presented an approximate Bayesian methodology
using dropout-based regularisation, which has been used for
other deep learning models such as CNNs [76]. Later, Gal
and Ghahramani [77] presented variational inference-based
dropout technique for recurrent neural networks (RNNs);
particularly, long-short term memory (LSTM) and gated
recurrent unit (GRU) models for language modelling and
sentiment analysis tasks.

We argue that the use of dropouts for Bayesian infer-
ence [76] cannot be seen as an alternative to MCMC sam-
pling, as dropout-based inference does not sample directly
from the posterior distribution. In the case of dropouts for
Bayesian inference, we do not know the priors nor much
about the posterior distribution. Furthermore, there is only
a means to provide computational efficacy for capturing
uncertainty during model training with weak theoretical
foundations. Furthermore, in the Bayesian methodology,
a probabilistic representation using priors is needed, which is
questionable in the dropout methodology for Bayesian com-
putation. Given that variational inference methods are seen
as approximate Bayesian methods, we need to invest more
effort in directly sampling from the posterior distribution for
Bayesian deep learning models. This can only be possible if
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both communities (i.e., statistics and machine learning) are
aware about the strengths andweaknesses ofMCMCmethods
for sampling Bayesian neural networks. We note that such
models can span hundreds to thousands of parameters, and go
orders of magnitude higher when looking at Bayesian deep
learning models. The progress of MCMC for deep learning
has been slow, due to the lack of implementation details,
libraries and tutorials that provide the balance of theory and
implementation.

In this paper, we present a Python-based MCMC sampling
tutorial for simple Bayesian linear models and Bayesian
neural networks. We provide code in Python with data and
instructions that enable their use and extension. We provide
detailed instructions for sample code in a related Github
repository which is easy to clone and run. Our code imple-
mentation is simple and relies on basic Python libraries such
as numpy as the goal of this tutorial is to serve as a go-to doc-
ument for beginners who have basic knowledge of machine
learning models, and need to get hands-on experience with
MCMC sampling. Hence, this is a code-based computational
tutorial with a theoretical background. We provide results
for selected benchmark problems showing the strengths
and weaknesses of implementing the respective Bayesian
models. Finally, we highlight the challenges in sampling
multi-modal posterior distributions in the case of Bayesian
neural networks and shed light on the use of convergence
diagnostics.

The rest of the paper is organised as follows. In Section B,
we present a background of related methods, including
Bayesian inference and probability distributions. Section C
presents the basic module of the core tutorial that includes
the MCMC sampling code implementation in Python and
Section D extends this for Bayesian linear models using
regression problems. Section E presents Bayesian neural
networks with MCMC using classification problems, and
Section F presents experiments and results for benchmark
problems. Section G provides an overview of convergence
diagnosis, and Section I presents the discussion that con-
cludes the paper with limitations and directions for future
work.

II. BACKGROUND
A. BAYESIAN INFERENCE
We recall that Bayesian methods account for the uncertainty
in prediction and decision-making via the posterior distribu-
tion [78]. Note that the posterior is the conditional probability
determined after taking into account the prior distribution and
the relevant evidence or data via sampling methods. Thomas
Bayes (1702 – 1761) presented and proved a special case
of the Bayes’ theorem [79], [80] which is the foundation
of Bayesian inference. However, Pierre-Simon Laplace
(1749 – 1827) introduced a general version of the theorem
and used it to approach problems [81]. Figure 1 gives an
overview of the Bayesian inference framework that uses data
with a prior and likelihood to estimate (by sampling from) the

posterior distribution. This is the building block of the rest of
the lessons that will feature Bayesian logistic regression and
Bayesian neural networks.

Bayesian inference estimates unknown parameters using
prior information or belief about the variable. Prior infor-
mation is captured in the form of a distribution. A simple
example of a prior belief is a distribution that has a positive
real-valued number in some range. This essentially would
imply a belief that our result or posterior distribution would
likely be a distribution of positive numbers in some range
which would be similar to the prior but not the same.
If the posterior and prior both follow the same type of
distribution, this is known as a conjugate prior [82]. If the
prior provides useful information about the variable, rather
than very loose constraints, it is known as an informative
prior. The prior distribution is based on expert knowledge
(opinion) and also dependent on the domain for different
types of models [83], [84].

FIGURE 1. We show the relationship of the likelihood with data and the
prior distribution for sampling the posterior distribution.

The need for efficient sampling methods to implement
Bayesian inference has been a significant focus of research
in computational statistics. This is especially true in the case
of multimodal and irregular posterior distributions [32], [85],
[86], which tend to dominate Bayesian neural networks [11],
[87]. MCMC sampling methods are used to update the
probability for a hypothesis (proposal2) as more information
becomes available. The hypothesis is given by a prior
probability distribution that expresses one’s belief about a
quantity (or free parameter in a model) before some data
(d) are observed. MCMC sampling methods construct the
posterior distribution (P(2|d)) iteratively by using a proposal
distribution, prior distributionP(2), and a likelihood function
(P(d |2)). As expressed in Equation 1

P(2|d) =
P(d |2)× P(2)

P(d)
. (1)

P(d) is the marginal distribution of the data and is often
seen as a normalising constant and ignored. Hence, ignoring
it, we can express Equation 1 as Equation 2

P(2|d) ∝ P(d |2)× P(2). (2)

The likelihood is a function of the parameters of a
given model with observed data [88], which can be seen
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as a measure of fitness. Therefore, from an optimisation
perspective, the likelihood function can be seen as a fitness
or error function. The posterior distribution is constructed
after taking into account the relevant evidence (data) and prior
distribution, with the likelihood that consider the proposal
(proposed parameters) and themodel with given data.MCMC
methods essentially implement Bayesian inference via an
iterative numerical approach that marginalizes (integrates)
over the posterior distribution [89]. Note that probability and
likelihood are not the same in the field of statistics, while in
everyday language they are used as if they are the same. The
term ‘‘probability’’ refers to the possibility of something hap-
pening, in relation to a given distribution of data. The likeli-
hood refers to the likelihood function that provides a measure
of fitness in relation to a distribution. The likelihood function
indicates which parameter (data) values are more likely than
others in relation to a given probability distribution. Further
details regarding Bayesian inference and MCMC sampling
have been given in the literatures [90] and [91].

B. PROBABILITY DISTRIBUTIONS
1) GAUSSIAN (NORMAL) DISTRIBUTION
A normal probability density or distribution, also known as
the Gaussian distribution, is described by two parameters,
mean (µ) around which the distribution is centered, and
the standard deviation (σ ) which represents the spread
(sometimes described by the variance, σ 2). We can fit a
probability (normal) distribution to data from some source
using the mean and variance. In a similar way, given a
probability distribution, we can generate data and this process
is known as sampling from the distribution. In sampling the
distribution, we simply present random data points (uniform)
to the distribution and obtain data that are transformed by
the distribution. These parameters determine the shape of the
probability distribution, e.g., if it is peaked or spread. Note
that the normal distribution is symmetrical and caters for
negative and positive numbers of real data.

Equation 3 presents the Gaussian distribution probability
density function (PDF) for parameters µ and σ .

f (x) =
1

√
2πσ 2

exp

(
−
1
2

(
x − µ

σ

)2
)

(3)

We will sample from this distribution in Python via the
NumPy library [92] which covers the various distributions
discussed in this tutorial. The SciPy library [93] is used to
get a representation of the probability distribution function
(PDF). The associated Github repository contains the code
to generate Figures 2 to 4 using the Seaborn and Matplotlib
Python libraries. Listing 1 shows an example of drawing
samples from a Gaussian distribution. The SciPy and NumPy
libraries feature all the following distributions.

We note that the mean and standard deviation are purely
based on the given data and change depending on the

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/01-Distributions.ipynb

Listing 1. Random number generation for a Gaussian distribution.

problem. Let us visualise what happens to the distribution
when the mean and standard deviation change, as shown in
Figure 2.

FIGURE 2. Normal distributions with different parameters, i.e., mean and
the standard deviation.

2) MULTIVARIATE NORMAL DISTRIBUTION
The multivariate normal distribution or joint normal dis-
tribution generalises univariate normal distribution to more
variables or higher dimensions, as shown in the PDF in
Equation 4.

f (x1, . . . , xM )

=
1√

(2π )M |6|
exp

(
−
1
2
(x− µ)T6−1(x− µ)

)
(4)

where x is a real M -dimensional column vector and |6| is
the determinant of the symmetric covariance matrix, which
is positive definite.

3) GAMMA DISTRIBUTION
A gamma distribution is defined by the parameters shape (α)
and rate (β), as shown in Equation 5

f (x;α, β) =
βαxα−1e−βx

0(α)
(5)

for x > 0 α, β > 0; where 0(n) = (n − 1)!.
Figure 3 presents the Gamma distribution for various
parameter combinations, with the corresponding code in the
accompanying Github repository. The corresponding inverse-
Gamma (IG) distribution takes the same parameters with
examples given in Figure 4 and is more appropriate for real
positive numbers.
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FIGURE 3. Gamma distributions with different shape and rate parameters
(α and β).

FIGURE 4. Inverse gamma distributions with different shape and rate
parameters (α and β).

4) BINOMIAL DISTRIBUTION
We have only addressed real numbers with respective
probability distributions so far; however, we also need to
consider discrete numbers. The binomial distribution is a
discrete probability distribution typically used for modelling
binary classification problems. We begin with an example
where a variable x takes the value 1 with probability p and the
value 0 with probability q = 1 − p. We give the probability
mass function for this distribution over the possible outcomes
(x) in Equation 6.

f (x; p) = px(1− p)1−x (6)

for x ∈ 0, 1. The probability of getting exactly k successes
(x = 1) in n independent trials (f (k, n, p)) is given as

Pr(k; n, p) in Equation 7

Pr(k; n, p) =
(
n
k

)
pk (1− p)n−k (7)

for k = 0, 1, 2, . . . , n, where
(n
k

)
=

n!
k!(n−k)! .

The Bernoulli distribution is a special case of the binomial
distribution where a single trial is conducted, i.e. n = 1.

5) MULTINOMIAL DISTRIBUTION
In the case of binomial distribution, we catered for the case
of two outcomes; however, we can consider the case of
more than two outcomes. Suppose a single trial can result
in k (k ≥ 2) possible outcomes numbered 1, 2, . . . , k and
let pi = P(a single trial results in outcome i) (

∑k
i=1 pi = 1).

In the case of n independent trials, let Xi denote the number
of trials resulting in outcome i (then

∑k
i=1 Xi = n). Then,

we can state that the distribution of (X1,X2, . . . ,Xk ) ∼
Multinomial(n; p1, p2, . . . , pk ), and it holds

P(X1 = x1,X2 = x2, . . . ,Xk = xk )

=
n!

x1!x2! . . . xk !
px11 p

x2
2 . . . pxkk , 0 < pi < 1,

k∑
i=1

pi = 1.

(8)

III. MCMC
A Markov process is a random process with the property
that the future is dependent on the present state and is
independent of the past history. We note that a Markov
process is uniquely defined by its transition probabilities
P(x ′|x), which defines the probability of transitioning from
any given state x to another given state x ′. The Markov
process has a unique stationary distribution π (x) given the
following two conditions are met.

1) There must exist a stationary distribution π which
solves the detailed balance equations, and therefore
requires that each transition x → x ′ is reversible. This
implies that for every pair of states x, x ′, the probability
of being in state x and moving to state x ′, must be equal
to the probability of being in state x ′ and moving to
state x; hence, π(x)P(x ′ | x) = π(x ′)P(x | x ′).

2) The stationary distribution must be unique, which is
guaranteed by ergodicity of the Markov process [94],
[95], [96], [97]. Ergodicity is guaranteed when every
state is aperiodic (i.e., the system does not return to the
same state at fixed intervals) and positive recurrent (i.e.,
the expected number of steps for returning to the same
state is finite). An ergodic system is one that mixes
well; in other words, you get the same result whether
you average its values over a given timeframe.

Given that π(x) is chosen to be P(x), the detailed balance
condition becomes P(x ′ | x)P(x) = P(x | x ′)P(x ′), which is
re-written as shown in Equation 9.

P(x ′ | x)
P(x | x ′)

=
P(x ′)
P(x)

(9)
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Algorithm 1 presents a basic MCMC sampler with
random-walk proposal distribution that runs until a maximum
number of samples (Nmax) has been reached for training
data, d.

Algorithm 1 A Basic MCMC Sampler Leveraging
the Metropolis-Hastings Algorithm
Data: Training data, d
Result: Nmax samples from the posterior distribution
- Initialise x0 ;
for i = 1 until Nmax do

1. Propose a value x ′|xi ∼ q(xi), where q(.) is the
proposal distribution;
2. Given x ′, execute the model f (x ′,d) to compute
the predictions (output y) and the likelihood;
3. Calculate the acceptance probability
α = min

(
1, P(x

′)
P(xi)

q(xi|x ′)
q(x ′|xi)

)
4. Generate a random value from a uniform
distribution u ∼ U (0, 1);

5. Accept or reject proposed value x ′;
if u < α then

accept the sample, xi = x ′

else
reject current and retain previous sample,
xi = xi−1

end
end

Algorithm 1 proceeds by proposing new values of the
parameter x (Step 1) from the selected proposal distribution
q(.); in this case, a uniform distribution between 0 and 1.
Conditional on these proposed values, the model f (x ′,d)
computes (predicts) an output using proposal x’ and data d
(Step 2). We compute the likelihood using the prediction and
employ a Metropolis-Hasting criterion (Step 3) to determine
whether to accept or reject the proposal (Step 5). We compare
the acceptance ratio α with u ∼ U (0, 1), this enforces that
the proposal is accepted with probability α. If the proposal is
accepted, the chain moves to this proposed value. If rejected,
the chain stays at the current value. The process is repeated
until the convergence criterion is met, which is the maximum
number of samples (Nmax).

A. PRIORS
The prior distribution is generally based on belief, expert
opinion or other information without viewing the data [9],
[98]. Information to construct the prior can be based on
past experiments or the posterior distribution of the model
for related datasets. There are no hard rules for how much
information should be encoded in the prior distribution;
hence, we can take multiple approaches.

An informative prior gives specific and definite informa-
tion about a variable. If we consider the prior distribution for
the temperature tomorrow evening, it would be reasonable to
use a normal distribution with an expected value (as mean)

of today’s evening temperature with a standard deviation
of the temperature each evening for the entire season.
A weakly informative prior expresses partial information
about a variable. In the case of the prior distribution of
evening temperature, a weakly informative prior would
consider day time temperature of the day (as mean) with
a standard deviation of day time temperature for the whole
year. An uninformative prior or diffuse prior expresses vague
information about a variable, such as the variable is positive
or has some limit range.

A number of studies have been done regarding priors for
linear models [99], [100] and Bayesian neural networks and
deep learning models [101]. Hobbs et al. [102] presented a
study for Bayesian priors in generalised linear models for
clinical trials.We note that the insertion of prior knowledge in
deep learning models [103] is different from defining priors
in Bayesian deep learning models. Due to the similarity of
terms, we caution the readers that these can be oftenmixed up.

In the case of Bayesian neural networks, the prior
distribution can be based on the distribution of the weights
and biases from similar neural network models. This can be
seen as an example of expert knowledge and implemented
in previous studies [69], [104]. Another example of expert
knowledge is the concept ofweight decay [105] regularisation
(L2 or Ridge regression [106]) which restricts large weights
and can be incorporated when defining the prior distribution
(priors) [8], [9].

B. MCMC SAMPLER IN PYTHON
We begin with a deliberately simple example where we
sample one parameter from a binomial distribution to
demonstrate a simple MCMC implementation in Python.
Looking at a simple binomial (e.g., coin flipping) likelihood
(we will explore the likelihood later), given the data of k
successes in n trials, we calculate the posterior probability
of the parameter p that defines the chance of success for
any given trial. MCMC sampling requires a prior distribution
and a likelihood function to evaluate a set of parameters
(proposed) for the given data and model. In other words, the
likelihood is the measure of the quality of proposals obtained
from a proposal distribution.

Listing 2 presents an implementation of this simple
MCMC sampling exercise in Python of Algorithm 1.

In this example, we adopt a uniform distribution as an
uninformative prior, only constraining the p to be between
the values of 0 and 1 (p ∈ [0, 1]).
InMCMC sampling, a certain portion of the initial samples

are discarded that is known as the burn-in (warmup) period.
The burn-in period depends on the sampling problem (com-
plexity of the model) and could be seen as an optimisation
stage. In this simple case, we will use 25 % burn-in and in
the case of neural network models, 50 % burn-in will likely
be required. Essentially, during burn-in, we are discarding

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/02-Basic-MCMC.ipynb
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Listing 2. Python implementation of Algorithm 1.

material that is not part of the posterior distribution, since
the posterior should feature good proposals (defined by the
model accuracy and captured by the likelihood) which we get
once the sampler goes towards convergence.

Typically, histograms of the posterior distribution and
the trace plot are used to visualise the MCMC sampling
performance. The histogram of the posterior distribution
allows us to examine the mean and variance visually, while
the trace plot shows the value of samples at each iteration,
allowing us to examine the behavior and convergence of the
MCMC.

Although it is necessary to exclude the burn-in samples in
the posterior distribution, it can be helpful to include them in
the trace plots, in order to examine where the model started
and how well it converged. We provide a visualization of
the results that features a normal distribution obtained by a
simple MCMC sampling from executing code Listing 2. The
histogram of the posterior shows a normally distributed shape
(Figure 5 - Panel (a), and the trace plot (Figure 5 - Panel (b)
shows that the samples are distributed around the convergence
value, as well as the burn-in samples which are in red.We also

note that the value of the posterior is usually taken as themean
of the distribution, and in this case, the mean value is 0.502.
The median can also be taken as a measure which would be
more useful in irregular distributions.

IV. BAYESIAN LINEAR MODELS VIA MCMC
We provide details of implementing Bayesian linear regres-
sion that employs MCMC sampling with random-walk
proposal distribution. We wish to model a dataset consisting
of input (features or covariates) x = (x1, . . . , xS )′ and
corresponding outputs y = (y1, . . . , yS )′ for S instances
in data. This approach models the response observations
as being composed of a regression component (the linear
regression denoted by f (x, θ)) and a noise term (Gaussian
distribution with a mean of zero (µ = 0) and variance τ 2

(Equation 10).

ȳ = f (x, θ)+ e e ∼ N (0, τ 2) (10)

In the Bayesian linear regression, we treat the parameters
(θ and τ 2) as random variables to be estimated (sampled)
based on the data and likelihood. Therefore, the linear
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FIGURE 5. Posterior and trace plot for the basic MCMC sampler given in
Listing 2.

regression model in Equation 10 can be expressed as a
Bayesian linear regression model, as given by Equation 11

p(y|x, θ, τ 2) ∼ N
(
f (x, θ), τ 2

)
. (11)

Equation 12 expresses the general case of a linear model
using a vector of input data x to obtain prediction y.

f (x, θ) = θxT (12)

In the case of Bayesian linear regression, θ is a set
of distributions (typically Gaussian) rather than a fixed
point estimate in conventional linear models. Therefore,
we estimate the parameters (θ and τ 2) using MCMC
sampling to obtain their posterior distributions. As mentioned
earlier, the case of sampling can be seen as a form of
optimisation, e.g., using gradient-based methods for learning
the parameters of linear models and neural networks in the
machine learning and neural networks literatures [107] and
[108]. Furthermore, the key feature of a MCMC sampler
is the ability to sample a posterior probability distribution
that represents the parameters of a model rather than a fixed
point estimate (frequentest approach) given by optimisation
methods.

A. LIKELIHOOD
Our Bayesian approach for the problem requires sampling
(estimating) the posterior distribution p(θ | y), that requires
the definition of both a likelihood function p(θ | x) and
prior distribution p(θ). We begin by defining the likelihood
function, i.e. probability of the data given the model, which
is given by the product of the likelihood for every data point
in the dataset of S instances, as shown in Equation 13

p(y | x, θ, τ 2) =
S∏
t=1

p(yt | xt , θ, τ 2). (13)

We note that for our MCMC sampler, we use the log-
likelihood (i.e., taking the log of the likelihood function) to
eliminate numerical instabilities, which can occur since we
multiply probabilities that grow with the size of the data. It is
also more convenient to maximize the log of the likelihood
function since the logarithm is a monotonically increasing
function of its argument, i.e., maximization of the log of
a function is equivalent to maximization of the function
itself. In order to transform a likelihood function into a log-
likelihood, we will use the log product rule as given below

logb(x × y) = logb(x)+ logb(y). (14)

The log-likelihood simplifies the subsequent mathematical
analysis and also helps avoid numerical instabilities due to the
product of a large number of small probabilities. In the log-
likelihood, Equation 13 is much simplified by computing the
sum of the log probabilities as given in Equation 15

ln p(y | x, θ, τ 2) =
S∑
t=1

ln p(yt | xt , θ, τ 2). (15)

In order to construct the likelihood function, we use our
definition of the probability for each data point given the
model as shown in Equation 11, and the form of the Gaussian
distribution as defined in Equation 3. We use a set of weights
and biases as the model parameters θ in our model f (x, θ),
for S training data instances and variance τ 2. Our assumption
of normally distributed errors leads to a likelihood given in
Equation 16

p(y | x, θ, τ 2)

=
1

(2πτ 2)S/2 exp

(
−

1
2τ 2

S∑
t=1

(yt − f (xt , θ))2
)

. (16)

B. PRIOR
We note that a conventional linear model transforms into a
Bayesian linear model with the use of a prior distribution
and a likelihood function to sample the posterior distribution
via the MCMC sampler. In Section III-B, we discussed the
need to define a prior distribution for our model parameters
θ and τ 2. In the case where the prior distribution comes from
the same family as the posterior distribution, the prior and
posterior are seen as conjugate distributions [109], [110]. The
prior is called a conjugate prior for the likelihood function of
the Bayesian model.

To implement conjugate priors in our linear model, we will
assume a multivariate Gaussian prior for θ (Equation 17) and
an inverse Gamma distribution (IG) for τ 2 (Equation 18).

θ ∼ N (0, σ 2) (17)

τ 2 ∼ IG(ν1, ν2) (18)

The noise is defined by the spread (variance) of a normal
distribution.We need to define the variance that is represented
by τ 2 which cannot be a negative number, and hence we use
IG in Equation 18. We do not know the appropriate value
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for τ 2, and hence we sample this parameter in a similar
fashion as θ during the MCMC sampling process. We note
that the prior for τ 2 must represent a distribution that can only
sample positive real values, and we use the conjugate inverse
Gamma prior with hyperparameters ν1 and ν2,representing
the shape and scale parameters (see Section II-B).

We use the multivariate Gaussian distribution to represent
the prior for parameters θ such as weights and bias of
the linear model, which features negative and positive real
numbers. Our model features more than one parameter, hence
the multivariate Gaussian distribution is most appropriate for
the prior. In this example, we adopt uninformative priors with
hyperparameter values of σ = 5, ν1 = 0, and ν2 = 0
(Listing 6: Lines 15-17), but these values are user-defined and
could be refined using trial experimental runs. These values
are based on expert opinion from analysis of related trained
models.

First, we revisit the multivariate normal distribution from
Equation 4 to define the prior distribution for our linear
model’s parameters (weights and biases). Suppose that θ is
our set of M parameters given by (θ = θ1, . . . , θM ). Since
our prior is based on the normal distribution, we select the
mean (µ = 0) for each parameter to ensure we sample both
positive and negative real numbers. Therefore, the mean µ is
a vector of zeros and we get the prior using Equation 19

f (θ ) =
1√

(2π )M |6|
exp

(
−
1
2
(θ )T6−1(θ )

)
. (19)

The covariance matrix 6 is a diagonal matrix with
all values equal to σ 2 (scalar). Note that 6−1 becomes
I/σ 2 where I is an identity matrix (diagonal elements which
are all ones). Hence, we take the numerator fromEquation 19,
i.e.

(θ )T6−1(θ ) (20)

becomes

(θ )TI(θ )
σ 2 . (21)

We note that multiplying the identity matrix with any other
matrix is the matrix itself; hence, we get θ2 in the numerator.
We can now move to the inverse-Gamma distribution used to
define the prior for our model’s variance (τ 2) and sampled
(just as θ ) and given by Equation 22

f (τ 2) =
ν

ν2
1

0(ν1)

(
1
τ 2

)ν1+1

exp
(
−ν2

τ 2

)
. (22)

We note that νν2
1 /0(ν1) is a constant which can be dropped

considering proportionality. We take into account the product
of all our sampled parameters (θ and τ 2) to define the

combined prior, as given by Equation 23

p(θ) ∝
1

(2πσ 2)M/2

× exp
{
−

1
2σ 2

( M∑
i=1

θ2
)}
×τ−2(1+ν1) exp

(
−ν2

τ 2

)
.

(23)

C. PYTHON IMPLEMENTATION
The Python code presented in Listing 3 begins the implemen-
tation of a Bayesian linear model using MCMC sampling.
First, we define our simple linear model as given in
Equation 12 using class LinearModel (Line 1) of Listing 3
and define functions to evaluate the proposal (line 13).
We encode the parameters proposed from theMCMC sampler
class into the linear model (Line 30) to get the prediction
(Line 25).

Now that we have a class for our linear model, we can
define the functions that will allow us to carry out
MCMC sampling for the model parameters. We define our
log-likelihood function using Equation 16, which becomes
Equation 24

logp(y | x, θ, τ 2)

= −log((2πτ 2)S/2) −
1
2τ 2

S∑
t=1

(yt − f (xt , θ))2 . (24)

Furthermore, we define our log-prior using Equation 23
which becomes Equation

log p(θ ) ∝ −
M
2

log 2πσ 2

−
1

2σ 2

( M∑
i=1

θ2
)
− (1+ ν1) log τ 2 −

ν2

τ 2
. (25)

We present Python implementation of the log-likelihood
(Lines 2 - 18) and the prior (Lines 21 - 37) in Listing 4.
Before running the MCMC sampler, we need to set up the

sampler hyperparameters, such as the maximum sampling
time and burn-in period (Listing 7). We also need to assign
hyperparameters that define the priors such as Gaussian
prior variance (σ 2) and the IG prior parameters, ν1 and ν2
(Listing 6: Lines 15, 16 and 17). First, we need to generate
an initial sample for our parameters and initialise arrays
to capture the samples that form the posterior distribution,
the accuracy, and the model predictions as shown in code
Listing 5 (Lines 5-23). Then we proceed with sampling as per
the MCMC sampling algorithm detailed in Algorithm 1 and
code Listing 5. This algorithm uses a Gaussian random-walk
distribution for the parameter proposals (θp and τ 2p ). We per-
turb the current value with Gaussian noise as shown in

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/03-Linear-Model.ipynb
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Listing 3. Python implementation of a simple linear regression model.

Equations 26 and 27, respectively.

θp ∼ θp−1 +N (0, 1θ ) (26)

ηp ∼ ηp−1 +N (0, 1η) (27)

We implement the MCMC sampler with a Gaussian
random-walk proposal for ηp = log τ 2p , where we use η to
represent τ 2 in log-space (Listing 5: Line 29). The step sizes
for the proposals are determined by the hyperparameters 1θ

and 1η which define the variance for the proposal of θp and
ηp respectively. Once we sample η, we take the exponential
to convert it back to the original form (see Line 30) and
obtain τ 2.
After getting the proposal for the parameters, i.e. θ and τ 2,

we call the likelihood and prior functions to obtain their
respective values, as shown in Lines 32 - 35 of Listing 5.
Note that the log-likelihood is used and hence the ratio of
previous and current likelihood will need to consider log laws
(rules), i.e., we note the log product rule in Equation 28 and
the quotient rule in Equation 29. We use these rules in Lines
37 and 38 of Listing 5. Based on Equation 9 and taking
the quotient rule into account since we are in the log space,
we then accept/reject the proposed value according to the
Metropolis-Hastings acceptance ratio (Line 42) as shown in
Lines 41 - 54.

logb(x × y) = logb(x)+ logb(y) (28)

logb(x/y) = logb(x)− logb(y) (29)

Now that we have the sampler code (Listing 5), we can
create an MCMC class that brings together the model,
data, hyperparameters and sampling algorithm as shown in
Listing 6.

We can then run the MCMC sampler function as shown
in Listing 7, Line 12. After the code runs, we get the
results (Line 14) and can generate the predictions frommodel
posterior draws (Line 16) of the trained Bayesian linear
model.

V. BAYESIAN NEURAL NETWORKS VIA MCMC
A. NEURAL NETWORKS
We utilise a simple neural network, also known as a
multilayer perceptron to demonstrate the process of training
a Bayesian neural network via the MCMC sampler. A neural
network model f (x) is made up of a series of computations,
that transform inputs to their corresponding outputs {x̄t , yt }.
Neural networks feature layers of neurons whose value is
determined based on a linear combination of inputs from the
previous layer, with an activation function.

We consider a simple neural network with one hidden layer
with four input neurons, five hidden neurons and one output
neuron, as shown in Figure 6. As an example, we can calculate
the output value of the jth neuron in the first hidden layer of a
network (h, j) using a weighted combination of the m inputs
(x̄t ), as shown in Equation 30.

g
(

δh,j +

m∑
i=1

wi,jx̄t,i

)
(30)
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Listing 4. Python implementation of likelihood and prior functions for linear regression model to be incorporated into the MCMC sampling class.

where, the bias (δh,j) and weights (wi for each of them inputs)
are parameters to be sampled (trained or estimated), and g(.)
is the activation function that is used to perform a nonlinear
transformation. In our case, the function g(.) is the sigmoid
activation function, used for the hidden and output layers as
shown in Figure 6.

We train the model to approximate the function f such
that f (x) = ȳ for all input-output pairs of instances from
the training dataset. We extend the calculation of outputs in
the hidden layer to calculate the output f (x̄t ) as shown in
Equation 31.

f (x) = g
(

δo +

H∑
j=1

vh × g
(

δh +

m∑
i=1

wi,jxi

))
(31)

where H is the number of neurons in the hidden layer, δo is
the bias for the output, and vh are the weights from the hidden
layer to the output neuron. The complete set of parameters
for the neural network model (Figure 6) is made up of θ =

(w̃, ṽ, δ), where δ = (δo, δh). w̃ are the weights transforming
the input to hidden layer. ṽ are the weights transforming the
hidden to output layer. δh is the bias for the hidden layer, and
δo is the bias for the output layer.

FIGURE 6. Simple neural network with a single hidden layer. The
information is passed and processed from the input to hidden and then
finally to the output layer.

B. BAYESIAN NEURAL NETWORKS
A Bayesian neural network is a probabilistic implementation
of a standard neural network with the key difference
being that the weights and biases are represented via the
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Listing 5. Python implementation of an MCMC sampler for the linear model.

posterior probability distributions rather than single point
values as shown in Figure 7. Similar to canonical neural
networks [111], Bayesian neural networks also have universal
continuous function approximation capabilities. However,

the posterior distribution of the network parameters allows
uncertainty quantification on the predictions.

The task for MCMC sampling is to estimate (sample) the
posterior distributions representing the weights and biases
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Listing 6. Python implementation of an MCMC class for Bayesian linear model.

Listing 7. Code to call the MCMC sampling class and fit a model to some toy data.

of the neural network that best fit the data. Perhaps, it can
be argued that the method should be called an estimator,

but we will stick to the sampler as given in the literature.
As in the previous examples, we begin inference with prior
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FIGURE 7. Bayesian neural network and MCMC sampling adapted
from [104].

distributions over the weights and biases of the network and
use a sampling scheme to find the posterior distributions
given training data. Since non-linear activation functions exist
in the network, the conjugacy of prior and posterior is lost.
Therefore, we must employ an MCMC sampling scheme and
make assumptions about the distribution of errors.

We specify the model similar to the Bayesian linear regres-
sion, assuming a Gaussian error as given in Equation 32.

y = f (x, θ)+ e e ∼ N (0, τ 2) (32)

This leads to the same likelihood function as presented
in logarithmic form in Equation 24. As in Section IV-B,

we adopt Gaussian priors for all parameters of the model
(θ ), with zero mean and a user-defined variance (σ 2), and
an IG distribution for the variance of the error model (τ 2),
with parameters ν1 and ν2. The likelihood function and prior
function remain unchanged from their definition in Listing 4.

C. MULTINOMIAL LIKELIHOOD FOR CLASSIFICATION
PROBLEMS
We note that neural network models are also prominent for
classification problems apart from regression and prediction
problems. Bayesian neural networks via the MCMC sampler
require an appropriate likelihood function, suitable for
discrete outcomes, to capture classification problems. Hence,
we use themultinomial likelihood, which is applicable to both
binary and multi-class classification problems. We define
the multinomial log-likelihood function for the classification
problems using Equation 33

log (p(y|θ )) =
∑
t∈N

K∑
k=1

zt,k logπk (33)

for classes k = 1, . . . ,K , where πk is the output of the neural
network model after applying the transfer function, and N
is the number of instances in the training data. In this case,
we utilize the softmax function [112] as the transfer function:

πk =
exp(f (xp))∑K
k=1 exp(f (xk ))

(34)

for k = 1, . . . ,K . zt,k is an indicator variable for the given
instance of data t . We define class k in the data by

zt,k =

{
1, if yt = k
0, otherwise.

(35)

We note that we do not use the noise parameter (i.e., τ 2)
as in the case of the inverse gamma distribution for the
Gaussian likelihood for the regression case (Equations 16
and 24); hence, we do not need a prior distribution for the
noise. We will only use a Gaussian prior for weights and
biases of the neural network model. Therefore, in the case
of classification, our prior distribution from Equation 25
simplifies to Equation 36

p(θ ) ∝
1

(2πσ 2)M/2 × exp
{
−

1
2σ 2

( M∑
i=1

θ2
)}

(36)

and finally, the log-prior can be expressed as Equation 37

log p(θ ) ∝ −
M
2

log 2πσ 2
×−

1
2σ 2

( M∑
i=1

θ2
)

. (37)

D. TRAINING NEURAL NETWORKS VIA
BACKPROPAGATION
We note that typically random-walk proposal distributions
are used for small scale-models such as linear models;
however, neural network models feature a large number of
parameters. The choice of a proposal distribution is essential
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for models with large number of parameters. We need to
incorporate gradients into our proposal distribution for better
sampling, and we will begin by examining how gradients
are incorporated in conventional neural networks and deep
learning models.

Gradient-based optimization has been the backbone for
the backpropagation training algorithm [113] and widely
used in machine learning. A prominent implementation is
stochastic gradient descent (SGD) which involves stepping
through the parameter space iteratively in a stochastic
manner using gradients, to optimize a differentiable objective
function. The method has been prominently featured in
the backpropagation algorithm for training various neural
network architectures, including deep learning models [114],
[115], [116]. Backpropagation involves a forward pass
which propagates information forward to get the prediction
(decision) at the output layer, and a backward pass to compute
the local gradients for each of the parameters (weights
and biases). These gradients are then used to inform the
update of the model parameters in an iterative process, where
the parameters are updated at each step. The training of
neural networks is also considered as solving a non-convex
optimization problem argminL(θ ); where, θ ∈ Rn is the
set of parameters and L is the loss function. We give the
parameter (weight) update for an iteration (epoch) of SGD
in Equation 38

θk = θk−1 − ak−1∇L(θk−1) (38)

where, θk denotes the k th iteration, ak is the learning rate, and
∇L(θk ) denotes the gradient.

We note that the learning rate is a user-defined hyperpa-
rameter, which depends on the problem and data at hand. It is
typically determined through tuning using cross-validation or
trial and error. Extensions of the backgropagation algorithm
employing SGD were proposed to address limitations.
These include the use of weight decay regularization during
training to improve generalization ability [105], a momentum
mechanism for faster training [117], [118], adaptive learning
rate [118], and second-order gradient methods [119] which,
although efficient, have problems in scaling up computation-
ally with larger models. In the last decade, the extensions
made were not only to improve the training accuracy, but
to scale up better computationally for large deep learning
models. These led to the development of methods such
as the adaptive gradient algorithm (AdaGrad) [120], Ada-
Delta [121], and Adam (adaptive moment estimation) [122].
These algorithms adapt the learning rate automatically during
the training, taking into account the recent history of the
optimization process.

1) LANGEVIN PROPOSAL DISTRIBUTION
We mentioned earlier that random-walk proposal distribu-
tions are suited for small-scale models, and better proposal
distributions would be required for neural network models.
Although simple neural networks have a much lower number
of parameters, when compared to deep learning models,

training simple neural networks with MCMC sampling is a
challenge with random-walk proposal distribution. We need
to utilize the properties of backpropagation algorithm and
the mechanism of weight update using gradients. Hence,
we utilize stochastic gradient Langevin dynamics [61] for the
proposal distribution, which features the addition of noise to
the stochastic gradients. Themethod has shown to be effective
for linear models [61] which motivated its use in Bayesian
neural networks. In the literature, Langevin MCMC has been
very promising for simple and deep neural networks [62],
[69], [70]. Hence, we draw the proposed values for the
parameters (θp) according to a one-step (epoch) gradient,
as shown in Equation 39.

θp ∼ N (θ̄ [s], 6θ ) (39)

A Gaussian distribution with a standard deviation of 6θ ,
and mean (θ̄ [s]) calculated using a gradient based update
(Equation 40 of the parameter values from the previous
step (θ [s]).

θ̄ [s] = θ [s] + r ×∇E(θ [s]) (40)

with learning rate r and gradient update (∇E(θ [s]))
according to the model residuals.

E(θ [s]) =
∑
t∈T

(yt−F(xi, θ [s]))2

∇E(θ [s]) =
(

∂E
∂θ1

, . . . ,
∂E
∂θL

)
. (41)

Hence, the Langevin proposal distribution (also referred as
Langevin-gradient) consists of 2 parts:

1) Gradient descent-based weight update
2) Addition of Gaussian noise from N (0, 6θ )
We need to ensure that the detailed balance is maintained

while sampling, since the Langevin proposals are not
symmetric. We note that MCMC implementations with
relaxed detailed balance conditions for some applications
also exist [123]. Therefore, we use a combined update in the
Metropolis-Hastings step, which accepts the proposal θp for
a position s with the probability α, as shown in Equation 42

α = min
{
1,

p(θp|y)q(θ [s]|θp)
p(θ [s]|y)q(θp|θ [s])

}
(42)

where p(θp|y) and p(θ [s]|y) can be computed using the
likelihood and prior (Equations (16) and (23)). We give the
ratio of the proposed and the current q(θp|θ [s]) in Equation 43

q(θ [s]|θp) ∼ N (θ̄ [s], 6θ ) (43)

which is based on a one-step (epoch) gradient∇Ey[θ [s] and
learning rate r , as given in Equation 44

θ̄ [s] = θ [s] + r ×∇Ey[θ [s]]. (44)

Thus, this ensures that the detailed balance condition holds,
and the sequence θ [s] converges to draw from the posterior
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p(θ |y). Since our implementation is in the log-scale, we give
the log-posterior in Equation 45

log (p(θ |y)) = log (p(θ))+ log (p(y|θ ))+ log(q(θ |θ∗))

(45)

Algorithm 2 gives a full description of the Langevin
MCMC sampling scheme with user-defined parameters that
include the maximum number of samples (Smax), rate of
Langevin-gradient proposals (Lprob), and learning rate r
used for the Langevin-gradient proposals. We note that in a
standard LangevinMCMC approach, Lprob = 1 andGaussian
noise is already part of Langevin-gradient distribution.
However, in our implementation, we use a combination of
random-walk proposal distribution with Langevin-gradients,
as this is computationally more efficient. Langevin-gradients
require more computational time due to gradient computation
when compared to random-walk proposals, especially in
larger models.

We begin by drawing initial values for the θ from the prior
distribution given in Equation (23) (Stage 1.1). We draw a
new proposal for θp (which incorporates the model weights
and biases and τ 2 from either a Langevin-gradient or random-
walk proposal distribution (Stage 1.2). We evaluate the
proposal using the Bayesian neural network (BNN) model
with the log-likelihood function in Equation 16 (Stage
1.4) and the prior given in Equation (23) (Stage 1.3).
We can then check if the proposal should be accepted
using Metropolis-Hastings condition (Stage 1.5 and 1.6).
If accepted, the proposal becomes part of the chain, else we
retain the last accepted state as the current state of the chain.
We repeat the procedure until the maximum samples are
reached (Smax). Finally, we execute the post-sampling stage,
where we obtain the posterior distribution by concatenating
the history of the samples in the chain.

E. PYTHON IMPLEMENTATION
We first define and implement the simple neural network
module (class), and implement methods (functions) for
the forward and backward pass to calculate the output
of the network, given a set of inputs. We need to compute
the gradients and update the model parameters given a model
prediction and observations, respectively. Listings 8 - 13
present the implementation of the Bayesian Neural Network
and associated Langevin MCMC sampling scheme. Note that
we implement the Bayesian Neural Network via the MCMC
sampler class to sample (train) the weights and biases of the
Neural Network class.

Next, we implement the model for a single hidden layer
neural network with multiple input neurons and multiple
output neurons (for binary and multi-class classification
and multi-output regression). Listing 8 defines the Neural
Network class with the constructor function (init) which
defines the network topology, in terms of the number of

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/04-Bayesian-Neural-Network.ipynb

Algorithm 2 Bayesian Neural Network via Langevin
MCMC Sampling
Data: Dataset
Result: Posterior distribution of model parameters

(weights and biases)
- Stage 1.0: Metropolis Transition
- 1.1 Draw initial values θ0 from the prior
for each s until Smax do

1.2 Draw κ from a Uniform-distribution [0,1]
if κ ≤ Lprob then

Use Langevin-gradient proposal distribution:
θp ∼ N (θ̄ [s], 6θ )

end
else

Use random-walk proposal distribution:
θp ∼ N (θ [s], 6θ )

end
1.3 Evaluate prior given in Equation 23
1.4 Evaluate log-likelihood given in Equation 16
1.5 Compute the posterior probability for
Metropolis-Hastings condition - Equation 45
1.6 Draw u from a Uniform-distribution [0,1]
if log(u) ≤ log(p(y|θ)) then

Accept replica state: θ [s+1]← θp

end
else

Reject and retain previous state: θ [s+1]← θ [s]

end
end

input, hidden and output neurons along with the learning
rate. These values are passed by the calling function. Next,
we compute the total number of parameters by Line 17.
In Line 22, we initialize the network by calling the function
(initialise_network) where we initialize (create) matrices
for the weights from the input-hidden, and hidden-output
layer, along with the vectors for their biases (Lines 33-49).
Line 51 gives the evaluate_proposal function that takes the
input data and proposed parameters (x_data and theta) and
returns the prediction (fx) in Line 62. We feature the sigmoid
transfer (activation) function in Line 64.

Listing 9 lists the rest of the functions from the Neural Net-
work class, where forward_pass propagates the information
forward from input - hidden layer and then hidden to output
layer using a dot product (Lines 12 and 16) and the returns
the output layer (Line 17). The backward_pass function
begins by computing the gradients (delta) at the output layer
(Line 27) and hidden layer (Line 33). Lines 40–44 update the
weights in the hidden and output later using their respective
gradients.

In a conventional backpropagation algorithm implementa-
tion, basically the forward and backward pass functions will
be called in an iterative loop that will call these functions
until the maximum number of epochs, or a given training
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Listing 8. Python implementation of the Neural Network class.

(validation) error, has been reached. However, in our case,
we are using the Langevin MCMC sampler to train the neural
network model; hence, we have additional helper functions

(Listing 10) to ensure that the MCMC sampler class gets
the information as needed. Essentially, from the MCMC
class (Listing 11), the sampler function (Listing 13) calls
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Listing 9. Python implementation of Neural Network forward and backward passes.

the respective functions to evaluate the likelihood and the
prior (Listing 12). In the case of computing the likelihood,
the evaluate_proposal function in Listing 8 calls the decode
function in Listing 10 to insert the values of the proposal
(theta) into the weight matrices and bias vectors of the model
defined in the NeuralNetwork class of Listing 8.

Next, we move to Listing 11 that implements the Langevin
MCMC sampler for classification problems, as given in
the notebook of Github repository. We note that we
also provide the implementation for regression/prediction
problems in the notebook. Furthermore, we also provide
Python code implementation that features both classification
and regression problems in the repository.

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/04a-Bayesian-Neural-Network-
Classification.ipynb

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/blob/main/04-Bayesian-Neural-Network.ipynb

https://github.com/sydney-machine-learning/Bayesianneuralnetworks-
MCMC-tutorial/tree/main/code

In Listing 11, we define the MCMC class with number
of samples (n_samples), the burnin period (n_burnin), along
with the training (x_data and y_data) and test datasets (x_test
and y_test). Lines 12-14 initializes the hyperparameters,
such as the step_size of the random-walk on theta and the
sigma_squared that defined the spread of the Gaussian prior
for the weights and biases. Lines 17-21 define the neural
networkmodel, the use of Langevin-gradients, the probability
(l_prob) for using it, and the total number of weights and
biases (theta_size). Next comes the storage of the parameters
that are samples (Lines 24-25). Line 27 defines the function
for model_draws - this is used post-sampling as a means
to test the trained model. Line 50 defines the classification
prediction accuracy, note that other error metrics can also be
added.

Listing 12 defines the multinomial Log-likelihood and
prior for classification problems. Line 1 implements the
multinomial log-likelihood function that uses the parameters
and data (Equation 33). Line 22 implements the log-prior
function that uses the proposals (theta) and the user-defined
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Listing 10. Langevin-gradient functions in the Neural Network class.

variance (sigma_squared) for the Gaussian prior. Note that
in the case of regression and prediction problems, the
log-likelihood and log-prior are similar to the Bayesian linear
regression (Listing 4) with the omission of terms related to τ 2.
In Listing 14, we begin sampling by first initializing

variables that track the number of accepted proposals and
how many times Langevin-gradients are utilized, this is just
for analysis. In Line 4, we begin the sampling using a for
loop that begins with 1 and ends with the number of samples.
In Line 6, we propose the new values for the parameters
(theta) using random-walk proposal distribution centered at
the mean of 0 and given spread (step_size), which needs
to be experimentally determined in trial experiments. Then,
we decide if we wish to use the Langevin-gradients or
random-walk proposal distribution (Lines 7-8). Lines 9-20
implement the Langevin-gradients where we get one-step
gradients from the neural network model. Therefore, we need
to run the forward-pass and a backward-pass functions using
the new sets of the current weights and biases. Then, we need

to obtain the gradients of the output and hidden layers of
the network, and concatenate to return these as a vector
(Lines 15-20) of Listing 10.

In Listing 14, we then use the gradient (theta_grad) as
the center for the normal distribution to draw and add
Gaussian noise to the gradients (Line 10).We again obtain the
gradients, this is merely for the detailed balance condition.
In Line 11, we get the gradients again, but this time we
use the new values of theta (theta_proposal) that we earlier
obtained in Line 6. As given in Equation 42, in the case when
the proposals are not symmetric (i.e., Langevin-gradients),
we need to get the q-ratio (Line 19 diff_prop). In the log-
scale, this is obtained by the difference in the current theta
(first) and the new theta_proposal (second) to account for the
detailed balance condition as shown in Line 19. In order to
obtain the q-ratio, we need to further evaluate the old and
the new proposals using the multivariate normal distribution
and for numerical stability. However, we need to have a
simplified implementation for the multivariate distribution
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Listing 11. Bayesian neural network using MCMC sampler for classification problems.

given a large set of weights and biases (theta). Since we
are operating in the log-scale, we can further simplify the
multivariate normal distribution as shown in Lines 14-19.
Finally, Line 23 implements the case when random-walk
proposal distribution would be used, note that in Line 22,
the diff_prop is 0. This accounts for the detailed balance
condition, since the proposals are naturally symmetric, in the
case of random-walk proposal distribution (Line 23).

Next, we compute the log-likelihood in Listing 14
(Line 27) and the error metrics for the test dataset (Line 29).
We note that this is a classification problem, and hence the
classification accuracy (Listing 12 - Line 13) is reported using

the log-likelihood function. We determine the Metropolis-
Hastings (MH) acceptance rate using Lines 34-35. In Lines 32
and 33, we get the difference (ratio) for the proposed
likelihood and the current likelihood, and the ratio for the
prior with the current and proposed value of the prior.
We utilize these to get the MH probability in Line 34,
which also utilizes the difference (ratio) of proposed and
current proposals, obtained either from Line 19 or Line 22.
Finally, we either accept (Lines 39-45) or reject (Line 48) the
proposal by comparing the MH probability with a random
value obtained in Line 35. In the case if the proposal is
accepted, the proposed values of theta along with prior and
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Listing 12. Multinomial Log-likelihood and prior for classification problems (Continued from Listing 11).

Listing 13. Implementation of MCMC sampler function (Continued from Listing 12).

likelihood, become the current value in the chain. In the case
if it is rejected, then the chainmaintains its last accepted value
as the current value (Line 48). We remove the burn-in portion

and store the posterior (Lines 53-57). Finally, we return
the dictionary of the data that features the posterior and
predictions using the Pandas library.
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Listing 14. Begin with sampling loop (Continued from Listing 13).

VI. RESULTS
A. DATA
We use the Sunspot time series data and Abalone datasets
for regression problems. The Abalone dataset provides the
ring age for Abalone based on eight features that represent

https://www.sidc.be/silso/datafiles
https://archive.ics.uci.edu/ml/datasets/abalone

physical properties such as length, width, and weight and
associated target feature, i.e., the ring age. We note that
determining the age of Abalone is difficult, as it requires
cutting the shell and counting the number of rings using a
microscope. However, other physical measurements can be
used to predict the age and a model can be developed to
use the physical features to determine the ring age. Sunspots
are regions of reduced surface temperature in the Sun’s
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photosphere caused by concentrations of the magnetic field
flux, and appears as spots darker than the surrounding areas.
The Sunspot cycles are about every eleven years and over
the solar cycle, the number of Sunspot changes more rapidly.
Sunspot activities are monitored since they have an impact on
Earth’s climate and weather. We obtain the Abalone dataset
from the University of California (UCI) Machine Learning
Repository and keep a processed version of all the datasets
in our repository.

In the case of the Sunspot time series, we define a one-step
ahead prediction problem and hence use one output neuron.
We process the Sunspot dataset (univariate time series) using
Taken’s embedding theorem [124] to construct a state-space
vector, also known as data windowing. This is essentially
using a sliding window approach of size D overlapping T
time lags. The window sizeD determines the number of input
neurons in the Bayesian neural network and Bayesian linear
model. We use D = 4 and T = 2 for data reconstruction
as these values have given good performance in our previous
works [62].
We also obtain datasets for classification problems from

the same repository that features a large number of datasets
for classification problems. We selected the Iris classification
dataset that contains 4 features (sepal length, sepal width,
petal length, petal with) of three types of Iris flower species,
featuring 50 instances for each case. This dataset is one
of the most prominent datasets used for machine learning.
We also selected the Ionosphere dataset that features a binary
classification task with 351 instances. It has 34 continuous
features and the task is to filter the radio signals as ‘‘good’’
or ‘‘bad’’.

B. EXPERIMENT SETTING: HYPERPARAMETERS
In the Bayesian linear model and neural network, we choose
the number of samples to be 25,000 for all problems,
distributed across 5 chains and excluding 50% burn-in. In the
Bayesian linear model, we choose the learning rate r =
0.1, and the step sizes for θ = 0.02 and τ = 0.01,
respectively. Additionally, for the Gaussian prior distribution,
we choose the parameters σ 2

= 5, ν1 = 0 and ν2 =

0, respectively. In the Bayesian neural network models,
we choose the learning rate r = 0.01, and the step
sizes for θ = 0.025 and τ = 0.2, respectively. In the
Gaussian prior distribution, we choose the hyperparameter
σ 2
= 25 determined from examining trained neural network

models for similar problems. In the case of regression, we use
inverse-Gamma prior for τ 2, and hence use hyperparameters
for this prior, ν1 = 0 and ν2 = 0, respectively. We also
use a burn-in rate of 0.5 for both the Bayesian linear and
the Bayesian neural network models. In the case of Bayesian
neural networks, we apply Langevin-gradients at a rate of 0.5.

https://archive-beta.ics.uci.edu/about
https://github.com/sydney-machine-learning/Bayesianneuralnetworks-

MCMC-tutorial/tree/main/data
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/ionosphere

C. RESULTS: REGRESSION AND PREDICTION
We first present the results of Bayesian regression with the
Sunspot (time series prediction) and Abalone (regression)
datasets. We evaluate the model performance using the root
mean squared error (RMSE), which is a standard metric
for time series prediction and regression problems. We
present the results obtained by the Bayesian linear model
and Bayesian neural network model for regression problems
in Table 1. Figures 8 and 9 present the prediction plots
(observed, modelled and 95 % credible interval) that show
a comparison between Bayesian linear model and neural
network models for the fixed training (Panels a and b) and
test (Panels c and d) datasets. Note that we report the results
of a single experimental run, which is not conventional when
considering the frequentest approach of reporting results
featuring multiple experimental runs. We note that Panels (a)
and (c) show the time series prediction (x-axis represents
timestep number). Panels (b) and (d) present a scatter-plot
of the change from timestep t − 1 to t in the observed
(1Y observed) and predicted values (1Y modelled). This
gives an indication of model’s ability to predict change at
each timestep with a skill better than persistence (as observed
Yt−1 is given as an input to the model, a model predicting
yt = Yt−1 could have a low RMSE). Thus, we note that
the RMSE does not assess the skill (capability) of the model
above the observed Yt−1 (given these models are conducting
one step-ahead prediction); however, given the analysis using
Panels (b) and (d), the performance of the two models can be
further compared using RMSE.

In Table 1, we observe that the Bayesian neural network
performs better for the Sunspot time series prediction
problem, as it achieves a better accuracy (lower RMSE) on
both the training and testing set. This can also be seen in
Figures 8 and 9.
In the case of the Abalone - regression problem, Table 1

shows that both models obtain similar classification per-
formance, but the Bayesian neural network has better test
performance. However, we note that in both problems,
Bayesian neural networks have a much lower acceptance
rate; we prefer roughly a 23 % acceptance rate [125] that
implies that the posterior distribution has been effectively
sampled. However, we also note that such MCMC sampling
acceptance rates are typically based on statistical and linear
models, which may not apply to Bayesian neural networks.
Therefore, more research needs to be done to determine
a good acceptance rate that aligns with convergence and
ergodicity [96].

D. RESULTS: CLASSIFICATION PROBLEMS
Next, we move to the case of classification problems using
Bayesian neural networks and Bayesian linear models.

Table 2 presents results for the classification problems in
the Iris and Ionosphere datasets. We notice that both models
have similar test and training classification performance
for the Iris classification problem, and Bayesian neural
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TABLE 1. Results using Bayesian linear model and Bayesian neural networks via MCMC sampler for the Abalone (regression) and the Sunspot
(prediction) problems. The results show the RMSE mean and standard deviation (in brackets) for the train and test datasets, respectively.

TABLE 2. Classification accuracy with Bayesian linear model and Bayesian neural networks via MCMC. The results show the accuracy mean and standard
deviation (in brackets) for the train and test datasets.

networks give better results for the test dataset for the
Ionosphere problem. The acceptance rate is much higher
for Bayesian neural networks in the case of classification
when compared to regression/prediction problems. In the
case of regression (Table 1), the Bayesian linear model has
a better acceptance rate, but that is also not suitable when
compared to the acceptance rate in the literature for Bayesian
linear models. This suggests that we need better tuning of
the hyperparameters, especially when Langevin gradients are
used.

VII. CONVERGENCE DIAGNOSIS
It is important to ensure that the MCMC sampling is
adequately exploring the parameter space and constructing
an accurate representation of the posterior distribution. One
method of monitoring the performance of the adopted
MCMC sampler is to examine convergence diagnostics that
assess/monitor the extent to which the Markov chains have
become a stationary distribution. The Gelman-Rubin (GR)
convergence diagnostic [126] is developed by sampling
from multiple MCMC chains, whereby the variance of
each chain is assessed independently (within-chain variance)
and then compared to the variance between the multiple
chains (between-chain variance) for each parameter. A large
difference between these two variances would indicate that
the chains have not converged on the same stationary
distribution.

In our case, we run several independent experiments and
compare the MCMC chains using a modified Gelman-Rubin
convergence diagnostic presented by Vehtari et al. [127]. It is
beyond the scope of this publication to provide a detailed

mathematical description of the convergence diagnostics, the
reader can refer to [127] for a full description. A useful
package for Bayesian model diagnostics, which contains an
implementation of this modified diagnostic is arviz [128].
We refer to the modified Gelman-Rubin diagnostic as R̂,
where values close to 1 indicate convergence. In Listing 15,
we present the code to prepare the MCMC sampler outputs
for convergence diagnostic by arviz.

A. RESULTS FOR CONVERGENCE DIAGNOSIS
We show results for the modified Gelman-Rubin diagnostic
for Bayesian linear and Bayesian neural network models
for each of the four datasets. We test five chains for each
model, each with 5,000 samples of weights (excluding 50%
burn-in samples) and computing the R̂ values for each
parameter.We also provide an additional example ‘‘Linear+’’
for the linear models where each of the 5 chains has
50,000 samples (excluding 50% burn-in samples). The basic
sampler presented here is not state of the art in terms of
sampling efficiency (see Section IX for further discussion),
and for some of the problems (particularly those where
parameters are difficult to identify) it may take a large number
of samples to converge. The additional example (Linear+)
demonstrates that the convergence is improving as the
number of samples grows. Figure 10 shows the distribution
of the R̂ values, and we observe that the R̂ values of the
weights for the Bayesian linear regression model are much
smaller than Bayesian neural network. We can observe that
based on the Gelman-Rubin diagnostics, the Bayesian neural

https://python.arviz.org/en/stable/api/generated/arviz.rhat.html
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FIGURE 8. Bayesian linear regression model - Sunspot dataset.

FIGURE 9. Bayesian neural network model - Sunspot dataset.

network shows poor convergence. The additional samples in
the ‘‘Linear+’’ case improve convergence, in particular for
the Abalone, Iris, and Ionosphere cases.

By closely examining eachweight individually, we observe
that the problem of non-convergence mainly arises from the

multi-modality of the posterior. In Figure 11, we look at sam-
ples from a single chain of 20,000 samples excluding 20%
burn-in. In Figure 11-Panel (a) and 11-Panel (b), we present
a visualization for a selected weight from the Bayesian linear
model. In Figure 11-Panel (c) and 11-Panel (d), we present a
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Listing 15. Convergence diagnostics using the arviz python package that could be run after Listing 7.

FIGURE 10. Distribution of R̂ values for our Bayesian linear model
(Linear), Bayesian neural network (BNN) and a linear model with 10 times
more samples (Linear+). The scattered points show the underlying data
summarized in the box plots. The ‘‘Linear+’’ case shows the ability of the
sampler to converge as more samples are taken.

visualization for a selected weight from the Bayesian neural
network model. We observe potential multimodal distribu-
tions in both cases, with a high degree of auto-correlation and
poor convergence. To examine the impact of longer MCMC
chains in achieving convergence, we ran an additional test
by taking 400,000 samples excluding 20% burn-in, and then
thinning the chain by a factor of 50 for visualization. Thinning
is the process of reducing the memory burden of the chain,
particularly where samples may be auto-correlated [129].
We can also use thinning to visualize long chains with many
samples. In our case, we implement thinning by retaining
every 50th sample of the chain. We present these results for
the Iris dataset in Figure 12.We can see that the chains exhibit
more desirable properties, particularly in the case of the linear
model (Figure 12- Panels (a) and (b). We can see in Figure 12
- Panels (c) and (d), that the Bayesian neural network exhibits
a multimodel posterior for this parameter.

Furthermore, other approaches for convergence diagnosis
such as autocorrection analysis can also be implemented with
packages such as the integrated autocorrelation time [130]

in Emcee [131]. We refer to readers for a comprehensive
review of MCMC convergence diagnostics given by [132],
[133], and [134].

VIII. MCMC PACKAGES
We note that there are avenues to further improve the
sampling efficiency, we utilized Langevin MCMC but other
gradient-based approaches such as Hamiltonian MCMC
(HMC) [60] also exist. It is worthwhile to evaluate the
performance of Langevin MCMC against other advanced
gradient-based sampling algorithms (e.g., No-U-turn Sam-
pler (NUTS) [135]) to assess convergence properties in cases
of multimodal posterior distributions, such as in Bayesian
neural networks. We note that implementation of HMC and
NUTS exist in probabilistic programming libraries such as
PyMC [136] and Stan [137], [138]. We implemented an
additional notebook using the NumPyro [139] probabilistic
programming library to perform an equivalent Bayesian
linear regression (Listing 3-7) as an example.

IX. DISCUSSION
We presented a Python tutorial for Bayesian neural net-
works and Bayesian linear models using MCMC sampling.
In general, we observed that the Bayesian neural network
performs better than Bayesian linear regression in our
selected problems (Tables 1 and 2), despite showing no
poor convergence (Figure 10 and Figure 12-Panel (d)). This
could be due to the challenge of sampling a relatively large
number of weights and biases of Bayesian neural networks,
which also have multimodal posterior distribution. Hence,
we conclude that for the case of Bayesian neural networks,
a poor performance in the Gelman-Rubin diagnostics does
not necessarily imply a poor performance in prediction
tasks. We revisit the principle of equifinality [140], [141]

https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
https://github.com/sydney-machine-learning/Bayesianneuralnetworks-

MCMC-tutorial/blob/main/05-Linear-Model_NumPyro.ipynb
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FIGURE 11. Posterior and trace-plot for a parameter in each of the Bayesian linear and Bayesian neural
network models - Sunspot data. In this example, 20,000 samples were taken excluding 20% burn-in with no
thinning.

FIGURE 12. Posterior and trace-plot for a selected parameter in each of the Bayesian linear and Bayesian
neural network models - Iris data. We took 400,000 samples (excluding 20% burn-in) with the chain thinned
by a factor of 50 for visualisation.

which states that in open systems, a given end state can
be reached by many potential means. In our case, the
system is a neural network model and many solutions exist

that represent a trained model displaying an accepted level
of performance accuracy. However, we note that Bayesian
models offer uncertainty quantification in predictions, and
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proper convergence is required. The original Gelman-Rubin
diagnosis [126] motivated several enhancements for different
types of problems [127], [133], [142], [143]; and we may
need to develop a better diagnosis for Bayesian neural
networks. Nonetheless, in our case comparing Bayesian
logistic regression (converged) and Bayesian neural networks
(not converged but achieved good accuracy), we can safely
state that the Bayesian neural networks presented can only
provide a means for uncertainty quantification, and not
mature enough to qualify as a robust Bayesian model.

We also revisit the convergence issue in the case of the
Bayesian linear model as shown in Panel (b) - Figure 11,
which shows a multi-modal distribution that has not well
converged. It may also be the case that certain features
are not contributing much to the decision-making process
(predictions) and the weights associated (coefficients) with
those features may be difficult to sample. This is similar to
the case of neural networks, where certain weight links are
not needed and can be pruned. Pruning neural networks create
compact models that also have the potential to get better
generalization performance [144].

We note that we attained a much higher acceptance rate
in Bayesian neural networks for classification problems
(Table 2) when compared to regression problems (Table 2).
We note that different likelihood functions are used for
classification and regression (Multinomial and Gaussian
likelihood) and we utilized the Langevin-gradient proposal
distributions that accounted for the detailed balanced condi-
tion. Hence, we need to further fine-tune the hyperparameters
associated with the proposal distribution to ensure we get
a higher acceptance rate for the regression problems. Fine-
turning the hyperparameters for the proposal distribution is
a laborious task, which can be seen as a major limitation of
MCMC sampling in large models such as Bayesian neural
networks. Although 23 % acceptance rate [125] has been
prominently used as a ‘‘golden rule’’, the optimal acceptance
rate depends on the nature of the problem. The number
of parameters, Langevin-based proposal distribution, and
type of model would raise questions about the established
acceptance rate [145]. Hence, more work needs to be done
to establish what acceptance rates are appropriate for simple
neural networks and deep learning models.

A way to address the issue of convergence would be to
develop an ensemble of linear models that can compete with
the accuracy of neural networks or deep learning models.
In ensemble methods such as bagging and boosting, we can
use linear models that have attained convergence as per
Gelman-Rubin diagnosis and then combine the results of the
ensemble using averaging and voting, as done in ensemble
methods.

Our previous work has shown that despite the challenges,
the combination of Langevin-gradients with parallel tem-
pering MCMC [62], presents opportunities for sampling
larger neural network architectures such as autoencoders and
graph-based CNNs [69], [70]. The need to feature a robust
methodology for uncertainty quantification in CNNs will

make them more suitable for applications where uncertainty
in decision-making poses major risks, such as medical image
analysis [146] and human security [147]. CNNs have been
considered for modelling temporal sequences, they have
proven to be successful for time series classification [148],
[149], and time series forecasting problems [150], [151],
[152]. It has also been shown that one-dimensional CNNs
provide better prediction performance than the conventional
LSTM network for multistep ahead time series predic-
tion problems [152]. Leveraging CNNs within a Bayesian
framework can provide better uncertainty quantification in
predictions and make them useful for cutting-edge real-
world applications. We need a comprehensive evaluation
of prominent gradient-based MCMC sampling methods for
deep learning models such as CNNs, autoencoders, and
LSTM networks.

We envision that this tutorial will enable statisticians,
machine learning and deep learning experts to utilize MCMC
sampling more effectively when developing new models and
Bayesian frameworks for existing deep learning models. The
tutorial has introduced basic concepts with code and provides
an overview of challenges when it comes to the convergence
of Bayesian neural networks. It can be further extended to
utilize parallel computing via tempered MCMC [62], HMC
for Bayesian neural networks, and Langevin MCMC and
HMC for Bayesian deep learning.

CODE AND DATA
The code and data presented in this paper are available in the
associated GitHub repository. This repository presents the
implementations in separate Jupyter notebooks in the base
directory, with sub-directories containing data, convenient
functions and details of the environment setup.
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