
Received 7 April 2024, accepted 11 May 2024, date of publication 15 May 2024, date of current version 22 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3401115

Task Offloading and Resource Allocation
in UAV-Aided Emergency Response
Operations via Soft Actor Critic
SHATHEE AKTER 1, DAT VAN ANH DUONG 1, DAE-YOUNG KIM 2, (Member, IEEE),
AND SEOKHOON YOON 1, (Member, IEEE)
1Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, South Korea
2Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, South Korea

Corresponding author: Seokhoon Yoon (seokhoonyoon@ulsan.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant 2021R1I1A3051364.

ABSTRACT In modern emergency responses, unmanned aerial vehicles (UAVs) play a crucial role in
redefining disaster management through diverse task execution (e.g., object detection). However, UAVs are
usually resource-constrained. To address this issue, UAV mother-ships with edge servers (UMECs) can be
placed near UAV scouts for remote task processing. UMECs can have a larger scale of energy consumption
and battery capacity than UAV scouts. Therefore, minimizing the total or maximum energy consumptionmay
result in ignoring the energy consumption in UAV scouts and focusing on UMECs, consequently reducing
the network’s lifetime. Furthermore, UMECs might lack the capacity to process all types of tasks owing to
memory or software restrictions, and faster task execution often necessitates both central processing unit
(CPU) and graphics processing unit (GPU), which are rarely considered by existing works. Therefore, this
paper studies a task offloading and resource (computation capacity and power) allocation (TORA) problem
with the goal of minimizing the maximum energy consumption ratio among UMECs and UAV scouts
alongside task execution latency ratio and total energy consumption, where tasks are executed using both
CPU and GPU, each UMEC can execute a specific set of tasks, and devices have limited resources. We then
formulate the problem as a non-convex mixed-integer nonlinear programming problem and decompose it
into multiple sub-problems. Finally, a soft-actor-critic (SAC) based TORA algorithm (SATORA) is proposed
to address the problem, which can adapt to the time-varying environment scenario. Numerical simulation
results show that SATORA outperforms other baseline algorithms.

INDEX TERMS Deep reinforcement learning, resource allocation, task offloading, multi-access edge
computing.

I. INTRODUCTION
Every year, natural and man-made disasters such as wildfires,
landslides, floods, terrorism, and industrial accidents cause
significant damage to lives, property, the environment,
and the economy. Emergency response operations after a
disaster, including search and rescue, evacuations, emergency
shelters, and damage assessment, play a crucial role in
saving lives, providing aid, and facilitating the recovery

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

process [1], [2], [3]. To improve the speed and efficiency
of operations, advanced technologies such as unmanned
aerial vehicles (UAVs) are increasingly integrated into
disaster response strategies in recent years because of
their flexibility, cost-effectiveness, and easy deployment in
hard-to-reach and hazardous areas [4], [5], [6]. Despite
their advantages, the tasks performed by UAVs (e.g.,
video streaming, object detection, real-time mapping, and
tracking) are computationally demanding and highly time-
sensitive, whereas the computational and energy resources
of UAVs are limited. To meet the requirements of these

69258

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-5905-1433
https://orcid.org/0000-0002-8409-6972
https://orcid.org/0000-0003-4901-3075
https://orcid.org/0000-0003-1384-3405

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

resource-demanding applications, a promising solution called
mobile edge computing (MEC) has emerged, where tasks
can be offloaded to edge servers with a more powerful
computational capacity deployed at base stations (BSs) or
in UAVs (working as aerial base stations) or both [7], [8],
[9]. The success of an MEC system is highly dependent on
the task offloading (TO) decision (whether a task should
be offloaded or not, and where to offload it) and resource
allocation (RA) since different edge servers and amounts
of allocated resources (such as power and computational
capacity) will lead to different energy consumption and
execution times.

Many researchers, therefore, have proposed strategies for
jointly optimizing TO and RA over the past years in their
respective problem scenarios [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]. Existing
studies mostly aim to minimize total or maximum energy
consumption in the system. However, the energy capacity of
each device in a MEC system can be different, as well as the
scale of energy consumption.

For example, assume a UAV network aided by a MEC
system in a search and rescue operation with the mission
objective of detecting humans in a disaster area. The network
consists of resource-constrained UAV scouts that generate the
task (i.e., human detection using deep learning technique),
edge servers equipped with UAV mother-ships (UMECs),
and a base station equipped with cloud servers (BSC), where
UMECs and BSC provide computing services. The task can
be processed locally in the UAV scout or offloaded either
directly to a UMEC or to the BSC through an associated
UMEC. Furthermore, the total operation time is divided into
time slots, and the mobility of the UAV scouts and UMECs
follows the grid pattern (i.e., the area is divided into grids,
and the UAVs move from one grid to another after staying a
given amount of time at each grid). At each time slot, a task
is generated by each UAV scout, and the available resources
(i.e., energy and computational capacity) of the UAV scouts
and UMECs are limited. We need to find a task offloading,
transmission power, and resource allocation solution such
that the total resources consumed do not exceed the budget
of the devices (at each timeslot). In this scenario, the energy
consumption scale and the energy capacity of the UMECs
can be much higher than the UAV scouts. Thus, minimizing
total or maximum energy consumption will mostly focus
on minimizing the energy consumption of UMECs due to
their larger scale of energy consumption. This can lead to a
higher percentage of energy consumption in the UAV scouts,
compared to their capacity, due to lack of optimization, and
as a consequence, the lifetime of the UAV network may be
reduced.

Furthermore, existing works consider that all types of
task can be executed in a MEC server. However, different
types of tasks may have different requirements (e.g., memory,
computation capacity, database, and service-software) for
execution, and in many cases, it is impossible to prepare all
services demanded when MEC servers are UAVs. Moreover,

most existing studies assumed that only the CPU executes
the tasks, whereas faster performance can be achieved by
harnessing the combined processing power of a graphics
processing unit (GPU) and a CPU in the case of most deep
learning techniques.

Therefore, in this paper, we consider a task offloading
and resource (i.e., transmission power, CPU cycles, and
GPU FLOPS) allocation (TORA) problem with the aim of
minimizing the maximum energy consumption ratio among
UAV scouts and UMECs, the maximum task execution
latency ratio, and the total energy of the system while taking
into account the task execution limitations of UMECs and the
resource budgets. The maximum energy consumption ratio
of a processing device (UAV scout or UMEC) is the ratio
of actual maximum energy consumption and approximated
probable maximum energy consumption with respect to the
device. The task execution latency ratio is the total execution
latency over the deadline of the task. The considered problem
contains an integer and a non-convex problem, which makes
it very complex and hard to solve.

In our previous paper [23], although we have considered
a similar problem using a meta-heuristic approach based
on a messy genetic algorithm (mGA), it has the following
limitations. First, it considers a different objective, i.e.,
minimize the maximum energy consumption ratio and
the total task execution latency ratio. Second, a meta-
heuristic strategy based on the memetic genetic algorithm
(mGA) is used, which lacks adaptability to variations
in parameters in the problem scenario or environment
(such as data sizes of tasks that need to be offloaded
and the required CPU cycles and GPU FLOPS for task
processing). Consequently, it necessitates re-execution each
time a parameter changes, introducing a potentially longer
decision-making time. Third, the mGA-based strategy is
more prone to falling into local optima due to losing genetic
diversity.

Therefore, in this paper, a deep reinforcement learning
(DRL) based TORA approach, which is called soft actor-
critic (SAC) based TORA (SATORA) algorithm, is proposed
that can adapt to the dynamic environment, i.e., can find a
solution within a very short time in an unseen environment
by learning general patterns and representations of the envi-
ronment. Furthermore, DRL continuously explores different
actions and their outcomes in the environment (states and
rewards) by refining its strategies based on past experiences,
which reduces the likelihood of getting stuck into local
optima, making it a more appropriate choice for our dynamic
problem scenario. The main contributions of this paper are
summarized as follows:
• A TORA problem in a MEC-enabled hierarchical UAV
network is studied in this paper with the objective of
minimizing the maximum energy consumption ratio
among UAV scouts and UMECs, maximum task exe-
cution latency ratio, and total energy consumption in
the system. The considered problem is first formulated
as a mixed-integer non-linear programming (MINLP)

VOLUME 12, 2024 69259

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

problem while taking into consideration the task
performing capabilities of UMECs, both GPU and CPU
processing of tasks, the computational resources, the
transmission power budget, and the energy consumption
constraints of UMECs and UAV scouts. The formulated
MINLP problem consists of integer and continuous
variables, which is highly challenging to solve. Thus,
we decompose the problem into two problems (a TO
problem and an RA problem), which enables the use of
multiple solution-searching strategies. TO is an integer
programming problem and is NP-hard, whereas RA is a
continuous problem.

• To solve the TO and RA problems, we propose a
SAC-based joint TORA (SATORA) strategy, which can
cope with the dynamic environment. In SATORA, the
integer programming problem is solved by using a
SAC-based TO algorithm, whereas a Karush–Kuhn–
Tucker (KKT)-based simple power and computational
resource allocation strategy [23] is employed to obtain
the RA solution.

• The proposed algorithm is evaluated by conducting
simulations under various problem scenarios, employing
multiple performance metrics. The results verify that
SATORA can outperform other approaches by attaining
a longer network lifetime, lower task execution latency,
and lower total energy consumption in the system.

The remainder of this paper is organized as follows.
In Section II, related works are discussed. The system model,
problem formulation, and decomposition are described
in Section III. The proposed algorithm is presented in
Section IV. In Sections V and VI, respectively, the result
analysis of the proposed method and the conclusion is
presented.

II. RELATED WORKS
A. TASK OFFLOADING AND RESOURCE ALLOCATION
Over the past few years, there has been significant research
conducted on the simultaneous optimization of TO and RA
in multi-access edge computing [9], [10], [11], [12], [13],
[14], [15]. However, these studies made the assumption
that MEC servers are deployed within base stations (BSs),
which can introduce significant delays for users located far
from the BSs, lack flexibility, and restrict the availability of
MEC services in areas without infrastructure or outside the
coverage range of the BSs.

Therefore, recently, the concept of UAV-aided MEC
networks has gained attention, where UAVs consist of
edge servers and operate as base stations (BSs) [16],
[17], [18], [19], [20], [21], [22]. For example, in [16],
the authors considered a fog node carried by a UAV
that provides radio and computation services to mobile
users. They optimized the TO, computation frequency, and
transmission power to minimize energy consumption and
delay. In [17], a mixed edge-cloud computing framework
with space-aerial assistance was introduced, where a joint

optimization of UAV computational resources, computation
task allocation, transmission power, association control,
deployment position, and bandwidth allocation was per-
formed, aiming to minimize the maximum computation delay
among IoT devices. In [18], a two-layer optimization strategy
was presented, focusing on UAV trajectory optimization,
bit allocation, and task scheduling to minimize energy
consumption for ground users. The upper layer employed
a dynamic programming-based method for task scheduling,
whereas the lower layer addressed the UAV trajectory and bit
allocation problems by using an alternating direction method
of multipliers. Messous et al. [20] proposed a TO method
that finds a balance between energy consumption and time
delay in a UAV network comprising end-users (UAVs), base
stations, and edge stations (ESs) where end-users can offload
tasks to the BS or to ESs. Chen et al. [21] minimized the
average service latency of tasks by introducing an intelligent
TO algorithm (iTOA) that utilizes the deep Monte Carlo Tree
Search.

While the aforementioned studies explored various tasks
and applications in their MEC systems, they assumed that
edge servers equipped UAVs are capable of performing any
type of task, whereas in reality, this assumption is impractical
due to the limited resources of UAVs. Additionally, none
of these studies took into account the scenario where tasks
are computed using both CPU and GPU, which makes
execution faster than when processed only by the CPU.
Moreover, current works only minimize the UAVs’ total or
maximum energy usage, overlooking varying levels of energy
consumption across UAV types. This oversight can lead to
unfair energy consumption among different UAV categories,
such as UAV scouts and UMECs, relative to their energy
capacities.

In contrast, our study considers that MEC servers (i.e.,
UMECs) can only process limited types of tasks, and
the tasks are computed on the CPU as well as a GPU.
Moreover, we consider a multi-user and multi-server MEC
system within a hierarchical UAV network, and propose a
comprehensive DRL-based framework that minimizes the
maximum energy consumption ratio among UAV scouts
and UMECs with respect to their energy capacity, task
execution latency ratio, and total energy consumption in the
system.

B. DRL-BASED TASK OFFLOADING AND RESOURCE
ALLOCATION
In recent years, several studies on TO have started focusing
on DRL-based solutions because of their generalization
capability and lower time complexity in high-dimensional
and complex problem scenarios. For example, Seid et al. [24]
proposed amodel-free DRL-based collaborative computation
offloading and resource allocation scheme to minimize task
execution delay and energy consumption in emergency situ-
ations. In particular, they proposed a deep deterministic pol-
icy gradient (DDPG)-based method for multi-UAV-assisted
IoT networks while taking into consideration time-varying

69260 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

computational node capacity, channel quality, and tasks. The
authors in [25] studied a network lifetimemaximization prob-
lem in an IoT network consisting ofmultiple users and aMEC
server. They proposed a SAC-based DRL framework called
DeepLM to jointly optimize the local CPU-cycle frequency,
task splitting ratio, and bandwidth allocation. In [26], the
authors combined two DRL algorithms (multi-agent DDPG
and SAC) to find the target server for TO and the amount of
data offloaded in a wireless power transfer-enabled scenario.
Zhang et al. [27] aimed to jointly optimize the cooperative
partial TO and computational RA for industrial Internet
of Things (IIoT) devices. They developed an improved
SAC-based framework to find the TO and computational RA
decisions for each IIoT device. The study in [28] focused on
cooperative computation offloading to address the limitations
of single-edge servers and nonuniform task distribution in
edge servers. They aimed to offload tasks from an edge
server with a heavy load to other neighbor ESs and cloud
servers, and proposed two algorithms based on SAC to find
the solution. The authors in [29] introduced a DRL-based
framework to minimize computation overhead (execution
delay and energy consumption) in a non-orthogonal multiple
access (NOMA)-MEC system. Their proposed model takes
both continuous and discrete action space and time-varying
fading channels into account.

However, the considered problem scenarios or system
models or objectives in the above studies are very different
from our problem scenario, objective, and optimization prob-
lems. Therefore, these methods are not directly applicable to
our problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, an MEC-enabled UAV network that performs
emergency response operations is considered, as shown in
Fig. 1. The network consists of a base station equipped
with edge servers (BSC) g, a set of UAV mother-ships with
edge servers (UMECs) M (M = {1, . . . , |M|}), and a set
of UAV scouts S (S = {1, .., |S|}). The operation time is
assumed to be divided into time slots with a constant duration.
At the beginning of each time slot, at most, one task can be
generated by each UAV scout. The task can be performed
locally or offloaded to a UMEC or to the BSC through the
associated UMEC (which has the communication link with
both the UAV scout and the BSC), according to the decision
given by the lead UMEC after executing the decision-making
algorithm.

UAV scout i has the following specifications: task size
in bits, si, required CPU cycles, ci and GPU FLOPS, gi,
for performing the task, desired task execution time or
deadline before which the task is expected to be processed,
di, type of the task, Vi (Vi ∈ Z+) (represents different
tasks such as pose recognition or object detection), CPU
capacity, fi (cycle/second), GPU capacity, ui (in FLOPS),
maximum transmission power, bi, and battery capacity for
data transmission and reception, ei. Z+ is the set of positive
integer.

UMEC m is associated with the following: a set of specific
tasks that it has the capability to perform, Tm (Tm ∈ Z+),
transmission power budget, Fm, computation resources (i.e.,
CPU in cycles/second, wm and GPU in FLOPS, hm), and
battery capacity am for transmitting and receiving data.

A. COMMUNICATION MODEL
In a UAV network, line-of-sight channels exhibit more
dominance since both UMECs and UAV scouts fly at high
altitudes. Therefore, we assume that the channels between
UAV scouts and UMECs follow the free-space path loss
model, and the channel access scheme is considered to be
the orthogonal frequency division multiple access (OFDMA)
scheme. Then, the attainable bit rates (uplink) rim between
UAV scout i and UMECmwhen offloaded to a UMEC or rmg
when transmitting from UMEC m to BSC g are calculated as
follows:

rim = W log2(1+
wimpi
σim

) (1)

rmg = W log2(1+
wmgoimg

σmg
), (2)

where W denotes the bandwidth. wim and wmg represent the
channel gains from UAV scout i to UMEC m and UMEC m
to BSC g, respectively. pi represents the transmission power
assigned by the UAV scout for task offloading, and oimg is the
transmission power assigned by UMEC m to the task of UAV
scout i when transmitting the task to the BSC. σim and σmg
are the noise powers.

B. TASK EXECUTION LATENCY MODEL
The task execution delay, when processed locally, comprises
control signal transmission and reception time for task
requests and decisions. However, the time needed for the
control signal and for decision-making is ignored in this
work since control signals use the dedicated channel, and
the decision-making algorithm takes a negligible amount
of time to run (the proposed DRL-based method is trained
before deployment and runs in a UMEC). Therefore, the task
execution latency for local processing is given by,

Ii =
ci
fi
+
gi
ui

. (3)

However, if UAV scout i decides to offload the task
to a UMEC or the BSC, then the task transmission time,
propagation delay, and post-processing output retrieval time
also need to be taken into account, whereas the output data
transmission time is ignored here because of the negligible
data size and higher downlink data rate.

Furthermore, MEC servers have limited computation
capacities; thus, the computation resources assigned to each
task for execution need to be taken into consideration. Let
bim and him, respectively, denote the CPU and GPU resources
allocated to UAV scout i by UMEC m. The CPU cycles and
GPU FLOPS allocated to each UAV scout i by BSC g are
denoted by zig and uig, respectively.

VOLUME 12, 2024 69261

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 1. An example of a MEC-enabled UAV network.

Then, the task execution delay for offloading to a UMEC
m, Iim, or to BSC g, Iimg, can be calculated as follows:

Iim =
si
rim
+
Dim
C
+

ci
bim
+

gi
him

(4)

Iimg =
si
rim
+

si
rmg
+
Dim + Dmg

C
+

ci
zig
+

gi
uig

(5)

where C is the light speed. In eq. (4), the first term is task
transmission time, the second term is propagation delay, the
third part represents task execution time in the CPU, and
the fourth term, task processing time in the GPU. In eq. (5),
the first two terms represent the task transmission times
from the UAV scout to the associated UMEC (which works
as the relay between the BSC and the UAV scout), and from
the UMEC to the BS, respectively. The third term represents
the propagation delay from the UAV scout to the UMEC and
from the UMEC to the BSC, whereas the fourth and fifth
terms represent the task execution times in the CPU andGPU,
respectively.

Note that in this paper, we assume that the GPU mostly
processes the computationally intensive functions of the
tasks; therefore, we only focus on the GPU resource
allocation, whereas CPU resources are assumed to be divided
equally among all assigned tasks in the processing device.

C. ENERGY CONSUMPTION MODEL
When a task is offloaded to a UMEC, the energy consumption
of the task includes the energy needed for transmission
and execution (in the CPU and GPU), whereas for local
processing, it only includes the energy needed for execution
in the CPU and GPU. Therefore, the energy usage for task
execution locally, Ei, for transmitting the task to a UMEC,
Eim, and for processing the task in a UMEC, Rim, are

calculated in eqs. (6)-(8), respectively:

Ei = qi × ci + vi × gi (6)

Eim = pi ×
si
rim

(7)

Rim = q′m × ci + v
′
m × gi, (8)

where qi signifies the energy used per CPU cycle, vi denotes
the energy consumed per GPU FLOP in UAV scout i.
q′m stands for energy consumption per CPU cycle, and v′m
indicates energy expenditure per GPU FLOP in UMEC m.

The BSC is considered to have a continuous power supply;
therefore, the energy consumption for task execution in the
BSC only includes transmission energy consumption from
UAV scout i to UMEC m to BSC g. Then, the energy
consumption for transmission from UMEC m to BSC g is

Eimg = oimg ×
si
rmg

. (9)

D. PROBLEM FORMULATION
In this subsection, the considered TORA problem is formu-
lated as a mixed integer non-linear programming (MINLP)
problem. Optimization variables used in the problem formu-
lation are defined as follows:

xim =

{
1, if UAV scout i offloads its task to the UMEC m
0, otherwise

(10)

ximg =

1, if UAV scout i offloads its task to the BSC g

through associated UMEC m
0, otherwise

(11)

69262 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

TABLE 1. Model parameters.

where both ximg and xim equaling 0 represents the local task
processing.

The total energy usage of UAV scout i and UMEC m
therefore can be written as:

Oi =
∑
m∈M

Eim
(
xim + ximg

)
+

(
1−

(
xim + ximg

))
Ei (12)

and

Om =
∑
i∈S

((
τm × si + Rim

)
xim +

(
τm × si + Eimg

)
ximg

)
,

(13)

where τm is the reception energy consumption of UMEC m
per bit. Then, the energy consumption ratios of UAV scout i
and UMEC m, respectively, are calculated as Oi

emaxi
and Om

amaxm
,

where emaxi = min{ei,Omaxi } and a
max
m = min{am,Omaxm }.

Omaxi and Omaxm are the approximated probable maximum
energy consumption for an UAV scout and a UMEC,
respectively.

The task execution delay of UAV scout i can be rewritten
as follows:

Ti =
(
Iimxim + Iimgximg

)
+

(
1− (xim + ximg)

)
Ii (14)

To take into account the associations between devices,
we define two matrixes, Q ∈ B|M|×|G| and Z ∈

B|S|×|M|, to represent UMEC-BSC and UAV scout-UMEC
associations, respectively. Each element Q(m,g) and Z(i,m) in
matrixes Q and Z , respectively, can have either value ‘‘1’’
or ‘‘0’’. The value ‘‘1’’ represents the association between
devices, whereas ‘‘0’’ signifies there is no communication
link. For example, in matrix z, Z(i,m) = 1 signifies
that UAV scout i is associated with UMEC m; otherwise,

VOLUME 12, 2024 69263

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

Z(i,m) = 0. The remaining notations (that are used in the
problem formulation) definitions are presented in Table 1.

The main problem can then be formulated as follows:

minw1 max
i∈S,m∈M

{
Oi
emaxi

,
Om
amaxm

}
+ w2max

i∈S

{
Ti
di

}
+w3

(∑
i∈S

Oi +
∑
m∈M

Om

)
(15)

subject to:∑
m∈M

xim + ximg ≤ 1, ∀i ∈ S (16)

xim = Z(i,m)xim, ∀m ∈M,∀i ∈ S (17)

2ximg = (Z(i,m) + Q(m,g))ximg, ∀m ∈M,∀i ∈ S (18)

|{Vi} ∩ Tm| + (1− xim) ≥ 1,

∀i ∈ S,∀m ∈M (19)∑
i∈S

himxim ≤ hm, ∀m ∈M (20)∑
i∈S

∑
m∈M

uigximg ≤ zg (21)

pi(xim + ximg) ≤ bi, ∀i ∈ S (22)∑
i∈S

oimgximg ≤ Fm, ∀m ∈M (23)

Oi ≤ ei, ∀i ∈ S (24)

Om ≤ am, ∀m ∈M (25)

where w1, w2, and w3 are weights for scaling.
The objective of the TORA problem is presented in

equation (15), which is minimizing the weighted sum of the
maximum energy consumption ratio among UAV scouts and
UMECs, maximum task execution latency ratio, and total
energy consumption in the network. Inequality (16) ensures
that a UAV scout can either offload its task to only one
UMEC or to the BSC, or execute it locally. In particular,∑

m∈M xim + ximg = 0 means the task of UAV scout i is not
offloaded to any of the UMEC or the BSC and is processed
locally. If xim = 1, then UAV scout i should not offload
its task to the BSC or to any other UMECs except UMEC
m. Similarly, the task should not be offloaded to the BSC
using several relay UMECs or offloaded to the UMECs if
ximg = 1. Equation (17) states that a communication link is
necessary to offload the task from a UAV scout to a UMEC.
Constraint (18) mandates the association between the BSC
and its associated UMEC and between the UAV scout and the
UMECwhen the task is offloaded to the BSC. Constraint (19)
guarantees task assignment to a UMEC that has the capability
(in terms of types of tasks). Inequalities (20) and (21) prevent
exceeding the GPU computing resource budgets of UMECs
and the BSC, respectively. Themaximum transmission power
constraints of UAV scouts and UMECs, respectively, are
expressed in inequalities (22) and (23). The constraints on the
energy capacities of UAV scouts and UMECs, respectively,
are expressed in eqs. (24) and (25), ensuring total energy
consumption remains within capacity.

The above-formulated problem (15) consists of both binary
and continuous variables and is non-convex. Therefore,
following a similar strategy in [9] and [23], we decompose
the problem into an integer problem (TO) and a non-convex
continuous problem (RA–power and computational resource)
and convert the non-convex continuous problem into a convex
problem. The integer problem, i.e., TO, has a very large
solution space. Assume that there are M UMECs, K UAV
scouts with exactly one task, and G BSCs. A UMEC can
process tasks of all K UAV scouts; thus, there are 2K ways
to select a UMEC. For M UMECs, there is 2MK assignment
or offloading schemas. Moreover, each BSC can also process
tasks of all K UAV scouts, and each UAV scout can offload
the task to a BSC throughM different UMECs. Therefore, the
solution space will contain a total of 2MK +2KMG assignment
schemas.

In addition, a simplified model of TO can be mapped to
an instance of the generalized assignment problem (GAP),
which is a well-known NP-hard problem [30]. In particular,
assume an instance of GAP with L tasks, P agents, a cost
clp associated with assigning task l (l = 1, . . . ,L) to agent
p (p = 1, ..,P) and a capacity budget for each agent.
Each task can be assigned to exactly one agent, and the
objective is to minimize the total cost of the assignment
subjected to capacity constraints on agents. Then, we simplify
the TO problem to only UMECs and UAV scouts (no base
station), where UAV scouts can process their tasks locally
or offload to the UMECs. Each UAV scout can offload to
exactly one UMEC. This simplified form of our problem
closely mirrors GAP, where UAV scouts can be mapped to
the tasks and UMECs to the agents, except for the explicit
capacity constraints on UMECs. However, introducing a
pseudo-capacity constraint (e.g., a maximum number of tasks
that a UMEC can handle, even if it’s a large number)
transforms it into a form of GAP. Since GAP is NP-Hard,
and our simplified problem can be viewed as a special case
or variation of GAP, it implies that TO is at least as hard as
GAP.

IV. THE DRL-BASED TORA FRAMEWORK
We assume that the task size, required GPU FLOPS, task
types, deadline, and the number of tasks generated in
the environment vary in each time slot. Therefore, if the
considered problem is solved by a heuristic algorithm, such as
a genetic algorithm (GA), it necessitates repeated executions
whenever there is a variation in any parameter value within
the environment that may need a relatively longer decision-
making time, whereas a greedy algorithm usually gives a
sub-optimal solution. Contrarily, deep reinforcement learning
uses deep learning models to learn the complex patterns
and representations of the environment, which enables it to
generalize to the unseen environment and obtain solutions
within a very short time. Furthermore, in DRL, the agent
explores the environment by taking actions based on a policy
that maximizes the total reward obtained. The reward guides
the agent towards a better solution at each step, which

69264 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 2. SAC-based TORA framework.

encourages the agent to avoid local optima. This ability of the
DRL methods to learn and adapt in real-time, combined with
its near-optimal or optimal solution searching strategy, makes
it highly suitable for our considered problem and we believe
that it can outperform traditional methods by efficiently
balancing decision-making speed with solution quality. Note
that GA, greedy algorithm, and DRL are all widely-used
techniques for solving the complex optimization problems.
Therefore, in this section, a DRL framework for TO and
RA is proposed based on the soft-actor-critic (SAC) [31]
algorithm, which can make faster decisions by generalizing
when environmental parameters change.

Given the sets of UAV scouts and UMECs, we first model
our considered problem as aMarkov decision process (MDP),
and then, the SAC-based TORA algorithm is presented in
detail.

A. MDP MODEL
1) STATE AND ACTION
In this work, the state includes the task specifications (task
size, required GPU FLOPS, CPU cycles, and deadlines)
of UAV scouts, offloading decision, and distances between
processing devices (UMECs, BSC, and UAV scout itself)
and UAV scouts. Before defining the state, let us denote
each processing device as p and p ∈ P (the set of all
processing devices in the system). Then, the state s can be
expressed as s = {dip, yip, si, gi, ci, di},∀i ∈ S,∀p ∈ P,
where dip represents the distance and yip ∈ {0, 1} denotes
the offloading decision between UAV scout i and processing
device p. If UAV scout i offloads to processing device p, then
yip = 1; otherwise, yip = 0. Then, the size of the state space
for a given environment is 2|S|×|P|.
The action in this MDP is choosing a processing

device-UAV scout pair, i.e., a = {i, p}. Action a means the

task of UAV scout i will be processed in device p. If p is
selected for processing, then the rest of the devices can not
be chosen for the task of UAV scout i. Thus, the size of the
action space is |S| × |P|.

2) REWARD
In DRL algorithms, the reward function assigns a numerical
value to each state-action pair, indicating the immediate
benefit or cost associated with the agent’s decision. The goal
is to design a reward function that reflects the objective and
the constraints of the TORA problem, i.e., that encourages the
agent toward the optimal value of the objective by reinforcing
actions leading to better solutions and discouraging those
resulting in constraint violations or sub-optimal solutions.
Therefore, we first design a utility function as follows:

U = −
(
w1 max

i∈S,m∈M

{
Oi
emaxi

,
Om
amaxm

}
+ w2max

i∈S

{
Ti
di

}
+w3

(∑
i∈S

Oi +
∑
m∈M

Om

)
+ β

)
(26)

where β is the penalty for violating the constraints. Then, the
reward function can be expressed as follows:

r(s, a, s′) =

{
mU − ϵ, if U is higher in s′ than s
mU , otherwise

(27)

where m(m ≥ 1) is called a magnifying constant in this
paper that adds flexibility to the scale of the utility value.
The magnifying constant is added in order to avoid situations
where the reward differences among states becomes too small
to learn. ϵ(ϵ ∈ [0, 1]) is a penalty given to prevent the agent
from going to relatively worse states than the current one.
Moreover, to avoid varied scales of rewards and to allowmore

VOLUME 12, 2024 69265

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

stable training, the reward, r , is clipped to within the range
(−n, 0). n is an integer and n > 0.

B. THE SAC-BASED TORA ALGORITHM
Deep reinforcement learning algorithms leverage the power
of deep learning techniques to approximate either the policy
function, which maps states to actions, or the value function,
which estimates the expected cumulative reward, or some-
times both, in order to learn a policy that maximizes the
overall expected reward. DRL algorithms that are frequently
employed for solving the optimization problems are deep
Q-networks (DQN) [32], advantage actor-critic (A2C) [33],
and soft actor-critic [31]. DQN is one of the pioneering and
dedicated algorithms designed for the discrete action space,
whereas A2C can be adapted to both discrete and continuous
action spaces. However, DQN needs a large number of
samples to learn a good policy and sometimes struggles with
exploration in high-dimensional action spaces and with high
complexity, whereas A2C often converges to a sub-optimal
policy because of the lack of exploration (only uses an actor
network to explore).

Different from other DRL algorithms, SAC uses an
entropy-regularized reward function and a nondeterministic
policy that encourages exploration and helps prevent prema-
ture convergence. Specifically, the goal of SAC is to find
a policy that maximizes the cumulative reward and policy
entropy, which is expressed as follows:

π∗ = argmax
π

T∑
t=0

E
[
γ tr(st , at , st+1)+ αH (π (.|st))

]
(28)

where π and π∗, respectively, are the policy and the
optimal policy, t is the time step, T is the total number
of timesteps in an episode, and γ is the discount factor
and γ ∈ [0, 1]. α is called the temperature parameter
that determines the importance between the reward and the
policy entropy H (π (.|st)) at state s, where H (π (.|st)) =
E[−logπ(.|st)]. This entropy-regularized reward prevents
assigning an excessive probabilitymass to a single action, and
encourages more exploration in the environment, which helps
the agent avoid local optima.

However, SAC is primarily designed to solve problems
with a continuous space, whereas many environments may
contain a discrete action space. Therefore, an extension of
SAC applicable for the discrete action space was derived
by [34], called SAC-Discrete. Note that SAC-Discrete holds
the same objective as the original SAC except that π (.|s)
is a probability mass function instead of a density function
as in the original SAC. Therefore, this paper proposes a
SAC-Discrete-based task offloading and resource allocation
(SATORA) algorithm, where SAC makes the TO decision
and a KKT-based algorithm is employed to find the power
and computation resource allocation solution. Note that from
now on, we will use SAC to represent the SAC-Discrete for
simplicity throughout the rest of the paper. The proposed
algorithm is shown in Fig. 2, which consists of a KKT-based

power and computational resource allocation algorithm
(used for reward calculation), replay memory (store agent’s
experience), and five different neural networks (a policy
network, two Q-networks, and two target Q-networks) that
are used for action selection and evaluation. The actor
or policy network approximates the policy, whereas critic
networks (two Q-networks and target Q-networks) evaluate
the policy by learning the Q-value function. The details of
SATORA in Fig. 2 are given below.

At each time step, SAC takes an action a in state s, switches
to the next state s′, and obtains reward r . The action is chosen
according to the probabilities given for each action by the
actor. The actor or policy network uses a deep neural network
(DNN) parameterized by θ that takes the state as input and
outputs the probabilities for each possible action in a state.
The agent’s experience, i.e., s, a, s′, r , is then stored in replay
memory or bufferD, which acts as a dataset to train the DNNs
in the SAC algorithm.

Next, a batch of transitions, B, is sampled from the
replay memory to update the actor and critic networks. The
actor-network is updated by minimizing the following loss
function:

Jπ (θ) =
1
|B|

∑
l∈B

(
πθ (s)T [αlogπθ (s)− Qφ(s)]

)
, (29)

where πθ (s) and Qφ(s) are vectors containing probabilities
and Q-values, respectively, for all possible actions. Q-values,
Qφ(s), are approximated by a parameterized DNN, called
Q-network or critic, where φ denotes the DNN parameter.
However, it is possible that the approximated Q-values are
higher than the true Q-values in one or many states, which is
likely to lead to a overestimation of future expected rewards,
resulting in poor policy performance and propagation of
estimation errors. Therefore, we use the clipped double-
Q trick [35] to avoid the Q-value overestimation problem.
Specifically, two different Q-networks, parameterized by
φ1 and φ2, are trained to approximate the Q-values, and the
minimum Q-values among them are used to update the actor
network, which is as follows:

Jπ (θ) =
1
|B|

∑
l∈B

(
πθ (s)T [αlogπθ (s)− min

j=1,2
Qφj (s)]

)
(30)

EachQ-network is updated by using the loss function given
below:

J(φj) =
1
|B|

∑
l∈B

(
Qφj (s)− y(r, s

′, d)
)2

,∀j ∈ {1, 2}, (31)

where y(r, s′, d) is the target Q-value, calculates as follows:

y(r, s′, d) = r + γ (1− d)
(
πθ (s)T [min

j=1,2
Qφtarg,j(s

′)

−αlogπθ (s′)]
)
. (32)

Qφtarg,j(s
′) represents the vector containing Q-values approx-

imated using a target Q-network (φtarg,j denotes the
DNN parameter of the target Q-network). Similar to the
Q-networks, two target Q-networks are used for target value

69266 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

approximations, Qφtarg,1(s
′) and Qφtarg,2(s

′), and the minimum
between the two target Q-approximators is used to compute
the target-value.

Algorithm 1 The SAC Based TORA Algorithm (SATORA)
1: Training Phase:
2: initialize policy/actor network θ , and two

Q-networks/critic networks φ1 and φ2
3: initialize target Q-networks φtarg,1 ← φ1 and φtarg,2 ←

φ2
4: for each episode e in E do ▷ E : Number of episodes
5: initialize the environment setup
6: initialize current state s
7: for each step t in T do ▷ T : one episode length
8: select action a ∼ πθ (.|s)
9: execute a in the environment

10: observe next state s′, reward r , and done signal d
(indicate episode termination)

11: store (s, a, r, s′, d) in replay buffer D
12: set current state to s′

13: sample a batch of transitions B from replay buffer
D

14: compute targets using eq. (32)
15: update Q-networks using loss function in eq. (31)

16: update policy using loss function in eq. (30)
17: update target networks by using eq.(33)
18: update temperature/coefficient α by

J (α) = πθ (s)T [−αlogπθ (s)+ H̄]

19: end for
20: end for
21: Test Phase:
22: load the trained model
23: initialize the environment setup
24: repeat the operations in lines 8, 9, 10, and 12 for a given

number of steps
25: apply simulated annealing and find the final TORA

solution

Lastly, the target networks are updated at each step by using
a soft updating method, which is given by

φtarg,j← ρφtarg,j + (1− ρ)φj,∀j ∈ {1, 2}, (33)

where ρ is the soft update coefficient and ρ ∈ [0, 1].
The pseudo-code of the SATORA is given in Algorithm 1.

In the beginning, the parameters of the policy network, θ , two
Q-networks, φ1 and φ2, and two target Q-networks, φtarg,1
and φtarg,2, are initialized in lines 2-3. Note that the policy
network, target Q-networks, and Q-networks have the same
DNN architecture with two fully connected hidden layers,
one input layer, and one output layer, where both hidden
layers consist of 200 units. Then, the agents start to play in the
environment to learn the optimal policy for a given number
of episodes. During each episode (Line 4), the simulation

environment setup is initialized, where the location of UAVs,
task sizes, task types, required GPU FLOPS, and deadlines
are chosen randomly within a set range (Line 5).
Next, in line 8, for each step t , an action a is chosen

randomly based on the given action probabilities obtained
by feeding the current state into the policy network. Then,
the agent executes the action in the environment, obtains
reward r and next state s′, and stores the observation in the
replay memory (lines 9-11). After that, in line 13, a mini-
batch of experiences is sampled from the replay memory.
The mini-batch of transition taken from the replay memory
is usually chosen randomly. However, all stored samples
are not equally important for training. Furthermore, bad
samples (contain states far from near-optimal or with deadline
constraint violations) might be selected more frequently,
which may lead to poor performance because of DNN
learning the bad experiences. Therefore, in this paper, we put
the weight of each sample in the memory according to the
reward value and convert it to a probability (dividing each
weight by the sum of all weights). If the reward is higher,
the weight is higher as well as the probability, and then the
samples are chosen randomly according to the probability.
The actor network and Q-networks are then updated using
the batch in lines 14-16. Lastly, the temperature parameter
is updated in Line 18 by minimizing the loss function J (α).
This procedure is repeated for a given number of steps in an
episode.

Immediate reward r(s, a, s′) is obtained by solving
the continuous problem, i.e., the RA problem. First, the
RA problem is solved by using a KKT-based simple
power and computational resource allocation method, called
K-SPRA, from [23]. Specifically, in K-SPRA, at first, the
closed-form solution of computation resource allocation
when offloaded to the UMECs and BSCs is obtained by
applying Karush-Kuhn-Tucker conditions, which are given in
eqs. (34) and (35):

him =

√
w2gk

√
di 1
hm

(∑
i∈S

√
w2gi
√
di

) (34)

uig =
√
w2gi

√
di 1zg

(∑
i∈S

∑
m∈M

√
w2gi
√
di

) . (35)

Then, the transmission power allocation solution is derived
by exploiting the correlation between the desired task
processing latency and the actual task execution latency.
Transmission power is assigned to the task of UAV scout
i when transmitted to a UMEC (pi) or to the BSC (oimg)
according to the following equations:

pi =
σ

wim
×

(
exp

(si
B
(
di −

ci
bim
−

gi
him

))
− 1

)
(36)

oimg =
σmg

wmg
×

(
exp

(
si

B
(
di −

ci
zig
−

gi
uig
−

si
rim

))
− 1

)
,

(37)

VOLUME 12, 2024 69267

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

Next, the energy consumption of eachUAV scout andUMEC,
the task execution latency of each task, and utility value U
from equation (26) are obtained by using the RA solution,
and the reward value is computed according to the eq. (27).
The SATORA algorithm has two phases: training and

testing. In the training phase, the SATORA model is trained
through trial and error in different environments. In the testing
phase, the trained model is used to predict the solution
in a new environment not seen before. In particular, the
agent loads the trained model in Line 22, initializes the new
environment in Line 23, then repeats lines 8, 9, 10, and 12 for
a given number of steps, and obtains the final state. A local
optimizer, i.e., simulated annealing (SA), is applied in Line 25
to find the final TORA solution, which takes the final state
(i.e., the TO solution) as input. The solution representation in
SA is the offloading decision matrix, and the fitness of the
solution is calculated using the same equation as the reward,
i.e., eq. (27).

V. PERFORMANCE ANALYSIS
In this section, the simulation setup is presented, and
SATORA’s performance is evaluated by comparing it with
other methods under various simulation scenarios.

A. SIMULATION SETUP
The considered simulation scenario consists of a UAV
network (MEC-enabled) comprising multiple UMECs, UAV
scouts, and a BSC. Each UMEC has communication radius
of 300 meters, whereas the coverage area of the BSC is
10 kilometers. The positions of UMECs and UAV scouts are
selected randomly within a given range. Specifically, the x
and y-coordinates are selected within a 500 × 500 m2 area,
and the position of the base station is set to 3 km away from
this area. The height of the UMECs and UAV scouts are
selected within the range of 80 to 100 m and 50 to 80 m,
respectively. The channel gain between devices (UMEC and
UAV scout, and UMEC and BSC) at the reference distance
(onemeter) is assumed to be equal (for simplicity) with values
of σim = σmg = −100 dBm, and the noise variance is
set to µ = −50 dBm. The processing capacities (CPU and
GPU) of the BSC are set to 30 GHz [22] and 34 TFLOPS
(Nvidia GeForce RTX 3080 Ti), respectively, whereas for
UMECs, it is 24 GHz (Intel Core i5-12400) and 20 TFLOPS
(Nvidia GeForce RTX 3070), respectively, and for UAV
scouts, it is 5 GHz (Quad-core ARM A57) and 472 GFLOPS
(NVIDIA Maxwell), respectively. Energy consumption per
CPU cycle is set to 2.708e-09 W and 1e-9 W for UMECs
and UAV scouts, respectively, whereas per GPU FLOPS, it is
set to 1.1e-11 W (UMECs) and 2.11e-11 W (UAV scouts),
respectively. These values are derived from each processor’s
thermal design power (TDP). Note that kf 2 is the widely
recognized metric for calculating per cycle CPU energy
consumption, where f denotes the frequency of the CPU, and
k is the energy coefficient based on the chip architecture.
In most new GPUs and CPUs, the specific value of k is
often unavailable. To address this issue, following a similar

TABLE 2. Experiment settings.

TABLE 3. Hyperparameters of SATORA.

approach in [23] and [37], we opted to use TDP to estimate the
energy consumption in both processing units. Although TDP
might not measure the actual GPU and CPU energy usage,
it provides a reasonable approximation for our purposes.
Other environmental simulation parameters can be found in
Table 2, with bold font denoting default values, whereas the
hyperparameters of SATORA are presented in Table 3.
The simulations are conducted on a system consisting of

an Intel Xeon W-2245 CPU @ 3.90GHz, coupled with an
NVIDIA GeForce RTX 3080 Ti graphics card and 128 GB
of RAM.

In order to validate the effectiveness of the SATORA,
we compare the numerical results obtained from the simu-
lations against the following three baselines:
• mGA-TPR [23]: This study employs a messy genetic
algorithm (mGA) for TO determination and two dis-
tinct KKT-based methods for RA. In particular, first,
a modified mGA is used to obtain the TO decision,
incorporating a simple KKT-based RA algorithm to
compute each solution’s fitness value. Finally, given
the TO decision by the mGA, a KKT and gradient

69268 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 3. Reward learning curves of SATORA and DQN-TORA along with the increases in the number of episodes: (a) SATORA and (b) DQN-TORA.

descent-based RA strategy is applied, and the final RA
solution is obtained.

• Greedy: In this approach, for each task, the processing
device with the lowest utility is selected. The utility is
the weighted sum of the total energy consumption in the
network, the total task execution latency ratio, and the
ratio of tasks that miss the deadline. The RA solution
needed to compute the energy consumption and task
execution latency is obtained using the sameRA strategy
used in SATORA.

• DQN-TORA: This approach is similar to SATORA.
In DQN-TORA, the deep Q-network is employed to
obtain the TO solution instead of SAC, whereas the
reward of each state is calculated using the KKT-based
power and resource allocation method called K-SPRA.

The results of the proposed and baseline algorithms are
compared based on performance metrics such as network
lifetime, maximum task execution latency ratio, total energy
consumption in the network, and deadline hit ratio. The
network lifetime ends when the first device (UAV scouts or
UMECs) uses up its energy resource, and the description
of the network lifetime is provided in more detail later in
the result analysis subsection. The maximum task execution

latency ratio is given by maxi∈S

{
Ti
di

}
, whereas the total

energy consumption in the network is calculated as follows:∑
i∈S Oi +

∑
m∈M Om. Furthermore, we have also shown

the total energy consumption of UAV scouts and UMECs
separately by different optimization methods. The percent-
ages of tasks processed by each algorithm and the time
complexity are also discussed to compare the performance
of the baselines and SATORA.

B. RESULT ANALYSIS
In this subsection, we discuss the numerical results of the
simulations conducted with various parameters, including
different numbers of UAV scouts, task sizes, and required
GPU FLOPS. Note that we have trained four models for four

different numbers of UAV scouts (4, 6, 8, and 10) by using
50 training environment scenarios. Then, the trained model
for the default number of UAV scouts (i.e., 8) is used to collect
results for other parameters, such as required GPU FLOPS
and task sizes. Each result is collected after averaging over
20 test environment scenarios.

1) CONVERGENCE OF DIFFERENT DRL FRAMEWORK BASED
TO STRATEGIES
Figure 3 depicts the learning curves for TO strategies utilizing
DQN and SAC, illustrating their progression over increasing
episodes of training. Figures 3 (a) and (b) display the
learning curves for SATORA and DQN-TORA, respectively.
In Figure 3 (a), the learning curves for SATORA exhibit
higher fluctuations (rewards ranging between -16 and -2) that
reduces after around 600 episodes, stabilizing with moderate
improvement. Conversely, the peak-to-trough fluctuations
for DQN-TORA start within a narrower range compared
to SATORA, subsequently reducing with increasing episode
count. This reduction in fluctuation signifies the algorithms’
better action selection competence with increasing exposure
to the environment.

However, even though DQN-TORA is trained for more
than twice the episodes of SATORA, it does not show any
sign of convergence. This is attributed to DQN’s limited
generalization capability to the new stateswhen environments
varies in each episode due to changes in UAV locations,
task specifications, GPU FLOPS, and deadlines. Note that
we trained SATORA for 3000 episodes to avoid over-
fitting, and chose 7500 episodes for DQN-TORA based on
the performance after trying different numbers of episodes,
whereas the number of steps in each episode is the same for
both algorithms.

2) EFFECT OF DIFFERENT NUMBERS OF UAV SCOUTS
Figure 4 illustrates the impact of different numbers of UAV
scouts on baselines (Greedy, mGA-TPR, and DQN-TORA)
and SATORA.

VOLUME 12, 2024 69269

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 4. Effect of the different number of UAV scouts.

In fig. 4 (a), the network lifetimes (measured in time slots)
obtained for varying numbers of UAV scouts under the four
methods are depicted. The total operation time is assumed
to be divided into time slots, and each time slot duration is
5 seconds. The simulation is run until the first UAV depletes
its energy, and the total number of time slots it can survive
is counted as the network lifetime. Furthermore, since this
paper only focuses on task offloading energy consumption,
the movement energy consumption of UAVs is calculated
using specifications of some existing real-life UAVs. For each
UAV scout, the movement energy consumption is assumed
to be 92.77 J/s (calculated using battery specifications and
the flight time of the DJI Mavic3). The energy consumption
for hovering of each UMEC is assumed to be 18,125 J/s
(calculated from the amount of fuel needed for the Sentinel
Long-reach 70 UAV to hover for one hour and from the

heat of combustion per kilogram of fuel [36]). We can see
from the figure that network lifetimes reduce with a higher
number of UAV scouts across all algorithms. This is because
the number of tasks that need to be processed in the system
increases with increments in the number of UAV scouts;
thereby, maximum energy consumption increases and the
network lifetime reduces.

Figure 4 (b) reveals the effect of UAV scouts on the
maximum task execution latency ratio among all tasks. The
higher the number of UAV scouts, the higher the number of
tasks in the network, and the lower the computation resources
assigned to each task. Therefore, the task execution latency
increases.

The effect on the total energy consumption in the network
is shown in Fig. 4 (c), where all four algorithms (SATORA,
DQN-TORA, mGA-TPR, and Greedy) show an upward

69270 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

trend. This is due to the fact that more tasks in the system lead
to higher transmission and execution energy consumption,
thus the increase in the total energy consumption. Moreover,
it can be seen that there is a sudden sharp increase in
energy consumption obtained by the DQN-TORA when the
number of UAV scouts is 10. This is because, with 10 UAV
scouts, the environment becomes more constrained, which
contains more infeasible solutions or solutions with lower
rewards than the feasible or high-reward solutions. When the
complexity of the environment increases, DQN-TORA fails
to learn the new dynamics or complex patterns accurately,
resulting in poor-quality generalization. However, SATORA
can still generalize well and can obtain the lowest energy
consumption without a show drastic change in performance
similar to the DQN-TORA.

The deadline hit ratio, i.e., the ratio of tasks that are
executed within the desired execution latency for each
method under different numbers of UAV scouts, is presented
in Fig 4 (d). When the number of tasks increases, the
opportunity to select the processing devices that can compute
the tasks within the desired execution latencies decreases.
Thus, it is expected that the deadline-hit ratio will decrease
along with the higher number of tasks.

Furthermore, it can be seen from the figures (fig. 4 (a),
(b), (c), and (d)) that the proposed SATORA outperforms the
other three approaches, whereas DQN-TORA, mGA-TPR,
and Greedy outperforms each other in different scenarios.
For instance, with eight UAV scouts, the total energy
consumed by SATORA is 4.39 KJ. In contrast, DQN-
TORA, mGA-TPR, and Greedy consume 34.96 KJ, 7.12 KJ,
and 18.24 KJ respectively, indicating 696.3%, 62.1%, and
315.4% higher consumption than SATORA. This is because
SATORA employs the SAC algorithm, incorporating distinct
DNNs for policy and value approximation, double-Q trick to
avoid overestimation, prioritized experience replay to train
the model, and follows stochastic policies coupled with
entropy regularization that encourages more effective and
adaptive exploration, which enables it to discover better
task offloading decision. On the other hand, DQN uses
epsilon-greedy policies and suffers from overestimation bias,
leading to sub-optimal performance. The mGA-TPR is an
evolutionary algorithm that partially depends on random
evolution and suffers from a loss of genetic diversity, resulting
in early convergence. Greedy’s step-wise decision-making
yields suboptimal solutions as it prioritizes immediate gains
without considering broader optimization.

3) EFFECT OF DIFFERENT TASK SIZES
The impacts of varied task size ranges on network life-
time, maximum task execution latency ratio, total energy
consumption, and deadline hit ratio is illustrated in Fig. 5.
With an increase in the task size, each task needs more
transmission power when offloaded, and needs more compu-
tation resources for execution, which reduces the resources
allocated to tasks. Therefore, along with the larger task sizes,
network lifetime decreases, the maximum task execution

latency ratio increases, total energy consumption increases,
and the deadline hit ratio decreases, which are shown in
Figs. 5 (a)-(d), respectively.

It is observable from the figures that in most cases,
SATORA and mGA-TPR have better performance than
DQN-TORA and Greedy, whereas among them (SATORA
and mGA-TPR), SATORA achieves the best performances in
terms of network lifetime, maximum task execution latency
ratio, total energy consumption, and deadline hit ratio. For
instance, when the task size is between 600-800 KB, the
worst network lifetime is achieved by the Greedy algorithm
(904 time slot), which is 10.3%, 25.5%, and 28.5% higher
than DQN-TORA, mGA-TPR, and SATORA, respectively.
Furthermore, when the task range is 600-800 KB, Greedy
consumed the most total energy among all four algorithms,
whereas maximum task execution latency is obtained by
mGA-TPR (possibly because of falling into local optima),
and DQN-TORA obtains the lowest deadline hit ratio.

In addition, along with task size increments, network
lifetime sharply decreases in all four algorithms, whereas
the maximum task execution latency ratio sharply increases
initially before a comparatively moderate increment due
to the different levels of constrained (loosely or highly
constrained) environment. However, although total energy
consumption by DQN-TORA and Greedy sharply increases
with task sizes, SATORAandmGA-TPR show verymoderate
increments, which shows their effective task offloading
decisions. Moreover, as the task size increases, the perfor-
mance gaps of DQN-TORA and Greedy with SATORA and
mGA-TPR also increases in all four performance metrics.

4) EFFECT OF DIFFERENT RANGES OF REQUIRED GPU
FLOPS
The impacts of different required GPU FLOPS on SATORA,
DQN-TORA, mGA-TPR, and Greedy in terms of network
lifetime, task execution latency ratio, and deadline hit ratio
respectively, are shown in Figs. 6(a)-(c). When tasks require
a higher amount of GPU FLOPS, additional computational
resources are necessary for each one. This leads to a reduction
in the GPU resources allocated per task, and limits the oppor-
tunity to select better processing devices. As a consequence,
both computation time and energy consumption rise. It is
observable from the Figs. 6(b) and (c) that along with the
higher number of required GPU FLOPS, the task execution
latency ratio of all algorithms increase, whereas the deadline
hit ratio decreases. However, in Fig.6 (a), the network lifetime
obtained by SATORA and mGA-TORA shows an up-and-
down trend, whereas although the DQN-TORA and Greedy
show a decreasing trend, it is not smooth. Specifically, when
the required GPU FLOPS changes from 200 to 500 GPU
FLOPS, all four algorithms show an up-and-down trend,
possibly due to falling into local optima. However, when the
required GPU FLOPS changes from 800 to 1000 GLOPS,
although the network lifetime achieved by DQN-TORA,
mGA-TPR, and Greedy decreases, it increases in SATORA.
This is due to the following reasons. When the required GPU

VOLUME 12, 2024 69271

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 5. Effect of the different task sizes.

TABLE 4. Percentages of tasks processed by each type of device.

FLOPS is high, the environment becomes very constrained,
and it is hard to find processing devices for tasks that satisfy
the deadlines and have lower task execution latency, even at
the cost of higher energy consumption. Therefore, SATORA

finds a task offloading decision that has lower maximum
energy consumption because of the trade-off between energy
consumption, task execution time, and deadline missing
ratio.

69272 VOLUME 12, 2024

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

FIGURE 6. Effect of the different required GPU FLOPS.

TABLE 5. Time complexity (in seconds).

Total energy consumption of UMECs, UAV scouts, and
the network is shown in Figs. 6(d)-(f), respectively. From
Fig. 6(d), it can be seen that for UMECs, SATORA consumes
the least energy, whereas the highest energy is consumed
by DQN-TORA (when the required GPU FLOPs changes
from 200 to 400 GFLOPS) and the Greedy (when the
required GPU FLOPS ranges from 400 to 1000 GFLOPS).
In Fig. 6(e), all algorithms outperform each other in different
situations, i.e., for UAV scouts, the highest and lowest
energy consumption is achieved by the different algorithms in
different situations. However, in the case of the overall energy
consumption of the network, illustrated in Fig. 6(f), SATORA
outperforms all other algorithms, whereas Greedy shows the
worst performance when the required GPU FLOPs increase.
This is because SATORAmainly chooses to process the tasks
in the UMECs (more than 98% of thetasks) and locally (less
than 2% of the tasks), as presented in Table 4. Table 4 shows
the percentage of tasks performed in the UAV scouts (US),
UMECs, and the BSC by each algorithm. On the contrary,
it can be seen from the Table 4 that Greedy offloads all its
tasks to the UMECs and the BSC, whereas DQN-TORA and

mGA-TPR employ all three types of processing device (i.e.,
local, UMEC, and BSC). Although a very small percentage
of tasks is processed in the BSC by the algorithms, processing
in the BSC consumes much higher energy (i.e., transmission
energy) than in the UMECs and locally because of the
distance between the UAV scouts and the BSC. Therefore,
the energy consumption in SATORA is the lowest among all
the methods.

Moreover, our proposed method, SATORA achieves the
best performance across a majority of performance metrics,
whereas DQN-TORA exhibits the least favorable perfor-
mance in most instances. For example, when GPU FLOPS
requirements range between 400 and 500, SATORA achieves
network lifetime, maximum task execution latency ratio, total
energy consumption in the network, and deadline hit ratio
of 1344 time slots, 0.823, 4.29 KJ, and 0.9975, respectively.
In comparison, mGA-TPR, Greedy, and DQN-TORA attain
network lifetimes of 1330 time slots, 1278 time slots,
and 1193 time slots, respectively; obtain task execution
latency ratio of 0.836, 0.90, and 0.943, respectively; consume
total network energy of 5.12 KJ, 18.4 KJ, and 17.1 KJ,

VOLUME 12, 2024 69273

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

respectively; and achieve deadline hit ratio of 0.997, 0.98, and
0.965, respectively.

5) TIME COMPLEXITY
Each algorithm’s time complexity is illustrated in table 5 for
different numbers of UAV scouts. It is observable that with
an increment in the number of UAV scouts, the computational
time also increases as a result of the exponential expansion of
the problem size and solution space. However, in comparison
to other algorithms (except Greedy), SATORA takes the
shortest execution time when the number of UAV scouts rises
to 10 from 4. In contrast, DQN-TORA needs the longest time
for finding the solution in case of lower number of UAV
scouts, whereas mGA-TPR needs the most time among all
four algorithms when the number of UAV scouts increases.

VI. CONCLUSION
In this paper, a TORA problem consisting of different
types of UAVs for emergency operations has been studied.
In particular, we considered a UAV network (which is
MEC-assisted and hierarchical), where UAV scouts generate
tasks, and MEC servers equipped UAVs and a BSC provide
computing services to UAV scouts. Each task in the network
can have heterogeneous specifications, eachUAVhas a power
budget and energy capacity limit, each UMEC has a specific
number of tasks it is capable of performing, and each device
(UAVs and BSC) has a computational resource budget. Each
UAV scout can perform its task locally or offload it to either
a UMEC or the BSC. Moreover, the considered problem
was formulated as a MINLP problem with the objective
of minimizing the weighted sum of the maximum task
execution latency ratio, the maximum energy consumption
ratio, and total energy consumption. Next, a decomposition
technique was employed to decompose the problem into a
TO and an RA problem that enables solving the considered
problem using multiple strategies. Furthermore, it is assumed
that the UAV locations and task specifications are time-
varying. Therefore, in this paper, a SAC-based approach
called SATORA was proposed to find the TORA solution
in a dynamic environment. Simulation results showed that
SATORA can achieve a higher network lifetime, a lower
task execution latency ratio and total energy, and a higher
deadline hit ratio with a shorter run time than other comparing
methods.

REFERENCES
[1] ReliefWeb. (2017). Natural Disasters 2017. [Online]. Available:

https://reliefweb.int/report/world/natural-disasters-2017
[2] Y.-J. Zheng, Q.-Z. Chen, H.-F. Ling, and J.-Y. Xue, ‘‘Rescue wings:

Mobile computing and active services support for disaster rescue,’’ IEEE
Trans. Services Comput., vol. 9, no. 4, pp. 594–607, Jul. 2016, doi:
10.1109/TSC.2015.2401598.

[3] A. Masood, D. Scazzoli, N. Sharma, Y. L. Moullec, R. Ahmad,
L. Reggiani, M. Magarini, and M. M. Alam, ‘‘Surveying pervasive public
safety communication technologies in the context of terrorist attacks,’’
Phys. Commun., vol. 41, Aug. 2020, Art. no. 101109.

[4] Y.Wang, Z. Su, N. Zhang, and D. Fang, ‘‘Disaster relief wireless networks:
Challenges and solutions,’’ IEEE Wireless Commun., vol. 28, no. 5,
pp. 148–155, Oct. 2021, doi: 10.1109/MWC.101.2000518.

[5] M. Aljehani and M. Inoue, ‘‘Performance evaluation of multi-UAV system
in post-disaster application: Validated by HITL simulator,’’ IEEE Access,
vol. 7, pp. 64386–64400, 2019.

[6] S. Yin, Y. Zhao, and L. Li, ‘‘UAV-assisted cooperative communications
with time-sharing SWIPT,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[8] M. T. Beck, M. Werner, S. Feld, and T. Schimper, ‘‘Mobile edge
computing: A taxonomy,’’ in Proc. 6th Int. Conf. Adv. Future Internet,
2014, pp. 48–54.

[9] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[10] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task
offloading and resource optimization in proximate clouds,’’ IEEE Trans.
Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[11] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018, doi: 10.1109/JSAC.2018.2815360.

[12] Z. Song, Y. Liu, and X. Sun, ‘‘Joint task offloading and resource
allocation for NOMA-enabled multi-access mobile edge computing,’’
IEEE Trans. Commun., vol. 69, no. 3, pp. 1548–1564, Mar. 2021, doi:
10.1109/TCOMM.2020.3044085.

[13] L. Tan, Z. Kuang, L. Zhao, and A. Liu, ‘‘Energy-efficient joint
task offloading and resource allocation in OFDMA-based collaborative
edge computing,’’ IEEE Trans. Wireless Commun., vol. 21, no. 3,
pp. 1960–1972, Mar. 2022, doi: 10.1109/TWC.2021.3108641.

[14] W. Chu, P. Yu, Z. Yu, J. C. S. Lui, and Y. Lin, ‘‘Online optimal service
selection, resource allocation and task offloading for multi-access edge
computing: A utility-based approach,’’ IEEE Trans. Mobile Comput.,
vol. 22, no. 7, pp. 4150–4167, Jul. 2022.

[15] H. Li, H. Xu, C. Zhou, X. Lü, and Z. Han, ‘‘Joint optimization strategy
of computation offloading and resource allocation in multi-access edge
computing environment,’’ IEEE Trans. Veh. Technol., vol. 69, no. 9,
pp. 10214–10226, Sep. 2020, doi: 10.1109/TVT.2020.3003898.

[16] X. Wei, C. Tang, J. Fan, and S. Subramaniam, ‘‘Joint optimization
of energy consumption and delay in cloud-to-thing continuum,’’ IEEE
Internet Things J., vol. 6, no. 2, pp. 2325–2337, Apr. 2019, doi:
10.1109/JIOT.2019.2906287.

[17] S. Mao, S. He, and J. Wu, ‘‘Joint UAV position optimization and resource
scheduling in space-air-ground integrated networks with mixed cloud-edge
computing,’’ IEEE Syst. J., vol. 15, no. 3, pp. 3992–4002, Sep. 2021, doi:
10.1109/JSYST.2020.3041706.

[18] Y. Luo, W. Ding, and B. Zhang, ‘‘Optimization of task scheduling and
dynamic service strategy for multi-UAV-enabled mobile-edge computing
system,’’ IEEE Trans. Cognit. Commun. Netw., vol. 7, no. 3, pp. 970–984,
Sep. 2021, doi: 10.1109/TCCN.2021.3051947.

[19] C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, ‘‘Completion time and
energy optimization in the UAV-enabled mobile-edge computing system,’’
IEEE Internet Things J., vol. 7, no. 8, pp. 7808–7822, Aug. 2020.

[20] M.-A. Messous, S.-M. Senouci, H. Sedjelmaci, and S. Cherkaoui, ‘‘A
game theory based efficient computation offloading in an UAV network,’’
IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4964–4974, May 2019, doi:
10.1109/TVT.2019.2902318.

[21] J. Chen, S. Chen, S. Luo, Q. Wang, B. Cao, and X. Li, ‘‘An intelligent task
offloading algorithm (ITOA) for UAV edge computing network,’’ Digit.
Commun. Netw., vol. 6, no. 4, pp. 433–443, Nov. 2020.

[22] A. A. Ashraf Ateya, A. Muthanna, R. Kirichek, M. Hammoudeh,
and A. Koucheryavy, ‘‘Energy- and latency-aware hybrid offloading
algorithm for UAVs,’’ IEEE Access, vol. 7, pp. 37587–37600, 2019, doi:
10.1109/ACCESS.2019.2905249.

[23] S. Akter, D.-Y. Kim, and S. Yoon, ‘‘Task offloading in multi-
access edge computing enabled UAV-aided emergency response
operations,’’ IEEE Access, vol. 11, pp. 23167–23188, 2023, doi:
10.1109/ACCESS.2023.3252575.

[24] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu,
‘‘Collaborative computation offloading and resource allocation in multi-
UAV-assisted IoT networks: A deep reinforcement learning approach,’’
IEEE Internet Things J., vol. 8, no. 15, pp. 12203–12218, Aug. 2021, doi:
10.1109/JIOT.2021.3063188.

69274 VOLUME 12, 2024

http://dx.doi.org/10.1109/TSC.2015.2401598
http://dx.doi.org/10.1109/MWC.101.2000518
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TCOMM.2020.3044085
http://dx.doi.org/10.1109/TWC.2021.3108641
http://dx.doi.org/10.1109/TVT.2020.3003898
http://dx.doi.org/10.1109/JIOT.2019.2906287
http://dx.doi.org/10.1109/JSYST.2020.3041706
http://dx.doi.org/10.1109/TCCN.2021.3051947
http://dx.doi.org/10.1109/TVT.2019.2902318
http://dx.doi.org/10.1109/ACCESS.2019.2905249
http://dx.doi.org/10.1109/ACCESS.2023.3252575
http://dx.doi.org/10.1109/JIOT.2021.3063188

S. Akter et al.: TO and Resource Allocation in UAV-Aided Emergency Response Operations

[25] A. R. Heidarpour, M. R. Heidarpour, M. Ardakani, C. Tellambura,
and M. Uysal, ‘‘Soft actor–critic-based computation offloading in mul-
tiuser MEC-enabled IoT—A lifetime maximization perspective,’’ IEEE
Internet Things J., vol. 10, no. 20, pp. 17571–17584, Oct. 2023, doi:
10.1109/JIOT.2023.3277753.

[26] H. Lu, C. Gu, F. Luo, W. Ding, S. Zheng, and Y. Shen, ‘‘Opti-
mization of task offloading strategy for mobile edge computing based
on multi-agent deep reinforcement learning,’’ IEEE Access, vol. 8,
pp. 202573–202584, 2020, doi: 10.1109/ACCESS.2020.3036416.

[27] F. Zhang, G. Han, L. Liu, M. Martinez-Garcia, and Y. Peng, ‘‘Deep
reinforcement learning based cooperative partial task offloading and
resource allocation for IIoT applications,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 10, no. 5, pp. 2991–3006, Aug. 2022.

[28] C. Sun, X. Wu, X. Li, Q. Fan, J. Wen, and V. C. M. Leung, ‘‘Cooperative
computation offloading for multi-access edge computing in 6G mobile
networks via soft actor critic,’’ IEEE Trans. Netw. Sci. Eng., early access,
p. 1, Apr. 2021, doi: 10.1109/TNSE.2021.3076795.

[29] C. Shang, Y. Sun, H. Luo, and M. Guizani, ‘‘Computation offloading
and resource allocation in NOMA-MEC: A deep reinforcement learning
approach,’’ IEEE Internet Things J., vol. 10, no. 17, pp. 15464–15476,
Sep. 2023, doi: 10.1109/JIOT.2023.3264206.

[30] L. Özbakir, A. Baykasoglu, and P. Tapkan, ‘‘Bees algorithm for
generalized assignment problem,’’ Appl. Math. Comput., vol. 215, no. 11,
pp. 3782–3795, Feb. 2010.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1856–1865.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[33] M. Lapan, Deep Reinforcement Learning Hands-on. Birmingham, U.K.:
Packt publishing, 2020.

[34] P. Christodoulou, ‘‘Soft actor-critic for discrete action settings,’’ 2019,
arXiv:1910.07207.

[35] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477.

[36] T. Zhang, G. Liu, H. Zhang, W. Kang, G. K. Karagiannidis, and
A. Nallanathan, ‘‘Energy-efficient resource allocation and trajectory
design for UAV relaying systems,’’ IEEE Trans. Commun., vol. 68, no. 10,
pp. 6483–6498, Oct. 2020, doi: 10.1109/TCOMM.2020.3009153.

[37] T. Do, S. Rawshdeh, and W. Shi, ‘‘PTop: A process-level power profiling
tool,’’ in Proc. 2nd Workshop Power Aware Comput. Syst., 2009, pp. 1–5.

SHATHEE AKTER received the M.Sc. degree
in computer engineering from the University
of Ulsan, South Korea, in 2020, where she is
currently pursuing the Ph.D. degree. Her current
research interests include mobile crowd-sensing,
optimization algorithms, multi-access edge com-
puting, the Internet of Things, and deep reinforce-
ment learning.

DAT VAN ANH DUONG received the B.S.
degree in electronics and telecommunications
engineering from Hanoi University of Science
and Technology, Vietnam, in 2015, and the Ph.D.
degree in computer engineering from the Univer-
sity of Ulsan, South Korea, in 2022. After the
Ph.D. studies, he was a Postdoctoral Researcher
with the University of Ulsan, where he has been
a Research Professor, since 2024. His research
interests include human mobility, opportunistic

networks, deep learning-based stock market strategy, and UAV-based
networks.

DAE-YOUNG KIM (Member, IEEE) received the
B.E. degree in electronics engineering and the
M.S. and Ph.D. degrees in computer engineering
fromKyung Hee University, South Korea, in 2004,
2006, and 2010, respectively. From 2010 to 2013,
he was a Research Staff with the Communi-
cation Research and Development Laboratory,
LIG Nex1 Company Ltd., South Korea, and a
Research Staff with AirPlug Inc., South Korea,
from 2013 to 2015. Since 2015, he has been an

Assistant Professor with the Department of Software Engineering, Chang-
shin University, South Korea. Since 2017, he has also been an Assistant
Professor with the School of Computer Software, Daegu Catholic University,
South Korea. He is currently an Assistant Professor with the Department of
Computer Software Engineering, Soonchunhyang University, South Korea.
His research interests include mobile networking and computing, intelligent
systems, the IoT services, and machine learning for network systems.

SEOKHOON YOON (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer science
and engineering from The State University of New
York at Buffalo (SUNY Buffalo), in 2005 and
2009, respectively. After the Ph.D. studies, he was
a Senior Research Engineer with the defense
industry, where he designed several tactical wire-
less network solutions. He is currently a Professor
with the University of Ulsan, South Korea, where
he leads the Advanced Mobile Networks and

Intelligent Systems Laboratory. His research interests include opportunistic
networking, human mobility, intelligence-defined networking, and machine
learning-based IoT services.

VOLUME 12, 2024 69275

http://dx.doi.org/10.1109/JIOT.2023.3277753
http://dx.doi.org/10.1109/ACCESS.2020.3036416
http://dx.doi.org/10.1109/TNSE.2021.3076795
http://dx.doi.org/10.1109/JIOT.2023.3264206
http://dx.doi.org/10.1109/TCOMM.2020.3009153

