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ABSTRACT Invasive Coronary Angiography (ICA) images are considered the gold standard for assessing
the state of the coronary arteries. Deep learning classification methods are widely used and well-developed
in different areas where medical imaging evaluation has an essential impact due to the development of
computer-aided diagnosis systems that can support physicians in their clinical procedures. In this paper,
a new performance analysis of deep learning methods for binary ICA classification with different lesion
degrees is reported. To reach this goal, an annotated dataset of ICA images containing the ground truth, the
location of lesions, and seven possible severity degrees ranging between 0% and 100% was employed. The
ICA images were divided into ‘‘lesion’’ or ‘‘non-lesion’’ patches. We aim to study how binary classification
performance is affected by the different lesion degrees considered in the positive class. Therefore, five
Convolutional Neural Network architectures – DenseNet-201, MobileNet-V2, NasNet-Mobile, ResNet-18,
andResNet-50 –were trainedwith different input imageswhere different lesion degree rangeswere gradually
incorporated until considering the seven lesion degrees. Besides, four types of experiments with and without
data augmentation were designed, whose F-measure andArea Under Curve (AUC)were computed. Reported
results achieved an F-measure and AUC of 92.7% and 98.1%, respectively. However, lesion classification
is highly affected by the degree of the lesion intended to be classified, with 15% less accuracy when <99%
lesion patches are present.

INDEX TERMS Invasive coronary angiography, medical images, classification, deep learning.
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I. INTRODUCTION
Invasive Coronary Angiography (ICA) images are one of
the methods for anatomical imaging evaluation. Although
the use of other non-invasive methods of assessment for
Coronary Artery Disease (CAD) is increasing, it remains
the gold standard method for evaluating the coronary artery
state, confirming CAD, and guiding for interventions through
X-ray imaging technology [1], [2], [3]. During an ICA
procedure, a catheter is inserted by a percutaneous incision
in the radial or femoral artery to introduce the radiocontrast
agent [4].

The assessment of the stenosis severity is done visually
and has a crucial subjective part that depends on the
experience of the expert, having a substantial interobserver
variability [5], [6]. Computer-aided diagnosis could improve
the efficiency of diagnosis, supporting clinician decisions.
This fact motivates the scientific community to develop and
analyze different approaches to solve stenosis classification
and detection tasks in ICA images. Nowadays, Convolutional
Neural Networks (CNN) use the power of GPU-accelerated
algorithms to recognize objects successfully and have
been widely used for decision support systems and image
classification, more specifically in medical images [7], [8].

In this context, only a few methods are proposed, being
this research field is in an early stage because of the need for
available open-access datasets [9]. To relieve this problem,
Ovalle-Magallanes et al. [10] proposed a Bezier-based
Generative Model, which generates synthetic image patches
as a data augmentation technique.

ICA image state-of-the-art has been addressed using
different techniques and strategies. Some works had been
dedicated to ICA feature extraction and Principal Component
Analysis (PCA) to use Machine Learning methods as
classifiers [11], [12], [13]. Gil-Rios et al. [12] used the
Univariate Marginal Distribution Algorithm and statistical
comparison between five metaheuristics to explore the search
space in order to develop an automatic feature selection
of ICA images. As a result of the PCA study, a subset of
20 features was established to correctly classify ICA images,
with an accuracy of 89%.

Deep Learning-based solutions are the main techniques
to solve classification, segmentation, and detection tasks
in ICA imaging. In order to detect single severe lesions
(≥ 70% of narrowing) in ICA images, a comparison
among eight detector architectures considering both detec-
tion metrics and real-time data processing was presented
by Danilov et al. [14], where the architecture based on
Faster-RCNN Inception ResNet V2 was the most accurate
single-vessel detector.

Pang et al. [15] designed a two-stage network as an object
detector based on ResNet-50 structure that was developed
using sequence image information from single projection
ICA images. Firstly, a feature map was extracted and
candidate boxes were generated and classified into stenosis
or non-stenosis in the second stage. A method based on

keyframes selection and classification into normal (<50%
narrowing) and abnormal (≥ 50% of narrowing) images
using a GoogleNet Inception-V3 as based architecture was
proposed by Moon et al. [16]. The location of the stenosis
was also provided. Zhou et al. [17] used a three-stage method
for extracting keyframes using ResNet-18 structure, vessel
segmentation with U-Net model, and stenosis measurement
from segmentation masks to classify Right Coronary Artery
(RCA) images according to the lesion degree presented was
proposed.

The main contribution of this work is to evaluate how the
binary classification performance of ICA images is affected
by the different lesion degrees considered in the ‘‘lesion’’
class, whose effects have been unreported before in the
literature. In addition, a comparison between well-known
deep neural network models is analyzed to determine the
most effective model for the different lesion degree ranges.
This is an exhaustive study to increase understanding of
shortcomings, requirements, and potential improvements
for deep learning solutions in invasive coronary angiog-
raphy, approaching solutions for clinical settings, having
the potential to alleviate pressure on healthcare services
in general and to improve the catheterization laboratory
diagnoses, treatment, and logistics in particular, as described
below.

Firstly, improving understanding of the shortcomings of
coronary stenoses can facilitate operators to identify lesions
that might have otherwise been unnoticed, which would have
a beneficial impact on patient outcomes. Secondly, recording
and reporting the results of procedures (such as lesion loca-
tion, severity, and whether stents have been placed) through
automated ICA interpretation shortens the duration and
increases the efficiency of ICA. This leads to higher amortiza-
tion of the catheterization laboratory. Thirdly, this study and
further work are focused on finding and applying models that
might also be used to guide real-time Percutaneous Coronary
Intervention (PCI) procedures. Peri-procedural analysis of
ICA images, including automated functional assessment,
could optimize PCI outcomes by providing a lesion-specific
recommendation on a revascularization strategy, eventually
with advice on stent size, length, location, and preferred
strategy. Even after stenting, automated measurements on the
proportion of stent under expansion and hemodynamic func-
tion may inform the operator and patient about the expected
short- and long-term outcomes. Finally, we suggest that the
comprehensive requirements of deep learning solutions of
ICA images could be potential tools that could streamline
the calculation of scales to guide clinical decision-making
in complex CAD (e.g. the calculation of the SYNTAX
score).

The organization of the rest of the paper is structured as
follows: Section II specifies the details of the dataset used
and training models. The experimental setup and results are
presented in Section III. Finally, Section IV is devoted to
conclusions.
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TABLE 1. Demographic and baseline characteristics of patients. Data are
given as % or as median (interquartile range).

II. METHODOLOGY
A. SOURCE DATA
CADICA dataset is composed of videos from 42 anonymized
patients acquired at the Hospital Universitario Virgen de la
Victoria in Málaga (Spain) with Artis Zee (Siemens AG,
Muenchen, Germany) as cardiac angiography equipment.
They have been included within the regulation set by the
local ethical committee of the hospital and patient consent
was waived because this is a retrospective study with
anonymized data. The dataset includes different projections
for the left and right coronary arteries, such as the right and
left anterior obliques, with cranial and caudal angulation.
Table 1 describes the demographic characteristics of patients
included in the dataset.

In conjunction with a team of cardiologists, a selection of
frames, where the radiocontrast had been perfusing correctly
or the lesion was discernible, was done for each video.
Furthermore, these frames were annotated, delimiting the
region of interest by bounding boxes and organizing them into
categories. The possible clinical categories were established
according to seven possible lesion degree ranges depending
on the narrowing of the vessel, in ascending order: < 20%,
[20%, 49%], [50%, 69%], [70%, 89%], [90%, 98%], 99%
and 100%. The 99% and 100% lesion categories have a
particular morphology. A 100% lesion is a total occlusion of
the vessel, fromwhich the continuation of the vessel is imper-
ceptible. The 99% lesions present a gap, the radiocontrast is
imperceptible in the narrow, but the continuation of the vessel
is visible. The rest of the categories are assessed depending
on the grade of narrowing with respect to the lumen on the

vessel. In total, there are 3,900 images with at least one lesion
and 1,943 images with no visible lesions.

B. DATA PREPROCESSING
The present work focuses on the classification of patches, i.e.
equal subdivisions, of ICA images. The raw images have size
512 × 512 pixels, which were divided into a 4 × 4 grid, and
then resized to 32 × 32 pixels. This way, we want to preserve
spatial information near the lesion, and the downscale was
done for training performance. The use of bigger patches
outcomes worse results and requires more computational
resources. These patches were labeled with the corresponding
lesion degree if the centroid of the lesion bounding box
fell into it. However, it is possible to encounter different
types of lesions on a single patch. The severest category was
chosen if more than one bounding box centroid was found.
Otherwise, it was assessed as ‘‘non-lesion’’ patches. Fig. 1
shows representative samples of patches for each possible
category.

This procedure implied a vast increase in the ‘‘non-
lesion’’ class, the negative class. To relieve this imbalance
between patches with and without lesions, the latter set was
reduced before the training. First, the background ‘‘non-
lesion’’ patches were removed: a basic mask of the ICA
images was extracted to segment main vessels to carry
out this reduction. The process of generating masks was
based on applying a sequence of morphological operations,
as follows: subtraction of the result of histogram equalization
and average filter, thresholding, removal of little objects,
dilatation, erosion, and Gaussian filter.

The masks were split into patches and those patches where
the mask had less than 2% of vessel pixels were discarded.
However, both sets still are unbalanced, so to prevent this
issue, a random reduction of the ‘‘non-lesion’’ class was
applied, equalizing both classes to have the same number of
elements.

Once both classes had been equalized, data augmentation
was employed by applying different random basic spatial
operations of the original patches. Particularly, these basic
operations were:

• Translations in the X and Y axis in a random range of
[−4, 4] pixels, Fig. 2(a).

• Scaling of the images randomly with a scale factor in a
range of [0.9, 1.2], Fig. 2(c).

• Flip horizontally and vertically, Fig. 2(d).

C. CONVOLUTIONAL NEURAL NETWORKS
In this study, different well-known Convolutional Neural
Network (CNN) architectures were employed to analyze their
performance concerning the positive class assigned to binary
classify ICA images into ‘‘lesion’’ and ‘‘non-lesion’’ classes.
CNNs are based on convolutional layers, where former layers
extract basic features, latter layers extract more specific
features, and pooling layers are used to subsample features
maps, and fully connected layers as final classifier [18], [19].
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FIGURE 1. Samples of the eight lesion ranges in which patches are categorized.
A colored bounding box indicates the location and degree of the lesion.

FIGURE 2. Examples of the modifications applied to the training sets to
augment data.

Five widely used in the literature pre-trained architectures
were selected:

• DenseNet-201, characterized by implementing dense
blocks connecting their layers to all former layers [20].

• MobileNet-V2 is a mobile neural network based on the
combination of depthwise convolution, which applies
to the input a single filter without new features,
and pointwise convolution, which produces a linear
combination output extracting features [21], [22].

• NasNet-Mobile is the smallest model of NasNet
versions, whose architectures are designed by Neural
Architecture Search (NAS) which finds the best cells
or basic blocks using the reinforcement learning
technique [23].

• ResNet-18 and ResNet-50 are Residual Networks
(ResNets) that introduce the concept of residual
connections, implementing shortcut connections where
certain convolutional layers can be skipped at one
time [19], [24].

D. EVALUATION METRICS
In order to quantify the performance of different methods
to classify ICA images as a binary classification task, the
main four representative parameters are used: True Positive
(TP), True Negative (TN), False Positive (FP) and False
Negative (FN) [25]. F-measure is one of the related metrics
that provides good overall performance because it integrates
Precision and Recall measures under the concept of harmonic
mean [26]. Precision indicates the rate of correctly positive
samples over total positive predicted samples, while Recall
is the proportion of correctly positive samples overall actual
positive samples. Another measure involving two measures
is the area under a ROC curve (AUC), which is also
calculated. AUC corresponds to the integral of an ROC
curve which shows the Recall versus the Specificity for
different thresholds of classification scores. Specificity is the
proportion of correctly classified negative samples out of the
total actual negative samples.

The mentioned measures range in [0, 1] (the higher is
better), and are defined as follows:

F-measure = 2 ·
Pre · Rec
Pre+ Rec

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
Specificity =

TN
FP+ TN

(2)

III. EXPERIMENTAL RESULTS
A. TRAINING AND EXPERIMENTS DESCRIPTION
This work aims to analyze the impact on the performance
of the binary ‘‘lesion’’/‘‘non-lesion’’ classification when
different degrees of lesions are considered into the positive
class. For each experiment, the positive class, i.e., the
‘‘lesion’’ class, was set up by lesion degrees, including all
higher degrees. For example, ≥ 90% positive class includes
100%, 99%, and [98%, 90%] categories. Besides, the ‘‘non-
lesion’’ class was randomly reduced to equalize the number of
patches of the lesion class, as above mentioned. Both classes
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TABLE 2. Training/test patches used for each established strategy and lesion range. The number of samples of each class, lesion and non-lesion,
is one-half.

FIGURE 3. Training and validation loss for the ‘‘W/o 100% and 99% lesions’’ strategy and each proposed CNN architecture. Columns represent the lesion
range considered as positive class and rows the five folds applied for stratified cross-validation.

were divided into training (80%) and test (20%) sets by
videos, i.e., frames of the same video in the train set are
unavailable for the test set because frames of the same
sequence are very similar. This way allows for estimating a
fairer performance evaluation.

Due to the clear morphological difference between lesions
of 100% and 99% severity compared to the remaining
degrees, four training strategies were established, including
or not these high levels of severity and the use of data
augmentation. The first experiment, named ‘‘With 100% and
99% lesions’’, contemplates seven categories, i. e. all possible
degrees, therefore seven positive classes are established,
in each of which the higher former degrees are included.
On the contrary, another strategy, ‘‘W/o 100% and 99%
lesions’’, considers only five categories, excluding lesions
of 100% and 99% severity, so five positive classes are

determined. Finally, two extra strategies were considered by
applying data augmentation to the training set (80% of each
class), doubling the amount of data. The number of patches
used in the training process is reported in Table 2, where the
number of each class is one-half. It must be considered that
the sizes of train sets of adjacent categories may mismatch
because of the different number of frames in video sequences.

Regarding CNNs training, we set some hyperparameters:
validation frequency = 50, validation patience = 5, and
maximum epochs = 50, while the batch size was set
according to the number of training patches to keep the
rate of iterations in all training processes. The binary cross
entropy function was used as the loss function to train the
models. In contrast, we tuned up the optimizer and the initial
learning rate. Three different algorithms were compared:
Adam (adaptive moment estimation), SGDM (Stochastic
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TABLE 3. F-measure obtained on the test set using 5-fold stratified cross-validation for the four strategies. The highest values by rows are shown in bold.

TABLE 4. AUC obtained on the test set using 5-fold stratified cross-validation, for the four strategies. The highest values by rows are shown in bold.

Gradient Descent with Momentum), and RMSProp (Root
Mean Square Propagation). Four initial learning rates were
tested: 0.01, 0.001, 0.0001, and 0.00001. In total, there are

12 possible hyperparameter combinations for each threshold,
delimiting the positive class in each strategy and network.
5-fold stratified cross-validation was implemented to
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FIGURE 4. Highest F-measure and AUC obtained in the test set with 5-fold cross-validation. The number of patches in train sets are shown
in the right Y-axis and are represented using shaded areas, where each color represents a strategy whose lesion degrees are included and
indicated in the X-axis.

compare all these possibilities reliably. The learning rate and
optimizer were selected for each CNN based on the average
validation accuracy among the 5 folds and these optimal
settings were reported in the Supplementary Material.
In Fig. 3 training and validation loss per fold and lesion range
for each trained model are depicted for ‘‘W/o 100% and 99%
lesions’’ strategy. Note that there was no overfitting during
the training process.

The proposed models were implemented in MATLAB
R2022b on a computer system with an Intel Core i9-10900X
processor, 128 GB of RAM, and an NVIDIA GeForce
RTX 3080 Ti GPU card. Furthermore, no layer of chosen
pre-trained methods was frozen, so all weights were updated
during the training process according to the input class
information.

B. RESULTS
Next, we present the result outcomes of the experiments
above, based on applying the optimized model, and evalu-
ating the validation accuracy obtained in the training process,
to the test set. In Table 3 and Table 4, the F-measure and AUC
of the chosen model are reported, respectively. The highest
F-measure and AUC values by positive class and strategy
established are shown in bold, standing out one architecture
among the 5 CNNs for each case. These highest values are
plotted in Fig. 4, where the numbers of patches for the training
process are depicted too.

By analyzing Table 3, the first remarkable aspect is that
all lesion ranges established as the positive class have the
same tendencies independently of the strategy or methods
employed. Note that the best results are attained with high-
severe lesions; for 100% positive class, ResNet-18 with
data augmentation and ResNet-50 stand out with the highest

values, 0.927 and 0.920, respectively. However, for ≥ 99%,
the DenseNet-201 model obtained the best outcomes for both
with and without data augmentation. DenseNet-201 achieved
good results even considering lower degrees (≥ 70%, ≥ 50%
and ≥ 20%) but its performance decreased sightly when
data augmentation is applied, being NasNet-Mobile more
robust. If 100% and 99% lesions are excluded, no model
stands out above the rest. For instance, DenseNet-201 and
MobileNet-V2 with data augmentation have a fair-to-high
performance for ≥ 70% and ≥ 50% positive class,
around 0.7, being the rest of the models under this. Finally,
ResNet-50 for ≥ 90% positive class yielded a poor result,
below 50% of F-measure.

Regarding Table 4, AUC values are reported. The AUC
measure considers the specificity and the recall, which
helps to check how well each class is classified. The first
outstanding fact is that any value is above 0.7, the lowest value
is 0.727 for≥ 90% and using ResNet-50with the ‘‘W/o 100%
and 99% lesions + Data augmentation’’ strategy. It is a fair-
to-high value but the corresponding F-measure from Table 3
is a poor value, 0.446. This fact points out that AUC needs to
be supported by another performance metric. As F-measure,
all architectures obtain similar results along all positive
classes and strategies. The highest values are obtained with
high-severe lesion ranges: 0.981 with DenseNet-201 for
≥ 99% without data augmentation, 0.973 with ResNet-18
and data augmentation, and 0.971 with DenseNet-201, both
for 100% positive class. In this case, the outcomes obtained
decrease slightly when moderate and mild lesion degrees
are considered into the positive class. This fact makes sense
because lesions are more complex to discern from healthy
vessels. For positive classes which include lower lesion
degrees, AUC decreases under 0.9. The best AUC results
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FIGURE 5. Average of F-measure and AUC obtained across all CNNs in the test set with 5-fold cross-validation to compare results
in a model-independent way.

for lesion degrees below 99% are 0.863 for ≥ 70% using
‘‘With 100% and 99% lesions’’ strategy, and 0.861 for≥ 50%
using ‘W/o 100% and 99% lesions + Data augmentation’’
strategy, both for the DenseNet-201 model, which is clearly
the architecture that stands out over the rest, achieving the
highest AUC results in most cases.

Highest F-measure and AUC obtained results in the test
set with 5-fold cross-validation are given in Fig. 4. The
Y-axis represents themeasure (line plots, left) and the number
of patches in train sets (shaded areas, right), respectively.
Besides, this graph shows the tendencies for the four imple-
mented strategies. The behavior of the performance of the
strategies is similar along all ‘‘lesion’’ classes independently
of the strategy followed and network architecture used, as can
be seen in Fig. 5, where an average of the five architectures
considered are computed to evaluate performance behavior in
a model-independent way.

It can be seen clearly how the positive classes 100% and
≥ 99% are very well classified, either considering F-measure
or AUC, in spite of the small number of patches used.
Whereas when the [98%, 90%] range is included the
performance drops significantly, around 25% and 15% for
F-measure and AUC, respectively. The lower outcomes
attained with the ≥ 90% category are similar along all
strategies. Then, the performance increases for ≥ 70% and
≥ 50% positive classes, decreasing slightly again when
the lowest range degrees are included. This tendency is
followed by both measures, F-measure and AUC. It could
be interpreted considering the kind of lesions and the
number of patches. Despite the growth of the number of
‘‘lesion’’ patches, the results do not improve because the
classification task becomes more complex, as lower lesion
degrees are more difficult to discern from ‘‘non-lesion’’

patches. Therefore, categories of 100% and ≥ 99% lesions
arewell classified, achieving excellent results because of their
clear morphological difference, despite the small number
of patches used. Furthermore, ≥ 70% and ≥ 50% ranges
have good results because a larger number of patches
are employed, and the lesions considered remain clearly
distinguishable. Also, it could stand out that the augmentation
data implies null improvement when 100% and 99% lesion
degrees are considered and a slight improvement when they
are excluded. This fact supports the idea that these fine-grain
categories represent a highly complex problem since, despite
the data augmentation applied, the methods still have
difficulties in improving their performance. Additionally,
there is a great difference between AUC and F-measure
values, both measures involve Recall, which measures how
well is classified the positive class (‘‘lesion’’ class in this
case), but AUC takes into account Specificity, the rate of how
well classifies is the negative class, and F-measure considers
Precision, which rates the positive samples correctly classi-
fied. Considering the difference obtained between measures,
it could be interpreted as better Specificity than Precision,
which means that the negative class, i.e., the ‘‘non-lesion’’
class, in some cases is slightly better classified than the
positive class.

In addition, a ranking among the proposed architectures
was computed in Fig. 6 and 7, where obtained points
are divided by strategies. The scores were set by sorting
the corresponding performance metric, F-measure or AUC,
obtained by positive class in ascending order, considering
better a higher value. The position indicates the points
obtained. The points obtained for each lesion range were
accumulated for each model. There are 7 and 5 lesion
ranges, resp., including or excluding 100% and 99%, and
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FIGURE 6. Ranking of methods considering F-measure obtained for each positive class established.

FIGURE 7. Ranking of methods considering AUC obtained for each positive class established.

5 methods, so the maximum possible score is 35 and
25 points, respectively. Focusing on strategies without data
augmentation, DenseNet-201 got the highest points for the
four cases, while when data augmentation is applied, points
are more spread out, standing out DenseNet-201 and NasNet-
Mobile. Achieving the highest points means the model is
suitable to solve most of the binary classification problems
analyzed here with good performance. Then, despite the type
of strategy followed, DenseNet-201 stands out as the best
classification network for CAD lesions.

The test sets have different sizes since positive classes
are cumulative, i.e., they grow. Therefore, a more restrictive
test was carried out, where all established problems use the
same test size. To do it, test sets were randomly reduced to
the lowest number of patches of the test sets, in this case,
62 patches in the 100% lesion category. The results obtained
are provided in the Supplementary Material. In Table 5
are reported the computed F-measure and AUC obtained
with DenseNet-201, one of the most suitable architectures
according to the results obtained above for F-measure, AUC,
and ranking evaluation. Concerning Table 5, the assumptions
made previously are also corroborated in this case, despite
the reduction of the test set. 100% and ≥ 99%, with
and without data augmentation, achieve the highest values
(> 85% F-measure, > 95% AUC), suffering a tough
decrease when milder categories are included, falling to
unacceptable results lower than 50% of F-score, although

TABLE 5. F-measure and AUC obtained on the test set using 5-fold
stratified cross-validation with DenseNet-201 for the four strategies and
the same size for the test sets.

AUC remains a fair-to-high value (> 70%). In all cases,
AUC attains higher values than the F-measure, this fact
remarks that the positive class is worse classified than the
negative class, despite the class balance applied. Additionally,
models trained with data augmentation neither increase
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their performance substantially, reinforcing the necessity of
increasing the lesion data and equalizing categories to avoid
specialization on ‘‘non-lesion’’ patches.

IV. CONCLUSION
This work presents a classification methodology for coronary
artery disease using invasive coronary angiography images.
A total of 5 state-of-the-art deep neural models were used
to distinguish between lesion and non-lesion images, varying
the threshold of lesion degree to consider into the ‘‘lesion’’
class. The dataset was divided into non-overlapping patches
and four types of experiments were carried out, including data
augmentation and removing high-severe classes.

Results showed that the 99% and 100% categories are easy
to classify as lesions (>90% F-measure, >95% AUC) even
with little data, while when a lower degree is included in
the positive class, the performance drops significantly (65%
F-measure, 80% AUC). If those extreme cases are discarded,
the networks reach 75% of F-measure and 85% AUC when
data augmentation is applied when ≥ 70% and ≥ 50%
severity is intended to be detected. Besides, DenseNet-201
and NasNet-Mobile demonstrated their effectiveness in
solving most of the binary classification problems raised.

One of the limitations of this work is that the used
dataset only contains information about 42 patients from
one hospital. As future work, we would like to enhance
the performed experiments with ICA images from more
patients from different hospitals. Another limitation is that the
different lesion degree ranges are not balanced, as can be seen
in Table 2. Although they do not represent different classes,
the lack of patches in each lesion degree range may affect the
experimental results since the used models will learn better
those lesion degree ranges with more patches available.

Further work will be focused on improving the overall
classification performance. On one side, classifying each
severity degree separately and including more sophisticated
preprocessing steps could bring more homogeneity and,
therefore, produce better results. Another approach would
be the training of custom deep networks from scratch, using
structures that focus one local spatial features.

The work presented aims to improve the understanding of
the shortcomings, requirements, and potential improvements
for deep learning solutions of ICA images, approaching
solutions to clinical settings. Finally, we suggest that the
requirement comprehension of deep learning solutions of
ICA images could be potential tools that could streamline
the automated interpretation or the calculation of scales to
guide clinical decision-making in complex CAD (e.g., the
calculation of the SYNTAX score), thus shorting the duration
and increasing the efficiency of the CAD diagnosis and
treatment procedures.

SUPPLEMENTARY INFORMATION
In addition, a Supplementary Material is provided with addi-
tional information: a table with optimal settings established
for reported results is provided, and the complete results

regarding the experiments with balanced test sets carried out
and summarized in Table 5.
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