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ABSTRACT In many biological research studies that rely on DNA sequence data, calculating the edit
distance between two sequences is a vital component. However, computing the edit distance involves
dynamic programming, which can be computationally intensive. To address this challenge, numerous works
have focused on embedding sequences into the vector space while preserving the distance metric. This
means that the edit distance between sequences is analogous to the distance between their corresponding
vectors. In this study, we propose a novel Needleman-Wunsch Attention (NWA) framework for sequence
embedding that leverages the relationship between the Needleman-Wunsch (NW) matrix and attention maps
to improve the accuracy and efficiency of edit distance approximation methods. Our approach applies to any
deep learning-based sequence embedding network and provides a general solution to improve the accuracy
and efficiency of edit distance approximation methods.We validate the effectiveness of our proposed method
by applying it to various existing embedding networks, demonstrating improved edit distance-preserving
embedding in an actual dataset. The code is publicly available at https://github.com/thisislim/nw-attention/.

INDEX TERMS Attention, edit distance, DNA sequence, Needleman-Wunsch, sequence embedding.

I. INTRODUCTION
The exponential growth of DNA sequencing technologies
has resulted in an extensive accumulation of DNA data,
making the analysis of DNA sequences a daunting task.
Consequently, there has been a surge of interest in data-driven
bioinformatics research [1]. The edit distance [2], also
known as the Levenshtein distance [3], is a critical tool
in bioinformatics, allowing researchers to quantify the
minimum number of edit operations necessary to transform
one string into another. This distance metric is invaluable in
numerous bioinformatics tasks, including sequence cluster-
ing and multiple sequence alignment (MSA). For instance,
in DNA storage, sequences are read multiple times, and
clustering the sequencing results can enhance the quality
of the reading procedure [4], [5]. Furthermore, phyloge-
netics [6], a field of study concerned with evolutionary
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relationships between species, utilizes the edit distance to
compare similarities and differences in DNA, RNA, or
protein sequences between different species and infer their
evolutionary relationships. To represent the phylogenetic
tree [7], hierarchical clustering [8] is necessary, requiring an
edit distance computation [9], [10].

Although edit distance is a useful metric for comparing
DNA sequences, computing it using dynamic programming
algorithms [11], [12] such as Needleman-Wunsch (NW) [13]
can be computationally expensive. The NW algorithm
generates a similarity matrix based on gap-costs, finding
the optimal path with minimal cost that traces back to
the origin. However, constructing the NW matrix has a
quadratic computational cost with respect to sequence length,
making it challenging to conduct large-scale studies with
the growing amount of encoded DNA sequences. To address
this issue, alignment-free methods have been introduced to
approximate the edit distance between biological sequences.
These approaches offer low complexity by circumventing
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the need for explicit alignment [14], [15]. For example,
FFP [15] compares two sequences using Jensen-Shannon
divergence [16] between distributions of k-mers.
In recent years, deep learning-based edit distance embed-

ding networks have been proposed as an alternative to
approximation techniques. The aim is to create an embedding
from DNA sequences to vectors that conserve the distance
structure. Essentially, the embedding (the neural network)
is trained to ensure that the edit distance between any
two DNA sequences corresponds to the distance between
their respective vector representations [4], [17], [18], [19],
[20]. Specifically, CNN-ED [19] uses a convolutional neu-
ral network (CNN) to embed the DNA sequence, while
NeuroSEED [18] utilizes both CNN and Transformer-based
networks trained to match hyperbolic distance metrics
between vectors [21], [22]. DSEE [4] has the same network
architecture as CNN-ED, but trains the model with an
additional constraint to match the χ2 distribution.
The deep learning methods mentioned earlier offer an

intriguing alternative to traditional dynamic programming-
based edit distance techniques. However, their main emphasis
is on a loss function that either evaluates scalar output (such
as hyperbolic distance) or gauges the distributional distance
based on the assumption of a chi-squared distribution with
a singular parameter. These methods consistently depend on
the first-order statistics of both the target and the trained dis-
tribution of distances. However, to maintain the edit distance
between any sequence pair, the embedded vectors should
incorporate alignment information. To fully understand the
relationships between arbitrary DNA sequence pairs, it is
beneficial to enrich the embedding with supplementary
information that better captures the edit distance between the
sequences.

In this work, we propose theNeedleman-WunschAttention
(NWA) framework, which informs the alignment structure
more directly to the embedding network. The primary driving
force behind our research is the similarity between the
attention map and the Needleman-Wunsch (NW) matrix.
The attention map identifies the corresponding elements
of two sequences, whereas the NW matrix represents the
alignment structure between these sequences. Therefore, our
central concept involves a direct comparison of the attention
map of two embedded vectors and the NW matrix of the
input sequences. Specifically, for a given deep learning-based
encoder that embeds a pair of DNA sequences to embedded
vectors, we propose an additional regularization term with
an additional cross-attention module. The cross-attention
module generates an attention map of input sequence pairs
that describes the correspondence between bases of input
sequences. Then, we can add a regularizer term by measuring
the difference between the NW matrix of input sequences
and the attention map obtained from the cross-attention
module. It is important to note that the NWA framework is
not a complete replacement for existing deep learning-based
edit distance embedding models but rather a complemen-
tary addition. This feature makes NWA applicable to any

existing deep learning-based method, providing a way to
improve alignment accuracy without fundamentally altering
the underlying model architecture.

To evaluate the effectiveness of the proposed NWA
framework, we applied it to existing schemes, including
variations of NeuroSEED [18] and DSEE [4], using an
actual dataset. Our experimental results demonstrate that
embedding models trained using NWA achieve improved
edit distance-preserving mapping compared to those trained
without NWA.

A summary of our contributions is as follows:
• We propose the NWA framework, which leverages
the relationship between the Needleman-Wunsch (NW)
matrix and attention maps to improve sequence embed-
ding.

• Our approach applies to any deep learning-based
sequence embedding neural networks, providing a
general solution to improve the accuracy and efficiency
of edit distance approximation methods.

• We validate the effectiveness of our proposed method by
applying it to existing embedding networks, demonstrat-
ing an improved edit distance-preserving mapping in an
actual dataset.

II. RELATED WORKS
In this section, we briefly review related works, especially
the Needleman-Wunsch algorithm, attention mechanism, and
sequence embedding for edit distance.

A. NEEDLEMAN-WUNSCH ALGORITHM
The Needleman-Wunsch (NW) algorithm [13] is a classical
dynamic programming-based method for sequence align-
ment. Given two sequences s(1) = (s(1)1 , . . . , s(1)n1 ) and s

(2)
=

(s(2)1 , . . . , s(2)n2 ) with lengths n1 and n2, respectively, the NW
algorithm generates a (n1 + 1) × (n2 + 1) matrix M with
entries from M0,0 to Mn1,n2 , which is filled from the origin
M0,0 = 0. Each cell score is calculated by choosing the
maximum scores derived from previous cells. The score
candidates are obtained by adding the substitution score to
the top-left cell and the gap cost cgap to the left and top cells,
depending on the insertion, deletion and substitution errors.
Specifically, the value in cell (i, j) of the matrix is calculated
as

Mi,j = max


Mi−1,j−1 + csub(s

(1)
i , s(2)j )

Mi−1,j + cgap
Mi,j−1 + cgap

(1)

where csub(s
(1)
i , s(2)j ) indicates the substitution score between

s(1)i and s(2)j .
Once the NW matrix is built, the algorithm aligns the

sequences by tracing back to the origin from the bottom-right
cell of the matrix Mn1,n2 . The NW matrix shows viable
alignment paths, and the algorithm returns high-quality
alignments. Despite its high computational cost, the NW
algorithm is still widely used in bioinformatics, and we
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FIGURE 1. An example of needleman-wunsch (NW) matrix.

can directly derive an edit distance between two sequences
from the NW matrix. An example of an NW matrix of the
Needleman-Wunsch algorithm, when s(1) = GTACGT and
s(2) = GTTCAG, is shown in Fig. 1(a). Fig. 1(b) presents the
normalizedNWmatrix where we apply the softmax operation
to each row.

B. ATTENTION
Transformer architecture-basedmodels, which are dominated
by the attention mechanism, have become prevalent in vari-
ous fields such as natural language processing and computer
vision. Language models (LM) [23], [24], [25], [26], [27]
based on the Transformer architecture have significantly
improved the accuracy of natural language processing tasks.
In computer vision, Transformer-based models have also
demonstrated state-of-the-art performance [28], [29], [30],
[31]. For each component of the sequence, an attention
module [32], [33], [34] finds the most relevant component
in a given sequence. Self-attention seeks relevance within a
single input sequence, while cross-attention correlates to two
input sequences. Specifically, each component has a query,
key, and value triplet (q, k, v). The attention module finds the

matching key for a given query and obtains the corresponding
value. The soft attention [32] is calculated as a soft-maxed dot
product of q and k , which is softmax

(
qk⊺
√
dk

)
v.

Multi-head attention allows each component of the
sequence to havemultiple triplets of (q, k, v) to obtain various
aspects of correlations. The outputs of multiple heads are con-
catenated and linearly projected to produce the final output.

The attention map is a byproduct of the attention
mechanism, which shows the weight (an inner product of
key and query) of each component mapped by a neural
network. Suppose that the Transformer encoder and decoder
pair processes a sequence s(1) and s(2) with lengths n1 and n2,
respectively. If we add a <sos> token (start of sequence) to
both sequences, the attention map is also an (n1+1)×(n2+1)
matrix, where an (i, j)-th component of the attentionmap indi-
cates the relevance between the i-th component of s(1)i and the
j-th component s(2)j . Hence, it is natural to associate the atten-
tion map with the NW matrix, as the NW matrix illustrates
the aligned components of the corresponding sequences. The
connection between the NWmatrix and the attention map is a
key component of our proposed NWA framework, which we
will discuss in detail in the following sections.

C. SEQUENCE EMBEDDING FOR EDIT DISTANCE
DNA sequence embedding maps DNA sequences into vector
representations. The primary objective is to ensure that
the vector distance approximates the edit distance of the
corresponding input sequences. This approximation allows
for an efficient estimation of the edit distance between
sequence pairs through vector distance calculations. There
are numerous methods for sequence embedding, including k-
mers frequency analysis [14], [35] that do not rely on deep
learning. A k-mer refers to a subsequence of k nucleotides
within a DNA sequence, which provides a representation of
the DNA sequence. This representation can be viewed as a
DNA sequence embedding.

A series of studies have employed deep learning-based
techniques to train distance-preserving sequence embed-
dings. Specifically, these methods aim to train an encoder
(embedding network fθ ) so that the distance between the
vectors z(1) = fθ (s(1)) and z(2) = fθ (s(2)) closely mirrors
the edit distance between the inputs s(1) and s(2). EINN [36]
proposed a differential sequence alignment algorithm that
replaces the maximum operation of the NW algorithm
with softmax, however, the complexity was still too high.
SENSE [20] was the first attempt to use deep learning for
alignment-free sequence analysis, which uses the Siamese
neural network to learn embeddings. Dai et al. [19] proposed
CNN-ED, where the embedding network is a convolu-
tional neural network and trained with triplet loss [37].
Corso et al. [18] proposed the NeuroSEED framework where
the authors considered a hyperbolic distance as a distance
metric of the embedding vector space. The NeuroSEED
embedding network can utilize a variety of structures, such
as CNN, GRU, and Transformer. The authors demonstrated
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the efficacy of training these structures under hyperbolic
distance for Hierarchical Clustering (HC) [38] and Multiple
Sequence Alignment (MSA) [39]. Similarly, DSEE [4]
trained embedding networks of diverse architectures, such as
CNN, RNN, and GRU [40], using a chi-squared regression
to align the distribution of sequence distances with the
distribution of vector distances. Chen et al. [17] introduced
AsMac, a neural network model designed for approximate
string matching. This model learns patterns from the data to
predict the alignment distance of given sequence pairs.

In the following sections, we will introduce our proposed
NWA framework for sequence embedding, which is appli-
cable to any deep learning-based edit distance embedding
model. We will show that our method improves the edit
distance-preserving mapping of existing embedding models.

III. PROBLEM FORMULATION
In this study, we focus on DNA sequences of fixed length n ≥

1 consisting of nucleotides represented by S = {A,C,G,T }.
A sequence is denoted as s = (s1, s2, . . . , sn) where si ∈ S for
1 ≤ i ≤ n. An encoder, f : Sn → Rm, transforms these DNA
sequences into vectors of dimensionm, wherem ≥ 1 denotes
the embedding dimension. Let ED : Sn×Sn → [0, ∞) refer
to an edit distance measure between sequences of length n,
while d : Rm

× Rm
→ [0, ∞) is a distance measure between

m-dimensional vectors. We have not limited ourselves to the
mean squared error for the distance measure d .
We aim to introduce a universal framework in this research

that enhances an existing deep-learning-based embedding
mechanism. To be more specific, let fθ be a neural network
characterized by the parameter θ , which converts a sequence
into an embedded vector. The model is trained to reduce the
encoder loss Lenc(θ ). An instance of such an encoder loss
could be an edit distance loss, that is,Lenc(θ ) = Led (θ ) where

Led (θ ) =

∑
s(1),s(2)

(
ED(s(1), s(2)) − d(fθ (s(1)), fθ (s(2)))

)2
.

(2)

Note that the summation is over given pairs of sequences
s(1), s(2) ∈ Sn. For this given network fθ and the
corresponding loss function Lenc, we propose an additional
regularization termLreg(θ ) to improve the training procedure.
The regularizer is based on the relation between the
Needleman-Wunsch matrix and attention map, which we
provide in detail in Section IV.

A. PERFORMANCE METRIC
Following the convention fromNeuroSEED [18], we evaluate
the performance of the trained embedding network with root
mean squared error (RMSE) between the edit distance and
the vector distance:

RMSE =
100
n

√ ∑
s(1),s(2)

(
ED(s(1), s(2)) − d(z(1), z(2))

)2 (3)

where z(1) = fθ (s(1)) and z(2) = fθ (s(2)).

In certain applications, such as clustering in DNA storage,
approximating smaller edit distances is of greater importance.
In order to focus on sequence pairs that are closely related,
we define a pair of sequences as K -homologous if the
edit distance between them is less than or equal to K .
We then measure the root mean square error (RMSE) of these
K -homologous pairs. Typically, we set K to 40, following the
methodology established by Guo et al. [4].

IV. NEEDLEMAN-WUNSCH ATTENTION (NWA)
In this section, we present our proposed framework,
Needleman-Wunsch Attention (NWA), which facilitates
learning the sequence alignment structure using Needleman-
Wunsch matrices.

A. MOTIVATION
Consider an attention map between two sequences of vectors.
Given the query and the key vector q, v ∈ Rn×h, the
attention map calculates the dot product a = qk⊺ (this
is considered prior to the multiplication by ‘‘value’’). The
resulting attention map a ∈ Rn×n shows pronounced
activations where the component ai,j indicates a correlation
between the i-th component of u and the j-th component of v;
that is, between ui and vj.

Similarly, the NWmatrix, as shown in Fig. 1(a), highlights
an alignment path between the input sequences s(1) and s(2) in
Sn. As demonstrated in Fig. 1(b), if the (i, j)-th component of
the NW matrix is large, it suggests that s(1)i and s(2)j are likely
to match in the optimal alignment of the two sequences. This
behavior mirrors that of the attention map when applied to
length-n sequences of vectors, u, v ∈ Rn×h.

Observing the parallels between the NW matrix and
the attention map, it is intuitive to design an attention
map–produced by the neural network–to capture the nuances
of the alignment distribution. This concept underpins the
foundation of our work, as mentioned previously. By incor-
porating NWA, we anticipate the encoded vectors to capture
not just edit distance information, but also nuanced alignment
patterns between the analyzed sequences. Through the
introduction of NWA, we expect the encoded vectors to
encapsulate not only the edit distance information, but also
the intricate alignment relationships between the sequences
in question.

B. NEEDLEMAN-WUSNCH ATTENTION FRAMEWORK
We assume that an embedding neural network (encoder)
fθ and a loss function Lenc(θ ) are provided. Our objective
is to improve such training procedures by introducing an
additional regularizer term that supports the training pro-
cess. We propose the Needleman-Wunsch Attention (NWA)
method, which directly integrates alignment information
into the training process. NWA includes an additional
decoder network that produces an attention map, effec-
tively illustrating the correlation between the components
of the two input sequences. By utilizing this approach,
the embedding network (encoder) can learn the alignment
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FIGURE 2. An illustration of needleman-wunsch attention (NWA) framework.

structure of sequences, further enhancing its performance and
accuracy.

For given sequences s(1) and s(2) in Sn, the encoder
produces embedded vectors z(1) and z(2) in Rm. We introduce
the decoder network, denoted as gdecη : Rm

→ Rn×h.
This process can be interpreted as reconstructing the input
sequences into a sequence of vectors with a length of n.
In other words, ŝ(1) = gdecη (z(1)) and ŝ(2) = gdecη (z(2)),
both in Rn×h. Our objective is to train the encoder fθ in
such a way that the decoder can effectively reconstruct ŝ(1)

and ŝ(2), ensuring that they retain alignment information.
To assess if these reconstructions contain the desired
alignment information, we produce an attention map between
the two sequences of vectors using another network gattnν , then
compare it with the NW matrix.

The proposed decoder gdecη , similar to the Trans-
former encoder, consists of multiple layers of multihead
self-attention modules and a feedforward network. The cross-
attention module gattnν , which generates attention map, takes
the outputs of decoder gdecη (z(1)) and gdecη (z(2)), and generates
n× n attention map A(ŝ(1), ŝ(2)).
Note that gattnν computes a dot product between the outputs

of gdecη , followed by a linear layer that merges weighted sums
frommultiple heads. The final layer of gattnν is a softmax layer,
ensuring that each row of the attention matrix sums to 1.
In summary, we designate gη,ν : Rm

× Rm
→ Rn×n as an

attention map generating network, a simple composition of
the decoder and cross-attention module, which is depicted in
Fig. 3.

gη,ν(z(1), z(2)) = gattnν (gdecη (z(1)), gdecη (z(2))). (4)

On the other hand, let MNW (s(1), s(2)) represent a
Needleman-Wunsch (NW) matrix of sequences s(1) and s(2).
As the NW matrix presents feasible alignment paths, we
aim to train the attention map generating network gη,ν

to produce an attention map resembling the NW matrix.
We apply softmax to normalize the NW matrix, as described
in Fig. 1(b). To compare the NW matrix and attention map
during training, we introduce an additional loss function

Lnw (θ, η, ν)

=

∑
s(1),s(2)

JSD
(
gη,ν(fθ (s(1)), fθ (s(2))),MNW (s(1), s(2))

)
(5)

where JSD(·, ·) computes the sum of row-wise Jensen-
Shannon divergences (JSD) [16], [41]. JSD is a commonly
utilized metric between probability measures, making it
suitable in our context since rows of both the attention map
and NW matrix are outputs of the softmax layer and can be
perceived as a probability distribution.

Finally, the total loss is defined as

Ltotal(θ, η, λ) = Lenc(θ ) + λLnw(θ, η, ν), (6)

where λ > 0 is an adjustable parameter and the proposed loss
Lnw functions acts as a regularizer. With the added support
of Lnw, the encoder can more effectively learn the hidden
structure of the sequences.

In practical applications where a DNA sequence is
embedded in the vector space, only the encoder fθ is required.
The role of decoder networks is primarily to facilitate the
training of a more effective encoder.

VOLUME 12, 2024 69091



K. Lee, A. No: NW Attention: A Framework for Enhancing DNA Sequence Embedding

FIGURE 3. Decoder and cross-attention architectures for the needleman-wunsch attention (NWA)
framework.

V. EXPERIMENTS
In this section, we present the experimental details of the
proposed methodology for a variety of embedding networks,
using actual datasets. Detailed experimental setups including
network architectures as well as training parameters are
provided.

A. DATASETS
For the model performance evaluation, we used the Qiita [42]
and DNA-Fountain [43] dataset. The Qiita dataset comprises
human microbiome samples and their associated metadata.
Each sequence in the Qiita dataset has a length of 152.
DNA-Fountain sequence data consist of generated references
and reads from their DNA Storage experiments. DSEE [4]
sampled homologous and non-homologous sequences from
DNA-Fountain sequences at a 1:1 ratio. On the other hand,
we sampled oligos for training from a set of sequences in a
way similar to the NeuroSEED setup.

The sequences were sampled and divided into train-
ing, validation and test sets, containing 7,000, 700, and
1500 sequences, respectively. These sets were further sub-
divided to facilitate the calculation of the edit distance
and Needleman-Wunsch (NW) matrix. Each subdivision
contained 350 sequences, maintaining edit distance and NW
matrices for 3502 pairs in the training and validation data.
In contrast, the subdivision count for the test set was 300.

During the preprocessing phase, we pre-calculate both
the ground truth edit distances and NW matrices. Since the
NW matrix M (s1, s2) is the (n + 1) × (n + 1) matrix, it is
necessary to adjust the dimensions of the attention and NW

matrices. To rectify this mismatch, a <sos> token is padded
at the beginning of each sequence. Consistent with the input
protocol of the vision transformer [28], no <eos> token
is padded at the end of the sequence. To simplify notation,
we refer to the length of input sequences, including padding,
as L, where L = n + 1. As a result, a dataset is assembled
from sequence pairs (s1, s2), their associated edit distances,
and the corresponding NW matrices.

B. EMBEDDING NETWORKS
NWA does not introduce a new encoder framework; rather,
it supplements existing encoders with additional mechanisms
to enhance the transfer of alignment information. Accord-
ingly, the embedding networks used in our experiments
adhere to the representative configurations of the original
papers. In this section, we briefly discuss the encoder
networks utilized in our experiments.

1) NEUROSEED
Klimovskaia et al. corso2021neural claimed that the hyper-
bolic distance captures the implicit hierarchical structure
of biological evolution [22], resulting in a reduction in
the root mean square error (RMSE). To calculate the
hyperbolic distance, the NeuroSEED encoder applies a
Poincarè projection to the output, confining it to a unit ball
Bm = {x : ∥x∥ ≤ 1}, i.e., f : Sn → Bm. For
z1, z2 ∈ Bm, the hyperbolic distance between the two
embeddings is defined by

d(z1, z2) = arcosh
(
1 + 2

||z1 − z2||2

(1 − ||z1||2)(1 − ||z2||2)

)
, (7)
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where ∥ · ∥ represents the conventional Euclidean norm.
Subsequently, the encoding loss is simply an edit distance
loss, as delineated in (2).

NeuroSEED evaluates a variety of embedding networks.
However, this study focuses primarily on NeuroSEED-CNN
and NeuroSEED-Transformer (referred to in shorthand as
CNN and Transformer), adhering primarily to the original
NeuroSEED experimental setup. Nevertheless, to enhance
the performance of the embedding, we increased the number
of channels from 32 to 64, while retaining the number
of layers at 4. The Global Transformer from NeuroSEED
encodes sequences without any mask, whereas the Local
Transformer attends to each nucleotide on either side of the
current position. In our Transformer experiment, we deployed
the global Transformer. We also set a segment size of 4 as
described in the NeuroSEED setup, which implies that the
encoder processes 4 bases as a single word. While the Neu-
roSEED Transformer utilizes sinusoidal positional encoding,
instead, we incorporate learnable positional encoding [44],
[45], constructing each token from 4 or 8 bases.When applied
to the Qiita dataset, our 2-layer Transformer encoder features
2 attention heads and sets all hidden dimensions (i.e. dmodel ,
dfeedforward ) to 16.

2) DSEE
Guo et al. [4] trained embedding neural network using chi-
squared regression. The idea is that the distribution of the edit
distance between the randomly chosen sequence pairs should
follow the chi-squared distribution. Thus, DSEE is trained to
minimize the KL divergence [46] between the edit distance
distribution and the distance distribution of vector pairs. For
a given batch of sequence pairs, DSEE computes the mean of
vector distances x and the mean of edit distances y. Then, the
corresponding loss function would be

Led (θ) =
y
2

+ log0
( y
2

)
−

( y
2

− 1
)
log x +

x
2
log e (8)

where the 0 is the Gamma function. Note that (8) is a
KL divergence between two chi-squared distribution with
degrees of freedom x and y.

DSEE integrated CNN-ED [19] as their CNN encoder,
yielding an RMSE of 6.17 ± 0.24 for the Qiita dataset
in our run. Consequently, we adopted the NeuroSEED
CNN architecture for chi-squared regression. Although we
utilized a different model, the foundational concept of
DSEE – applying chi-squared regression to various encoders
– remains intact. We also made a concerted effort to adhere as
closely as possible to the original configuration, maintaining
64 channels and 5 layers, as delineated in the initial paper.

C. TRAINING PARAMETERS
For NWA to successfully capture distance structure and
alignment distribution, it is critical to properly scale the
value of λ, a pivotal parameter of our model. For a
comprehensive understanding of the impact of λ, Fig. 4
illustrates the RMSE of the λ scaling for the Qiita dataset with

FIGURE 4. λ scaling curve.

embedding dimension m = 128. Determining the optimal λ

value involves consideration of both homologous and non-
homologous pairs. The sweet spot of λ scales the exponent
power of NW loss to 1

10 of encoder loss. Consequently,
we set the lambda value to 10−5, a tenth of the converged
encoder loss value (determined byMSE) for the Qiita dataset.
Even though the selected λ value mostly captures the desired
structures of edit distance and alignment, should this lambda
scale factor of 10−5 prove unsuccessful, we opt for 10−6,
10−8 respectively instead. For the DNA-Fountain dataset,
setting the scale factor to 3 times λ in the Qiita setup turned
out to be effective.

In terms of the details of the decoder and the cross-attention
module, the decoder aligns with the Transformer encoder
architecture [32], setting dmodel to either 64 or 128, contingent
upon the half-value of the embedding dimension m (i.e.
m/2). The cross-attention module also adheres to this metric,
assigning its hidden dimension as m/2. Both the decoder
and the cross-attention module are equipped with 4 attention
heads. Throughout all scenarios, the feedforward dimension
of the decoder remains constant at 1024.

Due to resource constraints, we maintain a batch size
of 1024. Parameter updates are executed using the RAdam
optimizer [47]. In the initial 10 epochs, the learning rate is
progressively amplified until it reaches its peak. From there,
the learning rate decreases proportionally to the square root of
the current epoch. The maximum learning rate is designated
as 0.01 for encoder loss and 0.001 for Lnw.

D. RESULTS
We conducted a comprehensive evaluation of various
encoders, applying theNeedleman-WunschAttention (NWA)
framework in some instances, to demonstrate the improve-
ments in embedding performance achieved through our
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FIGURE 5. Visualization of the original Needleman-Wunsch (NW) matrix and the attention map trained with NWA.

TABLE 1. Root mean square error (RMSE) for qiita dataset.

proposed methodology. This evaluation included testing
with and without NWA across different network archi-
tectures, focusing on embedding dimensions of m = 128
and m = 256. In this context, ‘Transformer’ denotes
NeuroSEED [18] using a Transformer encoder, while ‘CNN’
refers to NeuroSEED with a CNN encoder. The reported
Root Mean Square Error (RMSE) values are averages with
their respective standard deviations, calculated over three
trials. Detailed descriptions of the encoder networks used can
be found in Sections V-B1 and V-B2. Additionally, we set
the threshold K for identifying homologous pairs at 40, in
accordance with the conventions established in DSEE.

Table 1 presents the root mean squared error (RMSE) and
K -homologous RMSE for each model. The results indicate
that the cross-attention module accurately aligns given

TABLE 2. RMSE for DNA-fountain dataset.

sequence pairs, significantly enhancing the preservation of
edit distancewithin the embedding. The embedding quality of
Qiita DNA data showed improvement for both general pairs
and homologous pairs. In instances where m = 128, 256, the
NWA decoder reduced the RMSE by a maximum of 3% and
2%, respectively, compared to the encoder trained without
NWA.

The evaluation results for the DNA-Fountain dataset are
shown in Table 2. Notably, our framework demonstrates a
remarkable improvement in the quality of sequence embed-
dings, achieving a maximum enhancement of 13% with
the the Transformer encoder. Across all encoder structures
employing the NWA, we observed consistent improvements
in embedding quality, ranging from 3% to 4%. However,
CNN architecture embedding with dimensionm = 128 stood
as an exception to this trend.
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Table 2 does not include RMSE of homologous sequence
pairs because the DNA-Fountain dataset used in our study
involved random sampling of sequences. Consequently, the
dataset comprises a limited number of homologous sequence
pairs. Given this random sampling approach, Table 2 provides
an approximation of the edit distance for the entire set of
sequence pairs within the dataset. We hypothesize that the
data distribution of the DNA-Fountain dataset is associated
with a notable deviation and error in the DSEE setup.

VI. LEARNED ATTENTION MAP
As discussed in previous sections, the key idea of NWA is to
utilize common features between the attention map and the
normalized NW matrix, wherein similar portions of vectors
or sequences tend to align. In this section, we show the
effectiveness of the proposed scheme by presenting a visual
comparison between the attention map and the NW matrix.
Fig. 5 provides a visual comparison between the original

Needleman-Wunsch (NW) matrix and the attention map
generated from the NWA for a pair of sequence samples.
The attention map, as displayed in Fig. 5(b), evidently bears
a close resemblance to the original NW matrix shown in
Fig. 5(c). Notably, the NW matrix features a diffused region
(highlighted by a blue box) due to the occurrence of numerous
edit operations within subsequences ranging from the 39th to
the 81st index of the original input sequences:

GGGG-A-AACGACATTGAGTGCTTGCACT-CTTTGG-GCGTCGAC-

GGGGCAGCACGA-ATT-A----GCAATAGTTTGGTG-G-CGACC

Fig. 5(e) and Fig. 5(f) zoom into the blue box area,
presenting the learned attention map (NeuroSEED-CNN
with NWA) and the NW matrix. The learned attention map
successfully mirrors the target NW matrix, even within this
noisy region.

For comparison, we also generated an attention map
using the original NeuroSEED-Transformer without NWA,
as shown in Fig. 5(a) and Fig. 5(d). As it does not
include a dedicated decoder, we extracted the vectors
preceding the encoder’s linear projection. We then computed
cross-attention by performing dot-product operations and
applying softmax. It is crucial to emphasize that this encoder
has never acquired information related to alignment structure.
Given that the NeuroSEED-Transformer has a segment size
of 4, the dimension of the attention map is 1/4 × 1/4 of
the original map. It exhibits a diagonal structure, suggesting
that the encoder also strives to match the corresponding
components of sequences. However, it demonstrates a
noisy pattern with large components for highly off-diagonal
elements.

VII. CONCLUSION AND LIMITATION
Recognizing the computational challenges of sequence
alignment and the limitations of existing deep learning-based
edit distance-preserving embedding networks, we introduce
the Needleman-Wunsch Attention (NWA) framework. This
novel approach enables these networks to learn the alignment

structure through NW attention, enhancing the embedding
quality and accurately mapping the alignment distribution.
Thus, NWA effectively preserves crucial alignment informa-
tion in DNA sequences. Our observations of the alignment
between the attention map and the NW matrix have led
to the introduction of this framework. Moreover, NWA can
be incorporated into any existing deep learning-based DNA
sequence embedding network.

The NWA framework utilizes the attention mechanism to
generate an attention map of given sequence pairs. Although
the NWA successfully captures both edit distance structure
and alignment distribution, NWA inherits the usage of the
fixed sequence length of the attention. Such constraint
limits thorough study between sequences with different or
extremely long lengths. Future works should aim to devise
a model that facilitates various lengths.
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