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ABSTRACT To address the challenges posed by a large number of disaster-waiver-affected users and the
complexities of scaling centralized algorithms for rapidly restoring emergency communication services,
the paper proposes a distributed intent-based optimization architecture based on multi-agent reinforcement
learning. This approach aims to mitigate service discrepancies and dynamics among users. In the network
feature layer, a distributed K-sums clustering algorithm considers variations in user services. Each UAV
base station autonomously and minimally adjusts the local network structure based on user requirements.
It selects user features from the cluster center as input states for the multi-agent reinforcement learning
neural network. In the trajectory regulation layer, the paper introduces a multi-agent maximum entropy
reinforcement learning (MASAC) algorithm. The UAV base station, acting as an intelligent node, governs
its flight trajectory within the framework of ‘‘distributed training – distributed execution.’’ The paper
incorporates techniques such as integrated learning and curriculum learning to enhance training stability and
convergence speed. Simulation results demonstrate the effectiveness of our distributed K-sums clustering
algorithm in terms of load efficiency and cluster balance, outperforming the traditional K-means algorithm.
Additionally, the UAV base station trajectory control algorithm based on MASAC significantly reduces
communication interruptions, enhances network spectral efficiency, and surpasses existing reinforcement
learning methods.

INDEX TERMS Unmanned aerial vehicles, disaster, integrated learning, spectral efficiency.

I. INTRODUCTION
Following major natural disasters, ground-based communi-
cation infrastructure is often severely damaged, resulting in
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communication breakdowns and the loss of critical informa-
tion, thereby jeopardizing the safety of affected individuals
and complicating post-disaster rescue efforts. Unmanned
Aerial Vehicles (UAVs), due to their swift deployment and
adaptability, offer a viable solution by establishing Line
of Sight (LoS) communication coverage in disaster-stricken
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areas. This approach holds significant potential for emer-
gency communication [1]. As mobile Internet and Internet of
Things (IoT) technologies have rapidly advanced, numerous
digital devices and equipment have been deployed in emer-
gency services, including but not limited to rescue operations
and intelligent healthcare. Additionally, a plethora of sen-
sors and auxiliary devices are now in place for continuous
monitoring of disaster-stricken regions [1]. Consequently, the
emergence of the 6G network has ushered in the demand for
larger-scale, higher-density, and faster coverage in the realm
of emergency communication [2]. Moreover, this network
must address the challenges arising from the high dynamics
and diverse service requirements resulting from large-scale
user connectivity [3]. In response to the 6G landscape, the
concept of an intelligent emergency communication net-
work [4], [5] characterized by ‘‘node intelligence and network
simplification’’ has emerged. By incorporating intelligent
technologies, particularly the convergence of communication
and computing [6], network nodes are equipped with intrinsic
intelligence. This transformation leads to a simplified proto-
col structure within the network, promoting native simplicity.
Furthermore, it facilitates on-demand, real-time adjustments
in communication links and network configurations, driven
by endogenous intelligence. This Intent-Driven Emergency
Communication Network possesses the ability to dynami-
cally adapt to user conditions, modify network deployments
on the fly, and allocate network resources according to spe-
cific user service requirements.

Conventional non-intelligent emergency communication
networks often rely on non-convex optimization techniques to
enhance coverage performance. In such networks, coverage
performance is heavily influenced by the real-time positions
of UAV base stations relative to ground users. This neces-
sitates solving the non-convex optimization problem related
to the flight trajectory of UAV base stations. For instance,
Chen et al. [7] developed a model for multi-user communica-
tion involving multiple UAV base stations and optimized the
flight trajectories of these stations using iterative Gibb’s sam-
pling and block coordinate descent methods. This approach
efficiently improved the network’s maximum-minimum rate.
Yin et al. [8] employed a continuous convex approximation
method to jointly optimize the hover positions of ground clus-
tering and multi-UAV base stations in large-scale ground user
scenarios, thereby enhancing network spectral efficiency. The
Zhang et al. [9] tackled power allocation and trajectory opti-
mization issues for multiple UAV base stations, considering
the communication characteristics and requirements of emer-
gency communication scenarios. Their goal was to maximize
the capacity of emergency communication networks. How-
ever, the aforementioned traditional non-intelligent coverage
optimization methods rely on precise network environment
state information (e.g., user locations, data sizes, channel con-
ditions, etc.) as fixed parameters throughout the optimization
process. As a result, these methods are primarily suitable
for entirely static network scenarios where all network status

information and service requirements of users in the future
are known in advance. They are ill-suited to handling the
dynamics and service variations of users in the aftermath of
large-scale disasters.

Deep reinforcement learning is recognized as a pivotal
technology for addressing network dynamics. UAV base sta-
tions equipped with deep reinforcement learning agents can
adapt their flight trajectories based on real-time network
conditions to maximize the network’s long-term perfor-
mance benefits. To derive the optimal coverage optimization
strategy, the deep reinforcement learning agent undergoes
iterative training and execution phases, which are crucial for
adapting to the dynamic network environment and real-time
regulation of UAV base station flight trajectories. Different
approaches to the training and execution phases have led
to various coverage optimization methods based on deep
reinforcement learning. For instance, in [10], the deep rein-
forcement learning proximal strategy optimization (PPO)
algorithm is employed, resulting in improved communica-
tion rates for single UAV base stations and reduced flight
energy consumption. Zhang et al. [11] utilized the deep
deterministic policy gradient (DDPG) algorithm to optimize
the deployment of multiple UAV base stations without con-
sidering interference. However, when interference occurs
between multiple UAV base stations, the single-agent learn-
ing environment becomes unstable, making it challenging
for the algorithm to converge. To address these issues, Chal-
lita et al. [12] integrated game theory into the echo state
network (ESN) and jointly optimized the flight trajectories
of multiple UAV base stations. In contrast to the value
function-based reinforcement learning method in [12], [13],
and [14] employs the multi-agent deep deterministic strategy
gradient (MADDPG) algorithm. This approach generalizes
the action space using strategy gradients and can continuously
output actions to accurately regulate UAV flight trajectories,
avoiding the problem of dimension explosion [15]. However,
as the scale of the emergency communication network grows,
the input dimension of the MADDPG algorithm, based on
the ‘‘centralized training-distributed execution’’ framework,
increases significantly, leading to heightened learning com-
plexity, reduced stability [16], and limited effectiveness in
dealing with the coverage optimization challenges of large-
scale post-disaster user scenarios and limited effectiveness in
dealing with the coverage optimization challenges of large-
scale post-disaster user scenarios.

After a disaster, site information should be quickly trans-
mitted from the incident area to the rescue centre, with
post-disaster communications able to perceive environmen-
tal and personnel information. Rebuilding the distributed
intent-based coverage optimization architecture for wireless
networks is, therefore, a practical way to serve a large num-
ber of post-disaster consumers. Effectively monitoring the
fully mechanized mining face is completed when the source
node gathers data about the mine catastrophe and utilizes a
multi-hop routing data transmission mechanism to deliver the
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FIGURE 1. Distributed intent-based coverage optimization architecture for large-scale post-disaster users.

data packet to the sink node. In contrast to typical mining set-
tings, nodes that survive in post-disaster dispersed networks
possess copious amounts of energy that are not readily regen-
erated. Distributed intent-based coverage optimization design
for several post-disaster users is shown in Figure 1. Post-
disaster communications may typically resume by installing
cables or additional communication equipment in accident
tunnels. Post-disaster communications should also be able to
sense personnel and environmental data and quickly relay site
information from the incident site to the rescue centre.

To address the aforementioned challenges, this paper
presents a distributed and intent-driven architecture for large-
scale post-disaster user coverage optimization. In this archi-
tecture, the network feature layer adapts to the unique service
requirements of large-scale post-disaster users by recon-
figuring user clustering networks on demand. Multi-agent
reinforcement learning technology is employed to empower
each emergency UAV base station to intelligently and inde-
pendently determine its flight trajectory, thereby enhancing
the overall coverage performance of the emergency com-
munications network. The key research contributions of this
paper can be summarized as follows:

1). Design of a Distributed Intent-Driven Large-Scale Post-
Disaster User CoverageOptimization Architecture Based
on Multi-Agent Reinforcement Learning:

The architecture is specifically designed to leverage
multi-agent reinforcement learning technology. In the fea-
ture extraction layer, it conducts distributed clustering of

ground users using locally acquired network environment
information. The resulting characteristic cluster center user
information is then used as input states for the multi-agent
reinforcement learning neural network. This enables the tra-
jectory control layer to regulate the real-time flight trajectory
of UAV base stations within a small-dimensional state space.
2). Introduction of a Distributed K-SUMS Clustering

Algorithm Tailored to User Service Differences:
This paper proposes a distributed K-SUMS clustering
algorithm to capture the post-disaster user dynamics in
large-scale disasters while considering their diverse service
needs. The algorithm employs Bayesian inference to facilitate
online learning of user service differences, yielding priority
coefficients for user transmissions. Subsequently, UAV base
stations perform distributed clustering based on these prior-
ity coefficients and local user load information, leading to
the identification of cluster center users. Compared to tradi-
tional clustering methods, the distributed K-SUMS clustering
algorithm demonstrates improved performance in terms of
load efficiency and inter-cluster balance.
3). Introduction of the Multi-Agent Soft Actor-Critic

(MASAC) Algorithm for Distributed UAV Base Station
Trajectory Control:

This paper puts forth the MASAC algorithm, a multi-
agent reinforcement learning technique that empowers indi-
vidual UAV base stations to autonomously adjust their
flight trajectories. Employing the ‘‘distributed training
and distributed execution’’ framework, MASAC integrates
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maximum entropy theory, ensemble learning, and curriculum
learning techniques. This integration addresses the issues
faced by existing multi-agent deep reinforcement learn-
ing methods, which often suffer from instability and are
significantly impacted by disaster scenarios. The MASAC
algorithm effectively reduces the frequency of communica-
tion interruptions in emergency communication networks and
enhances network spectrum utilization efficiency.

II. SYSTEM MODEL AND ARCHITECTURE DESIGN
Figure 2 demonstrates two sections, Space and Ground
section in which the Space section facilitates communica-
tion between Earth stations or between Earth stations and
spacecraft, communication satellites serve as the primary
means of receiving and transmitting signals from satellite
communication Earth stations and Ground section enable
user connection, the ground segment consists of a tracking,
telemetry, and command station (TT&C), satellite transpon-
der, gateway station, and satellite control center (SCC). The
user sector is primarily made up of different terminal user
devices, including as handheld terminals, mobile terminals
installed on vehicles, ships, and aircraft, and Very Small
Antenna Terminal (VSAT) stations. It also includes a variety
of satellite communication-based applications and services.

Satellite communication is highly suitable for emergency
communications because it is not constrained by ground con-
ditions and offers a wide range of communication coverage,
large capacity, high reliability, long transmission distance,
independent communication ability, and strong resistance to
damage.

Figure. 2 observes a large-scale dynamic population
of diverse ground users within the disaster-affected area.
To cater to their communication needs, multiple UAV base
stations are strategically deployed to form an emergency
communication network. Let’s assume there are N users in
the disaster-affected region, and M UAV base stations have
been deployed. The users are logically grouped into M dis-
tinct clusters, each serviced by a specific UAV base station
to reestablish communication services. In each user cluster,
there exists a designated cluster center directly connected to
the UAV base station serving that cluster. Communication
from other users within the cluster is routed through this
central user. The UAV base station is designated as M, while
the user is designated as N.

Within the expansive emergency communication network,
the utilization of cluster center users for aggregating and
forwarding information offers distinct advantages in three key
areas: processing capacity, energy efficiency, and interference
mitigation. Firstly, considering the limited processing capac-
ity of UAV base stations, user clustering reduces the number
of users directly connected to these stations. This, in turn,
effectively reduces the dimensionality of the neural network,
preventing network paralysis. Secondly, user clustering leads
to a decrease in the number of users directly connected to
UAV base stations. This reduction results in lower communi-
cation and computing energy consumption for the UAV base

stations, thus extending their continuous operational duration.
Lastly, the reduction in the number of air-ground com-
munication links, facilitated by user clustering, minimizes
interference between air-ground communication clusters.
This, in turn, enhances the overall communication capability
of the network.

A. USER MODEL
In the actual and intricate emergency communication net-
work environment, it’s evident that large-scale post-disaster
users exhibit substantial dynamism and variations in service
requirements. This dynamism is primarily observed in the
real-time fluctuations in the users’ positions and the temporal
randomness of their activation states. When a user becomes
active at a specific moment, a new data transfer task emerges.
The activation state of user I follows a Beta distributionwithin
the time interval tϵ[0,T ], where

fi (t) =
tk1−1(T − t)k2−1

T k1+k2−1B(k1 + k2)
(1)

B (k1 + k2) =
∫ 1

0
tk1−1(1− t)k2−1dt (2)

The parameters k1 and k2 define the characteristics of the
Beta distribution. Importantly, a user’s activation status is
contingent upon the presence of a new transfer task. Even
when a user is inactive, they can still complete the transfer
of any remaining data from previous tasks and may subse-
quently be designated as the cluster center user. Upon being
assigned as the cluster center user, they bear the responsi-
bility of relaying information for all users in the cluster and
typically require higher transmission power. Since this article
focuses on coverage optimization to restore communication
for a large number of users, it does not delve into energy
balancing for users. The central consideration is the disparity
in information due to diverse service types and task require-
ments, particularly variations in the data sizes that users need
to transmit. For an activated user i at time t, the data size of
their new transfer task, denoted as di(t), follows a Gaussian
distribution [17].

fd (di (t)) =
1

√
2πσ 2

i

exp

(
(d i (t)− µi)2

2σ 2
i

)
(3)

Here,µi and σi represent constant values that define the mean
and standard deviation, respectively, characterizing the trans-
fer task size for user I and their specific service type. The
value of di (t) can vary over time due to semantic changes in
the transmission task.

B. GROUND-BASED TRANSMISSION MODEL
In this large-scale disaster scenario, ground users are grouped
into M clusters, aligning with the number of UAV base sta-
tions. Each user initiates data transmission to the designated
cluster center user, and subsequently, the data is routed to
the UAV base station through the forwarding of the cluster
center user. The communication between user i and cluster
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FIGURE 2. Emergency communication network system model.

center user µi operates on ground-to-ground communication
links within the sub-6 GHz band, where non-line-of-sight
(NloS) conditions significantly impact the wireless link. The
path loss, following the Rayleigh fading channel model [18],
is expressed as:

Lgroundi,ui (dB) = 37.6log
∥∥pi − pui ∥∥∥+21logf groundc +58.8

(4)

In this equation, f groundc represents the central frequency used
for terrestrial communications, pi and pui are the positions
of user I and cluster center user ui, ∥pi − pui∥ denotes the
Euclidean distance between these two locations. The coef-
ficients 37.6 and 21 account for the distance attenuation
and frequency attenuation factors in the path loss model
for non-high-rise urban or suburban scenarios. The constant
term 58.8 is an additional path loss constant that consid-
ers the height difference between users. Notably, due to
the considerable distance between cluster users, interference
between clusters can be effectively minimized through appro-
priate spectrum resource allocation techniques. However, this
paper does not delve into spectrum resource allocation. The
Signal-to-Interference plus Noise Ratio (SINR) for the com-
munication link between user i and cluster center user ui

within the cluster can be expressed as

SINRgroundi,ui =
P1G

ground
i,ui

N0
(5)

In this equation, P1 represents the transmit power of user i,
and ground,Ggroundi,ui represents the channel gain between user
i and the cluster center user ui. N0 represents the noise power.
The channel gain ground,Ggroundi,ui is influenced by path loss

and can be described as follows:

P1G
ground
i,ui (dB) = P1 (dB)− Lgroundi,ui (dB) (6)

The spectral efficiency of data transmission by user i at time
t can be represented as follows:

Ri,ui (t) = lb
(
1+ SINRgroundi,ui (t)

)
(7)

The overall transfer task size of the user i at time t is denoted
as Di(t) and encompasses the remaining task from time
(t − 1), denoted as Di (t − 1), and the new task size Di(t) at
time t. If there’s no remaining task at the start, i.e., Di (0)0 =
0, then

Di (t) = max
(
0,Di (t − 1)− ni (t − 1)BRi,ui (t − 1)+ di (t)

)
(8)
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FIGURE 3. Architecture for distributed intent-based coverage optimization in large-scale post-disaster user scenario.

Here, B signifies the bandwidth of the ground resource block,
and i(t) n represents the number of resource blocks allocated
to the user, which is determined by the total transmission task
size and spectral efficiency at time t.

Where NC represents the threshold for resource block load,
which prevents users from excessively consuming spectrum
resources due to low spectral efficiency. The average load
efficiency evaluation index is defined as

ni,ui (t) = min
(
Nc,

[
Di (t)
Ri,ui (t)

])
(9)

η =
1
TN

∑T

t=0

∑N

i=0

BRi,ui (t)
ni,ui (t)

(10)

The efficiency of load averaging, denoted as η, serves as an
effective metric for evaluating the quality of ground cluster-
ing results across various scenarios characterized by different
user dynamics and information disparities.

C. FOR MODEL TRANSMISSION BETWEEN AIR AND
GROUND
Communication between the emergency UAV base station
and the cluster center user occurs through air-to-ground com-
munication links in the sub-6 GHz band, where Line of Sight
(LoS) conditions prevail, significantly influencing the wire-
less link. The average path loss between UAV base station J

and cluster center user uj is formulated as follows:

Lairj,uj (dB) = 20log

(
4π f airc

∥∥pj − puj∥∥
c

)
+ ηLoS (11)

Here, f airc denotes the central frequency of air-ground
communication, pj signifies the position of the drone base
station, c represents the speed of light, and ηLoS denotes the
additional spatial propagation loss for Line of Sight (LoS)
and is treated as a constant. It’s important to note that cluster
center users may introduce interference to other UAV base
stations, and the Signal-to-Interference-Noise Ratio (SINR)
for the communication link between UAV base station J and
cluster center user uj for the service is given as follows:

SINRairj =
P2Gairj,uj

N0 +
∑

j′ ̸=j,j′ϵM P2Gairj,uj′
(12)

Here, P2 represents the transmit power of the cluster center
user and Lairj,uj represents the channel gain between the UAV
base station j and the cluster center user uj. The channel gain
Gairj,uj is influenced by path loss and can be expressed as,

P2Gairj,uj (dB) = P2 (dB)− Lairj,uj (dB) (13)

The Doppler effect induced by drone movement can be
effectively compensated for using existing technologies, such
as phase-locked loop technology. The spectral efficiency of
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FIGURE 4. Bayesian inference flow.

UAV base station j can be represented as

Rj (t) = lb
(
1+ SINRairj (t)

)
(14)

The average spectral efficiency of an emergency communi-
cation network can be expressed as:

R (t) =
∑
jϵM

lb
(
1+ SINRairj (t)

)
(15)

In this study, the optimization goal is set as the average
spectral efficiency defined in Equation (15). The optimiza-
tion problem is formulated while considering the constraints
imposed by the maximum flight speed limit, flight safety
limitations, and communication interruption limits of UAV
base stations.

OP: max
pj(t),j∈M,t=1,...,T

T∑
t=1

∑
j∈M

lb
(
1+ SINRair

j (t)
)

s.t C1 :
∥∥pj(t)− pj(t + 1)

∥∥ ≤ Vmax1t,∀j ∈ M
C2 :

∥∥pj(t)− pj(t)∥∥ < 0, ∀j ̸= j′ ∈ M

C3 : Poutage(t) ≤ Pmax
outage (16)

In the optimization problem, the communication interrup-
tion probability (Poutage) and the maximum communication
interruption probability limit (max Poutage) at time-t are rep-
resented by the outage function P(t).
The average spectral efficiency of the emergency commu-

nication network in this optimization problem is determined
by the signal-to-noise ratio between each UAV base station
and the cluster center users. Since air-ground communica-
tion mainly involves a direct path, the signal-to-noise ratio

is primarily influenced by the distance between the two.
Additionally, constraint C3, which relates to communication
interruption, is closely linked to the selection of ground user
clustering and cluster center users. Therefore, the trajectory
adjustment in a large-scale multi-UAV emergency commu-
nication network depends on the outcomes of ground user
clustering, and the flight trajectory adapts to the dynamic
changes in user selections for the cluster center.

D. OPTIMIZATION SCHEME OVERRIDES
Based on the previously discussed user and communication
models, the average spectral efficiency (RT) of the emergency
communication network depends on various factors such as
the positions of UAVbase stations (pj), the locations of cluster
center users (pu), and the results of ground user clustering.
To address this, Figure 3 depicts the architecture, which con-
sists of two layers: the network feature layer and the trajectory
control layer. This distributed intent-based large-scale post-
disaster user coverage optimization technology. Compared
to the traditional end-to-end coverage optimization structure,
the hierarchical coverage optimization structure proposed in
this paper offers several advantages:
Reduction in input dimension: By reducing the input

dimension of the reinforcement learning state at the UAVbase
station, it is possible to simplify problem training by reducing
the deep neural network’s scale.
Hierarchical design: Through this hierarchical approach,

separate air communication optimization and ground
communication optimization, make it easier to adjust
performance and parameters in practical engineering appli-
cations. This hierarchical design aligns with the typical
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implementation of deep reinforcement learning algorithms
in various industries. Specifically, each UAV base station is
equipped with a distributed computing terminal that serves
the layered optimization architecture mentioned above. In the
network feature layer, the UAV base station leverages locally
acquired network status information to accommodate the
service differences among large-scale post-disaster users.
It autonomously groups local users based on this information
and selects user features from the cluster center as the input
state for multi-agent reinforcement learning. In the trajectory
control layer, multi-agent reinforcement learning technol-
ogy is employed to address the state input for time series
dynamics, with UAV base stations autonomously optimizing
their flight trajectories within the framework of distributed
training and execution. This optimization aims to reduce
communication interruptions and maximize network spectral
efficiency. It’s worth noting that, in each timeframe, along
with user information, the characteristics of the cluster center
user, who relays information in the transmission process, are
aggregated. These characteristics are also required as input
for reinforcement learning and are transmitted to the UAV
base station as auxiliary communication overhead.

III. NETWORK FEATURE LAYER-GROUND USER
CLUSTERING
In the network feature layer, the process of ground user
clustering and the selection of cluster center users are essen-
tial to address the varying service requirements among the
large-scale user population. This section introduces a user
differentiation learning algorithm based on Bayesian infer-
ence to address this challenge. As obtaining information
about all the large-scale users can be challenging for UAV
base stations, the paper also presents a distributed K-SUMS
clustering algorithm that considers these user differences.
This algorithm results in clustering outcomes characterized
by improved load efficiency and a more balanced distribution
of users across clusters.

A. USER DIFFERENTIATED LEARNING
‘‘Bayesian Inference’’ is a statistical machine learning
method that establishes a connection between an observer and
an estimator using Bayesian formulas [19]. In the process of
user differentiation learning, theUAVbase station can acquire
the new task size of the user’s latest activation at time T0 as an
observation d∗i and estimate the user’s priority parameter λi.
In this paper, the priority parameter λi represents a numerical
representation of the average traffic demand of user i, con-
sidering information differences, to allocate higher-quality
spectrum resources to users with higher priority. λi follows
a Gaussian distribution with mean µi and variance σ 2.
Suppose the number of local user’s observable by UAV

base station j is Nj, represented by the set Nj, and the def-
inition vector is x = (x, y, z), where d∗ is the observation
vector, λ is the estimation vector, andµ and σ 2 are parameter
vectors.

The Bayesian inference process is illustrated in Figure 4.
Initially, the estimation vector λ , which has the same number
of dimensions as the observation vector, is obtained through
sampling from the prior distribution λ ∼ N (µ, σ 2), where
P(λ ) is the prior probability distribution. Then, using the
vectors d∗ and λ , the loss function is computed as follows:

C
(
d∗ | λ

)
= −

1
Nj

Nj∑
i=0

(
d∗i − λi

)2
d∗i λi

(17)

The likelihood function can be derived by normalizing the
loss function with respect to the estimation vector λ given
the observation vector d∗, as follows:
−C(d| λ ) where Z(d) is the normalization constant.

P
(
d∗ | λ

)
=

e−C(d
∗
| λ)∫

e−C(d∗ | λ)dd∗
(18)

P
(
λ | d∗

)
∝ P

(
d∗ | λ

)
P(λ ) (19)

Based on equation (19), the product of the prior probability
and likelihood function is normalized to obtain the posterior
probability ω for the estimated vector λ . Consequently, the
mean and variance of the prior distribution are updated

µ̂ =
∑t0

t=1
λ (t)ω (20)

σ̂ 2
=

∑t0

t=1

(
λ (t)− µ̂

)2
ω (21)

Algorithm 1 User Differentiation Learning Algorithm Based
on Bayesian Inference
Input:
Observation vector,d∗
Parameter vectors to be optimized,µ and 2σ
Output:
Optimized parameter vectors,µ and 2σ
1. Initialize the priority parameters for t0 group users from
the prior distribution:λ (1),λ (2), . . . ,λ (t0 ) ∼ N(µ, 2σ ).
2. For t = 1 tot0 :
Calculate the loss function using Equation (17):
3.C(t, d∗, λ ) to characterize the gap between the observa-
tion vector and the sampled priority parameter vector.
4. Normalize the loss function using Equation (18) to obtain
the likelihood function:P(t|d∗, λ ).
5. Use Equation (19) to calculate the product of the loss func-
tion and the likelihood function based on Bayesian inference.
6. End for
7. Multiply all loss functions with likelihood functions and
normalize to obtain the posterior probability : ω(t), t =
0, 1, 2, . . . , t_0.
8. Update the posterior distribution using Equation (20) and
Equation (21) to obtain parameters µ and σ 2.

Algorithm 1 computes the priority parameter λ for each
user, allowing for differentiated communication services
during clustering. Prioritizing higher λ users for spectral effi-
ciency can effectively reduce the network spectrum resource
load.
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FIGURE 5. Basic multi-agent reinforcement learning MASAC agent structure.

B. USERS CLUSTERING
The k-sums algorithm is chosen over traditional clustering
methods like k-means and spectral clustering due to its lower
computational complexity, which is O(NM), making it effi-
cient even when users and cluster centers change rapidly.
Moreover, the k-sums algorithm effectively reduces intra-
cluster distances, improving the balance of users between
clusters. These characteristics are crucial for optimizing aver-
age spectral efficiency and load balancing in an emergency
communication network. In general, the k-sums algorithm is
well-suited to handle the dynamic and diverse nature of users
in the aftermath of large-scale disasters. The general matrix
expression for clustering algorithms can be expressed as The
matrix notation used in the clustering algorithm is as follows:

min
y∈RN×M

Tr
((

YTY
)− 1

2
YTGY

(
YTY

)− 1
2
)

(22)

The Tr () operator represents the trace operation of the matrix.
The matrix notation used in the clustering algorithm is as

follows:
Matrix Y represents the cluster assignment matrix with

dimensions N×M. When user i belongs to service cluster J
of the UAV base station, the element is set to 1 (yi,j = 1);
otherwise, it’s set to 0 (yi,j = 0).
Matrix G is the cluster kernel matrix, and its definition

varies depending on the clustering algorithm. The k-sums
algorithm involves neighbor dissimilarity measures between
nodes. Elements gii represent the dissimilarity between user
i1 and user i2. The smaller the dissimilarity, the larger the

value of gi, and only one element in each row (Nj) is set
to 1, representing the smallest dissimilarity, while the other
elements are replaced by a maximum dissimilarity constant.

To ensure the clustering results’ balance, the k-sums
algorithm introduces the constraint YTY=nI to equation (22),
where I is the identity matrix, and n is an arbitrary constant.
Equation (22) can be transformed into:

min
y∈RN×M

Tr(YTGY)

s.t.YTY =n̄I (23)

In the case of large-scale post-disaster users as shown in
Figure 8, obtaining information about all users for a single
UAV base station is challenging. Therefore, calculating dis-
similarity measures between all global users is infeasible.
Adopting a centralized clustering approach in this scenario
would result in significant communication overhead for user
information. To address this issue, this paper introduces a
distributed K-Sums clustering algorithm, allowing UAV base
stations to perform clustering using only locally observed
information from large-scale post-disaster users.

The clustered kernel matrix G in the distributed K-Sums
algorithm is defined based on the proximity dissimilarity
measure of observable users. The dimension of the clustered
kernel matrix for UAV base station j is represented as Nj×N,
where Nj is the number of users observable by UAV base sta-
tion j. The dissimilarity measure between users is calculated
as the product of the number of load resource blocks required
to transmit from user i1 to user i2 at the current moment
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FIGURE 6. Detailed block diagram of multi-agent reinforcement learning MASAC agent structure.

FIGURE 7. Implementation architecture of stable convergence technology based on ensemble learning.

(ni1,i2) and the user’s priority parameter λi. In mathematical
terms, this dissimilarity measure is represented as:

gi1,i2 = ni1,i2λi1 (24)

This design aims to consider both the instantaneous and
long-term characteristics of user transmission information
traffic requirements. It allocates load resource blocks to

users based on their information differences, providing better
resource blocks to users with higher business needs. This
approach effectively reduces the probability that high-priority
user communication cannot be covered under limited load.
It’s important to note that the design of the cluster kernel
matrix in this paper primarily focuses on differences in user
traffic demand. If you need to consider business differences
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arising from variations in other communication requirements,
you would need to redefine the physical meaning of the
elements in the cluster kernel matrix to accommodate those
differences.

For each UAV base station, the distributed K-Sums cluster-
ing algorithm only needs to obtain the user cluster it serves.
Therefore, it defines the local portion of the cluster identi-
fication matrix as Yp ⊆Nj×2, where yi,0 indicates whether
user i is in the user cluster Nj served by the UAV base station.
To ensure the balance of user clustering results and meet the
conditions of equation (23), the elements of the matrix Yp
must satisfy:

yi,0 =

{
1, i ∈ Nj
0, i /∈ Nj

(25)

yi,1 =


1, i ∈ Nj√

N
M (M − 1)

, i /∈ Nj
(26)

The local partial cluster identification matrix must satisfy the
constraint YTY=nI of the global cluster identificationmatrix.
Additionally, the number of observable users Nj for the UAV
base station needs to be greater than the average number of
users serviced by UAV base stations, i.e., Nj > M. Similar to
the row iteration method used in the K-Sums algorithm [20],
the local partial cluster of each user is optimized in sequence
to identify the row vector, which is represented as 0≤ yi ≤ 1
for each row vector. The problem equation (23) can then be
transformed into:

min
yi

Tr
(
Y Tp GY

)
⇐⇒ min

yi
yTi Ỹ

T
p gi (27)

The distributed K-Sums clustering algorithm, which consid-
ers user differences, is presented in Algorithm 2:

Algorithm 2 Distributed K-Sums Clustering Algorithm with
User Differences
Input: User dissimilarity metric matrix G, local part cluster
identification matrix pY Output: Local part cluster identifi-
cation matrix Yp after optimization
1. Initialize Yp and pY such that they are different from each
other.
2. While p ̸= pY:
i. p← pY

ii. For each j in [1, N]:
a) Perform row-wise optimization of the cluster identifica-

tion matrix Yp according to Equation (27) to obtain the
optimized yi.

iii. End for
3. End while

By calculating the result Yp from Algorithm 2, filter the
users for whom yi,0 = 1 as the users serviced by UAV base
station j, and select the user with the least similarity measure
as the cluster center user, i.e., the user with the smallest gi,i

value.

min
i2∈Nj,yi2,0=1

∑
i1∈Nj

gi1,i2 (28)

Based on the distinctive information of cluster center users,
UAV base stations can dynamically adjust their flight trajec-
tories in real time to optimize coverage for ground users. This
aspect will be explored in greater detail in Section III of this
paper.

C. COMPLEXITY ANALYSIS
The standard k-means algorithm requires iterative assign-
ments of users to the nearest cluster center, recalculating
cluster centers for each user cluster, and thus calculating
distances between each user and all cluster center users with
a complexity of O(NM). However, the standard k-means
algorithm has a limited scope of applicability, as it can
only handle linearly separable data and is highly sensitive
to initialization. The enhanced k-means algorithm first non-
linearly maps the input data to a higher-dimensional space
to accommodate non-linearly separable data types and then
performs the k-means algorithm with a computational com-
plexity of O(2N).

The spectral clustering algorithm, on the other hand,
leverages the nearest neighbor map of users for analysis,
making it capable of processing non-linearly separable data
with superior clustering performance. However, due to the
initial construction of the proximity map and subsequent
spectral decomposition operations, its computational com-
plexity is high, reaching O(N2M). In contrast, the clustered
kernel matrix of the k-SUMS algorithm utilizes neighbor
dissimilarity measures, and most of the values in gi are con-
stant. Employing the row iterative optimization method as
described in equation (27), the complexity is approximately
O(M), resulting in an overall computational complexity of
O(NM).

Moreover, to learn the business differences of users online,
Bayesian inference algorithms require t0 steps to compute
both the loss function (C(t)|(d∗(t), λ )) and the likelihood
function (P(t)|(d∗(t), λ )), where the computational complex-
ity of the loss function is associated with the number of
locally observable users, Nj. Consequently, the computational
complexity of the user differentiation learning algorithm
based on Bayesian inference is O(t0Nj). In summary, the net-
work feature layer, which encompasses the entire ground user
clustering, accounting for user differences, has a complexity
of O(t0Nj).

IV. CONTROL OF UAV TRAJECTORY AT THE BASE
STATION LEVEL
The conventional approach to optimizing UAV base station
trajectories is inadequate for addressing the dynamic and
long-term aspects of large-scale user scenarios. Simultane-
ously, single-agent reinforcement learning methods struggle
to adapt to the unstable learning conditions arising from
multiple UAV base stations. To tackle these challenges
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FIGURE 8. Overall process optimized for distributed coverage for large-scale post-disaster users.

effectively, introduce a multi-agent reinforcement learning-
based optimization approach. This method makes intelligent
decisions regarding flight trajectories by considering the cur-
rent state of the network environment. This research, present
the Multi-Agent Soft Actor-Critic (MASAC) algorithm,
which offers superior convergence and stability compared to
the existing Multi-Agent Deep Deterministic Policy Gradi-
ents (MADDPG) algorithm.

A. DESIGN OF A MULTI-AGENT REINFORCEMENT
LEARNING-BASED DISTRIBUTED REGULATION AND
CONTROL SYSTEM FOR UAV BASE STATIONS
In addressing the coverage optimization challenge for a
large-scale post-disaster user scenario, Section I introduces
a distributed intent-based coverage optimization framework.
Within this architecture, the network feature layer assumes
responsibility for clustering the extensive ground user popu-
lation, selecting key user feature data from the cluster centers,
and serving as the input layer for the trajectory control mod-
ule in the multi-agent reinforcement learning system.

The trajectory regulation layer employs a multi-agent deep
reinforcement learning approach, utilizing the Markov deci-
sion process to remodel the trajectory regulation problem.
This transformation turns the global optimization problem
into a series of reinforcement learning optimization objec-
tives, focusing on maximizing network spectral efficiency

over time. The design leverages reward functions and value
functions to iteratively adjust the flight trajectory of the UAV
base station.

Consequently, the distributed regulation design for UAV
base stations based on multi-agent reinforcement learning
operates as follows:

State: Each UAV base station extracts specific observable
information as an input state. This information includes:

• The coordinates of the UAV base station itself.
• Two-dimensional relative positioning with respect to the
ground cluster’s central user.

• Signal-to-noise ratio of user information received by the
cluster center.

• Three-dimensional relative positioning with neighbor-
ing drones (Mj).

Action: Considering the UAV base station’s freedom of
movement in three-dimensional space, its output actions are
characterized by its speed in three directions: x-axis, y-axis,
and z-axis.

Reward: The reward function comprises three components:

• Flight safety penalty value.
• Communication interruption penalty value.
• Spectrum efficiency reward value.
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These components work together to guide the optimization
process.

rj = Rj (t)− ξcollisionI
j
collision − NjP

j
outage (t) ξoutageI

j
outage

(29)

In the given context, where Pjoutage(t) represents the instanta-
neous communication interruption probability and Rj (t) sig-
nifies the instantaneous network spectral efficiency, ξcollision
and ξoutage serve as constants for security and communica-
tion penalties when the UAV base station ‘‘j’’ encounters
collisions or exits the specified area. When Ioutage equals 1,
it diminishes the reward function’s magnitude in response to
these events during the multi-agent reinforcement learning
training process. This, in turn, aids in minimizing the likeli-
hood of such occurrences and guides the UAV base station’s
flight strategy.

Furthermore, ξcollision and ξoutage are predefined hyper-
parameters that remain constant throughout the optimization
process. Regarding interactions, the multi-agent reinforce-
ment learning MASAC algorithm necessitates fitting the
adjacent action-state value function. The reward function also
relies on the communication signal-to-noise ratio and spec-
trum utilization efficiency of neighboring UAV base stations
in its calculation process. To achieve this, it engages with Mj
neighboring UAV base stations, including:

The coordinates of the UAV base station itself. The
UAV base station’s output actions. Two-dimensional rel-
ative positioning concerning the central user within the
ground cluster. The signal-to-noise ratio of user informa-
tion received by the cluster center. The spectral efficiency
of the UAV base station at the current time. This section
will introduce the Multi-Agent Soft Actor-Critic (MASAC)
algorithm, a form of multi-agent maximum entropy rein-
forcement learning, based on the aforementioned trajectory
regulation design using multi-agent reinforcement learning.
Additionally, it will explore fusion ensemble learning and
course learning techniques aimed at enhancing the training
stability and convergence speed of the algorithm.

B. MAXIMUM ENTROPY REINFORCEMENT LEARNING
FOR MULTIPLE AGENTS
In the face of a dynamic and uncertain emergency com-
munication network environment, reinforcement learning
leverages the Markov decision process to create a model.
It acquires observations from the environment, which form
the state st. Subsequently, it selects a strategy based on the
action π (at |st ), produced by the policy π , to control the flight
trajectory of the UAV base station. The agent then executes
these actions, engages in interactions with the environment,
assesses communication network coverage performance, and
computes the reward function rt.

As the environment transitions from its current state st
to the next state st+1, facilitated by the state transition dis-
tribution (st+1|st, at) at time t, the action selection strategy
of the reinforcement learning agent becomes closely tied

FIGURE 9. Accelerated convergence technical task division based on
course learning.

to the state-action value function Q(st, at). This function
characterizes the expected cumulative reward over the long
term when selecting action at for the UAV base station under
state st, taking into account the extended period of emergency
communication network coverage

Q (st , at) = rt + γESt+1∼ps [V (st+1)] (30)

The function V(st) at time t represents the state value func-
tion, which serves as a metric to describe the anticipated
value of long-term rewards for emergency communication
network coverage performance that the UAV base station
can achieve, starting from state st. The parameter γ denotes
the discount factor, and it ensures the convergence of the
reinforcement learning strategy iteration when it satisfies the
condition 0 < γ ≤ 1. The state value function is essential for
this convergence process.

V (st) = Eat∼π [Q (st , at)− αlogπ (at | st)] (31)

The term αlogπ(at |st ), at time t represents an entropy regu-
larization component. This entropy regularization aligns with
the optimization process of the action selection strategy. The
algorithm’s strategy output exhibits multi-modal character-
istics, effectively addressing the dynamics and complexity
of the learning environment, ultimately enhancing algorithm
convergence stability. The parameter α in the entropy regular-
ization term is the temperature factor, and its influence weight
can be self-adjusted.

In scenarios with multiple agents within the network,
agent i can solely access local observations oti . The envi-
ronmental state transition is influenced by the collective
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FIGURE 10. Overall process optimized for distributed coverage for
large-scale post-disaster users.

action outputs of multiple agents simultaneously. Con-
sequently, the environmental state transition distribution
changes to agent i. In such a non-stationary state, con-
ventional single-agent reinforcement learning struggles to
converge. The multi-agent reinforcement learning MAD-
DPG algorithm addresses this issue by fitting the global
state-value function Q(oit , a

i
t , o
−i
t , a−it ) using observations

and output actions of other agents, stabilizing the agent i’s
learning environment. Here, -i represents all agents other than
agent i.

This paper, building upon the Maximum Entropy Rein-
forcement Learning Soft Actor-Critic (SAC) algorithm and
theMulti-Agent DeepDeterministic PolicyGradients (MAD-

DPG) algorithm, adapts and enhances the adjacent state
value function fitting from the SAC algorithm. This adap-
tation reduces communication overhead while ensuring
algorithm convergence, facilitating distributed deployment of
the algorithm.

Figure 5 depicts the architecture. All agents share the same
Critic Network and Actor. In addition to this, we also keep
the experiences of every agent in a common Replay Buffer.
Every agent possesses an individual copy of its state data,
observations from the environment, actions, and associated
rewards. No other agent is aware of this information regarding
a specific agent. But since the material in Replay Buffer
is non-distinguishable, every agent gain from the collective
experiences of all agents. Lastly, each agent updates the actor
and critic networks asynchronously at each stage.

As depicted in Figure 6, each MASAC agent comprises
six neural networks and one empirical replay buffer. The
Actor network defines the action selection policy, denoted
as πθi, with θi representing its neural network parameters.
It takes the local observation state oti as input and generates
the mean (µθ i) and standard deviation (σθi) of the action
output distribution for the observed state. This distribution is
represented as πθi and serves as the action selection strategy
for agent i at time t.

The Double Q network consists of two neural networks:
Critic1 and Critic2 networks, which estimate the state-value
functions as Qθ i2

and Qθ i3
, respectively. These neural net-

works have parameters θ i1 and θ i3, respectively. By fitting
two state-value functions, they mitigate the overestimation
issue associated with a single Critic network, as discussed in
reference [21] and [22].

The Target network encompasses three neural networks:
Target Actor πθ i4

, Target Critic1 πθ i5
, and Target Critic2 Qθ i6

.
These networks share the same architecture as the actor
network and the Critic networks but update their parame-
ters at a slower rate. This deliberate slowing of parameter
updates enhances training stability and accelerates algorithm
convergence. The experience replay buffer is employed to
store samples of agent interactions, where information about
neighboring agents is obtained through inter-agent commu-
nication. During training, the agent samples from this replay
buffer and randomly selects a sample set D to compute gra-
dients for optimizing its objectives.

The objective of the action selection strategy is to maxi-
mize the state-action value function. Therefore, the optimiza-
tion objective for the network can be formulated as follows

Jπ
(
θ i1

)
= E(ot ,at )∼D

[
α logπθ1

(
âit | o

i
t

)
− min

i=2,3
Qθi

(
oit , a

i
t , o
−i
t , a−it

)]
(32)

Given that the actor network generates a distribution func-
tion rather than a precise action value, it becomes necessary
to represent the output action numerically when computing
the gradient for the optimization objective. To accomplish
this, employ the weighted parameter technique to derive an
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FIGURE 11. Effect of different clustering algorithms on the variance of the number of users between clusters.

estimated action value.

âit = tanh
(
µθi

(
oit
)
+ σθi

(
oit
)

ϵit

)
(33)

, εit represents a Gaussian noise vector with a mean of 0,
which is independent of the action selection strategy. The
Critic network is designed to approximate the state-action
value function, and thus, the optimization objective can be
described in terms of the temporal difference error.

JQ
(
θ i2,3

)
= E(ot ,at ,rt ,ot+1)∼D

[(
Qθ i2,3

(
oit , a

i
t , o
−i
t , a−it

)
−

(
rt + γ

(
min
j=5.6

Q
θ̂ i2,3

(
oit+1, a

i
t+1, o

−i
t+1, a

−i
t+1

)
− α log

(
π̂θ i4

(
ait+1 | o

i
t+1

)))))2]
a
t+1∼π̂ i

θ i4

(34)

Based on the above optimization objectives, the network
parameters are updated.

Here, η represents the neural network update step. Dur-
ing the iterative exploration and training process, the agent
acquires fresh samples from the environment and stores them
in the experience replay buffer. Subsequently, it randomly
selects batch samples from this buffer for training, following
Equation (32) through Formula (34), enabling the agent to
learn the optimal action selection strategy.

C. COMBINING LEARNING AND CURRICULUM LEARNING
The multi-agent reinforcement learning algorithm effectively
addresses the non-stationary in multi-agent learning envi-
ronments, and the MASAC algorithm adapts to complex

dynamic settings. However, both multi-agent and maximum
entropy reinforcement learning algorithms introduce com-
plexity to neural networks. Therefore, this paper employs
ensemble learning [23] and curriculum learning [24] tech-
niques to enhance the speed and stability of algorithm
convergence.

Stable Convergence Technique Based on Ensemble Learn-
ing: This approach combines ensemble learning, where
multiple sets of neural networks are trained through boot-
strapping. It collects feedback during the decision-making
process, identifies sub-optimal networks for pruning, and
retains high-performing networks to prevent catastrophic for-
getting. This technique enhances the stability of the algorithm
convergence process [26], [27]. Figure 7 provides a detailed
overview of the implementation architecture for stable con-
vergence technology based on ensemble learning. Each UAV
base station’s agents simultaneously train multiple sets of
neural networks, forming an ensemble learning neural net-
work set W.

θ i1← θ i1 + η1∇θ i1
Jπ (θ i1) (35)

θ i2,3← θ i2,3 + η2,3∇θ i2,3
JQ(θ i2,3) (36)

θ i4,5,6← η4,5,6θ
i
4,5,6 + (1− η4,5,6)θ

i
1,2,3 (37)

In the ‘‘distributed training’’ phase, independent sample sets
from W groups, denoted as W1, W2, . . . , WD, are drawn
from the experience replay buffer, and all neural networks
within W undergo training. During the ‘‘distributed execu-
tion’’ phase, an agent randomly selects a neural network w
fromW to make decisions for the UAV base station, receive a
reward rm, and update the cumulative rewardw for the chosen
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neural network w.

r (w)
m = τwr (w)

m + (1− τw) rm (38)

Here, τw represents the update step for the cumulative reward
of the neural network.

Furthermore, update the maximum cumulative reward
rWmaxm within the neural network set W.

rWmax
m = max

(
rWmax
m , r (w)

m

)
(39)

If the cumulative reward r (w)
m of neural network w signifi-

cantly lags behind the maximum cumulative reward (rWmax
m )

within the neural network set, pruning is initiated on neural
network w. The neural network with the highest cumulative
reward value among the remaining networks in W is then
duplicated to replace the pruned neural network w. Through
this ensemble learning design, MASAC agents can identify
and prune neural networks that have suffered catastrophic
forgetting, leading to significant performance degradation
during training. This selection of neural network inheritance
helps expedite the algorithm’s convergence process.

Accelerated Convergence Technique Based on Curriculum
Learning: This approach divides learning tasks into multiple
sub-tasks, arranged from easy to difficult based on their
physical significance. It designs reward functions for each
sub-task, ranging from simple to complex, to reduce learn-
ing complexity and enhance algorithm convergence speed.
Employing the concept of curriculum learning, as depicted
in Figure 9, the reward function introduced in section IV
is segmented into three sub-tasks: UAV base station’s task
of maintaining flight within a fixed area. The objective
of reduce communication service interruptions by adjusting
the UAV base station’s flight trajectory, where interruptions
occur when the signal-to-noise ratio at the UAV base station
receiving user information from the cluster center falls below
a threshold.

Optimizing flight trajectories of the UAV base station
to maximize network spectral efficiency. Consequently, the
reward functions for these three sub-tasks can be designed as
follows:

rA = −ξcollisionI
j
collision (40)

rB = −ξcollisionI
j
collision − NjPoutage (t) ξoutageI

j
outage (41)

rC = Rj (t)− ξcollisionI
j
collision − NjPoutage (t) ξoutageI

j
outage

(42)

It’s important to highlight that learning more complex course
material may lead neural networks to forget what they’ve
learned in simpler lessons, potentially resulting in catas-
trophic forgetting. In the reward design for these advanced
courses, it’s essential to incorporate rewards from simpler
courses, as demonstrated in Equation (38) and Equation (39).
This collaborative approach, combined with the sub-network
pruning technique of integrated learning, helps mitigate the
impact of catastrophic forgetting.

The MASAC-based multi-UAV trajectory distributed reg-
ulation algorithm, which integrates ensemble learning and
curriculum learning techniques, is presented in Algorithm 3.
This algorithm effectively reduces the frequency of commu-
nication interruptions within the network, ultimately enhanc-
ing network spectral efficiency.

Algorithm 3 MASAC-based Multi-UAV Trajectory Dis-
tributed Regulation Algorithm
1. Initialize the time step t to 0.
2. Loop while t is less than or equal to t:
3. Retrieve the observed state oti from the environment.
4. Randomly select a set of neural networks from the

ensemble learning neural network set W and input the
observation state oti into the actor-network to produce the
action ati .

5. Execute the selected actions, interact with the environ-
ment, and obtain the signal-to-noise ratio and spectral
efficiency of user information at the cluster center at the
current moment.

6. Communicate with neighboring drones, calculate the
reward for the current curriculum learning task, and
update the state oti +1.

7. Record samples and store them in the experience replay
buffer.

8. Update the cumulative reward rwm and the maximum
cumulative reward rWmaxm based on Equation (38) and
Equation (39) to determine whether to proceed to the next
curriculum learning stage.

9. If rwm is significantly lower than rWmaxm , perform pruning
and inheritance operations on neural network w.

10. For each neural network in W (1 ≤ n ≤ N ), do:
11. Retrieve a batch of samples DN from the experience replay

buffer.
12. Update the MASAC multi-agent reinforcement learning

neural network parameters following Equation (35) to
Equation (37).

13. Increment t by 1.
14. End the loop when t reaches T.

D. COMPLEXITY ANALYSIS
During the ‘‘distributed execution’’ stage, each UAV base sta-
tion must acquire its local state information and share it with
neighboring UAV base stations. This complexity is directly
related to the number of adjacent UAV base stations, denoted
as Mj. Therefore, the algorithm’s complexity at this stage
can be expressed as O(Mj). neural network needs to calculate
gradients proportional to the batch sample size taken from the
experience replay buffer, denoted as ND. Consequently, the
complexity of the algorithm during this phase can be repre-
sented as O(WN). Given that the number of adjacent UAV
base stations, Mj, is significantly smaller than the number of
batch samples, ND, the overall complexity of Algorithm 3
can be described as O(WN). In the ‘‘distributed training’’
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FIGURE 12. Convergence performance of MASAC algorithm averaging cumulative reward.

phase, each UAV base station is required to update all W
neural networks within the ensemble learning neural network
set W. The number of times each neural network needs to
calculate gradients is proportional to the batch sample size
taken from the experience replay buffer, denoted as ND.
Consequently, the complexity of the algorithm during this
phase can be represented as O(WN). Given that the number of
adjacent UAV base stations, Mj, is significantly smaller than
the number of batch samples, ND, the overall complexity of
Algorithm 3 can be described as O(WN).

E. DISTRIBUTED COVERAGE OPTIMIZATION PROCESS
FOR LARGE-SCALE POST-DISASTER USERS
The proposed distributed intent-based coverage optimiza-
tion architecture in this paper can be categorized into two
main layers: the network feature layer and the trajectory
regulation layer. The network feature layer serves as the
feature extraction stage for multi-agent reinforcement learn-
ing and is jointly realized through two algorithms: the user
difference learning algorithm based on Bayesian inference
(Algorithm 1) and the distributed k-sums algorithm consid-
ering user difference (Algorithm 2).
On the other hand, the trajectory regulation layer functions

as the strategy implementation stage for the multi-agent rein-
forcement learning segment and is executed by the MASAC-
based multi-UAV trajectory distributed regulation algorithm
(Algorithm 3). The comprehensive workflow of distributed
coverage optimization for large-scale post-disaster users is
depicted in Figure 10.

V. SIMULATION ANALYSIS
This section evaluates the proposed aerial coverage archi-
tecture for large-scale post-disaster users, which is based on

multi-agent reinforcement learning, and assesses the effec-
tiveness of the corresponding algorithm through simulation
experiments. We assume a scenario with 500 ground users
located within a 1km × 1km area in the disaster-stricken
region. The flight altitude range for theUAVbase station is set
between 100 m to 1,000 m. For the MASAC algorithm, both
the Actor and Critic networks employ three fully connected
layers in the hidden layer, with 512, 256, and 128 hid-
den neurons, respectively. The verification of the proposed
large-scale post-disaster user-distributed coverage optimiza-
tion scheme based on multi-agent reinforcement learning
is conducted on the Python 3.7 platform. The Bayesian
inference and distributed k-sums algorithm are implemented
using the Numpy toolkit, while the MASAC algorithm for
multi-agent reinforcement learning is implemented using the
TensorFlow toolkit. The computing environment comprises
Windows 10, an Intel 7th CPU, and a GTX 1060 GPU.

Firstly, validate the effectiveness of the distributed K-Sums
clustering algorithm, which considers user differences
in underlying optimization. Afterward conduct simulation
experiments under varying maximum priority parameters
λmax and compare the results with the K-Sums algorithm and
the K-Means algorithm. Figure 11 illustrates the impact of
different clustering algorithms on the variance in the num-
ber of users between clusters. It is evident from Figure 14
that the proposed distributed K-Sums algorithm maintains
a cluster balance similar to the K-Sums algorithm. When
user information differences are not considered (λmax = 1),
the variance in the number of users between clusters in the
distributed K-Sums algorithm is nearly the same as that in
the K-Sums algorithm, and considerably smaller than that in
the K-Means algorithm. However, as the maximum priority
parameter λ max increases, the proposed algorithm tends to
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FIGURE 13. Convergence performance of MASAC algorithm averaging
cumulative rewards.

FIGURE 14. Convergence performance of average cumulative reward of
different reinforcement learning algorithms.

prioritize users with higher priority parameters, potentially
sacrificing some cluster balance. Consequently, the variance
in the number of users between clusters increases.

Figure 15 illustrates the influence of different clustering
algorithms on the average load efficiency of users within
a cluster. As shown in Figure 15, as the number of clus-
ters increases, the average intra-cluster distance decreases,
leading to a significant increase in the average load effi-
ciency for all clustering algorithms. When considering user
information differences (λmax = 1), the average clustering
efficiency of the proposed distributed K-Sums algorithm
and the K-Sums algorithm is similar, and both outperform
the K-Means algorithm overall. However, as the maximum
priority coefficient λmax increases, the algorithm utilizes
Bayesian inference to learn the differences in user informa-
tion. It assigns greater weight to users with higher priority
coefficients when calculating dissimilarity measures, thus
enhancing the average load efficiency. Based on these sim-
ulation results, this paper demonstrates that increasing the

FIGURE 15. The learning effect of different reinforcement learning
algorithms on the frequency of task 1− flying out of the specified region.

maximum priority coefficient λ max, it can enhance the com-
munication efficiency for users with higher traffic demands
and improve the overall average load efficiency within clus-
ters. This verifies that the proposed algorithm effectively
adapts to various priority services.

Additionally, simulate and verify the effectiveness of the
upper-layer aerial coverage optimization algorithm based
on multi-agent reinforcement learning as proposed in this
paper. Figure 16 presents the convergence performance of
the MASAC algorithm’s average cumulative reward, show-
casing the impact of ensemble learning and curriculum
learning on MASAC’s convergence rate and stability within
the same simulation environment. The average cumulative
reward serves as a crucial indicator for assessing the conver-
gence of reinforcement learning algorithms [25]. It represents
the average value of the reward function obtained across
all time slots within a training round. Its specific physical
interpretation depends on the design of the reward function.
In this paper, the average cumulative reward reflects the
sum of average spectral efficiency, average communication
interruption penalties, and security penalties within a training
round. As observed in Figure 12, both ensemble learning and
curriculum learning contribute to increased algorithm con-
vergence rates. However, ensemble learning directly tackles
complex tasks and may converge to local optimal strate-
gies with only average performance. Curriculum learning,
on the other hand, exhibits catastrophic forgetting after learn-
ing Task 1 and Task 2, limiting further improvements in
convergence performance. In contrast, MASAC algorithms
that combine ensemble learning and curriculum learning can
converge to superior strategies with faster convergence while
mitigating the impact of catastrophic forgetting.

Figures 13 through 16 demonstrate the impact of various
reinforcement learning algorithms on the trajectory regula-
tion learning process of UAV base stations. The primary
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FIGURE 16. Learning effect of different reinforcement learning algorithms
on task 2− communication interruption probability.

comparison involves the proposed MASAC algorithm with
the MADDPG algorithm [13] and the DDPG algorithm [11].
Figure 13 illustrates the convergence performance of the
average cumulative reward for different reinforcement learn-
ing algorithms. Meanwhile, Figures 14 present changes in
key indicators for course learning tasks 1 through 3, which
encompass the frequency of UAV base station flights outside
specified areas, communication interruption frequency, and
average spectral efficiency.

Observing Figures 15 through 17, it becomes evident that
the single-agent reinforcement learning DDPG algorithm
rapidly accomplishes the learning for Task 1, which involves
flying within the confined 1 km × 1 km area. However,
it encounters difficulties in further learning Task 2 and Task
3. This is primarily because the strategic learning for the
flight area of each UAV base station does not influence the
flight areas of other UAV base stations, rendering the learning
environment stable.

In contrast, for Task 2 and Task 3, the changes in UAV
base station flight strategies affect the communications of
other UAV base stations, creating an unstable learning envi-
ronment. When comparing the multi-agent reinforcement
learning MASAC algorithm and the MADDPG algorithm,
both algorithms complete the learning for Task 1 and Task
2. However, the MADDPG algorithm exhibits poor con-
vergence performance and stability due to its deterministic
strategy algorithm. Additionally, the MADDPG algorithm’s
learning performance for Task 3, focusing on spectral
efficiency, lags behind that of the MASAC algorithm. Fur-
thermore, the simulation compares the centralized MASAC
algorithm, which obtains the global state, with the distributed
MASAC algorithm, which acquires the adjacent state. It is
noteworthy that the distributed MASAC algorithm achieves
a similar level of convergence as global optimization while

FIGURE 17. Learning effect of different reinforcement learning algorithms
on task 3− average spectral efficiency.

substantially reducing communication overhead, as it only
requires the status of neighboring drone base stations.

Figure 14 illustrates the impact of the number of UAV
base stations on average spectral efficiency. From Figure 14,
it becomes evident that the spectral efficiency of the DDPG
and MADDPG algorithms decreases as the number of UAV
base stations increases. This decline can be attributed to
the increased complexity and non-stationary of the learning
environment, which challenges the effectiveness of these
algorithms. As the number of UAV base stations rises, both
DDPG and MADDPG algorithms exhibit reduced spectral
efficiency. Conversely, the MASAC algorithm proposed in
this paper achieves higher spectral efficiency by jointly reg-
ulating the flight trajectories of UAV base stations when
the number of UAV base stations is small. However, as the
number of UAV base stations continues to increase, each
UAV base station experiences interference from more neigh-
boring UAV base stations, resulting in a decline in spectral
efficiency. Furthermore, when comparing the centralized
MASAC algorithm with the distributed MASAC algorithm,
distributed optimization can achieve similar or even improved
performance compared to global optimization. This advan-
tage arises due to lower state input dimensions and smaller
neural network sizes in scenarios with a large number of
drones.

VI. CONCLUSION
This paper introduced a distributed intent-based aerial
coverage optimization architecture aimed at facilitating
the recovery of emergency communication for large-scale
disaster-stricken users. The architecture consists of two lay-
ers: the network feature layer, responsible for user clustering
using a distributed K-SUMS clustering algorithm tailored to
account for user differences, and the trajectory control layer,
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which optimizes the flight trajectories of UAV base stations
using a distributed trajectory control algorithm based on
multi-agent reinforcement learning, specifically the MASAC
algorithm. Integrated learning and course learning techniques
are integrated into MASAC to enhance convergence speed
and effectiveness.

Simulation results demonstrate that the network feature
layer algorithm can effectively handle user dynamics and
differences, yielding clustering outcomes with improved
average load efficiency. Additionally, the trajectory optimiza-
tion layer algorithm designed in this paper can address the
non-stationary learning environment for multiple UAV base
stations. It optimizes the flight trajectories of each UAV
base station based on proximity observations, reducing com-
munication interruptions, enhancing spectral efficiency, and
optimizing emergency network coverage performance.

While this research provides a distributed intent-based
solution for restoring communication coverage to large-scale
post-disaster users, there are still some limitations. Future
research can explore the following two directions:

The proposed algorithm relies on multiple hyper-
parameters, such as the number of adjacent UAV base
stations, the number of observable users per UAV base sta-
tion, and the correlation coefficient between UAVs. These
hyper-parameter values are determined based on rules, but
they could be further refined by introducing techniques such
as attention mechanisms from deep learning.

This paper primarily focuses on user coverage optimiza-
tion to swiftly re-establish communication in disaster areas.
However, it does not consider other practical issues that may
arise, including power constraints. Future research can delve
into comprehensively addressingmultiple optimization goals,
building upon the foundation laid in this paper.
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