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ABSTRACT Electric vehicles (EVs) are commonly recognized as environmentally friendly modes of
transportation. They function by converting electrical energy into mechanical energy using different types
of motors, which aligns with the sustainable principles embraced by smart cities. The motors of EVs store
and consume electrical power from renewable energy (RE) sources through interfacing connections using
power electronics technology to provide mechanical power through rotation. The reliable operation of an
EV mainly relies on the condition of interfacing connections in the EV, particularly the connection between
the 3-¢ inverter output and the brushless DC (BLDC) motor. In this paper, machine learning (ML) tools
are deployed for detecting and classifying the faults in the connecting lines from 3-¢ inverter output to
the BLDC motor during operational mode in the EV platform, considering double-line and three-phase
faults. Several machine learning-based fault identification and classification tools, namely the Decision
Tree, Logistic Regression, Stochastic Gradient Descent, AdaBoost, XGBoost, K-Nearest Neighbour, and
Voting Classifier, were tuned for identifying and categorizing faults to ensure robustness and reliability. The
ML classifications were developed based on the datasets of healthy and faulty conditions considering the
combination of six critical parameters that have significance in reliable EV operation, namely the current
supplied to the BLDC motor from the inverter, the modulated DC voltage, output speed, and measured speed,
as well as the output of the Hall-effect sensor. In addition, the superiority of the proposed fault detection
and classification approaches using ML tools was assessed by comparing the detection and classification
efficiency through some statistical performance parameter comparisons among the classifiers.

INDEX TERMS Electric vehicles, renewable energy, brushless DC motor, three-phase inverter, fault
detection, simulation, ML classifier.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
71566 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024


https://orcid.org/0009-0009-0878-3218
https://orcid.org/0000-0002-9703-1748
https://orcid.org/0009-0006-3222-8319
https://orcid.org/0000-0001-6986-6847
https://orcid.org/0000-0001-7773-449X
https://orcid.org/0000-0002-8505-8011
https://orcid.org/0000-0003-4302-8516
https://orcid.org/0000-0001-8890-1492
https://orcid.org/0000-0003-1054-3036
https://orcid.org/0000-0002-9203-1642
https://orcid.org/0000-0002-2334-7280

M. U. I. Khan et al.: Securing EV Performance: ML-Driven Fault Detection and Classification

IEEE Access

I. INTRODUCTION

One way to address the environmental issues brought on
by greenhouse gas emissions from the usage of fossil fuels
in daily life is to electrify transportation systems. In this
regard, the Electric vehicle (EV) is viewed as a potential
technology to change the transportation system into one that
is greener and more environmentally friendly shortly by
utilizing renewable energy (RE)-based energy sources and
reducing the usage of conventional energies [1]. In a report of
2019 and 2021 [2], [3], the researchers mentioned that about
23% of total energy is consumed by transportation sectors.
In addition to emerging EVs in the transportation sectors
to make a greener environment, the reduction of energy
consumption is also focused on by introducing a regenerative
braking system, by which a considerable percentage of
energy consumption is reducible as per [4]. In addition,
the faults generated in the system are also important to
be detected in ordeer to obtain the targeted performance.
Therefore, a great amount of research has been conducted in
recent decades by researchers in perspective to safe, reliable,
and efficient motor drive systems with electric vehicles [5],
[6], [71, [8], [9]. Recently, artificial intelligence has not only
been employed in improving the EV systems but also in
enhancing the power systems to supply reliable power to
customers [10], [11], [12], [13], [14].

Typically, EVs are equipped with an array of electrical and
mechanical components, interconnected through a complex
network. The electrical devices include the inverter and con-
verter topologies, electric motors, and control units, whereas
the gearbox and wheel are mainly considered mechanical
parts. Therefore, faults in any position of the electrical or
mechanical devices, along with their connections, will lead to
unreliable operations of EVs. Different types of faults, such as
bearing faults, rotor winding faults, armature winding faults,
inverter or converter faults, faults in connecting lines includ-
ing single phase, phase to phase, and three phase faults among
the devices, and so on, can be occurred in EV as it is referred
in [4], [15], and [16]. In case of faults in EV configuration,
if proper action is not taken timely, it can result in a continu-
ous spread to other areas or devices of the EV and ultimately
lead to the collapse of the entire system [17]. Therefore,
it is important to monitor the entire EV platform during
driving mode in different operating conditions employing
online-based data acquisition, analysis, fault detection,
and classification to overcome possible severe threats and
enhance the system’s safety and reliability. Generally, fault
detection, classification, and diagnosis of EVs are investi-
gated following broadly three approaches - physical model-
based, mapping-based, and data-driven [18]. However, the
mapping-based model, where the data acquisition is managed
from graphs, and the model-based model are not suitable for
large physical systems, while the data-driven model requires
only a large amount of the system’s monitored data from
different parameters as reported in [19], [20], and [21].

In data-driven fault detection and classification approaches,
data is accumulated for the parameters including current,
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voltage, speed, temperature, pressure and some others to
develop machine learning-based tools for monitoring the
conditions in different operation moments in real-time
EV driving mode [22]. In the case of fault detection in
an individual machine, signal processing-based vibration
analysis is conducted to detect the bearing fault in [23],
whereas higher-order statistical fault analysis for vibration
is presented to identify faults in [24]. Fast Fourier transform
(FFT) based frequency spectrum analysis is implemented
in the stator current of the induction motor (IM) for
the machine’s real-time health condition monitoring pur-
pose [25], [26], [27], while artificial and clustering technique
is hybridized with spectrum analysis for analyzing the current
signal to detect faults occurred in rotor bar and bearing of 3-
¢ squirrel cage IM [28]. Bearing fault in stepper machine
is identified employing frequency evaluation of current
and measuring rotary angle of the corresponding current
in [29]. However, these methods are classical approaches
in detecting, classifying, and diagnosing faults that occur
in electrical machines, and are mostly not suitable for
online condition monitoring in case of several operating
conditions. Besides the classical models, recently artificial
intelligence-based fault detection and classification models
are being implemented in different areas to overcome the
physical modeling of large complex systems and fault
detection time issues.

In references [30], [31], and [32], artificial neural net-
work (ANN) and its improved versions were employed
in detecting, classifying, and diagnosing the faults in
industrial machines in the quickest possible time to decrease
the shutdown time and operational costs along with the
possible spreading of faults in others areas of machines.
Deep learning-based mechanical faults in rotary machines
were identified and diagnosed by the researchers in [33]
and [34], while an adaptive neuro-fuzzy inference system
(ANFIS) intelligent tool was adopted in [35], [36], and
[37]. Moreover, a genetic algorithm (GA) optimized artificial
immune system (AIS) was proposed in [38] for bearing fault
detection based on vibration data of motor in three steps,
where the features were extracted in the first stage using
signal processing technique, data was processed then, and
finally, the status of the motor is decided using GA-AIS
algorithm. Although there were some usages of intelligent
techniques in fault detection, classification, and diagnosis in
rotary machines in recent studies, these were implemented
for the motors individually rather than in a complete EV
environment. In reference [39], open and short circuits fault
detection and diagnosis procedures for an IM integrated into
the EV platform were demonstrated using long short-term
memory (LSTM). However, the technique was not suitable
for real-time application as it took a long execution time.
Furthermore, some research was conducted using data-driven
statistical and artificial intelligence-based algorithms in
estimating the state of charge (SOC) of EV batteries, fault
diagnosis in situations of over-discharging, and so on within
the EV environment as referred in [40], [41], [42], and [43].
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Addressing these research gaps will contribute to advancing
the field of electrical fault detection and classification using
ensemble machine learning, leading to more accurate, robust,
and practical solutions for ensuring the reliability of electrical
systems.

Additionally, the use of nonlinear dynamic indicators is
getting popular in fault detection. In a recent research, the
authors proposed a multivariate Higuchi fractal dimension
(MVHFD) to characterize the complexity of multichannel
time series in fault detection. They achieve a recognition rate
of 100% for signals in three features, which is at least 17.2%
higher than for other metrics [44]. In another study, Li et. al.
proposed a variable-step multiscale single threshold SloEn
(VSM-StSloEn) [45]. The performance of SO-VSM-StSloEn
has been validated through both simulated and real-world
experiments. The findings indicate that SO-VSM-StSloEn
exhibits insensitivity to signal length and is unaffected
by threshold variations. Moreover, it showcases stronger
discriminative capabilities compared to similar enhanced
algorithms based on SloEn. Additionally, in classifying
various categories of real-world signals, SO-VSM-StSloEn
outperforms other commonly utilized entropy measures.

In summary, the adoption of more environmentally friendly
transportation systems, exemplified as EVs, is a crucial
approach to address the ecological consequences of emis-
sions from fossil fuels. The complex interaction between
electrical and mechanical elements in EVs requires the
implementation of strong fault detection and classification
techniques in order to guarantee the safety and dependability
of their operations. Current developments in the field of
artificial intelligence, namely the utilization of ensemble
machine learning models, have demonstrated potential in
addressing the challenges associated with real-time fault
identification, classification, and diagnosis under various
operating situations. Although classical methodologies and
specialized techniques have been previously employed, these
current breakthroughs offer a promising avenue for overcom-
ing existing limitations. Addressing these deficiencies has
the capacity to advance EVs as a fundamental component
of environmentally sustainable urban transportation in accor-
dance with the objectives of intelligent and environmentally
conscious urban areas. Therefore, in this article, several
ensemble ML algorithms are developed, compared, and
proposed in identifying and categorizing the faults that
occurred in the connections between 3 — ¢ inverter output
and BLDC motor during operational mode in EV system.
The aim of our approach is to detect and classify the faults
during driving mode in the quickest possible time to provide
sufficient information to take appropriate action in advance
to prevent severe hazards. The main contributions of this
research are summarized as follows:

« An efficient ensemble machine learning framework is
developed using MATLAB and Python for real-time
fault detection and classifications of faults in EVs.

o The data in healthy and faulty conditions during the drive
mode in various operating moments are accumulated
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in an efficient manner to transfer to the Python
framework.

o The presented methodology demonstrates a high level
of effectiveness in efficiently detecting and classifying
faults, hence enabling extensive real-time monitoring of
electric EV systems.

e In the real-time drive mode of EV, the tools were
implemented in detecting and classifying the faults
that were arbitrarily generated in specific positions in
different time and operating modes. The developed
models exhibited superiority in fault detection and
classification compared to previous work, which was
guaranteed with several performance indices.

Il. METHODOLOGY

The behavior of the motor changes according to the number
of variables. We accumulated the vehicle’s measured speed,
voltage, current readings, output speed, and the motor’s Hall-
effect sensor output to parameters to prepare the required
datasets for modeling the ML classification. Afterward,
we developed and implemented several machine learning
classifier algorithms to classify and detect vehicle conditions
in real-time operation.

A. OVERVIEW OF EV SIMULATION APPROACH

The EV consisted of eight primary sections in the simulation-
slider gain, controller, buck converter, three-phase inverter,
commutation logic, sensor, BLDC motor, and vehicle body
sub-components. The overall connections among these
components in the EV model are depicted in Figure 1. Each of
the parts of the EV configuration is described in the following
sub-sections.

1) SLIDER GAIN

The slider gain block permits a change in scalar gain via
the slider during simulation execution. In our work, the
slider gain block controlled the vehicle’s acceleration and
deceleration.

2) CONTROLLER

The PID controller is the most prevalent control method
widely used in industrial control applications to regulate
temperature, flow, pressure, and other variables. In this
work, the speed of the EV was regulated by employing a
PID controller. Mainly, the controller’s output regulates the
motor’s speed, which is adjusted based on the difference
between the actual and targeted speed. However, the tuning
of the PID controller mainly depends on the vital weight
parameters, which are linked with proportional, integral, and
derivative actions. A simple PID controller with input-output
relation is sketched in Figure 2.

3) BUCK CONVERTER

Buck converters are mainly integrated into a system to reduce
the output voltage as compared to the corresponding input
voltage. Modulated DC voltage was obtained as the output of
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FIGURE 1. Electric vehicle model in MATLAB simulink.
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FIGURE 2. Simple PID controller with input-output relation.

the buck converter, where the input voltage was supplied from
a DC voltage source. The level of the modulated DC voltage
was controlled using the pulse width modulation (PWM)
technique based on a pre-determined sampling frequency.
The output and input of the buck converter were measured
using two voltage sensors. In the simulation procedure
of the buck converter, the logic needed to operate the
converter was generated using Boolean data-type functions.
The complete buck converter operation was designated as
just an input-output port by integrating all the components
in a block. The operational connections of the converter are
shown in Figure 3.

4) HALL EFFECT SENSOR

One of the most efficient strategies for BLDC motor is
to identify the rotor position using a Hall sensor. In our
investigation, the Hall effect sensor was adopted in measuring
the magnetic field induced in each phase to evaluate the
vector position of current around 360° of rotation. However,
a complete rotation is divided into six segments by equally
separating the angles. In this case, the rotor position at the
start is assumed to be fixed in the first segment, which is
indicated as ‘Segment 1’, and defined as the location between
‘0’ and ‘60’ degrees. Figure 4 illustrates the change of rotor
positions and corresponding angular areas. The locations of
the rotor in different particular moments are evaluated based
on the following logic as sketched in Figure 5, where the
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positional angular value of the rotor is reset to zero degrees
after completing each rotation.

5) COMMUTATION LOGIC

The commutation logic used in the EV operational procedure
is the chronological and sequential order of all potential
switching patterns to rotate the rotor depending on segment
information. This logic and possible order of switching oper-
ations are sketched in Figure 6. As the sensor provides the
information on the rotor’s segment position, the commutation
logic executes the switching accordingly to generate the
appropriate inverter output to supply power to the BLDC
motor for rotating.

6) BLDC MOTOR AND INVERTER CONNECTION

A BLDC is constructed as a synchronous DC motor,
namely a synchronous motor that receives DC electric
power to the rotor in producing magnetic fields, which is
commutated electronically in adjusting its speed and torque.
Its construction and rotation are similar to a permanent
magnet synchronous motor (PMSM) or a switched reluctance
motor (SRM), except for the electronic speed control, which
is controlled electronically. The electronic Controller mainly
adjusts the magnitude and phase of DC pulses supplied to
the rotor to vary the speed of the rotor smoothly. However,
on the other hand, a three-phase power with a particular
pulse in shape is supplied to the stator of the BLDC motor
from a DC source through a three-phase inverter, as shown
in Figure 7.

In this case, the energizing sequence of the stator using
three-phase power is maintained according to the commu-
tation logic generated based on the measured segmental
positions of the rotor around 360 degrees through sensing
by the Hall effect sensor. The switching frequency of
a high-frequency MOSFET-based three-phase inverter is
controlled following the commutation logic through inciting
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the driver circuits of the gate of MOSFETSs. The three-phase Unlike the other DC motors, especially the brushed DC
connections to the stator of the BLDC motor through MOS- motor where the electrical connections with brushes cause
FET, along with Hall sensor output-based logic controller sparking, it offers the surpassing sparking issue due to

connections, are sketched in Figure 7.

71570

avoiding brushes’ usage and making it is suitable for use in

VOLUME 12, 2024



M. U. I. Khan et al.: Securing EV Performance: ML-Driven Fault Detection and Classification

IEEE Access

sector

1 ) >

AH AL BH BL CH CL
Commutation Logic | [1 0000 1] | -
AH AL BH BL CH CL
AH AL BH BL CH CL >
| [00 100 1] I—>—0
1 0 0 0 0 1
AH AL BH BL CH CL
0 0 1 0 0 1 [01 100 0] Y
Switching
0 1 1 0 0 0 AH AL BH BL CH CL . Pattern
0 1 0 O 1 0 | |: O 1 0 0o 1 0 :I }—»—ﬂ
AH AL BH BL CH CL
0 0 0 1 1 0 5
| [0001 1 0] I—p_o
1 0 0 1 0 0
AH AL BH BL CH CL
|[1 0010 o]}—>1be
FIGURE 6. Commutation logic and switching patterns.
()
B Ga(H) L
[>Ga(l) @2 [ .
PGbiH) @ = 4 &F
Switch BGbIL) (V_l' \r—: :
itchi i : =
witching pattern l;ch[” & I— b _
€D 0 ®4, +—<2D
Six-Pulse Gate
Multiplexer Converter I [:]
(Three-Phase)
=4 Three-phase currents
~2 {3

[

FIGURE 7. Three-phase inverter.

explosive areas. Additionally, the electronic control of motor
speed can make the overall speed control smoother, more
reliable, easier, and more suitable for complex applications.

7) MECHANICAL CONSTRUCTIONAL OVERVIEW

The overall mechanical body of an EV comprises four sub-
divisional components- a basic gear system, a differential
unit, tires, and the vehicle body. The EV integrates a
fixed-ratio gearbox as the simple gear connected to the
differential component. This differential employs a planetary
bevel gear train with a transmission bevel gear linked by a
pinion gear between the driveshaft and carrier. Although our
model, implemented virtually in the MATLAB environment,
excludes factors like inertia and driving losses, these can be
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Three-phase voltages

optimally incorporated to emulate real-world EV movement.
Our EV design encompasses tire behavior influenced by
longitudinal motion and road interactions, factoring in a
formula and accounting for tire inertia, damping, and
stiffness. Moreover, our fault detection and classification
analysis uses two axles to represent four-wheeled EVs. This
approach captures the overall body mass and characteristics
introduced by EV acceleration and road interactions

B. MACHINE LEARNING CLASSIFIER

1) DECISION TREE

The decision tree (DT), also known as a category tree, pro-
vides a straightforward representation for various processes.
Utilizing real-time data from phasor measurement units
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(PMUgs), a DT algorithm identifies online security conditions
in interconnected power networks, enhancing operational
stability [22]. DT algorithms, including CART and ID3, are
also applied to classify vehicle accident severity [46] and
analyze customer data for smart city energy planning [22].
This method involves breaking down samples based on a
set of rules, recursively applied using the DT algorithm
to partition data into classes or categories. Here, we used
"max_depth=5" to determine the maximum depth of the
decision tree. It limits how many levels or splits the tree
can have, and ’min_samplesleaf=5’, defines the minimum
amount of samples necessary in a leaf node. It helps control
the granularity of splits in the tree.

2) LOGISTIC REGRESSION
Logistic Regression (LR) is a machine learning classification
algorithm suitable for binary or multiple class assignments.
In our fault detection and classification approach, we employ
binary classification iteratively to build the LR model for
distinguishing fault classes from healthy conditions. We use
a sigmoid function-based LR to assign 0’ or ’1’ values
based on a threshold, representing the two classes. Initially,
we ascertain the presence of a faulty condition, and if
detected, subsequent steps classify fault types. The sigmoid
function in (1) governs the LR’s input-output relationship.

1
~ 14e (Bo+ Bixi)
where By is the co-efficient constant and B; is the weight
vector of the corresponding input vector x;. It is employed
in the logistic regression model in estimating the probability
membership value (PMV) for each input dataset/operating
point. These PMVs were then used in the threshold function
for detecting and categorizing the machine’s condition.
In our work ’penalty="12" as an argument while initializing
the logistic regression model to signal that Ridge (L2)
regularization applies to the model’s training process

Vi ey

3) STOCHASTIC GRADIENT DESCENT

The Stochastic Gradient Descent (SGD) classifier is a
versatile learning method for different classification loss
functions and penalties. It effectively fits linear classifiers
and regressors, including Support Vector Machines and
Logistic Regression. SGD focus on large-scale learning is
highlighted in recent research [47], with applications in text
classification and natural language processing [48]. In our
fault analysis, We utilized parameter ’alpha=0.0001", which
implies a relatively tiny learning rate, suggesting that each
step in the optimization process is small, which can assist the
optimization converges more stably. And *max _iter=1000’
says that the optimization process will go through a maximum
of 1000 iterations.

4) ADABOOST
Adaptive Boosting (AdaBoost) is a classification tool that
provides efficient results by combining several weak ones
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introduced in [49] and then modified in [50]. The algorithm
begins with a weak learner that gives equal weight to each
sample. Although the AdaBoost algorithm is accomplished
by applying different weights, wy, wa, ... wp, to each of the
training samples, that is a process known as boosting the
iterations, initially it starts to simulate with weak learner
setting an equal weight value, w = zlv* to each of the
total samples (N). However, the sample weights are changed
at each iteration, and this procedure is repeated till to the
end of the simulation/process. In this regard, misclassified
examples result in an increase in their weights for the
following round, while correctly classified examples are
caused by decreasing their weights. Finally, the predictions
are combined to provide the final prediction. To update the
weights, an exponential loss function is devised. Following
that, several studies were conducted to improve the perfor-
mance of the AdaBoost algorithm as referred in [51] and
[52]. We used the parameters 'n_estimators=50’, ’learning
_rate=1.0’, and ’algorithm="SAMME.R"’ to configure and
control the behavior of the AdaBoost algorithm.

5) XGBOOST

The eXtreme Gradient Boosting (XGBoost) is a well-known
supervised classification tool that comprises the algorithmic
trees in the classification procedure. It functions in predicting
a target variable accurately by combining the estimates of
a set of simpler and weaker models. Using gradient-boost
decision trees, the performance achieved by the XGBoost is
superior, along with better speed of execution. It is a way
to boost the machines or to apply boosting to the machines,
which was first proposed in [31]. Mainly, it is comprised of
three major gradient boosting techniques, namely gradient
boosting, regularized boosting, and stochastic boosting.
Furthermore, it permits the addition and adjustment of
regularization parameters, which distinguishes it from other
libraries. The method is extraordinarily efficient in reducing
processing time and optimizes memory resources to make it
better at working as a machine learning model, as reported
in [53], [54], and [55]. It also supports parallel structure
in building the trees and is the only technique that can
adapt and boost the data that has newly been added to
the trained model (called “Continued Training”) [56]. For
this task, we specified the number of boosting rounds
or decision trees as ’'n_estimators=100", Using the value
of ’learning_rate=0.1" to regulate the size of each step.
To establish the highest depth for every decision tree, simply
utilize the parameter 'max_depth=3". ’subsample=0.8" to
specify the fraction of samples used for training each
individual tree and specify the fraction of features used for
training each individual tree, use ’colsample_bytree=0.8’.

6) K-NEAREST NEIGHBOR

It is one of the most efficient and widely used classification
and regression machine learning (ML) tools introduced
in [57]. The algorithm has been modified and improved by
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many researchers to make it more convenient for practical
applications, particularly in case of accuracy and execution
time as is reported in [58], [59], [60], and [61]. Different
types of KNN variants were discussed in [61], while the
reference [58] summarized and analyzed the challenges of
the KNN algorithm including the different types of ‘k’
selection approaches, nearest neighbors searching cases, and
classification approaches. Accuracy was investigated using
the KNN algorithm with an appropriate selection of ‘k’
value in [60]. Additionally, two optimal ‘k’ value selection
procedures were discussed in [59], where the approaches
were constructed based on a decision tree. However, in our
research, we have chosen variable ‘k’ and selected the
most optimal one based on the training dataset and, used
it during the testing period. In addition to calculating the
nearest neighbors, we have followed the Euclidian distance
measurement approach. This procedure can be explained as
follows: If the training dataset ‘S’ contains multiple samples
‘xi" along with the class label ‘y;’, then the set can be
expressed as:

S=(x,y)i=123,---N )
yviemj; j=1,2,3,---M 3)

where ‘N’ is the number of training samples and ‘M’ is the
number of classes for which the dataset is to be classified
using KNN. In case of the dataset consists of ‘p’ number of
features, then the training and testing data can be represented
as follows:

xizxil,xiz,xf,-nxf “4)

1 .2 .3
x,:x,,x,,x,,-nxf 5)

Therefore, the Euclidian distance can be calculated using
the following formula:

(6)

where, ‘d’ is the Euclidian distance for a particular test
sample towards ‘N’ number of training samples, from which
distance set, ‘k’ number of nearest neighbors were considered
to classify the test data point. In our investigation, we used
"leaf _size=30’, which refers to the size of the leaf nodes in
the KD-Tree, and the’metric="minkowski” , a parameter that
determines the distance metric used for computing distances
between data points in KNN.

7) VOTING CLASSIFIER

An effective machine learning model can be a soft voting
classifier with decision tree, logistic regression, stochastic
gradient descent, AdaBoost, XGBoost, and K-nearest neigh-
bors algorithms. A well-known approach for binary clas-
sification, logistic regression, decision trees, and stochastic
gradient descent can handle complicated feature interactions.
Multiple weak models can be combined in AdaBoost to
improve the performance of weak learners, and k-nearest
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FIGURE 8. Workflow of our study.

Adaptive Boosting

XGBoost

K-Nearest Neighbors

neighbors can find patterns in the data and forecast the future
based on close occurrences. A more reliable and accurate
model can be produced by combining these algorithms in
a soft voting ensemble since they can each be used to their
best advantage. The outcome can be determined based on the
likelihood of each base model using the soft voting method.
With the soft voting method, the classifier’s overall accuracy
and robustness can be increased because the final prediction
can be based on the probabilities of each base model. A soft
vote classifier can be a strong tool for addressing various
classification issues when the correct models are combined.

In this study, we have utilized MATLAB to simulate an
electric vehicle model. The established Simulink model was
intended to operate in both states - normal and faulty. The
overall workflow of the proposed machine learning models
is sketched in Figure 8. The framework involves constructing
EV models and conducting simulations encompassing both
normal and different fault scenarios. The resultant datasets
are meticulously preprocessed and subsequently partitioned
into distinct training and testing sets. Through this approach,
an array of ensemble classifier algorithms are adeptly trained
using the training data, with the resultant models being
diligently preserved for subsequent validation against distinct
testing datasets.

Ill. DATA GENERATION AND MODEL DEVELOPMENT

A. NORMAL CONDITION DATA

In the Normal condition of our EV, we run the simulation
model for 20 seconds to generate a variety of data to store the
required parameter values of the EV to develop the dataset
for employing the ML models.

During no-fault condition, all components functioned
seamlessly. Figure 9 (a) displays the constant speed at which
the slider gain operates, while Figure 9 (b) shows the output
DC modulated voltage and measured speed of the buck
converter input for the DC source voltages. Our simulation
model employs a 201.6-volt DC voltage source obtained from
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FIGURE 9. MATLAB model output for normal condition.

the output of the buck converter. Figure 9(c) and (d) illustrate
the variable currents and voltages of the inverter, respectively.

B. FAULT GENERATION

The fault mainly arises along the connection path between
the three-phase inverter and the BLDC motor. In Figure 10,
we included a block from the Simulink library that can initiate
faults for generating faulty data. We connected this block
to the terminal of the three-phase inverter, which delivers
power to the Brushless DC motor. This block can represent
any combination of single, double, or three-phase grounded
or ungrounded faults. Faults can be initiated at preset times
or via the external fault input. The fault block parameter is
modifiable using block properties. In case of a fault occurring,
the properties of the block modify fault types and enable the
temporal trigger to reflect the fault’s anticipated duration on
the three-phase inverter to the BLDC motor.

Table 1 summarizes the EV running duration for each
case, fault initiation moment, and fault duration maintained
in seconds for different situations. EV run time displays
the entire simulation runtime for each condition, which is
20 seconds for each of all three cases.

During the EV’s normal operating condition, when no
issues are considered, the EV moves in normal mode. In the
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(d) Inverter voltages

TABLE 1. MATLAB model run-time and fault duration.

Name Normal Two-Phase Three-Phase Fault

Condition Fault Condition
Condition

EV run dura- | 20 20 20

tion (Sec)

EV faultstart | N/A 5 5

(Sec)

EV fault du- | N/A 10 10

ration (Sec)

case of two-phase and three-phase fault conditions, the fault
initiates in the EV at the 5th second during the simulation
and lasts for 10 seconds. Then, it operates normally for both
faulty situations until the end of 20 seconds. We assessed the
simulation runtime under normal and fault situations, noticed
the commencement and duration of faults in the EV system,
and recorded the data for the ML classification.

1) TWO-PHASE FAULT

The two-phase fault condition moments are shown in
Figure 11. In this case, the EV starts with a normal running
mode and then a two-phase fault is initiated at the Sth second
for a duration of 10 seconds according to the pre-determined
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FIGURE 11. MATLAB model output for two-phase fault condition.

condition given to the fault initiation simulink block while
it goes at high speed as is shown in Figure 11 (a) after
completing ten seconds of fault period at the fifteen seconds,

VOLUME 12, 2024

8 10

Time

(d) Inverter voltages

16 20

it becomes stable as normal condition. Moreover, Figure 11
(b) displays the variation of output DC modulated voltage
and measured buck converter input speed for the DC source
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TABLE 2. Data Collection Details.

Sample Type Number of | % of Total | Flag Indi-
Instances Data cation

Normal 400000 40% ‘0

Condition

Two-Phase Fault | 300000 30% ‘1

Condition

Three-Phase 300000 30% ‘2

Fault Condition

voltages in the data inspector. Figure 11 (¢) and (d) represent
the graphs of fluctuating values of the inverter current and
voltage during the faulty operation.

2) THREE-PHASE FAULT

During the Three-Phase Fault state, the Electric Vehicle
operates differently than during the Normal and Two-Phase
Fault circumstances seen in Figure 12. In Figure 12 (a), When
the preset problem occurs in the fifth second, the car rapidly
decelerates and comes close to stopping. After ten seconds
of fault operations, the vehicle regains speed and usually
behaves.

In Figure 12 (b), it is displayed the output DC modulated
voltage fluctuation and measured buck converter input speed
for DC source voltage in the data inspector for the three-phase
fault case. The fault operation graphs for the inverter current
and voltage are sketched in Figure 12 (c) and (d).

C. DATA COLLECTION

In developing the ML classification model for identifying
two-phase and three-phase faults that occur in BLDC motors
integrated into EVs for normal operating moments of that
corresponding EV, we prepared a set of data with millions
of instances concerning time considering three situations
- normal condition and two-phase and three-phase faults
conditions.

In this regard, the EV was maintained in running mode
in the MATLAB Simulink platform for 20 seconds in each
condition. We generated 40% of the total data in normal
conditions, and 30% of the total data was generated for each
fault condition. Unique flag indication was mentioned for
each of the three categories of datasets as ‘0’ for normal
data, ‘1’ for a two-phase fault (line-to-line fault) data, and ‘2’
for the three-phase fault data, and was combined to make a
single dataset. Details of the data generation and collection
are summarized in Table 2. We considered six features,
including voltages and currents of each of the three phases,
Hall-effect sensor output, modulated DC voltage, slider gain
output, and motor speed, in the case of all three modes of
operations. Three-phase voltages and currents were measured
from the three-phase inverter output terminal. In contrast, the
modulated DC voltage was the output of the buck converter
for the input DC voltage supplied to that corresponding
converter.

Our dataset uses a feature called “Target” to classify the
various vehicle statuses. In this section, we categorize our
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generated data based on several conditions. We classify it as
0 for the normal condition, 1 for the two-phase condition,
and 2 for the three-phase situation. The time the data was
measured for each sample, three-phase current, voltage, Hall
effect sensor value, output speed, modulated DC voltage,
measured speed, and the “Target” case corresponding to
EV operating condition were considered for preparing the
dataset. The sensor provides the Hall sensor values necessary
to determine the rotor’s location, while the output speed is
the EV speed designed in the Simulink platform. On the other
hand, the measured DC voltage compares the output voltage
of the Buck Converter to the DC source voltage. However, the
estimated speed corresponds to the speed values determined
by the input slider gain.

D. CLASSIFICATION MODEL DEVELOPMENT AND
EVALUATION METRICS

In this research, six machine learning classification models,
namely the Decision Tree (DT), Logistic Regression (LR),
Stochastic Gradient Descent (SGD), AdaBoost, XGBoost,
and K-Nearest Neighbor (KNN), were taken into consider-
ation for developing the proposed ML classification model
employing the dataset generated in MATLAB environment
to detect and classify the faulty conditions happened in EV
configuration. The proposed voting classifier (VT) was also
developed as an ensemble ML classifier combining all the
individual classifiers modeled in our research. Although the
data was generated in the MATLAB platform, the models
were developed using Python with a sci-kit-learn library,
where 80% of the data was used for training, and the
rest of the data was employed for testing purposes of the
models. A systematic and gradual trial and error approach
was adopted for tuning the parameters of the models of ML
classification tools. Furthermore, 10-fold cross-validation
was performed in the case of developing the tools to ensure
the model’s performance. As an indication of fine-tuning
of the developed models, the confusion matrices of the
proposed ML classification models were assessed at the end
of the training and testing procedures. In our modeling,
the classification tool, the simple average, was considered
regarding obtaining the final model from the individually
measured eight models in the case of 10-folded datasets.
We also measured the accuracy, precision, recall, and F1
score for our model to ensure the performance of the
developed model. The performance indices are explained in
the following subsections.

1) CONFUSION MATRIX

The evaluation of classification model prediction perfor-
mance for specific test data involves using a confusion
matrix, which relies on four parameters derived from
classification outputs. These parameters are ‘“‘true positive
(TP),” “‘true negative (TN),” ‘‘false positive (FP),” and
“false negative (FN).” When forming a confusion matrix
for data classified into two classes, typically labeled as
“positive” and ““negative,” outcomes where a model predicts
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FIGURE 12. MATLAB model output for two-phase fault condition.

a data point as ‘“‘positive” when it truly belongs to the
“positive” class are considered as “TP”’. Conversely, if a
model predicts a data point as ““positive’” when it’s not in the
“positive” class, it is deemed as “FP”’. Similar relationships
hold for “negative” class determination with “TN” and
“FN”. In the context of detecting and categorizing faults in
the EV platform, the flag “0” signifies normal EV operation,
“1” represents a two-phase fault, and “2” indicates a three-
phase fault. Predictions aligning with the actual normal state
are counted as “‘true’’ cases, denoted as either “TP” or
“TN,” while any other predictions, such as “1” or “2,”
are considered as ‘“‘false” cases, i.e., “FP” or “FN.” This
evaluation extends to the other cases in our fault analysis.

Considering three classes, we assess the performance of
machine learning (ML) classification models for fault detec-
tion and classification in EV connections by constructing
confusion matrices. Predictions of “0” flag during normal
EV operation are labeled “‘true case 1,” while predictions of
“0” for fault cases are ‘““false case 1.” Similarly, predictions
of “1” for two-phase fault are selected as ““true case 2", and
“false case 2” when the actual data belongs to two-phase
fault condition. This approach extends in predicting for “true
case 37, and ‘““false case 3" for the three-phase fault condition
of EV.
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TABLE 3. Confusion matrix formation procedure.

Observations Actual Values
Classes Flag ‘0’ Flag ‘1’ Flag ‘2’
Predicted Flag ‘0’ | True Case 1 False Case 1 | False Case 1
Values Flag ‘1’ | False Case2 | True Case 2 False Case 2
Flag 2° | False Case 3 | False Case3 | True Case 3

To comprehensively analyze the performance of each
ML tool’s development, we constructed complete confusion
matrices, summarizing their outcomes according to Table 3.
These matrices comprehensively assess how well the devel-
oped classification ML tools detect and classify faults.

Based on the implemented approach to construct the
confusion matrix as it is described and tabulated for our
research, the following Figure 13 shows the confusion
matrices for the developed ML classification tools applied in
the test dataset.

2) CONFUSION MATRIX BASED PERFORMANCE
PARAMETERS ANALYSIS

(TrueCase 1 + TrueCase 2 + TrueCase 3)
(TotalObservations)

Accuracy =

(N
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FIGURE 13. Confusion matrices for ML classification based on accuracy.

In the case of precision, it is a representation of total true
predictions for a class out of the total number of times it is
predicted in favour of that corresponding class. Although the
unity value of precision measures the better performance for
an ML classification model through classifying a particular
category, it cannot alone confirm the perfectness in classify-
ing data for that corresponding model because of overlooking
the incorrect prediction of other categories. Therefore, the
‘recall’ is a performance parameter for classification models
that needs to be introduced along with the precision in case
to ensure the overall superiority in classifying an ML model.
. (TrueCase 1)
Precision = ®)
(TrueCase 1 + FalseCase 1)

TrueCase 1
Recall = (TrueCase 1) )
(TotalFlag'(0’ Observations)

However, similar to the precision, the recall also can’t
ensure the overall classification performance alone, although
the unity value represents the better performance for a model.
In this regard, it can be stated that a model having high
precision and low recall can never be comparable in the case
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of superiority over other models having low precision and
high recall. Therefore, another performance parameter, the F-
1 score, which combines the impact of precision and recall at
the same time, was also considered in this research to evaluate
the true performance of the developed fault detection and
classification ML models. The value of the F1 score becomes
maximum for a particular ML classification tool when the
model ensures the same value of precision and recall, and the
best value of the F1 score is unity, while zero represents the
worst case.

FlScore — 2 % Prfc.ision * Recall) (10)
(Precision + Recall)

The associated (7)-(10) were used in our research to measure
the values of the described performance indices.

E. EXPERIMENTAL SETUP (MATLAB AND PYTHON)

Our modeling and simulation work was done on a Win-
dows 10 Business 64-bit desktop with an Intel Core i7
processor, 16 GB of DDR4 Memory, and an NVIDIA
GeForce GTX 1070 8GB DDRS5 GPU. These data sets
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TABLE 4. Performance measurement of different types of machine
learning classifiers.

Classifier | Precision | Recall | F1-Score | Accuracy
DT 0.981 0.903 0.913 0.911
LR 0.856 0.802 0.814 0.824

SGD 0.786 0.809 0.813 0.803
AdB 0.889 0.886 0.892 0.889
XGB 0.952 0.949 0.954 0.952
KNN 0.974 0.971 0.967 0.971
VT 0.983 0.981 0.985 0.983

were generated using MATLAB R2021a version through
the simulations of a BLDC motor powering a model of an
electric vehicle and its driving control system. The scikit-
learn library, written in Python 3.9.13, was used to model the
machine learning classifiers and evaluate performance. Using
MATLAB and Python made simulation and modeling much
more manageable, while scikit-learn supplied a popular, well-
documented package for machine learning and performance
evaluation.

IV. RESULT AND DISCUSSION

A. MACHINE LEARNING BASED CLASSIFICATION

After performing the simulation model, we collect data
from the MATLAB workspace and turn the raw data into a
machine-trainable dataset. We grouped the data into normal
conditions, two-phase fault conditions, and three-phase
conditions. We preprocessed the dataset by applying a feature
engineering technique that turns existing datasets into sets of
figures needed for our job. We deployed six machine learning
(ML) classifiers and one voting classifier for training and
evaluating the performance of the algorithms. We employed
a categorization report for measuring performance that
includes - precision, recall, F1 score, and accuracy. Table 4
provides a clear illustration of the effectiveness of our
developed ML classifiers.

The performance of each classifier was tested using
precision, recall, F1 score, and accuracy measures. From
Figure 14, we obtained that the voting classifier, which
combines the other developed classifiers, yielded the highest
precision 0.983, recall 0.981, F1 score 0.985, and accuracy
0.983. The ensembling ability to harness the capabilities of
several classifiers resulted in accurate predictions over a wide
variety of fault conditions.

K-Nearest Neighbors (KNN) displayed the second high
precision of 0.974, recall of 0.971, and F1 score of 0.967,
demonstrating its applicability for scenarios when class
borders are well-separated in the feature space. XGBoost is
a powerful method that often works effectively. Its intense
precision of 0.952, recall of 0.949, F1 score of 0.954,
and accuracy of 0.952 suggest that it can successfully
handle the complexity. The Decision Tree classifier also
displayed balanced performance with a good precision value
of 0.918 and recall of 0.903, resulting an F1 score of
0.911 and an accuracy of 0.911. Decision Tree effectively
caught the underlying patterns in the data and delivered
accurate forecasts across a variety of fault circumstances.
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TABLE 5. Comparison of fault diagnosis techniques.

Ref. Precision | Recall | F1-Score Accuracy
[62] - - - 0.983
[63] - - - 0.991 (AUC)
[64] 0.97 0.97 0.989 0.97
Proposed 0.983 0.981 0.985 0.983

Adaptive Boosting often performs well since it combines
multiple bad learners into a strong one. The considerable
precision value is 0.889, recall is 0.886, F1 score is 0.892,
and accuracy is 0.889, which suggest that it can effectively
capture the complicated relationships in the data.

In comparison, Logistic Regression displayed a moderate

precision value of 0.856 and a recall of 0.802, resulting
in an F1 score of 0.814. The linear character of Logistic
Regression might have hampered its ability to capture com-
plicated associations contained in the dataset, resulting the
significantly lower performance. Moreover, the Stochastic
Gradient Descent (SGD) also achieved a poorer precision of
0.786 and an F1 score of 0.813 along with a recall of 0.809.
Overall, the proposed model (Voting Classifier) displayed
higher performance, showing their usefulness in handling the
complexity of the dataset.
In our study, the Voting Classifier emerged as the most
effective model for fault detection in electric vehicles,
integrating diverse algorithms such as KNN, DT, AdB, XGB,
LR, and SGD. This ensemble approach capitalized on the
unique strengths of each algorithm, achieving outstanding
performance metrics with precision, recall, F1 score, and
accuracy all exceeding 0.98. The robustness and high accu-
racy of the Voting Classifier across various fault conditions
underscore its suitability for enhancing the reliability and
safety of EV systems.

B. COMPARISON WITH OTHER TECHNIQUES

We compare our machine learning-based fault detection
approach with existing methods in the literature. Table 5
summarizes the performance comparison.

Our approach, based on machine learning classifiers and
a voting ensemble, demonstrates high precision, recall, F1-
score, and accuracy in fault detection for electric vehicles.
Compared to related studies, such as the work by Ali et al.
on single- and multi-fault diagnosis using machine learning
for variable frequency drive-fed induction motors [62], our
method achieves comparable or higher performance across
key metrics.

Additionally, the study by Principi et al. on unsupervised
electric motor fault detection using deep autoencoders
showcases alternative techniques with high accuracy (99.11%
AUC) [63]. Meanwhile, the hybrid approach proposed by
Toma et al. combining genetic algorithms and machine learn-
ing achieves robust results in bearing fault diagnosis [64].

Our method, leveraging diverse machine learning clas-
sifiers within a voting framework, offers an effective and
versatile solution for fault detection in electric vehicles,
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FIGURE 15. Simulation of multi-type conditions in Simulink model running mode of EV.

showing competitive performance against other state-of-the-
art techniques in the field.

C. DETECTION

We ran our model with a fixed time set to test the efficiency of
our proposed voting classifier (VT) model. We applied mul-
tiple vehicle conditions (normal, two-phase fault, and three-
phase fault), and our proposed model successfully detected
the vehicle’s condition types as sketched in Figure 15.

V. CONCLUSION

This article has developed several machine learning (ML)
classifiers to detect and classify faults in electric vehicle (EV)
configurations immediately and accurately. In our analysis,
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we designed a prototype EV in MATLAB Simulink. We ini-
tiated necessary faults (two-phase and three-phase) in the
configuration of the EV during its running mode to generate
the required dataset for modeling the ML classifier tools.
We mainly generated the faults between the connection of the
inverter output to the motor of the EV during running mode
and stored data for preparing the dataset, which considered
six parameters for EV fault detection and classification
investigation the ML algorithms, including decision tree
(DT), logistic regression (LR), stochastic gradient descent
(SGD), AdaBoost, XGBoost, K-nearest neighbor (KNN), and
voting classifier (VT). Four statistical parameters, namely
the accuracy, precision, recall, and F1-score, were calculated
from the generated confusion matrices for evaluating the
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performance of the developed machine learning models in
detecting and classifying the faulty condition of electric
vehicles. In the case of individual ML models, the KNN
outperformed other models as it maintained the highest accu-
racy, recall, and F1-score alongside slightly less precision
value than the DT, where it was the highest one. On the
contrary, the stochastic gradient descent (SGD) demonstrated
comparatively lower performance than the others. Moreover,
in the case of VT, the best performance was exhibited
in all aspects of performance parameters (i.e. accuracy is
0.983, recall is 0.981, Fl-score is 0.985, and precision is
0.983) in detecting and classifying the faults initiated in
EV configurations compared to individually applied ML
classifiers. However, as an extension of future work, some
other faults, including malfunctioning the inverter itself,
can be considered as they are crucial in powering the EV
motor to be driven reliably; gearbox scratches or holes can
also be regarded as mechanical faults. Extensive analysis,
including additional features and performance parameters,
can also provide more robustness of the fault detection and
classification of electric vehicle operation in boosting more
reliable transportation systems.

ABBREVIATIONS

The following abbreviations are used in this manuscript:
EV Electric Vehicle.
ANN Aurtificial Neural Network.
PWM Pulse Width Modulation.
ML Machine Learning.
Al Artificial Intelligence.
BLDC Brushless DC motor.
PID Proportional Integral Derivative.
DT Decision Tree.
PMU Phasor Measurement Units.

LR Logistic Regression.

PMV Probability Membership Value.
SGD Stochastic Gradient Descent.
KNN K-Nearest Neighbor.
RF Random Forest.
AdaBoost/AdB  Adaptive Boosting.
XGBoost/XGB  eXtreme Gradient Boosting.
VT Voting Classifier.
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