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ABSTRACT Knowledge enhanced recommendation algorithms focus on how to leverage auxiliary
information from knowledge graphs to enhance recommendation performance. However, existing methods
for knowledge enhanced recommendation often overlook the issues of the non-uniform distribution of task-
relevant information: (1) Item nodes often have neighbors unevenly distributed across interaction graphs and
knowledge graphs. This uneven distribution of neighbor nodes might lead to the information from certain
sources being ignored during message passing, thereby reducing the quality of the learned node embeddings.
(2) The implicit inclusion of noise within graph data exacerbates the aforementioned issues, further hindering
the effective utilization of knowledge graph information. In this paper, we introduce a novel algorithm
called hierarchically coupled view-crossing contrastive learning for knowledge enhanced recommendation to
address the challenges mentioned above. Specifically, we controllably couple knowledge graph information
into each layer of message passing, and then use a weighted sum of the embeddings learned hierarchically
as the final node representation. In addition, we devised a view-crossing contrastive learning approach to
construct two additional contrastive learning loss functions for joint training with the main task and more
effectively mitigate the adverse impact of noise than the traditional contrastive learning paradigms. Extensive
experiments on three real-world graph datasets show that our proposed model performs significantly better
than the state-of-the-art baselines and the results of experiments involving adversarial samples indicate the
robustness of our model.

INDEX TERMS Contrastive learning, graph neural network, knowledge graph, recommender systems.

I. INTRODUCTION
Recommendation systems play a vital role in modern society.
Initially, recommendation systems primarily relied on classic
Collaborative Filtering (CF) techniques [1], [2], [3], [4],
which analyze user-item interaction data to transform this
information into latent representations for predicting user
preferences. Collaborative filtering has achieved tremendous
success in various recommendation scenarios. Traditional
CF methods typically focus only on direct interactions
between users and items. In contrast, Graph Neural Networks
(GNNs) [5], [6] can simulate the complex relationships
between users and items, including indirect interactions.
GNNs consider multi-hop relationships between users and
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items, thereby revealing deeper levels of user preferences and
item attributes. As a result, in recent years, GNNs have been
widely applied in recommendation systems [7], [8], [9] due to
their powerful capability in modeling relational data. Knowl-
edge Graphs (KG), as graphical structures that describe
entities and their rich relationships, provide additional seman-
tic and contextual information for recommendation systems.
Knowledge graphs contain a wealth of structured information
about items, such as categories, attributes, brands, and user
reviews. This information can help recommendation systems
better understand the characteristics and context of items.
By leveraging the entity relationships in knowledge graphs,
recommendation systems can more accurately capture user
interests and preferences, leading to more personalized
recommendations. Consequently, knowledge-enhanced rec-
ommendation algorithms have received substantial research
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attention in recent years [10], [11], [12], [13]. Knowledge-
enhanced recommendation algorithms primarily focus on
effectively utilizing the structured information in knowledge
graphs to augment recommendation systems. Graph Neural
Networks (GNNs) are used to aggregate neighborhood
information from both interaction graph and knowledge
graph to generate richer representations of users and items.
This includes using GNNs to process knowledge graphs and
combining user-item interactions with knowledge graphs in
hybrid graph models. knowledge-enhanced recommendation
algorithms often encounter issues with data sparsity and
noise interference. In such scenarios, contrastive learning
has been introduced into recommendation algorithms [14],
[15], [16], [17]. By emphasizing the intrinsic structure
within graph data, contrastive learning helps models learn
richer information from limited interaction data, thereby
maintaining relatively good recommendation performance
even in sparse data environments. Additionally, knowledge
graphs may contain erroneous or inaccurate information.
Contrastive learning, by emphasizing the similarities and
differences between nodes, aids to identify and resist this
noise.

Current contrastive learning based methods have achieved
commendable results in knowledge-enhanced recommenda-
tions [18], [19], [20], yet challenges persist in effectively
utilizing information from the knowledge graph. Knowledge
graphs store a vast array of diverse associative relation-
ships between items and entities, playing a crucial role
in understanding user preferences and achieving superior
recommendation result. In other words, with the augmen-
tation of knowledge graphs, each item node has two types
of neighboring information: one part originates from the
user-item interaction graph, while the other is derived from
the knowledge graph. However, the task-relevant information
carried by the same item node from two different graphs
is not balanced, significantly affecting the learning of item
node embeddings. On one hand, there might be a substantial
disparity in the number of user neighbors compared to
entity neighbors for a given item node. We refer to the
proportion of the neighbors of an item node originating from
the user-item interaction graph as the interaction neighbor
ratio, which ranges between 0 and 1. An item node has
an interaction neighbor ratio value around 0.5 indicates
that the neighbors of the item are almost evenly distributed
between the interaction graph and the knowledge graph,
and vice versa. As shown in Figure 1, we have compiled
the distribution of the number of item nodes with varying
interaction neighbor ratios across three commonly used
datasets in knowledge enhanced recommendation research.
The chart reveals that a substantial number of item nodes
have an interaction neighbor ratio that deviates significantly
from the 0.5 value, which represents a balance between
interaction and knowledge levels. This implies that many
item nodes do not have neighbors evenly distributed between
the interaction graph and the knowledge graph. However,
in message passing on the graph data, the representation of

a deeper layer node depends on all its neighbors, including
those in both the interaction graph and the knowledge graph,
denoted as hl+1

i = Agg
(
{hlj | j ∈ N

(ui)
i ∪N (kg)

i }

)
, where

N (ui)
i and N (kg)

i represents the set of neighbors of node i
in user-item interaction graph and knowledge graph, hl+1

i is
the embedding of node i in layer l + 1 and Agg represents
the aggregation function. Recently, recommendation models
based on contrastive learning have effectively improved
the recommendation performance for low-degree items on
the interaction graph. However, these methods do not
address the issue of uneven distribution of neighbor nodes
across the interaction graph and the knowledge graph from
the perspective of the aggregation function. Specifically,
conventional aggregation methods target each neighbor node,
resulting in the information contained within N (ui)

i being
easily overwhelmed in message passing when the cardinality
of N (kg)

i is much larger than that of N (ui)
i , and vice versa.

This leads to a challenge in balancing the information
derived from both graphs during message passing, resulting
in a decline in recommendation effectiveness. On the
other hand, noise in graph data implicitly increases the
difficulty of filtering and utilizing effective information
and exacerbated the aforementioned issues. Such noise
may exist in either the user-item interaction graph or the
knowledge graph, with no prior knowledge of its specific
location.

FIGURE 1. Distribution chart of item quantities with different interaction
neighbor ratios in three datasets.

To address these challenges, we have developed
a model called Hierarchically Coupled View-Crossing
Contrastive Learning for Knowledge Enhanced Recom-
mendation(HCVCL). To balance information from the
interaction graph and the knowledge graph during inter-layer
message passing, we designed a hierarchically knowledge
coupled representation learning method to achieve improved
node embedding. Before entering the message passing
mechanism, we first align the initial node embedding
space of the knowledge graph with the interaction graph
through a nonlinear transformation. During layer-by-layer
message passing in the interaction graph, we impartially
integrate the item node representations learned exclusively
from the knowledge graph into the aggregation function
designed for the interaction graph, and then use a weighted
sum of the embeddings learned at each layer as the
final node representation. Furthermore, we devised a
view-crossing contrastive learning paradigm to effectively
mitigate the negative impact of noise from various sources on
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recommendation performance. After generating an enhanced
view for both the interaction graph and the knowledge graph,
we cross-combine the augmented interaction (knowledge)
view with the original knowledge (interaction) view. Then,
the node embeddings learned from these two combinations
are utilized to construct two contrastive loss functions, each
in contrast with the embeddings learned from the original
view combinations of the interaction and knowledge graphs.
In summary, our Hierarchically Coupled View-crossing
Contrastive Learning (HCVCL) model makes the following
contributions:

• This work addresses the issue of uneven distribution
of task-relevant information in knowledge enhanced
recommendation systems. On one hand, there is often
a significant disparity in the number of neighbors
from different sources for item nodes, which leads to
knowledge (or interaction) information being difficult
to learn in message passing under some circumstances.
On the other hand, noise exists in both the interaction
graph and the knowledge graph greatly increases the
likelihood of the aforementioned issues occurring.
These two factors together make it challenging to
learn useful information for the knowledge enhanced
recommendation task.

• We proposed the hierarchically coupled view-crossing
contrastive learning model for knowledge enhanced rec-
ommendation. First, a hierarchically knowledge coupled
representation learning method is proposed. It mitigates
the issue of uneven sources of item node neighbors by
controllably coupling knowledge graph information dur-
ing message passing, which avoids the information from
one side being overwhelmed in the message passing
process and enhances the recommendation performance.
Secondly, we propose a view-crossing contrastive learn-
ing paradigm. Compared to conventional contrastive
learning methods, it constructs additional contrastive
loss functions under the same data augmentation setting,
which more efficiently leverages the principles of
contrastive learning to enhance the resistance to noise
of our model.

• We conducted experiments on three real-world datasets,
and the results showed that our model achieved better
recommendation performance compared to the current
state-of-the-art models. An ablation study confirmed the
effectiveness of each module designed in our model.
Additionally, we demonstrated the robustness of our
model by introducing adversarial samples to training
data.

II. RELATED WORK
A. KNOWLEDGE ENHANCED RECOMMENDATION
Knowledge-enhanced recommendation algorithms aremainly
categorized into three types: embedding-based methods,
connection-based methods, and graph neural network based
methods. Embedding-based Methods: These methods utilize
rich semantic information in knowledge graph to enrich

the representations of user and item nodes. Two-stage
embedding-based method [21], [22], [23] initially acquires
node embeddings on the knowledge graph independently.
Joint training approach train the knowledge graph node
embeddings and the recommendation task together. CKE [10]
integrates collaborative filteringwith knowledge base embed-
dings to enhance recommendation systems by combining
user-item interactions with structured knowledge graph
information. SHINE [24] develops an embedding method
for signed heterogeneous information networks, focusing
on predicting sentiment links by capturing both structural
and sentiment relationships in complex network data.
The multi-task training approach aims to simultaneously
optimize both the knowledge graph embeddings and the
recommendation task by treating them as related but distinct
tasks. Reference [25] present a multitask learning framework
that enhances recommendation systems by integrating feature
learning from knowledge graphs and user-item interaction
data for more accurate and informative recommendations.
Reference [26] propose a novel framework that combines
knowledge graph learning with recommendation systems,
aiming to enhance the understanding and prediction of user
preferences through a unified model. The connection-based
method focuses on leveraging knowledge graphs to mine the
relationships between various entities within the graph. This
approach typically utilizes the rich inter-entity connections
present in knowledge graphs to enhance the recommendation
system’s understanding of item characteristics and user
preferences. Meta-structure based methods [27], [28] utilize
meta-structures, such as meta-paths and meta-graphs, to learn
relationships between nodes. These methods focus on
capturing the complex and higher-order relationships in
knowledge graphs by constructing and exploiting these meta-
structures. Path-based methods learn the explicit embedding
of paths in knowledge graphs [29], [30], [31]. Graph
Neural Network (GNN)-basedmethods leverage graph neural
network technology to mine deep inter-node relationships
in knowledge graphs and enhance recommendation effec-
tiveness. Some GNN-based methods focus on refining the
representations of user nodes. RippleNet [32] propagates user
preferences over a knowledge graph to capture the potential
interests of users more comprehensively and accurately.
AKUPM [33] develops an advanced recommendation model
that integrates attention mechanisms with knowledge-aware
user preference modeling, aiming to improve the accuracy
and relevance of recommendations by effectively capturing
user interests. Some GNN-based methods focus on refining
the representations of item nodes. KGCN [11] employs
knowledge graph convolutional networks to enhance recom-
mender systems by leveraging the rich relational information
embedded in knowledge graphs for more accurate and
personalized recommendations. KGCN-LS [11] adds a label
smoothness (LS) regularization on the KGCN model to
mitigate overfitting. Some GNN-based methods refine the
representations of user and item nodes together [34], [35],
[36].
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B. CONTRASTIVE LEARNING FOR RECOMMENDATION
Contrastive learning for recommendations aims to enhance
recommendation outcomes by introducing additional self-
supervised signals through contrastive learning. Some meth-
ods based on contrastive learning are designed to augment
general recommendation algorithms. SGL [14] presents a
novel approach for recommendation systems, employing
self-supervised learning techniques within a graph learning
framework to enhance the capability of the model in
capturing complex user-item interactions and relationships.
Reference [15] investigates the use of contrastive learning
in large-scale recommendation systems to generate unbi-
ased candidate selections, addressing the issue of bias in
recommendations. Some contrastive learning based methods
are designed to augment knowledge enhanced recommen-
dation algorithms. MCCLK [18] introduces an innovative
approach for recommendation systems that leverages multi-
level cross-view contrastive learning, integrating knowledge
graph information to enhance the recommendation process
by effectively capturing and utilizing the rich semantic
relationships in the data. KACL [17] proposes a model
based on contrastive learning that can identify task-irrelevant
connections in knowledge graphs and encode the shared
information across interaction graph views and knowledge
graph views. KGCL [19] presents a new framework that
integrates contrastive learning with knowledge graphs to
improve recommender systems, focusing on leveraging
the structural and semantic relationships within knowledge
graphs to enhance the quality and relevance of recommen-
dations. KGRec [20] introduces a self-supervised learning
framework within knowledge graphs for recommendation
systems, focusing on enhancing the recommendation process
by leveraging internal rationalizations and relationships in
knowledge graphs for more accurate and context-rich user
preferences prediction.

III. METHODOLOGY
In this section, we present our HCVCL framework for
knowledge-enhanced top-K recommendation task. We will
introduce the construction of our model in three sections,
namely hierarchically knowledge coupled representation
learning, view-crossing contrastive learning and joint training
and prediction. Figure 2 presents the model architecture of
our proposed HCVCL model.

A. HIERARCHICALLY KNOWLEDGE COUPLED
REPRESENTATION LEARNING
When the node representation learning of knowledge-
enhanced recommendation algorithms faces the scenario
where item node neighbors are unevenly distributed across
interaction graphs and knowledge graphs, we alleviate the
negative effects of this issue by controlling the proportion
of information from the knowledge graph entering the
message passing stage. Finally, we use weighted summation
to combine the embeddings learned at different layers to form
the final embedding of the node.

1) KNOWLEDGE COUPLED MESSAGE PASSING
In graph representation learning, the update of the target node
embedding often depends on the features of its neighboring
nodes. When the neighboring nodes of the target node
incorporate external knowledge, we control the intensity
of knowledge coupling, allowing both user-item interaction
information and external knowledge to be transmitted to the
next layer simultaneously. Specifically, given a user-item
interaction graph Gu and a knowledge graph Gk , we perform
information aggregation and representation updates for each
node from a global perspective. We denote the merged global
graph resulting from the combination of Gu = (Vu, Eu) and
Gk = (Vk , Ek ) as Gg which is defined as Gg = (Vg, Eg) where
the node set Vg = Vu ∪ Vk involves all the nodes in Gu and
Gk , and the edge set Eg = Eu ∪ Ek represents all the edges
in Gu and Gk . For each node in Gg, we define the knowledge
coupled message passing procedure as follows:

hl+1
n = IVu (n) · Agg

({
hli

∣∣∣ i ∈ Nn ∩ Vu
})

+ IVk (n) · ĥn

(1)

where hln is the embedding of node n in l(l = 0, 1, · · · ) layer,
IV (n) is the indicator function which returns 1 if node n ∈ V
else 0,Nn denotes the set of all the neighbors of node n, ĥn is
the coupled vector for node n in aggregation of every layer.

Due to the efficiency and effectiveness of LightGCN [9],
when the neighbors of node n belong to the user-item
interaction graph Gu, we apply a similar aggregation method
Agg to these part of neighbors as in LightGCN. We define
Agg as follows:

Agg
({
hli

∣∣∣ i ∈ Nn ∩ Vu
})

=

∑
i∈Nn∩Vu

1
|Nn ∩ Vu| · |Ni ∩ Vu|

hli

(2)

where |Nn ∩ Vu|means the number of elements in setNi∩Vu.
The knowledge graph Gk exists independently from the

interaction graph Gu, and the node embeddings in the
knowledge graph do not share the same feature space with
the interaction graph. Therefore, before entering the message
passing phase, it is necessary to project the node embeddings
from the knowledge graph to maintain consistency in the
feature space. For node n in Gk , we have:

e′n = Wk · en (3)

where e′n is the projected embedding of node n, Wk is the
weight matrix to be learned. Inspired by [34], we use an
attention-based aggregation method for nodes belonging to
Gk to obtain the coupled vector ĥn by the steps outlined below:

hl+1
n = σ ·

∑
i∈Nn∩Vk

αl(i, rn,i, n) · hli (4)

αl
(
i, rn,i, n

)
=

exp
(
−LeakyReLU

(
βn,i

))∑
m∈Nn∩Vk exp

(
−LeakyReLU

(
βm,i

)) (5)

βn,i = hTrn,i · W ·

[
hln ∥ hli

]
(6)
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FIGURE 2. The overall framework of our proposed HCVCL model. After constructing two enhanced global views through the view-crossing method,
we obtain the node embeddings of nodes in each view via hierarchically knowledge coupled representation learning. Finally, we construct two
contrastive loss functions and conduct joint training with the primary recommendation task.

where rn,i represents the relation between node n and i in Gk ,
LeakyReLU is the activate function, hrn,i is the embedding
vector of rn,i, W ∈ Rd×2d is the weight matrix to be trained,
∥ represents the concatenation function and h0n is the initial
embedding of node n, i.e., h0n = e′n. It is worth noting that we
have added a negative sign in front of the activation function
to enhance the numerical stability of the attention model.

2) HIERARCHICAL INTEGRATED REPRESENTATION
LEARNING
After message passing at each layer, we obtain a node
vector representation that has been coupled with knowledge
information from the knowledge graph. We use a weighted
sum of the node representations from each layer to serve as
the final vector representation of the node, as shown below:

hn =

L∑
l=1

1
l + 1

· hln (7)

where hln is the representation vector of node n in layer l.
We believe that message passing at each layer can learn
useful information integrated with the knowledge graph
to varying degrees. Therefore, drawing on the design of
LightGCN, we set different weights for the embeddings at
each layer. However, unlike LightGCN, our method does not
include the embeddings from the initial (0th) layer, as these
initial embeddings have not learned any information from
the knowledge graph, making them not aligned with the
knowledge-coupled node embeddings from other layers in
the same feature space. Our experiments have also shown
that including the embeddings of initial layer leads to a
significant decline in recommendation performance. Thus,
after several layers of message passing, we obtain the
final representations for each node, which will be used to
construct the loss functions for the recommendation task and
contrastive learning.

B. VIEW-CROSSING CONTRASTIVE LEARNING
After determining the graph embedding computationmethod,
we employ the contrastive learning paradigm to alleviate
graph sparsity issues. Existing contrastive learning methods
often suffer from the inefficiency of utilizing the additional
generated views. We designed a view-crossing approach,
which constructs additional contrastive loss function to better
mine both interaction graph view and knowledge graph view
information.

1) AUGMENTATION ON GRAPH STRUCTURE
Following the approach in [14], we utilize edge dropout to
augment data on both interaction graph Gu and knowledge
graph Gk . The augmented graph is referred to as a view of
the original graph and denoted as G′

u and G′
k . Specifically,

we obtain G′
u and G′

k according to the following formula:

G′
u = (Vu,Mu ⊙ Eu),G′

k = (Vk ,Mk ⊙ Ek ) (8)

where Mi ∈ {0, 1}|Ei|, i ∈ {u, k} are masking vectors on the
edge set Ei.

2) VIEW-CROSSING CONTRASTIVE LOSS CONSTRUCTION
After data augmentation on the graph, we obtain the
augmented view G′

u,G′
k as well as the original graph Gu,Gk .

By employing the view-crossing approach to fully utilize
the existing perspectives, we are able to construct additional
contrastive loss function, further enhancing the resilience
to noise interference of our model. The first step involves
cross-matching the original graph with the graph augmented
through data enhancement. concretely, we match the original
interaction graph Gu with the augmented knowledge graph
G′
k to obtain a knowledge enhanced global view G(k)g ,

as well as a interaction enhanced global view G(u)g by
matching the augmented interaction graph G′

u with the
original knowledge graph Gk . For original global view Gg
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and the knowledge enhanced global view G(k)g , we can
obtain user and item embeddings by utilizing the method
from the previous knowledge coupled aggregation module,
denoted as H and H(k), respectively. According to the
principle of contrastive learning for recommendation [14],
the embedding representations of the same user (or item)
nodes in different views should be as similar as possible,
while the distance from the embedding representations of
different nodes should be as distinct as possible. Formally,
we construct the InfoNCE [37] loss function to maximize
the agreement of positive nodes pairs and minimize the
agreement of different pairs as shown as the following
formula:

L(k)
c =

∑
n∈Vu

− log
exp(s(hn, h

(k)
n )/τ )∑

n′∈Vu,n′ ̸=n exp(s(hn′ , h(k)n′ )/τ )
(9)

where L(k)
c is the knowledge enhanced InfoNCE loss over

the original global view Gg and the knowledge enhanced
global view G(k)g . h(k)n ∈ H(k), hn ∈ H is the node
embedding vector in global view Gg and G(k)g . Vu is the
set of all user and item nodes and τ is the temperature
parameter. We adopt the cosine function s(·) as the similarity
function between positive node pairs and negative pairs.
Following the same procedure, we can obtain the interaction
enhanced contrastive loss function L(u)

c over global view Gg
and interaction enhanced global view G(u)g by matching the
augmented interaction graph G′

u with the original knowledge
graph Gk . Finally, we obtain the ultimate contrastive loss
functionLc by summing the knowledge-enhanced contrastive
loss function and the interaction-enhanced contrastive loss
function, as shown in the following equation:

Lc = L(k)
c + L(u)

c (10)

C. JOINT TRAINING AND PREDICTION
In this section, we will provide a detailed explanation of the
training and prediction processes of our entire model. Note
that the contrastive learning loss learns node embeddings
solely in a self-supervised manner, disregarding collaborative
filtering signals. Therefore, we supplement the contrastive
InfoNCE loss as a complementary loss function for the main
recommendation task and train them jointly, thereby robustly
learning user preferences. For themain recommendation task,
we use the mean pooling of embeddings from each global
view as the final node embedding.

zn = mean
(
hn, h(u)n , h(k)n

)
(11)

where hn, h
(u)
n , h(k)n represents the node embedding for node n

in global view Gg, interaction enhanced global view G(u)g and
knowledge enhanced global view G(k)g separately. We employ
the Bayesian Personalized Ranking (BPR) loss [38] as the
main recommendation loss to encourage a higher inner
product of embeddings between user nodes and historically
interacted item nodes, compared to that with unobserved item

nodes.

Lmain =

∑
u∈U

∑
i+∈Nu

− ln σ
(
zTu · zi+ − zTu · zi−

)
(12)

where U is the set of all user nodes, Nu is the set of all
item neighbors of node u, σ represents the sigmoid activation
function. zi+ is the embedding vector of the item node that
has interactedwith the user node u, while zi− is the embedding
vector of the item node that has not interactedwith u, obtained
by randomly sampling from items that have no interaction
with u. By integrating the BPR collaborative filtering loss
with the contrastive loss, weminimize the following objective
function to conduct joint training:

L = Lmain + λ1Lc + λ2∥2∥
2
2 (13)

where λ1 controls the strengths of contrast learning, λ2 deter-
mines the strength of regularization for the joint loss function.
2 represents the set of all model parameters. During the
inference phase, we use the node representations learned on
the original global view Gg to make predictions, treating the
inner product of the embeddings of user nodes and item nodes
as their matching scores.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) DATASETS
We conducted experiments on three publicly available
datasets derived from real-world scenarios. Detailed infor-
mation about the three datasets is listed in Table 1. Similar
to [17], [19], and [34], we employ a 10-core setting for
user and item nodes, wherein we retain the nodes with
interaction frequencies exceeding 10 occurrences in original
data. For each user node within the user-item interaction
graph, we randomly select 80% of the item nodes that interact
with it as training data, while the remaining 20% serve as
testing data.

TABLE 1. Statistics of three experimented datasets.

2) BASELINES
We compared the HCVCL model with various baseline
models:

a: GENERAL RECOMMENDATION
• BPR [38] introduces a bayesian approach to person-
alized ranking, specifically designed for generating
personalized recommendations from implicit feedback
like clicks or purchases by users.
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• GC-MC [39] introduces a novel method using graph
convolutional networks for the task of matrix comple-
tion, aiming to enhance recommendation systems by
leveraging relational data represented as graphs.

• LightGCN [9] introduces a simplified and efficient
graph convolution network model designed specifi-
cally to enhance the performance of recommendation
systems.

b: KNOWLEDGE-AWARE RECOMMENDATION:
• CKE [10] explores the integration of collaborative
filtering with knowledge base embeddings to enhance
the accuracy and quality of recommendations in recom-
mender systems.

• KGCN [11] introduces the use of Knowledge Graph
Convolutional Networks (KGCNs) in recommender
systems to effectively incorporate relational information
from knowledge graphs, thereby enhancing the recom-
mendation quality and accuracy.

• KGAT [34] introduces a novel framework that integrates
knowledge graph-based information with an attention
mechanism to improve the performance and effective-
ness of recommender systems.

• KGIN [12] focuses on understanding user intents
in recommender systems by leveraging knowledge
graphs, proposing a novel approach to model and learn
from the complex interactions and intentions behind
user behaviors for more accurate and personalized
recommendations.

• CKAN [13] is a novel framework that combines
collaborative filtering with a knowledge-aware attentive
mechanism, aiming to enhance recommender systems
by effectively integrating both user-item interactions
and knowledge graph information for more precise and
insightful recommendations.

c: CONTRASTIVE LEARNING BASED METHODS FOR
RECOMMENDATION

• SGL [14] explores a self-supervised learning approach
within graph learning frameworks for recommendation
systems, aiming to enhance recommendation quality by
leveraging self-supervised signals to capture complex
user-item interactions and relationships more effec-
tively.

• MCCLK [18] introduces an innovative approach that
integrates multi-level cross-view contrastive learning
into knowledge-aware recommender systems, aiming
to enhance recommendation performance by effectively
leveraging the rich semantic information from knowl-
edge graphs and user-item interaction data.

• KGCL [19] proposes a novel framework that com-
bines knowledge graph-enhanced recommendation with
contrastive learning techniques, aiming to improve the
effectiveness of recommender systems by leveraging
the contrastive signals derived from knowledge graph

structures for more accurate and contextually rich
recommendations.

• KGRec [20] introduces an innovative approach that
integrates self-supervised learning with knowledge
graphs in the domain of recommender systems, aiming
to enhance the recommendation process by employ-
ing self-supervised rationalization techniques to better
understand and utilize the complex relationships within
knowledge graphs.

3) EVALUATION PROTOCOLS
For the sake of fair comparison, we employed the widely
adopted all-ranking strategy [19], [20], [34] to assess the
quality of the recommended results. More specifically, for
each user node, we arrange the values resulting from the dot
product of its embedding and the embeddings of all item
nodes in descending order. After excluding the item nodes
that have had interactionswith the said user node, we consider
the top-K entries in the arrangement to calculate the values
of NDCG@K and Recall@K [1], [40]. By calculating
the average of the metric values across all user nodes,
we obtain the final numerical values for the NDCG andRecall
evaluation metrics. In our experiments, all values of K are set
to be 20.

4) TRAINING DETAILS
In contrast to the majority of prior studies, our model
demonstrates consistent and commendable performance
across different datasets by employing a uniform set of
hyperparameters. Most of compared baselines are evaluated
based on the unified recommendation library RecBole [41].
For those baseline models not included in the RecBole
library, we train them using the officially recommended code
and hyper-parameters. For our model, the learning rate is
0.0005, the batch size is 4098, and the num of graph neural
network layers is 3. On both interaction graph and knowledge
graph, we randomly initialize the initial node embedding with
Kaiming initializer [42], and the dropout ratio is set to be 0.5.
In the contrastive learning section, the temperature parameter
τ is uniformly set to 0.2, while contrastive loss balance
parameter λ is set to be 0.1. On the hardware front, we utilized
Intel i7-13700K CPU, NVIDIA TITAN RTX GPU for all
model training and inference.

B. OVERALL PERFORMANCE COMPARISON
In Table 2, we listed the performance of all models across
three datasets. Through analysis, we can draw the following
conclusions:

• Our HCVCL model consistently outperforms all base-
line models. We conducted evaluations on three
real-world datasets of varying scenarios and scales and
using mainstream evaluation metrics. This demonstrates
that our HCVCL model effectively utilizes knowledge
graphs to enhance recommendation performance and
adeptly handles task-irrelevant information in the data.
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TABLE 2. The overall experimental results of our proposed model and
compared baseline models on three real world experimented datasets.

• Comparing models based on contrastive learning (such
as SGL, MCCLK, KGCL, KGRec) with other models
reveals that the former generally perform better than the
latter. This indicates that the incorporation of additional
self-supervised signals indeed effectively enhances
model performance. When comparing models that
integrate knowledge graph information (like KGRec,
KGCL, KGIN, KGAT, etc.) with those that do not utilize
knowledge graph data, the former often exhibit supe-
rior performance. This underscores that appropriately
leveraging the rich information in knowledge graphs can
indeed enhance recommendation effectiveness. How-
ever, there are instances where models without knowl-
edge graph integration perform better, highlighting
the importance of effectively handling task-irrelevant
information in the data. Our HCVCL model, based
on the contrastive learning paradigm, effectively uti-
lizes task-relevant information from knowledge graphs
and achieved the best performance across all three
datasets.

C. ABLATION STUDY
In this section, we evaluate the impact of several key
components in our model on recommendation accuracy.
Specifically, we substitute conventional components for
parts of our designed model architecture and then observe
the changes in accuracy on three datasets. This approach
allows us to quantitatively assess how our model design
influences the effectiveness of recommendations. Based on
modifications to the model structure, we generate three
variants of our HCVCL model:

• w.o. VC (Without View-Crossing Contrastive Learn-
ing): This variant removes the view-crossing mod-
ule. After eliminating view-crossing, while keeping
the number of enhanced views constant, we adopt
the traditional contrastive learning paradigm. That is,
we construct the contrastive learning loss function using
the node embeddings on the enhanced global graph and
the original global graph.

TABLE 3. Ablation studies for different variants of HCVCL, in terms of
Recall@20 and NDCG@20.

• w.o.KC (Without Knowledge Coupling): This variant
removes the knowledge coupling in message passing.
The purpose of the knowledge coupling is to balance the
information volume from the interaction graph and the
knowledge graph for each item node during each layer of
message passing. Without knowledge coupling, we use
the aggregation function from LightGCN for message
passing.

• w.o. VC & KC (Without View-Crossing Contrastive
Learning and Knowledge Coupling): This variant com-
pletely removes both the view-crossing and knowledge
coupling modules, reducing the model to the SGL [14]
model on the global view.

The experimental results are presented in Table 3.
By comparing these variants, we can effectively evaluate
the individual contributions of the view-crossing contrastive
learning and knowledge coupling message passing modules
to the overall performance of our HCVCL model. In sum-
mary, the accuracy of the variants that individually removed
the VC (View-crossing) and KC (hlKnowledge Coupling)
modules was significantly lower than that of our HCVCL
model. This indicates the effectiveness of our model design.
The variant that simultaneously removed both VC and KC
modules can be seen as a simple extension of the SGL
model in the field of knowledge enhanced recommendation.
The contrast in accuracy between this variant and our
model further highlights the improvements our model offers
over classic models. The variant without the KC module
consistently showed a more significant drop in accuracy
across all three datasets and two metrics, suggesting that
the KC module, which directly modifies the core message
passing mechanism in graph neural networks, contributes
more to our HCVCL model compared to the VC module.

D. ROBUSTNESS TO NOISE
In this section, to validate the robustness of our model
against noise interference, we added adversarial samples to
the training data in varying proportions. We then trained the
model on this expanded dataset and tested it on the same
test set. Specifically, for each user node in the training set,
we randomly selected a portion of item nodes with which the
user had no prior interaction, in proportion to the number
of positive user-item interactions the user had, and added
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FIGURE 3. A comparison of the relative decline in Recall and NDCG
metrics for the HCVCL and LightGCN models after injecting adversarial
samples at different proportions.

these connections to the training set. Figure 3 shows that our
HCVCL model exhibits good robustness, with only a minor
decline in relevant metrics after adding adversarial samples of
different proportions to the training data. Particularly when
introducing 10% noise, the LightGCN model experiences
a precipitous decline in performance, whereas our model
demonstrates strong resistance to noise. This likely results
from the unique design of our model. First, during the
message passing phase, we control the amount of information
from both interaction graph and knowledge graph entering
the next layer, thus proportionally reducing the influence
of any noise added to the interaction graph. Secondly,
our view-crossing contrastive learning is more potent than
conventional contrastive learning, with the additional two
contrastive loss functions endowing the HCVCL model with
better robustness.

E. HYPER-PARAMETERS SENSITIVITY STUDY

TABLE 4. Impact of λ1 and τ on three datasets.

In this section, we investigate the impact of three
hyperparameters on the model performance: the temperature
coefficient τ in the contrastive learning loss function and
the weight λ1 of the contrastive learning loss. As shown
in Table 4, λ1 and τ are searched from the range of

(0.01, 0.1, 1.0) and (0.1, 0.2, 0.3, 0.4), respectively. Exper-
imental data consistently shows that our model performs
best under a specific set of parameters for λ1 and τ . This
indicates that our model possesses good scalability, being
able to achieve similarly high performance across different
datasets with the same parameter configuration.

V. CONCLUSION
In this work, we deeply analyze the issue of uneven
distribution of task-relevant information across interaction
graphs and knowledge graphs in knowledge-enhanced rec-
ommendation tasks and design a hierarchically coupled
view-crossing contrastive learning model to mitigate this
problem. In particular, to mitigate the issue caused by the
uneven distribution of item node neighbors in the interaction
graph and knowledge graph, we designed a hierarchical
knowledge coupling graph representation learning method to
controllably utilize knowledge graph information to enhance
node representation. To mitigate the negative impact of per-
vasive noise in graph data on recommendation performance,
we devised a view-crossing contrastive learning paradigm
that more effectively addresses noise issues compared to
traditional contrastive learning methods. Our experiments
demonstrate the exceptional performance of the HCVCL
model across various datasets. The ablation study highlights
the effectiveness of the two critical components of our model,
and the hyperparameter sensitivity analysis shows consistent
superior performance under a unified set of hyperparameters,
indicating good scalability of the model. Additionally,
we injected adversarial samples into the training data at
different ratios to observe changes in the model accuracy,
and this experiment revealed the strong noise resistance
capabilities of our model.
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