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ABSTRACT Discrimination between tectonic and non-tectonic events is crucial to assess seismic hazards
and manage associated risks. However, the discrimination process is challenging due to the imbalanced
distribution of tectonic and non-tectonic events. In this paper, we propose a ghost-attention network
(GA-Net) consisting of multiple ghost modules and convolutional block attention modules (CBAMs) to
solve this problem. Ghost module allows the network to extract feature maps using cost effective operations,
which are suitable for small and unbalanced training sets. CBAM emphasizes meaningful features along
channel and spatial axes, effectively learning which information to emphasize or suppress. We train the
proposed GA-Net using seismic data from Shaanxi Province in China. The evaluation shows that on
the test set, the proposed GA-Net achieves sensitivity, specificity, and accuracy of 96.40%, 93.24%, and
95.75%, respectively. In addition, a comparative analysis with several state-of-the-art networks establishes
its superiority. Our GA-Net exhibits robust generalized performance on several training sets with different
imbalanced levels and an independent dataset.

INDEX TERMS Seismic event discrimination, ghost module, convolutional block attention module,
imbalanced dataset.

I. INTRODUCTION
Monitoring seismic activities and seismic analysis are two
main objectives in assessing seismic hazards and managing
associated risks [1], [2]. Modern seismic networks record
a large number of seismic events, including several non-
tectonic events, such as explosions and collapses, which
contaminate the seismic catalogue. These non-tectonic events
can cause variations in seismicity patterns, potentially leading
to misinterpretations as precursors to past or future major
shocks [3]. Therefore, it is imperative to identify and elim-
inate such non-tectonic events from the seismic catalogue to
facilitate the extraction of meaningful information about true
Earth processes.

The associate editor coordinating the review of this manuscript and
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Over the past decade, the amount of data available to
geoscientists has grown dramatically, so identifying all
non-tectonic records through manual inspection is no longer
a viable option. Big data in geosciences also introduces
the challenge of extracting as much useful information
as possible and gaining new insights from this data,
simulations, and the interplay between the two [4], [5].
Machine learning techniques have proven to be effective
tools for analyzing data in various fields of seismology,
including event detection [6], phase picking [7], [8], [9],
event discrimination [1], [2], [10], [11], [12], [13], [14], [15],
geoscience variables estimation [16], [17], [18], [19], and
earthquake forecasting [20], [21].

Concerning event discrimination, many different methods
have been proposed to distinguish non-tectonic events from
tectonic events based on machine learning techniques. They
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can be classified into parameter-based and waveform-based
methods. Methods based on parameters identify non-tectonic
events using calculated related parameters, such as focal
depth, first motion polarity, shear wave generation efficiency,
P/S amplitude ratio, difference between localmagnitude (ML)
and coda duration magnitude (Mc), complexity, and wavelet
packet energy ratio [22], [23], [24], [25], [4], [26], [27],
[28], [29], [30], [31], [32], [33]. The above discrimination
techniques, typically based on manually selecting features,
may lead to unreliable results in some cases.

Waveform-based methods are proposed to classify seismic
events using automatic feature extraction facilitated by
deep learning techniques. Convolutional neural network
(CNN) is one of the powerful architectures used to extract
well-represented features from input waveforms and is
widely used to discriminate between tectonic and non-
tectonic events [10], [11], [12], [13], [13], [34], [35].
However, CNN suffers from several drawbacks: 1) CNN usu-
ally requires a large number of parameters and floating point
operations to achieve satisfactory accuracy, as redundancy in
feature maps often ensures a complete understanding of the
input data. Accordingly, CNN should be trained using a large
amount of training data to avoid overfitting. 2) CNN does
not pay attention to the spatial relationship between feature
maps.

Ghost module [36] and convolutional block attention
module (CBAM) [37] can overcome the shortcomings of
CNN. Ghost module first generates some intrinsic feature
maps and then uses linear operations to augment features and
increase channels. As a result, the number of parameters and
computational resources is reduced, easing the requirement
for large amounts of training data. CBAM dynamically
fine-tunes attention across channels and spatial dimensions,
enhancing its focus on critical information within the input
data.

In this paper, we use the full seismic waveform as
input and propose a novel ghost-attention network (GA-Net)
to discriminate between tectonic and non-tectonic events.
GA-Net is built with multiple ghost modules and CBAMs.
The ghost module is built to efficiently extract features with
fewer parameters and calculations, which is suitable for small
and unbalanced training sets. In addition, we incorporate
CBAM to simultaneously capture the significance of various
channels and spatial dimensions within the input data, thus
enhancing the focus on the target information. The proposed
GA-Net makes several contributions.

1) We propose a novel GA-Net to discriminate between
tectonic and non-tectonic events, which are robust in handling
imbalanced datasets and achieve promising classification
accuracy.

2) The ghost module’s integration efficiently preserves
multiple feature maps, maintaining a balance between effi-
ciency and computational cost, which achieves satisfactory
accuracy on a small dataset.

3) Due to the lack of inter-channel and spatial information
in the ghost module, CBAM is introduced to integrate

the significance of different channels and spatial dimen-
sions within the input data, thus improving classification
performance. In addition, incorporating CBAM before the
flattening operation allows the model to learn features that
are critical for discrimination.

The rest of this paper is organized as follows. In Section II,
the general framework of our GA-Net is demonstrated.
Results and discussions are presented in Section III and
Section IV, respectively. The conclusions are outlined in
Section V.

II. METHODOLOGY
Given that the input is time series seismic waveforms,
we use one-dimensional convolution operations to capture
temporal features within seismic signals. This allows the
model to discern patterns, trends, and correlations inherent
in seismic waveforms, thus enhancing the discrimination
performance between tectonic and non-tectonic events.
However, traditional CNNs usually require a large number
of parameters to achieve satisfactory accuracy, which leads
to the need for extensive training data to prevent overfitting.
Considering that the output feature maps of convolutional
layers often contain a lot of redundancy, and some of them
could be similar to each other [36], we integrate ghost
modules and CBAMs to efficiently produce multiple feature
maps with low computational cost and emphasize meaningful
features along channel and spatial axes.

Fig. 1 (a) demonstrates the proposed GA-Net architecture
for discriminating between tectonic and non-tectonic events.
First, we use a standard convolutional layer with 16 filters
to extract feature maps from the input waveform. Then,
a series of constructed ghost bottlenecks (including two
ghost modules) and CBAMs, with progressively increased
channels, are applied to extract features efficiently and
effectively. Following this, 1×1 convolutional layer and
global average pooling layer (GAP) are used to integrate
multi-channel feature maps, which contributes to both infor-
mation integration andmodel parameter reduction. Before the
flattening operation, we apply a CBAM to highlight features
considered critical for the final classification task. Finally,
a fully connected layer (FC) is used for final classification.

Specifically, the ghost bottleneck is made up of two
stacked ghost modules. The first ghost module functions
as an expansion layer, increasing the number of channels.
The second ghost module reduces the number of channels
to match the shortcut path that mitigates the degradation
problem. The ghost module produces multiple feature maps
at a low computational cost. As shown in Fig. 1 (b), instead
of generating N redundant feature maps one by one with
a large number of parameters, it is more efficient to obtain
N = C2 + C3 feature maps as output from a ghost module.
First, C2 intrinsic feature maps are obtained by a primary
convolution:

Y ′
H2,W2,C2 = XH1,W1,C1 ∗ f ′

1,C2
, (1)
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FIGURE 1. a) A schematic architecture of the GA-Net model used for discriminating between tectonic and non-tectonic events. The model input is a
three-component waveform, and the output is the probability of the input waveform belonging to either the tectonic or non-tectonic event. (b) Details of
the ghost module. (c) Details of the CBAM.

where f ′ is the utilized filter. The kernel size of f ′ is 1×1 with
C2 featuremaps. Second,C3 ghost featuremaps are generated
by a series of cheap linear operations on each intrinsic feature
in Y ′, which is following:

y′′i,j = Φi,j(y′i), ∀i = 1, . . . ,m, j− 1, . . . , n, (2)

where y′i is the i-th intrinsic feature map in Y ′, Φi,j
is the j-th linear operation for generating the j-th ghost
feature map y′′i,j. In principle, y′i can have one or more
ghost feature maps. Typically, linear transformations are
implemented by FC. However, the connections between
each input neuron and each output neuron result in
quadratic parameter growth, thus challenging training with
small datasets. In order to efficiently generate these
ghost feature maps, we use depthwise convolution to
independently process individual maps of intrinsic feature
maps and facilitate mapping from C2 intrinsic features to
C3 ghost features. The depthwise convolution operation is as
follows:

Y ′′
H3,W3,C3 = Y ′

H2,W2,C2 ∗ f ′′
3,C3

, (3)

where f ′′ is the depthwise convolutional filter. The kernel
size is 1 × 3 with C3 feature maps. Finally, to further obtain
the desired N feature maps, we concatenate the C2 intrinsic
feature maps with the C3 ghost feature maps.
Feature maps extracted by the ghost module undergo an

initial convolution operation of 1 × 1 to generate intrinsic
feature maps, resulting in a lack of spatial information.
Subsequently, the intrinsic feature maps are subjected to

a depthwise convolutional layer to produce ghost feature
maps, which exhibit a lack of inter-channel information.
Therefore, in order to address these limitations, we integrate
CBAM after the ghost bottleneck to further extract both
channel and spatial information. As shown in Fig. 1 (c), given
an intermediate feature map as input, CBAM sequentially
applies channel and spatial attention modules, then the
attention maps are multiplied to the input feature map for
adaptive feature refinement. Channel attention and spatial
attention are calculated as follows:

F ′
= Ac(F) = σ (W1(ω(W0(Favg))) +W1(ω(W0(Fmax))),

(4)

F ′′
= As(F ′) = σs(f 7×7([F ′

avg;F ′
max])), (5)

where F , Ac(F) and As(F ′) are the input and two attention
maps, respectively. σ and ω denote the sigmoid function
and the ReLU function, respectively. W0 and W1 are
the weights of shared multi-layer perceptron (MLP) with
one hidden layer. Favg and Fmax are average pooling
and max pooling operation, respectively. Through metic-
ulous model design, our proposed GA-Net effectively
extracts waveform features, yielding a satisfactory accu-
racy in discriminating between tectonic and non-tectonic
events.

III. RESULTS
Our proposed GA-Net is based on Keras and utilizes Adam
optimizer with a learning rate of 10−5 to optimize all
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FIGURE 2. Distribution of the seismic stations, tectonic events, and
non-tectonic events in the dataset.

parameters of the model. The epoch number is set as 15 to
ensure the convergence. The platform is configured with a
GeForce GTX 1060 for training and testing.

A. DATASET
Shaanxi Province is located at the intersection of the
Qinghai-Tibet earthquake zone, the North China earthquake
zone, and the South China earthquake zone. Thus, Shaanxi
experiences active tectonic seismic activities. In addition,
Shaanxi Province, rich in mineral resources, is prone to non-
tectonic events, such as explosions and collapses. Seismic
waveforms obtained from 49 stations are recorded by the
Shaanxi Regional Seismic Network Center affiliated with
the China Earthquake Network Center (CENC). Our dataset
includes seismic events recorded from 2009 to 2018, with
magnitudes ranging from ML 1.6 to 4.0. Among them,
there are 3359 tectonic records (646 tectonic events) and
1533 non-tectonic records (291 non-tectonic events). Each
record has 3 channels with a sampling rate of 100 Hz, and
the three-channel waveform is used as input for the proposed
method. The distribution of seismic stations and seismic
events is shown in Fig. 2.
To ensure the quality of waveforms, we implement the

following procedures. First, we focus on waveforms within
an epicentral distance of 200 km. Second, we specifically
select a 100-second time window after the onset of the
P-wave to maintain the completeness [10]. Third, a tenth
degree polynomial and standardization are applied to wave-
forms. Finally, to simulate the model’s actual generalization
capability, the dataset is divided chronologically. Events
from 2009 to 2016 are used for training, and events between
2017 and 2018 are used for testing. Due to the lower number
of non-tectonic events, the imbalance in the collected dataset
poses challenges in discriminating between these two types
of events.

B. MEASUREMENTS
In general, accuracy is commonly used to describe the
performance of classification models. However, relying
solely on accuracy may mask the performance of the
model on minority classes in imbalanced datasets. Sensitivity
measures the model’s ability to correctly identify positive
class samples, while specificity measures its ability to
correctly identify negative class samples. By simultaneously
considering these two metrics, we can more accurately assess
the model’s performance across different classes. Therefore,
sensitivity, specificity, and accuracy are utilized to quantify
the performance in this study, which are defined as follows:

sensitivity =
TP

TP+ FN
, (6)

specificity =
TN

TN + FP
, (7)

accuracy =
TP+ TN

TP+ FP+ TN + FN
, (8)

where TP represents the number of true positive samples
(a positive sample of which the result of the model is also
positive), FP represents the number of false positive samples
(a negative sample of which the result of the model is
positive), FN represents the number of false negative cases (a
positive sample of which the result of the model is negative),
TN represents the true negative samples (a negative sample of
which the result of the model is also negative). In this paper,
tectonic records are designated as positive samples, whereas
non-tectonic records are designated as negative samples.

C. TESTING RESULTS
We evaluate the performance of the proposed GA-Net using
the test set consisting of 1084 tectonic records (63 events)
and 281 non-tectonic records (12 events). Figure 3 illustrates
the performance of GA-Net on the test set. As shown
in Fig. 3 (a), the proposed method correctly classifies
1307 waveforms (1045 tectonic records and 262 non-tectonic
records). Sensitivity, specificity, and overall accuracy are
96.40%, 93.24%, and 95.75%, respectively. The receive
operating characteristic curve (ROC) is shown in Fig. 3 (b).
The area under the curve (AUC) is 0.99, indicating that
the model has excellent discriminatory ability in classifying
between tectonic and non-tectonic records.

Furthermore, we employ statistical analysis using the class
probabilities outputted by the GA-Net. Fig. 4 illustrates
that 83.5% of the tectonic records and 82.13% of the
non-tectonic records are concentrated at the two extremes
of the probability range (between 0-0.2 and 0.8-1.0). The
probability values generated by the classification model tend
to be closer to the extremes (0 or 1), suggesting a high level
of confidence in its classifications.

We compare the proposed method to several state-of-the-
art networks, including CapsNet [1], CNN [10], VGG [11],
ResNet [11], GoogleNet [11], CNN [12], and CNN [13] with
the same training and testing set. Table 1 shows the results
of the GA-Net comparison with the benchmark networks.
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FIGURE 3. Results of the test set. (a) Confusion matrix; (b) ROC curve.

FIGURE 4. Confidence statistics of the test results.

ResNet and GoogleNet demonstrate accuracy in classifying
tectonic records, but show inaccuracy in classifying non-
tectonic records. This occurs due to the imbalance in the
dataset, where tectonic records dominate the majority of the
training set. Whereas the proposed GA-Net exhibits a slightly
lower accuracy in identifying tectonic records compared to

TABLE 1. Comparisons with state-of-the-art networks.

TABLE 2. The ablation study results.

ResNet and GoogleNet, it achieves the highest accuracy in
identifying non-tectonic records. That is, through careful
model design, GA-Net effectively captures minority class
characteristics when confronted with an imbalanced dataset.
This advantage not only enhances the reliability of our model
in practical applications, but also addresses some limitations
in handling imbalanced datasets.

The number of parameters directly correlates with both
memory usage and computational cost during both training
and inference phases. As shown in Table 1, GA-Net utilizes
significantly fewer parameters (1.57M) compared to ResNet
(7.13M) and GoogleNet (5.12M), yet achieves comparable
or superior performance metrics. This demonstrates that
GA-Net not only requires less computational resources but
maintains a high level of accuracy and stability in its
predictions. The reduction in parameters translates to a more
efficient model that is easier to train and deploy, particularly
in environments where computational resources are limited.

D. ABLATION STUDY
To demonstrate the effectiveness of the ghost module and
CBAM, the ablation study is conducted. As shown in
Table 2, without the ghost module (w/o GM) and the CBAM
(w/o CBAM), the model tends to learn features associated
with the dominant class (tectonic records) while ignoring
those relevant to the minority class (non-tectonic records).
Both GA-Net (w/o GM) and GA-Net (w/o CBAM) exhibit
overfitting to the dominant class, resulting in poor gen-
eralization performance in practical applications. However,
the proposed GA-Net, incorporating the ghost module and
CBAM, achieves the best results on the unbalanced dataset.

IV. DISCUSSION
To select the optimal network architecture, we tune the
number of ghost bottlenecks stacked. As shown in Fig. 5, both
the excessive and insufficient stacking of ghost bottlenecks
can lead to suboptimal model performance. In the former
case, constrained by limited training data, the model becomes
overly complex, making it prone to overfitting noise and

VOLUME 12, 2024 68457



X. Liu et al.: GA-Net for Discriminating Tectonic and Non-Tectonic Events

FIGURE 5. Results of different number of stacked ghost bottlenecks.

TABLE 3. Results of GA-Net with different CBAM locations.

details within the data, thereby diminishing generalized
performance. Conversely, in the latter scenario, insufficient
model complexity hinders the capture of essential patterns
and intricacies in the data, resulting in underfitting. There-
fore, we use five stacked ghost bottlenecks to reduce the
complexity of the model and achieve high classification
accuracy.

A. THE LOCATION OF CBAM
We use CBAM to highlight meaningful features along chan-
nel and spatial axes and efficiently learn which information
to highlight or suppress. To investigate the effect of placing
CBAM in different locations. We perform experiments as
shown in Table 3. The results show that placing the CBAM
after each ghost bottleneck and before the flattening operation
achieves the highest accuracy. Positioning the CBAM after
each ghost bottleneck enhances attention to various channels
and spatial features. This allows the model to dynamically
learn and adapt to significant features within the input
data, improving overall performance. In addition, applying
CBAM before flattening allows for a more effective focus
on features considered critical to the final classification
task.

B. MISCLASSIFIED RECORDS ANALYSIS
To analyze misclassified records, we visualize some records
in Fig. 6. From a waveform perspective, GA-Net has a
better classification effect for records with relatively large
amplitude P and S waves, which aligns with the established
P/S amplitude ratio. In addition, GA-Net is robust in
discriminating records with channel dropout and baseline

TABLE 4. GA-Net results across various imbalance handling techniques.

deviation, as shown in Fig. 6 (b) and Fig. 6 (d). Fig. 6 (e) and
Fig. 6 (f) represent misclassified tectonic and non-tectonic
records, respectively. These records exhibit large epicentral
distances, resulting in a low signal to noise ratio and poor
waveform quality.

In addition, we analyze the impact of different types of
events on the GA-Net. We use the event discrimination
criteria proposed in our previous work [10]. There are
225 tectonic and 50 non-tectonic events (8 explosions and
42 collapses) in the test set. We only misclassified three
tectonic events and one explosion. All collapse events are
properly discriminated against. This ability can be attributed
to larger periods of collapse events compared to tectonic
events, which is consistent with the perception of manual
discrimination. The vast majority of misclassified events are
located at the edge of the seismic observation network. Only
a small number of stations with large epicentral distances can
record these events, so these events are easily confused with
shallow explosions.

C. EXPLORING IMBALANCE HANDLING STRATEGIES
For a more effective resolution of dataset imbalance issues,
we conduct a detailed analysis with various techniques,
including time shifting, noise addition, and focal loss [38].
As shown in Table 4, the limited diversity in the data
generated by time shifting and noise addition results in
the model still overly focusing on tectonic records. The
introduction of focal loss aims to address the issue of
foreground-background imbalance in segmentation tasks,
characterized by significant differences between the fore-
ground and background. However, in our study, distinguish-
ing between tectonic and non-tectonic records, which exhibit
high similarity, renders focal loss inadequate for resolving
this particular challenge. In the future, we will explore more
appropriatemethods to address the imbalance issue at the data
level.

D. MODEL PERFORMANCE ACROSS REGIONS
To assess the model’s applicability across various geophys-
ical contexts, we obtain data spanning the year 2019 from
the CENC, focusing on the regions of Shanxi, Shandong,
and Henan. These regions are selected for their abun-
dant data availability and authorized access, ensuring a
robust dataset for our analysis and reinforcing the credi-
bility of our findings. As shown in Table 5, the testing
results of GA-Net in Shanxi, Shandong, and Henan are
excellent, with all metrics exceeding 90%, indicating its
robustness.
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FIGURE 6. Discrimination analysis. (a) and (b) are correctly classified tectonic records; (c) and (d) are correctly
classified non-tectonic records; (e) and (f) are misclassified tectonic and non-tectonic records, respectively.

TABLE 5. GA-Net testing results across different regions.

E. IMBALANCE ANALYSIS EXPERIMENT
Due to the imbalanced distribution of tectonic and non-
tectonic events, discrimination between these two categories
may tend to overfit themajority class and neglect the minority
class. To address this problem, we propose a GA-Net to
reduce the number of parameters to prevent overfitting and
increase focus on features that are critical for classification.
To better validate the robustness of our GA-Net, we construct
four training sets with varying levels of imbalance, including

1:1 (a balanced training set), 2:1, 5:1, and 10:1 ratios,
employing two distinct strategies.

In strategy 1, we start by creating a balanced training
set of randomly selected 200 tectonic and 200 non-tectonic
recordings. Then, we construct the remaining three training
scenarios by accumulating a certain number of randomly
selected tectonic records into the previously created training
scenario. For example, to create a training set with an
imbalance of 2:1, we add another 200 tectonic records to the
originally established balanced training set.

We report the corresponding sensitivity, specificity, and
accuracy from four classifiers in Fig. 7 (a). With the
accumulation of tectonic records, the imbalance in the
training set gradually intensifies, leading to a significant
increase in the sensitivity. Considering that the test set
consists of 1084 tectonic records and 281 non-tectonic
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FIGURE 7. Results of two strategies for different levels of imbalance of
the dataset. (a) Strategy 1: Increasing dataset; (b) Strategy 2: Constant
dataset.

records, the accuracy curve exhibits a similar trend to
sensitivity. It is worth noting that, although the number
of non-tectonic records is unchanged, the accumulation of
tectonic records allows GA-Net to learn the characteristics
of tectonic records comprehensively, thus improving the
accuracy of discriminating between tectonic and non-tectonic
records. Moreover, the accuracy of the balanced training
set with only 400 records yields more than 89%, and
the specificity of the unbalanced training set of 10:1
still exceeds 90%. This indicates the robustness of our
GA-Net with respect to limited and imbalanced training
sets.

In strategy 2, we maintain a total dataset size of 400 and
partition it according to various imbalance ratios. The
corresponding sensitivity, specificity, and accuracy from four
classifiers are shown in Fig. 7 (b). When the total dataset
size remains constant, an increasing proportion of tectonic
records correlates with an upward trend in sensitivity. For
imbalance ratios of 2:1 and 5:1, specificity shows only
a slight decrease. At an imbalance ratio of 10:1, where
there are only 36 non-tectonic records in the training set,

FIGURE 8. Distribution of the seismic stations, tectonic events, and
non-tectonic events in the independent test set.

specificity still reaches 74.57%. In summary, the experiments
conducted on two strategies for constructing imbalanced
datasets demonstrate the stability of the proposed GA-Net in
addressing small yet imbalanced datasets.

F. APPLICATION IN AN INDEPENDENT TEST SET
To evaluate the generalization capability of the proposed
method, we apply the trained model to data recorded between
January and February 2019, which is distinct from the dataset
used for model training and testing. Accordingly, we extract
53 tectonic records (10 tectonic events) and 10 non-tectonic
records (5 non-tectonic events). The distribution of seismic
stations and seismic events is shown in Fig. 8. As a result,
the proposed method misclassifies only 1 tectonic record and
correctly classifies all non-tectonic records with an overall
accuracy of 98.41%.

V. CONCLUSION
Event discrimination is important for better seismic analysis.
In this paper, we use the full seismic waveform as input and
propose a novel GA-Net to discriminate between tectonic and
non-tectonic events. GA-Net includesmultiple ghostmodules
and CBAMs. Specifically, the ghost module gives the
network the ability to extract feature maps using inexpensive
operations, making it particularly suitable for small and
imbalanced training sets. CBAM emphasizes meaningful
features along channel and spatial axes, and efficiently learns
which information to emphasize or suppress.

The evaluation shows that on the test set, the proposed
GA-Net achieves sensitivity, specificity, and accuracy of
96.40%, 93.24%, and 95.75%, respectively. In addition, the
proposed method is compared with several state-of-the-art
networks and achieves promising classification performance.
Finally, we find that the proposed model achieves robust
performance on an independent dataset, exhibiting high
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classification accuracy for unseen data. Currently, the pro-
posed GA-Net has been deployed for practical testing with
the CENC. In the future, we will collaborate with the Shaanxi
Regional Seismic Network Center to integrate this method
into earthquake monitoring systems.

For future work, it is imperative to acknowledge the
inherent imbalance in the classification problem of tectonic
versus non-tectonic events. While our model has demon-
strated efficacy, there remains ample room for exploringmore
effective feature extraction techniques tailored specifically
for such imbalanced datasets. Moreover, future studies
might involve a comprehensive analysis of the disparities in
geological features across different regions and their impact
on seismic event detection. By incorporating geological
backgrounds into the model’s training process, we can
enhance its adaptability and performance across various
geographical locations.
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