
Received 11 April 2024, accepted 5 May 2024, date of publication 14 May 2024, date of current version 22 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3400900

Deterministic Method for Input Sequence
Modification in NEH-Based Algorithms
RADOSŁAW PUKA , IWONA SKALNA, (Member, IEEE),
BARTOSZ ŁAMASZ, JERZY DUDA, AND ADAM STAWOWY
Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland

Corresponding author: Radosław Puka (rpuka@agh.edu.pl)

This study was conducted under a research project funded by a statutory grant of the AGH University of Krakow for maintaining research
potential.

ABSTRACT Scheduling of production jobs falls into the area of planning, which, according to Henri Fayol’s
conception, is one of the basic functions of management. The permutation flow-shop scheduling problem
(PFSP) with makespan criterion is one of the most studied scheduling problems in the area of scheduling
theory and applications. The most-known polynomial complexity method for solving this complex problem
is the Nawaz-Enscore-Ham (NEH) deterministic constructive algorithm. The subject literature shows that
the results of NEH strongly depend on the input sequence of jobs. In this paper, we propose a new method to
build the input sequence of jobs for NEH-based heuristics. The proposed Turn-off-Machine (ToM) method
and its generalized version ToM+ (which has the feature to produce a set of input sequences that can be used
in population-based optimization methods) compute the total processing time of jobs by virtually ‘‘turning
off’’ onemachine. The ToM+method is one of a few deterministicmethods formodifying the input sequence,
and is the first one that modifies the input sequence based on individual machine processing times. Extensive
numerical experiments on standard Taillard and VRF benchmarks show the good efficiency of the proposed
method in solving PSFP with makespan criterion. The method improved the performance (measured using
ARPD) of the NEH-based algorithms by up to nearly 35%.Moreover, by combining ToM+method, SMαP+,
N -list, and vN -list technique, it was possible to improve the results of the original NEH algorithm by up to
nearly 50% (the method outperformed most of the NEH-based methods). This confirms that creating an
adequate input sequence is of great importance for the performance of NEH-based algorithms.

INDEX TERMS Heuristics, NEH, ToM method, N -list technique, permutation flow-shop scheduling
problem, makespan.

I. INTRODUCTION
The permutation flow-shop scheduling problem (PFSP) is
one of the most studied scheduling problems in the area
of theory and applications. The PFSP can be described as
a production decision problem in which n jobs J1, . . . , Jn are
processed on m machines M1, . . . ,Mm in a fixed order, and
the goal is to find the sequence π = (π (1), . . . , π (n)) ∈ Sn
of jobs that minimizes an objective function (e.g., makespan,
total earliness and tardiness, total weighted completion time,
total flow time). Each job to be scheduled is identified by
a set of tasks (operations) that form the path to be followed

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

in the production process, and each task has specified
processing time on each machine. The tasks are not allowed
to overtake each other [15], and, obviously, no machine
can perform more than one operation simultaneously. Many
modifications of PFSP have also been developed, such
as distributed permutation flow shop scheduling problem
(DPFSP) [19], blocking permutation flow-shop scheduling
problems (BPFSP) [36], distributed permutation flowshop
scheduling problem with blocking constraints (DBHFSP)
[40], sequence-independent setup time permutation flow
shop problem (PFSP-SIST) [20]. The PFSP and its variants
have many real-world applications; it is used, for example,
in the chemical industry, the waste treatment industry,
the aeronautics parts fabrication industry [24], in the

68940

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3201-0735
https://orcid.org/0000-0002-5048-4141


R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 1. Notation.

manufacturing of printed circuit boards [2], in iron and steel
industry, shipbuilding [36], in the production of cider [32],
and in the production of apparel and garments [4].

A. COMPLEXITY OF PFSP
Asmentioned above, different optimization criteria (objective
functions) are considered in the subject literature, however,
the PFSP with the makespan criterion, often denoted as
Fm|prmu|Cmax [14], is one of the most thoroughly studied
production scheduling problems; it is also of the main
concern in this paper. The high interest in Fm|prmu|Cmax
may be due to the fact that the problem has been proven to
be NP-hard if m > 2 [11], so solving it effectively is a big
challenge. To tackle the complexity of Fm|prmu|Cmax, vari-
ous deterministic, stochastic, constructive, and metaheuristic
algorithms have been developed over the past years, and
currently different modifications of these methods emerge
in the literature. In this work, we focus on constructive
deterministic algorithms for the PFSP.

B. DETERMINISTIC CONSTRUCTIVE ALGORITHMS
One of the best-known deterministic constructive algorithms
for solving Fm|prmu|Cmax, as evidenced by the subject
literature, is the Nawaz-Ham-Enscore (NEH) heuristic [23].
The undoubted advantages of NEH (its simplicity and good
efficiency) made it an inspiration for many research aimed
at improving its operation. The improvements presented in
the literature include, among others, the insertion tie-breaking
rules [17], [18] and modifications of the input sequence.
An important improvement based on the N -list technique
was proposed in [25]. Other improvements can be found, for
example, in [16] and [33]. A more detailed overview of the
literature on NEH improvements is presented in the section
devoted to NEH-based algorithms.

C. PROPOSED METHOD FOR SOLVING PFSP
In this paper, we propose a new method to modify the
input sequence in NEH-based algorithms. Our motivation to

develop this method was that input sequence modifications,
especially within the context of deterministic methods, are
still not well studied in the literature. Most of the works on
the subject consider various input sequence ordering methods
(priority rules). Themain objective of our work is to show that
the existing priority rules can be enhanced with the proposed
ToM method and that this enhancement can bring significant
improvement of the results of NEH-based algorithms.

The results of numerical experiments on standard Taillard
and VRF benchmarks show that the proposed modification
can significantly improve the results of the NEH-based
algorithms. The results were analyzed using the latest
best-known solutions for both benchmarks [12], [13]. In addi-
tion to the classical ARPD measure, the relative measure
ARD.NEH [27] was also used for error analysis.
Another advantage of one of the proposed methods is

that they partially solve the problem of generating input for
population-based scheduling optimization algorithms. This is
due to the fact that these methods are able to produce a set of
good quality solutions to Fm|prmu|Cmax in a single run.

D. PAPER ORGANIZATION
The rest of the paper is organized as follow. First, we present
selected NEH-based algorithms. Then, we describe the
proposed method for creating the input sequence. Next,
we provide the results of extensive numerical experiments on
the Taillard and VRF benchmark problems. The paper ends
with a discussion and concluding remarks.

II. NEH-BASED ALGORITHMS
The NEH algorithm, shown in Algorithm 1, is a constructive
heuristic with polynomial time complexityO(n3m) which can
be reduced to O(n2m) by using Taillard acceleration [37].
NEH consists of the initial phase and the insertion phase.
In the initial phase, jobs are sorted in nonincreasing order of
their total processing times. The total processing time (TPT)
of job j is defined as

TPTj =

m∑
i=1

pi,j, j = 1, . . . , n, (1)

where pi,j is the processing time of job j on machine i. Thus,
the resulting input sequence Jπ (1), . . . , Jπ (n), π ∈ Sn, fulfills
the condition:

TPTπ (1) ⩾ . . . ⩾ TPTπ (n). (2)

The impact of the input sequence (obtained in the initial
phase) on NEH results has been studied, for example, in [10],
[26], and [30]. Framinan et al. [10] showed that the initial
order used in the original NEH algorithm is the best single cri-
terion among the 177 starting sequences evaluated. Ruiz and
Maroto [34] examined 25 different heuristics with different
starting sequences and showed that the NEH algorithm gives
the best results among all heuristics examined, moreover,
in a much shorter time. Many other multi-element rules have
been later proposed. Dong et al. [3] presented a special

VOLUME 12, 2024 68941



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

Algorithm 1 NEH Algorithm for Solving Fm|prmu|Cmax

Initial phase
Sort n jobs in non-increasing order of their total processing
times and put them into the initial list of jobs
L = {1, . . . , n}.
Insertion phase
Initialize the partial sequence LP of jobs with the first job
from L (LP = LP ∪ {1}) and remove this job from the list
of jobs (L = L \ {1}).
for j = 2, . . . , n do
Insert the first job from L in LP in the place (among k
possible) that minimizes the partial makespan.
L = L \ {j}.

end for
return LP and Cmax.

priority rule assigning higher priority to jobs with a larger
variation of the processing times on each machine. The
authors used the sum of the average processing times and
the standard deviation of the processing times for the first
phase of their NEH-D algorithm. NEH-D is able to provide
better solutions than the original NEH algorithm. At the
same time, Kalczynski and Kamburowski [17]) proposed the
NEHKK1 heuristic, where (different) weights are assigned to
job processing times according to their position in the flow
line. Liu et al. [21] proposed to incorporate the third and
fourth statistical moments into the Dong et al. [3] priority
rule in the initial phase of NEH. The authors demonstrated
the effectiveness of the priority rule based on skewness
and the ineffectiveness of the kurtosis-based rule. Recently,
Zhang et al. [43] introduced the self-attention mechanism,
and job similarities (characterized by the dot-product of
processing time matrices) were used as job priorities. The
computational results with the Taillard and VRF benchmarks
demonstrate that the new priority rule dominates the existing
ones at a nominal cost of computation time. A method to
modify the input sequence, based on a selected factor (e.g.,
TPT), was proposed in [29]. Modifications of the second
(insertion) phase of NEH (where the jobs from the input
sequence are placed in the partial sequence to obtain the
smallest makespan Cmax) have been proposed, e.g., in [25]
and [28]. The algorithms N-NEH (Algorithm 2) and vN-NEH
(3), proposed therein, are based on the N -list technique. The
so-called candidate jobs from the N -list (additional to the
main list of jobs), are analyzed in each step of the insertion
phase to give the smallest makespan. Therefore, in contrast
to classical NEH, more than one job can be analyzed at each
step of the insertion phase.

The literature review shows that modifications of construc-
tive algorithms proposed in the literature are mainly based
on new priority rules and tie-breaking strategies. There is
only one study on a deterministic method to modify the
input sequence [29]. The results of this method indicate that
modifications of the input sequence should be analyzed more

Algorithm 2 N-NEH Algorithm for Solving Fm|prmu|Cmax

Initial phase
Sort n jobs in non-increasing order of their total processing
times and put them into the initial list of jobs
L = {1, . . . , n}.
Insertion phase
Initialize the partial sequence LP of jobs with the first job
from L and L = L \ {1}
Initialize the N -list, LN , with the jobs {2, . . . ,min{N +

1, n}} and remove these jobs from L.
for j = 2, . . . , n do
Evaluate each job in LN , put the best job in the respective
place in LP and remove this job from LN
if (L ̸= ∅) then

Append the first job from L to LN and remove this job
from L.

end if
end for
return LP and Cmax.

Algorithm 3 vN-NEH Algorithm for Solving Fm|prmu|Cmax

Initial phase
Sort n jobs in non-increasing order of their total processing
times and put them into the initial list of jobs
L = {1, . . . , n}.
Insertion phase
Initialize the partial sequence LP of jobs with the first job
from L and L = L \ {1}
Initialize the vN-list, LN , with the jobs {2, . . . ,min{N +

1, n}} and remove these jobs from L
for j = 2, . . . , n do
Evaluate each job in LN , put the best job in the respective
place in LP and remove this job from LN
if (LN = ∅ and L ̸= ∅) then

Refill LN with min{N , |L|} jobs from L and remove
these jobs from L.

end if
end for
return LP and Cmax.

closely, since they can significantly improve the results of
NEH and NEH-based algorithms.

The next section presents a new modification of the
input sequence in NEH-based algorithms. The operation
of the proposed approach will be verified in Section IV
using numerical experiments on standard Taillard and VRF
benchmarks.

III. PROPOSED METHOD
The Turning-off-Machine (ToM) modifies the way the input
sequence is created in NEH-based algorithms. Let us recall
that in the original NEH algorithm, jobs are sorted in
non-increasing order of their total processing times, so the
jobs in the input sequence fulfill the condition (2).

68942 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 2. Processing times of jobs for Fm|prmu|Cmax with four jobs
(n = 4) and four machines (m = 4).

TABLE 3. Input sequences produced by turning of one (respectively M1,
M2, M3, M4) machine and resulting input sequences.

The proposed here ToM method relies on excluding
(‘‘turning off’’) them′ (m′ is a parameter of the ToMmethod)
machine from computing the TPT of jobs. Thus, the resulting
input sequence Jπ (1), . . . , Jπ (n) fulfills the condition:

TPT′(m′)π (1) ⩾ . . . ⩾ TPT′(m′)π (n), (3)

where TPT′(m′) is computed as follows

TPT′(m′)j =

m∑
i=1
i̸=m′

pi,j, j = 1, . . . , n. (4)

Remark. It should be underlined that the ToM method can
be used to create other (than TPT) sorting criteria, it is
enough to exclude (‘‘turn off’’) the selected machine from
the computation in the initial phase.
Example 1: The operation of the ToM method is illus-

trated using a simple example of Fm|prmu|Cmax with
4 machines and 4 jobs. Input data for Fm|prmu|Cmax is given

TABLE 4. TPT and TPT′(1)-(4) values for data in Table 2 and respective
input sequences.

in Table 2, the operation of ToM is illustrated in Table 3,
and the summary of total processing times and the respective
input sequences are summarized in Table 4. As can be seen
from Table 4, the ToM method has a significant impact on
the input sequence, i.e., the obtained input sequences differ
greatly from each another. Ifm′

̸∈ {1, . . . ,m}, then ToMgives
the same input sequence as the one obtained by using TPT.

ToM can be run together with the insertion phase (e.g.,
from NEH) for all m′

∈ {0, 1, . . . ,m}. The resulting ToM+

method (see Algorithm 4) can be considered as a newmethod
for solving Fm|prmu|Cmax. As can be seen, ToM+ produces

Algorithm 4 ToM+ Algorithm for Solving Fm|prmu|Cmax

for m′
= 0, 1, . . . ,m do

Initial phase
Sort n jobs in non-increasing order of TPT′(m′)j and put
them into the initial list of jobs L(m′) = {1, . . . , n}.
Insertion phase
Insert jobs into partial sequence LP(m′) according to an
insertion strategy.

end for
return LP(m′′), Cmax(m′′)
(where m′′

= argmin{Cmax(m′) : m′
= 0, 1, . . . ,m}).

the population of m + 1 solutions from among which the
best, with respect to the considered criterion (heremakespan),
solution is selected as a final result. The asymptotic time
complexity of ToM+ is m-times greater than the complexity
of the respective (underlying) scheduling algorithm. For
example, the asymptotic time complexity of NEH algorithm
with Taillard acceleration and combined with the ToM+

method is O(m2n2).
The quality of the solutions produced by the ToM-based

methods and other methods considered in this study will be
evaluated by using two quality measures. The first measure is
the average relative percentage deviation (ARPD) (used, e.g.,
in [22], [34]) defined as:

ARPD =
1
I

I∑
i=1

Si − Si,best
Si,best

, (5)

VOLUME 12, 2024 68943



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 5. ARPD [%] for N-NEH, ToM+N-NEH (ToM+N), vN-NEH and ToM+vN-NEH (ToM+vN) algorithms on Taillard and VRF benchmarks.

TABLE 6. ARPD [%] for N-NEH+, ToM+N+ and ToM+vN+ algorithms on
Taillard and VRF benchmarks.

where I is the number of problem instances, Si is the solution
of the evaluated algorithm on the instance i ∈ I , and Si,best is
the best solution known so far for this instance. The ARPD
measure depends on the best known solution so its value can
change over time. In contrast, the value of the second quality
measure ARD.NEH (Average Relative Deviation over NEH)
measure, proposed in [27], does not change over time since it
refers to the respective NEH results. The ARD.NEHmeasure
is computed as follows:

ARD.NEH =
1
I

I∑
i=1

NEHi − Si
NEHi

, (6)

where NEHi is the solution obtained using theNEH algorithm
for instance i ∈ I .
The running time of the algorithms will be evaluated by

using the average CPU (ACPU) usage [37] defined as:

ACPU =
1
I

I∑
i=1

CPUi, (7)

where CPUi is the CPU time of an algorithm on the instance
i ∈ I . We will also use the ART.NEH (the Average Relative

TABLE 7. Non-parametric Wilcoxon signed-rank test for pairwise
comparison of ToM+ method variants (with various lengths of the
vN-list).

Time over NEH) relative measure recently proposed in [28]:

ART.NEH =

∑I
i=1

CPUi
CPUi,NEH

I
, (8)

where CPUi is the CPU time of an algorithm on the
instance i ∈ I , and CPUi,NEH is the CPU time of NEH on
that instance. As can be seen from the formula (8), ART.NEH
indicates how many times, on average, the evaluated
algorithm is faster (ART.NEH<1) or slower (ART.NEH>1)
than the classical NEH algorithm. Moreover, ART.NEH,
in contrary to ACPU, is software and hardware independent,
and therefore, it is much more reliable and does not require
reimplementation of algorithms from the literature.

Next section presents the results of the N-NEH, N-NEH+,
vN-NEH, and vN-NEH+ algorithms with and without the
usage of the proposed ToM+ method. We would like
to underaline that all these algorithms employ Taillard’s
acceleration. For the purposes of this paper the algorithms are
denoted as follows: ToM+N will stand for N-NEH combined
with ToM+, ToM+N+ will stand for N-NEH+ combined
with ToM+, ToM+vNwill stand for vN-NEH combined with

68944 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 8. ART.NEH for ToM+N and ToM+vN algorithms on Taillard and VRF benchmarks.

ToM+, and ToM+vN+ will stand for vN-NEH+ combined
with ToM+. Let us point out that if the length of the list
of candidate jobs is equal to 1 then the above algorithms
correspond, respectively, to NEH and NEH combined with
ToM+.

IV. COMPUTATIONAL EXPERIMENTS
The scheduling algorithms mentioned in the previous section
were implemented in C# and run on a computer with two Intel
Xeon E5-2660 v4 CPUs (14 cores, each with 2.0 GHz base
clock speed). Although some of these algorithms can be run
on multiple cores, all of them were run on one core to make
the comparison reliable.

We evaluate the efficiency of the considered algorithms by
using the Taillard [38] and VRF [39] benchmark problems:

• Taillard benchmark includes 120 instances:
n ∈ {20, 50, 100, 200, 500},
m ∈ {5, 10, 20}.

• VRF benchmark includes 480 instances divided into
Small and Large subsets (each with 240 instances):
− Small instances:

n ∈ {10, 20, 30, 40, 50, 60},
m ∈ {5, 10, 15, 20},

− Large instances:
n ∈ {100, 200, 300, 400, 500, 600, 700, 800}
m ∈ {20, 40, 60}.

Best solutions, provided by the authors of these benchmarks,
are updated in the present paper with recent results for
Taillard and VRF benchmarks from, respectively, [12]
and [13].

A. QUALITY OF RESULTS (ARPD)
Table 5 presents the ARPD values for the N-NEH+,
vN-NEH+, ToM+N-NEH and ToM+vN-NEH algorithms
(these result are provided for illustrative purposes only),
and Table 6 presents the ARPD values for the ToM+N-
NEH+, and ToM+vN-NEH+ algorithms. The lengths of list
of candidate jobs for extended versions of algorithms (marked
with a plus sign), have been selected based on [25].

The tables show that thanks to the use of the ToM+

method it is possible to significantly improve the results of the
N-NEH, N-NEH+, vN-NEH, and vN-NEH+ algorithms. The
improvement depends on the benchmark problem:

• for the VRF Large instances, the improvement does not
exceed 20%, and the average improvement over all VRF
Large instances is about 17%,

• for the VRF Small and Taillard benchmark problems, the
improvement is greater than 25% for each length of the
N -list, and the average improvement over all instances
in both sets is nearly 30%.

Moreover, ToM+ improved the results of classical NEH
(corresponding to the results with N -list/vN-list of length 1)
on average by 25%.

To verify if the results of ToM+N -NEH, ToM+vN-NEH,
N -NEH, and vN-NEH statistically differ significantly from
each other, we used the non-parametric Wilcoxon signed-
rank test (a paired difference test). Tables 7 shows only
these pairs of compared methods for which no significant
difference (at the significance level α = 0.05) between
their results has been observed. It is seen that for Taillard
benchmark there is no statistically significant difference
between the results of compared methods. In contrary, for
the VRF Small instances the results of most of the compared
methods statistically differ significantly, and for VRF Large
instances there are only two pairs of methods whose results
are not statistically different from each other. Based on
the results of the Wilcoxon test we can conclude that for
the majority of benchmark instances algorithms employing
ToM+ methods produce results that are statistically different
from each other.

B. COMPUTATIONAL TIME (ACPU, ART.NEH)
As already mentioned, the asymptotic time complexity of
the algorithms that employ ToM+ ((ToM+)-based algo-
rithms) increases m + 1 times, where m is the number of
machines. Therefore, the biggest difference in computational
times between the basic versions of the algorithms and
their (ToM+)-based counterparts can be observed for VRF

VOLUME 12, 2024 68945



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

FIGURE 1. ARPD vs. ART.NEH of selected heuristics in logarithmic scale on Taillard’s
instances; circles mark state-of-the-art algorithms and bullets mark algorithms.

TABLE 9. ART.NEH for ToM+N+ and ToM+vN+ algorithms on Taillard and
VRF benchmarks.

Large instances (where m ranges from 20 to 60). From
Tables 15 and 16, we can see that the computational time of
the (ToM+)-based algorithms increased about 15 times for
VRF S and 45 times for VRF L instances, and about 18 times
for Taillard benchmark.

Tables 8 and 9 show the ART.NEH values obtained for
the (ToM+)-based algorithms. As can be seen from the
tables, ART.NEH for VRF benchmark are close to the values
obtained from the division of ACPU of an algorithm by
ACPU of NEH:

ART.NEHa ≈ ACPUa/ACPUNEH, (9)

where a denotes the evaluated algorithm. This follows from
the specific construction of the VRF benchmark, where for
each number of jobs, there is a constant set of machines
(m ∈ {5, 10, 15, 20} for VRF S and m ∈ {20, 40, 60} for
VRF L). In the case of Taillard benchmark, the CPU for
the largest instance (with n = 500, m = 20) has a strong
impact on the value of ACPUa/ACPUNEH. Therefore, for
the Taillard benchmark, there is a large difference between
ACPUa/ACPUNEH, which is on average over 18, and the
ART.NEHa, which on average does not exceed 14. The
ART.NEH is software, hardware, and instance independent,
therefore it is more reliable than ACPU. Hence, based on
ART.NEH, the usage of the ToM+ method for the Taillard
benchmark increases the computation time by about 14 times
(which is as much as 1/4 lower than it would appear from the
ACPU index).

C. COMPARISON OF RESULTS
Figs. 1 and 2 show the comparison of (ToM+)-based
algorithms with the most known deterministic constructive
algorithms (listed in Table 10) for solving Fm|prmu|Cmax
([3], [5], [6], [17], [18], [31], [33], [42]).

The figures show that the effectiveness of the ToM+

method varies depending on the benchmark analyzed. For
the Taillard’s benchmark, the proposed method definitely
stands out in terms of efficiency of operation. For the VRF
Large instance, one can also see the high efficiency of the
ToM+ method, which, however, appears to be slightly less
efficient than the SMα+ method. To verify if the results of

68946 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

FIGURE 2. ARPD vs. ART.NEH (in logarithmic scale) of selected heuristics on VRF L instances;
circles mark state-of-the-art algorithms and bullets mark algorithms.

TABLE 10. (ToM+)-based and other known deterministic constructive
methods for solving Fm|prmu|Cmax.

N -NEHwith ToM+ andN -NEHwith SMα+ are statistically
different from each other, we again use the non-parametric
Wilcoxon signed-rank test. The results are presented in
Table 11. The results of the test indicate that in general
there is no statistically significant difference between the
results of the compared methods. It is worth noting that the

TABLE 11. Results of non-parametric Wilcoxon signed-rank test.

input sequence modification methods (ToM+ and SMα+)
allow obtaining by far the best results among the analyzed
algorithms. This observation confirms great impact of the
input sequence on the results of NEH. Therefore, we decided
to combine ToM+ with SMα+ and N -list technique, and
investigate the potentials of these combinations. The obtained
result are described in the next section.

VOLUME 12, 2024 68947



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 12. APRD values for ToM+SMα+N+ and ToM+SMα+vN+ algorithms.

TABLE 13. ARD.NEH [%] for N-NEH+, ToM+N+ and ToM+vN+ algorithms on Taillard and VRF benchmarks.

TABLE 14. ARD.NEH [%] for N-NEH+, ToM+N+ and ToM+vN+ algorithms
on Taillard and VRF benchmarks.

D. ToM+SMα+N+ AND ToM+SMα+vN+ ALGORITHMS
This section presents algorithms that extend the N -NEH
algorithm by using the ToM+ and SMα+ methods, respec-
tively. An undoubted advantage of the ToM+ and SMα+

methods (in addition to the ability of being combined
with each other) is the possibility to use them with the
original NEH algorithm. In addition, NEH-based algorithm

employing these two input sequence modification methods
preserve their deterministic and constructive character (let us
recall that these features are an important factor in selecting
algorithms considered in this paper). Table 12 shows the
results of the proposed algorithms. For a given parameter k ,
SMα+, ToM+ and ToM+vN+must be run k+1 times, hence
their computational times is respectively greater. However,
the presented ARPD values confirm the efficiency of the
method resulting from the combination of the ToM+SMα+

method with the N -list technique. The ToM+SMα+vN+

algorithm gave better results for smaller instances, whereas
ToM+SMα+N+ gave better results for larger instances. For
Taillard instances, both algorithms produced similar results
and they both outperformed the FRB5 algorithm (which
achieved the smallest ARPD = 1.53 [5] known so far
for deterministic algorithms). FRB5 is known to be one
of the most effective algorithms for solving Fm|prmu|Cmax
(it belongs to the FRB deterministic algorithms, which,
however, are not constructive algorithms, therefore, they are
not included in the presented summary of the results).

For the Taillard benchmark, the ToM+SMα+ improved
ARPD result of the NEH algorithm from 3.37 to 1.97. This
means that among deterministic construction algorithms only
N -list-based methods allowed to obtain results better than

68948 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 15. ACPU [s] for ToM+N and ToM+vN algorithms on Taillard and VRF benchmarks.

TABLE 16. ACPU for ToM+vN-NEH+ and ToM+vN-NEH+ algorithms on Taillard and VRF benchmarks.

TABLE 17. ARD.NEH values for ToM+SMα+N+ and ToM+SMα+vN+ algorithms.

the existing results. For VRF Small benchmark, ARPD has
changed from 3.84 to 2.02, which gives an improvement
of about 50%. The smallest improvement was achieved for
the VRF Large benchmark, where ARPD has changed from
3.41 to 2.66.

Both described methods (ToM+ and SMα+) modify
the input sequence (the first step of the NEH-based
scheduling algorithm). As shows the obtained results,

the modification of the input sequence can significantly
improve NEH results. Even though this issue has been
studied in many works so far, still there is no sorting
method that would provide significantly better results than
sorting tasks based on their total production time. This
work shows, however, that the sorting problem is very
important for NEH-based algorithms and it is still an open
issue.

VOLUME 12, 2024 68949



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 18. ARPD [%] for N-NEH, ToM+N-NEH (ToM+N), vN-NEH and ToM+vN-NEH (ToM+vN) algorithms on Taillard and VRF benchmarks.

TABLE 19. ARPD [%] for N-NEH+, ToM+N+ and ToM+vN+ algorithms on
Taillard and VRF benchmarks.

E. PRACTICAL AND RESEARCH IMPLICATIONS
The proposed approach has important practical and research
implications, some of them are listed below:

• it enables to shorten production time – as shows the
analysis of representative benchmarks, the proposed
method has reduced the deviation of the jobs completion
time (makespan) from the optimal solution by up to
50%,

• it enables to realize larger number of orders and thus
increase the company’s revenues – the ART.NEH mea-
sure indicates that it is possible to increase production
by over 1% compared to scheduling with the NEH
algorithm,

• it can be easily implemented into existing NEH-based
algorithms (NEH-di, NEHD, NEHKK, NEHFF, etc.),
also those used in real production environment,

• it can be useful for other researchers investigating
different priority rules – here, we have only analyzed
the TPT priority rule, but the method can be easily used
with other priority rules (such as sum of average times
and standard deviation used in NEHFF),

• it can be used to modify NEH-based algorithms for
solving PFSP with other optimization criteria, e.g.,

minimization of total tardiness [7], minimization of total
flow time [8], minimization of core waiting time and
core idle time [1],

• it can be used to solve such problems as: blocking
flow-shop scheduling problem (BFSP) [41], distributed
heterogeneous hybrid flow shop lot-streaming schedul-
ing problem (DHHFLSP) [35], permutation flow shop
scheduling problem with multiple servers (PFSMS) [9],

• it can be used as an element of a hybrid approach where
NEH-based algorithms are used to generate an initial
solution, and then this initial solution is improved using,
for example, local optimization algorithms (such as LS,
ALNS, VNS),

• it can also be used to generate an initial population
for population-based metaheuristics – the number of
generated solutions is m · N · S, where m is the number
of machines for a given instance of the problem, N is the
length of the list of candidate jobs, and S is the parameter
of the Swap method.

V. CONCLUSION
In this paper, we propose a new ToM+method for modifying
the input sequence in the NEH-based algorithms. The ToM+

method consists in excluding successive machines and not
taking into account the operation time on a given machine
when calculating the index used to sort the jobs in the initial
phase in NEH-based algorithms.

A. RESULTS OF ToM+

The proposed method has been implemented for NEH,
N-NEH and vN-NEH algorithms. Tests of the ToM+ method
were carried out using the most popular benchmarks for
the PFSP problem: the Taillard benchmark and the VRF
benchmark. The proposed method enabled the performance
(ARPD) of the analyzed algorithms to be improved, the
obtained improvement ranges from 13.5% to nearly 35%. The
amount of improvement achieved was strongly dependent
on the benchmark analyzed. The ToM+ method increases
the computational complexity of the algorithms by m times,
where m is the number of machines for a given instance.

68950 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

TABLE 20. Detailed results for Figure 1.

TABLE 21. Detailed results for Figure 2.

The proposed ToM+ method was combined with the SMα+

method. We want to underline that, according to our best
knowledge, both methods are the first deterministic methods
that modify the input sequence. It is also worth noting that
it is possible to combine these two methods in the frames of
one algorithm.

B. RESULTS OF ToM+ AND SMαP+

The proposed algorithms, combining ToM+ method,
SMαP+, N -list, and vN -list technique, produced the best

results among the deterministic constructive algorithms.
Moreover, it is worth to underline that for the Taillard
benchmark the proposed algorithm produced the better
average relative percentage deviation (ARPD) than the FRB5,
which is the best algorithm among FRB algorithms. The
obtained results confirm the importance of the problem
of creating input sequence. Thanks to the proposed
modifications, it is possible to improve the results by up to
nearly 50%. We believe that this confirms the importance of
this problem for NEH-based algorithms.

VOLUME 12, 2024 68951



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

C. FUTURE WORKS
An undoubted advantage of the ToM+ and SMα+ methods
is that they produce the results (a family of good quality
solutions) that can be used as an initial population, for
example, in genetic algorithms. It is also worth noting
the possibility of simple parallelization of the calculations
performed by the ToM+ method, i.e. running a given
algorithm for different input sequences, which resulted from
the ToM+ method. Ease of implementation, the ability to
parallelize calculations and the population-based nature of
the resulting solution are undoubted advantages of the ToM+

method. We plan to analyze the effectiveness of using the
created populations of solutions (described in the previous
step) for genetic algorithms as an initial population. We also
plan to implement methods that employ local optimization of
the partial sequence. Our last but not least goal is to analyze
the possibilities to improve the results of NEH but various
other modifications of the input sequence.

APPENDIX
Tables 13-14 show the values of ARD.NEH measure.
Tables 15-16 include ACPU values of considered meth-
ods. Tables 18 and 19 show the ARPD values of the
consideredmethods (computed based on the results published
by Eric Taillard on his homepage and the results from [39]).
Tables 20 and 21 provide the detailed results corresponding
to Figures 1 and 2.

REFERENCES
[1] A. Alfieri, M. Garraffa, E. Pastore, and F. Salassa, ‘‘Permutation flowshop

problems minimizing core waiting time and core idle time,’’ Comput. Ind.
Eng., vol. 176, Feb. 2023, Art. no. 108983.

[2] C. E. Dodu andM. Ancău, ‘‘A tabu search for time minimization in printed
circuit board assembly,’’ Academic J. Manuf. Eng., vol. 19, no. 2, pp. 5–10,
2021.

[3] X. Dong, H. Huang, and P. Chen, ‘‘An improved NEH-based heuristic for
the permutation flowshop problem,’’ Comput. Oper. Res., vol. 35, no. 12,
pp. 3962–3968, Dec. 2008.

[4] G. Erseven, G. Akgün, A. Karakaş, G. Yarıkcan, Ö. Yücel, and A. Öner,
‘‘An application of permutation flowshop scheduling problem in quality
control processes,’’ in Proc. Int. Symp. Prod. Res., N. M. Durakbasa and
M. G. Gencyilmaz, Eds. Cham, Switzerland: Springer, 2018, pp. 849–860.

[5] V. Fernandez-Viagas and J. M. Framinan, ‘‘On insertion tie-breaking rules
in heuristics for the permutation flowshop scheduling problem,’’ Comput.
Oper. Res., vol. 45, pp. 60–67, May 2014.

[6] V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan, ‘‘A new vision of
approximatemethods for the permutation flowshop tominimisemakespan:
State-of-the-art and computational evaluation,’’Eur. J. Oper. Res., vol. 257,
no. 3, pp. 707–721, Mar. 2017.

[7] V. Fernandez-Viagas and J. M. Framinan, ‘‘NEH-based heuristics for the
permutation flowshop scheduling problem to minimise total tardiness,’’
Comput. Oper. Res., vol. 60, pp. 27–36, Aug. 2015.

[8] V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M. Framinan, ‘‘The
distributed permutation flow shop to minimise the total flowtime,’’
Comput. Ind. Eng., vol. 118, pp. 464–477, Apr. 2018.

[9] V. Fernandez-Viagas, L. Sanchez-Mediano, A. Angulo-Cortes,
D. Gomez-Medina, and J. M. Molina-Pariente, ‘‘The permutation
flow shop scheduling problem with human resources: MILP models,
decoding procedures, NEH-based heuristics, and an iterated greedy
algorithm,’’Mathematics, vol. 10, no. 19, p. 3446, Sep. 2022.

[10] J. M. Framinan, R. Leisten, and C. Rajendran, ‘‘Different initial sequences
for the heuristic of Nawaz, Enscore and Ham to minimize makespan,
idletime or flowtime in the static permutation flowshop sequencing
problem,’’ Int. J. Prod. Res., vol. 41, no. 1, pp. 121–148, Jan. 2003.

[11] M. R. Garey, D. S. Johnson, and R. Sethi, ‘‘The complexity of flowshop
and jobshop scheduling,’’ Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976.

[12] J. Gmys, ‘‘Exactly solving hard permutation flowshop scheduling prob-
lems on peta-scale GPU-accelerated supercomputers,’’ Informs J. Comput.,
vol. 34, no. 5, pp. 2502–2522, Sep. 2022.

[13] J. Gmys, M. Mezmaz, N. Melab, and D. Tuyttens, ‘‘A computationally
efficient branch-and-bound algorithm for the permutation flow-shop
scheduling problem,’’ Eur. J. Oper. Res., vol. 284, no. 3, pp. 814–833,
Aug. 2020.

[14] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan, ‘‘Opti-
mization and approximation in deterministic sequencing and scheduling:
A survey,’’ in Discrete Optimization II (Annals of Discrete Mathematics),
vol. 5, P. L. Hammer, E. L. Johnson, and B. H. Korte, Eds. Amsterdam,
The Netherlands: Elsevier, 1979, pp. 287–326.

[15] S. M. Johnson, ‘‘Optimal two- and three-stage production schedules with
setup times included,’’ Nav. Res. Logistics Quart., vol. 1, no. 1, pp. 61–68,
Mar. 1954.

[16] P. Kalczynski and J. Kamburowski, ‘‘On the NEH heuristic for minimizing
the makespan in permutation flow shops,’’ Omega, vol. 35, no. 1,
pp. 53–60, Feb. 2007.

[17] P. J. Kalczynski and J. Kamburowski, ‘‘An improved NEH heuristic to
minimize makespan in permutation flow shops,’’ Comput. Oper. Res.,
vol. 35, no. 9, pp. 3001–3008, Sep. 2008.

[18] P. J. Kalczynski and J. Kamburowski, ‘‘An empirical analysis of the
optimality rate of flow shop heuristics,’’ Eur. J. Oper. Res., vol. 198, no. 1,
pp. 93–101, Oct. 2009.

[19] A. Khare and S. Agrawal, ‘‘Effective heuristics and metaheuristics
to minimise total tardiness for the distributed permutation flowshop
scheduling problem,’’ Int. J. Prod. Res., vol. 59, no. 23, pp. 7266–7282,
Dec. 2021.

[20] C. T. D. Laurentys and M. S. Nagano, ‘‘Evaluating procedures in the
NEH heuristic for the PFSP-SIST,’’ J. Project Manage., vol. 9, no. 1,
pp. 17–26, 2024.

[21] W. Liu, Y. Jin, and M. Price, ‘‘A new improved NEH heuristic for
permutation flowshop scheduling problems,’’ Int. J. Prod. Econ., vol. 193,
pp. 21–30, Nov. 2017.

[22] B. Naderi and R. Ruiz, ‘‘The distributed permutation flowshop scheduling
problem,’’ Comput. Oper. Res., vol. 37, no. 4, pp. 754–768, Apr. 2010.

[23] M. Nawaz, E. E. Enscore, and I. Ham, ‘‘A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,’’ Omega, vol. 11, no. 1,
pp. 91–95, Jan. 1983.

[24] M. A. H. Newton, V. Riahi, K. Su, and A. Sattar, ‘‘Scheduling blocking
flowshops with setup times via constraint guided and accelerated local
search,’’ Comput. Oper. Res., vol. 109, pp. 64–76, Sep. 2019.

[25] R. Puka, J. Duda, A. Stawowy, and I. Skalna, ‘‘N -NEH+ algorithm for
solving permutation flow shop problems,’’ Comput. Oper. Res., vol. 132,
Aug. 2021, Art. no. 105296.

[26] R. Puka, J. Duda, and A. Stawowy, ‘‘Input sequence of jobs on NEH
algorithm for permutation flowshop scheduling problem,’’ Manage. Prod.
Eng. Rev., vol. 1, no. 13, pp. 32–43, Mar. 2022.

[27] R. Puka, I. Skalna, and T. Derlecki, ‘‘New measures of algorithms quality
for permutation flow-shop scheduling problem,’’ in Proc. Ann. Comput.
Sci. Inf. Syst., vol. 35, Sep. 2023, pp. 1107–1111.

[28] R. Puka, I. Skalna, J. Duda, and A. Stawowy, ‘‘Deterministic constructive
vN -NEH+ algorithm to solve permutation flow shop scheduling problem
with makespan criterion,’’ Comput. Oper. Res., vol. 162, Feb. 2024,
Art. no. 106473.

[29] R. Puka, I. Skalna, and B. Lamasz, ‘‘Swap method to improve N -NEH+

algorithm,’’ inProc. Int. Conf. Electr., Comput. Energy Technol. (ICECET),
Jul. 2022, pp. 1–6.

[30] R. Puka and B. Łamasz, ‘‘Impact of input sequence on N -NEH+

algorithm,’’ in Proc. 10th Carpathian Logistics Congr. (CLC), 2022,
pp. 191–196.

[31] S. F. Rad, R. Ruiz, and N. Boroojerdian, ‘‘New high performing heuristics
for minimizing makespan in permutation flowshops,’’ Omega, vol. 37,
no. 2, pp. 331–345, Apr. 2009.

[32] V. Riahi, M. Khorramizadeh,M. A. HakimNewton, and A. Sattar, ‘‘Scatter
search for mixed blocking flowshop scheduling,’’ Expert Syst. Appl.,
vol. 79, pp. 20–32, Aug. 2017.

[33] I. Ribas, R. Companys, and X. Tort-Martorell, ‘‘Comparing three-step
heuristics for the permutation flow shop problem,’’ Comput. Oper. Res.,
vol. 37, no. 12, pp. 2062–2070, Dec. 2010.

68952 VOLUME 12, 2024



R. Puka et al.: Deterministic Method for Input Sequence Modification in NEH-Based Algorithms

[34] R. Ruiz and C. Maroto, ‘‘A comprehensive review and evaluation of
permutation flowshop heuristics,’’ Eur. J. Oper. Res., vol. 165, no. 2,
pp. 479–494, Sep. 2005.

[35] W. Shao, Z. Shao, and D. Pi, ‘‘Modelling and optimization of distributed
heterogeneous hybrid flow shop lot-streaming scheduling problem,’’
Expert Syst. Appl., vol. 214, Mar. 2023, Art. no. 119151.

[36] Z. Shao, W. Shao, and D. Pi, ‘‘Effective constructive heuristic and
iterated greedy algorithm for distributed mixed blocking permutation
flow-shop scheduling problem,’’ Knowl.-Based Syst., vol. 221, Jun. 2021,
Art. no. 106959.

[37] E. Taillard, ‘‘Some efficient heuristicmethods for the flow shop sequencing
problem,’’ Eur. J. Oper. Res., vol. 47, no. 1, pp. 65–74, Jul. 1990.

[38] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.

[39] E. Vallada, R. Ruiz, and J. M. Framinan, ‘‘New hard benchmark for
flowshop scheduling problems minimising makespan,’’ Eur. J. Oper. Res.,
vol. 240, no. 3, pp. 666–677, Feb. 2015.

[40] Y. Wang, Y. Wang, Y. Han, J. Li, K. Gao, and Y. Nojima, ‘‘Intelligent
optimization under multiple factories: Hybrid flow shop scheduling
problem with blocking constraints using an advanced iterated greedy
algorithm,’’ Complex Syst. Model. Simul., vol. 3, no. 4, pp. 282–306,
Dec. 2023.

[41] Q. Wu, Q. Gao, W. Liu, and S. Cheng, ‘‘Improved NEH-based heuristic
for the blocking flow-shop problem with bicriteria of the makespan and
machine utilization,’’ Eng. Optim., vol. 55, no. 3, pp. 399–415, Mar. 2023.

[42] K.-C. Ying and S.-W. Lin, ‘‘A high-performing constructive heuristic
for minimizing makespan in permutation flowshops,’’ J. Ind. Prod. Eng.,
vol. 30, no. 6, pp. 355–362, Sep. 2013.

[43] J. Zhang, S. D. Dao, W. Zhang, M. Goh, G. Yu, Y. Jin, and W. Liu, ‘‘A
new job priority rule for the NEH-based heuristic to minimize makespan
in permutation flowshops,’’ Eng. Optim., vol. 55, no. 8, pp. 1296–1315,
Aug. 2023.

RADOSŁAW PUKA received the Ph.D. degree in
industrial engineering from the AGH University
of Science and Technology, Poland, in 2019.
He has been involved in the development of
novel algorithms for a number of manufacturing
companies. His research interests include design
and improvement of algorithms, and use of AI to
support decision making.

IWONA SKALNA (Member, IEEE) is currently
a Researcher and a Lecturer with the Department
of Applied Computer Science, AGH University
of Krakow, Poland. She is also a Professor of
computer science. She is the author of more
than 100 scientific publications, including several
monographs and articles in prestigious interna-
tional journals. Her research interests include
modeling of uncertainty, scheduling optimization,
and artificial intelligence. She is a member of the

Polish Information Processing Society and GDR MACS.

BARTOSZ ŁAMASZ received the Ph.D. degree in
management science from the AGH University of
Science and Technology, Poland, in 2017. He is
currently an Assistant Professor with the Depart-
ment ofManagement, AGHUniversity of Krakow.
His research interests include price risk manage-
ment and commodity options market. He also
works on issues related to applications of decision
rules and machine learning to decision-making in
financial markets.

JERZY DUDA is currently a Professor with
the Department of Business Informatics and
Managerial Engineering, Faculty of Management,
AGH University of Krakow. He was involved
in many projects on information technology and
production management. His research interests
include computational intelligence in production
management, heuristic algorithms, single and
multi-criteria optimization, advanced planning and
scheduling systems, and uncertainty modeling.

ADAM STAWOWY received the M.S. degree
in management science and the Ph.D. degree in
economics from the AGH University of Science
and Technology (UST), Cracow, Poland. He is
currently a Professor with the Department of Busi-
ness Informatics and Management Engineering,
AGH University of Krakow. His current research
interests include the application of heuristic algo-
rithms and meta-heuristic to solve scheduling and
classification problems.

VOLUME 12, 2024 68953


