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ABSTRACT Scoliosis refers to the abnormal curvature of human spine, which is one of the most common
deformities in children and adolescents. The Cobb angle is the gold standard for quantifying the severity of
scoliosis and is used to assess the severity of scoliosis. Often the accuracy of the Cobb angle measurement
relies on the subjective experience of the doctor and the process is very time consuming. In this study,
we propose a new deep neural network, ATT UNet 3+, based on UNet 3+. Our approach incorporates
a novel hybrid attention mechanism in the network’s upsampling process. This mechanism allows for the
appropriate reweighting of fused multi-scale information and facilitates effective supervision of the final
output results. The proposed neural network is trained, tested and validated on 155 X-ray ortho-slices. The
deep learning network is compared with the more effective neural networks commonly used today. ATT
UNet 3+ achieves the best performance in the segmentation evaluation results. Regarding the final Cobb
angle calculations, the absolute mean error between the longest distance ellipsoidal point (LDEP) method
and expert measurements amounted to 1.6◦. ATT UNet 3+ provides a potential tool for segmenting the spine
in X-ray, which can improve the efficiency and accuracy of doctors in processing scoliosis pathological
images.

INDEX TERMS Cobb angle, deep learning, image segmentation, scoliosis, X-ray image.

I. INTRODUCTION
Scoliosis, a three-dimensional spinal deformity often emerg-
ing during adolescence, presents a significant challenge in
healthcare, particularly with the prevalence of the ambiguous
‘‘adolescent idiopathic scoliosis (AIS),’’ accounting for up
to 80% of cases [1], [2]. While mild instances may not
disrupt daily life, the progressive nature of the condition
can lead to severe physical deformities, impacting growth
and development. Critically, scoliosis may adversely affect
cardiopulmonary function, with potential for paralysis in
severe cases [3]. The gold standard for diagnosis, the Cobb
angle, as proposed by John Robert Cobb [4], plays a pivotal
role in treatment planning, necessitating a robust and efficient
measurement approach.

The associate editor coordinating the review of this manuscript and
approving it for publication was Henry Hess.

FIGURE 1. Method of measuring Cobb angle.

The existing literature reveals challenges in Cobb
angle measurement, relying on manual methods that are
time-consuming and prone to subjectivity. Previous studies

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

68545

https://orcid.org/0000-0003-3868-0593


L. Peng et al.: Cobb Angle Measurement Based on Spine Segmentation Using ATT UNet 3+

highlight errors of up to 11.8◦ in Cobb angle measure-
ment [5], underscoring the need for advanced, automated
techniques. Addressing this issue, our work aims to develop a
deep learning network, ATT UNet 3+, incorporating a novel
attention mechanism for accurate segmentation of spinal
X-ray images. Additionally, we introduce the longest distance
ellipsoidal point (LDEP) method, enhancing computational
efficiency in Cobb angle calculation. Through comparative
analysis with established neural networks like PSPNet
and UNet, ATT UNet 3+ emerges as a superior model,
showcasing its efficacy in scoliosis evaluation.

The contributions of this paper are threefold:
(1) The introduction of ATT UNet 3+, a deep learning

model with an innovative attention mechanism, ensuring
precise segmentation for Cobb angle determination.

(2) The proposal of the LDEPmethod, offering an efficient
and accurate approach to Cobb angle calculation, thereby
enhancing computational efficiency.

(3) Comparative analysis demonstrating the superiority of
ATT UNet 3+ over existing models like PSPNet and UNet,
validating its potential as a transformative tool in scoliosis
assessment.

The remaining of this paper is as follows. Section II
describes spine segmentation and attention-based related
work. Section III presents the proposed network and exper-
imental methods. The experimental results and discussions
are presented in section IV. Section V discuss the feasibility
of the method. Finally, section VI concludes the paper.

II. RELATED WORKS
A. SPINE SEGMENTATION BASED ON CONVENTIONAL
MACHINE LEARNING
In the field of spine segmentation, the integration of machine
learning and digital image processing techniques holds
immense promise for advancing medical diagnosis. Andre
Mastmeyer et al. [6] uses a deformation model to constrain
the primary shape of the vertebral body and then use the
area growth method to detect the fine surface of the vertebral
soft tissue junction. By constructing an energy generalization,
the contour profile is gradually approached towards the
edge of the object to be detected, driven by the minimum
value of the energy function, and the target is finally
segmented. Georg et al. [7] combined active contours and
the Chan-Vese [8] intensity model into a level set algorithm
to achieve low-quality, diseased MRI image segmentation
of the spine. Active contours are often time consuming.
Mukherjee et al. [9] selected the best filter among the four
denoising techniques: bilateral filters [10], nonlocal means
filters [11], principal neighborhood dictionaries nonlocal
means filtering [12], and block matching three-dimensional
filtering [13]. Due to the poor contrast of radiographs, his-
togram equalization was applied to enhance image contrast,
and the Otsu thresholding method was used to find the
Canny edge points of vertebrae. Finally, the two straight
lines between the upper and lower endplates of each vertebra

are detected using the Hough transform, and the one with
the largest angle is compared as the Cobb angle. However,
these methods require complicated image processing stages
that involve image filtering, enhancement, segmentation, and
feature extraction to obtain vertebra assessment, which make
the techniques computationally expensive and temptable to
errors caused by the variations in X-ray spinal images.

B. DEEP LEARNING BASED SPINE SEGMENTATION
With the development of deep learning, some studies have
shown the feasibility of neural network in the field of
medical imaging analysis of spinal patients. Wu et al. [14]
proposed a new Multi-View Correlation Network (MVCNet)
architecture to estimate the Cobb angle through the four
angles of the vertebral body in the anteroposterior and lateral
X-ray films of the spine marked by the neural networks.
Zhang et al. [15] proposed a framework called MPFNet,
which combines the vertebrae detection branch based on the
backbone convolutional neural network and the key point
prediction branch, which can provide bounded regions for
key point prediction. A correlation module was proposed
to exploit the information between adjacent vertebrae so
that vertebrae hidden by the thorax and arm could be
found on lateral radiographs, and finally the Cobb angle
was measured by combining both orthogonal and lateral
components. Horng et al. [16] used the deep convolution
neural network (CNN) method, including UNet, Dense UNet
and Residual UNet, to segment each vertebral body of the
spine. The segmentation results are then reconstructed into
a complete segmented spine image, and the angle between
each vertebral body is calculated based on the Cobb angle
criterion, and the maximum angle is the measured Cobb
angle. Khanal et al. [17] proposed an automatic method,
which first detects the vertebrae as the object, and then the
marker detector, which estimates the four marker angles of
each vertebrae respectively. The Cobb angle was calculated
using the inclination of each vertebra obtained from the
predicted markers. A recent review by Azimi et al. [18]
comprehensively summarizes some neural network studies,
which focus on automatic Cobb angle estimation and confirm
the importance of these tools in improving clinical practice.
However, the existing research has some limitations. For
example, some algorithms still need a certain amount of
manual intervention, such as the allocation of vertebral
plaques. In addition, due to the heterogeneity of dataset,
methods and outcome indicators, the results of different
studies are often not comparable. This paper proposes a new
network (ATT UNet 3+), which addresses some of the above
issues.

C. ATTENTION-BASED MEDICAL IMAGE SEGMENTATION
The attentional mechanism operates as an adaptive selection
process grounded in input features. Its primary function
involves honing in on detailed information pertinent to
the specified target, while concurrently negating extraneous
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details through emulation of the visual observation process.
Its significance is on the rise within the realm of computer
vision. References [23] and [35] use spatial attention for
image classification and target detection. Yuan et al. [36]
characterizes each pixel by enhancing the understanding of
the pixel context.

Attentional mechanisms have gained extensive appli-
cation in the domain of medical image segmentation.
Ahmad et al. [37] introduces a nimble fusion-attentional
decoder mechanism, augmenting the precision of tumor
segmentation. Li et al. [38] employs an attentional mech-
anism to identify global contextual information in three
dimensions simultaneously: the channel domain, the spatial
domain, and the feature internal domain, aiming to capture
more representative features. CBAM [32] places emphasis
on discerning spatial and channel-relevant features, thereby
amplifying the prominence of key regions linked to the
targeted feature representation.

Feature fusion is a key operation in deep learning,
allowing the comprehensive integration of different levels of
information to expand the feature representation and improve
model performance. Building on established methods, we use
dilation convolution at three different rates to achieve
different receptive fields. Convolution kernels with different
receptive fields facilitate the extraction of feature information
at multiple scales after convolution, allowing the network to
effectively manage spatial hierarchies by capturing a wider
range of information. The subsequent fusion involves the
enhancement of contours and spatial feature information
derived from different feature maps through a refined channel
attention mechanism. This attention mechanism enables our
network to emphasise the importance of selected features.

III. MATERIALS AND METHODS
A. DATASETS
The experimental datasets consisted of 155 AP view spinal
X-ray images, all obtained from Ningbo Yinzhou Second
Hospital. The width of each image ranged from 359 to
1386 pixels, the height from 973 to 2687 pixels, and the file
size from 490KB to 817KB. Each X-ray shows the upper
part of a complete human body, including the 12 thoracic and
5 lumbar vertebrae in the entire spine to be used as the main
target for the training and segmentation tasks. To use these
images in the deep learning framework, we resized all images
to a uniform resolution of 960 × 448 before feeding them
into the network. The labeled data were produced under the
guidance of experienced radiologists.

B. DATA PREPROCESSING
In the analysis of spinal X-ray images acquired through
the anteroposterior (AP) view, which contains a significant
amount of irrelevant information, a preprocessing step is
necessary before inputting the data into the neural network.
To enhance processing efficiency, we initially resize all
AP view spinal X-ray images, focusing exclusively on the

FIGURE 2. Spine X-ray image data preprocessing process.

T1-L5 region between the thoracic and lumbar spine. Brighter
pixels in the images signify the presence of bones, with large
bone structures, including the head, spine, and hip, displaying
vertical alignment. Grey-scale intensity histograms for both
vertical and horizontal projections are computed, and the
Region of Interest (ROI) is defined by selecting columns
within the mean intensity plus/minus one standard deviation
range. Notably, the cervical spine region exhibits relatively
low intensity, while the lumbar spine region appears brighter
in the X-ray images. Therefore, we used the intensity
histogram of the horizontal projection to determine the
minimum extreme as the upper boundary of the ROI and the
location of the maximum discontinuity position as the lower
boundary [16]. This data preprocessing process is shown in
Figure 2.

C. PROPOSED MODEL ATT UNET 3+

Inmany segmentation studies, featuremaps at different scales
demonstrate different information. Low-level feature maps
capture features such as color, texture and shape of objects;
while high-level feature maps reflect the attribute features
of objects. The multi-scale feature approach has achieved
excellent results in many excellent deep learning networks
in recent years, such as PSPNet [19], Deeplab [20], etc. For
the case of complex X-ray images, we propose a new model
(ATT UNet 3+), which incorporates the attention module
into UNet 3+ network. In multiple downsampling, the
information of low-level feature maps for segmented objects
is gradually diminished. By multi-scale feature fusion, the
low-level and high-level feature maps can be better combined
in segmentation to distinguish the boundaries of organs. The
attention mechanism was proposed as a natural language
processing application and achieved very good results [21].
In the field of deep learning, attention has also become an
important part of the neural network structure and has a large
number of applications in statistical learning, speech and
image [32], [37]. The network structure of our proposed ATT
UNet 3+ is shown in Figure 3.

1) FULL SCALE CONNECTION
ATT UNet 3+ combines all scales in the decoder. For
example, As shown in Figure 4 X3

Dn is obtained from
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FIGURE 3. Overall architecture of the proposed network for spine X-ray image segmentation.

the low-level feature maps X1
En and X2

En, the high-level
feature maps X4

Dn and X5
En and the same-level feature map

X3
En through the attention mechanism module. X1

En and
X2
En retain fine-grained semantic information, which is

equivalent to the low-level feature information fused in
the decoder. X1

En and X2
En will be subsampled first. The

subsampling reduced dimensionality is 4 times and 2 times
respectively, to unify the dimensionality of the feature maps.
The coarse-grained semantic information in the Figure 4
is reflected in X4

Dn and X5
En in the high-level feature

maps. Bilinear interpolation upsampling with magnification
dimensionmultiples of 2 and 4 times is performed forX4

Dn and
X5
En, respectively. After that, all four parts are subject to

convolutional-2D operations with 3× 3 with filters channels
of 64. The encoder feature maps of the same scale X3

En are
directly subjected to convolution operations.

2) ATTENTION MECHANISM
Attentional mechanisms can be intuitively explained in
terms of human visual mechanisms, as our visual sys-
tem tends to emphasize the relevant parts of an image
and disregard irrelevant information. Similarly, in visual
tasks, certain areas of the input may be more critical for
decision-making than others. To address this, we propose
an improved channel attention mechanism that highlights
salient features in fully connected networks that are more
useful for the final decision. This module is inspired by
the hybrid attention mechanism known as CBAM [32],
which effectively incorporates both channel and spatial
attention mechanisms. However, our approach replaces the
spatial attention mechanism with a null convolution and
reverses the order of the tandem spatial and channel attention

modules. By computing attention weights for each feature
map channel, the network can adaptively focus on important
features, enabling better utilization of input information and
improving the final prediction performance.
The upsampling X3

Dn as shown in Figure 4 is used as
an example. Before obtaining X3

Dn, the low-level and high-
level feature maps are first unified in dimension using
the maximum pooling layer and bilinear interpolation,
respectively. The X1

En, X
2
En, X

3
En, X

4
Dn and X

5
En dimensions are

unified and then concatenated together to fuse the features
by 1 × 1 convolution and reduce the channel dimensionality.
Then, three parallel 3 × 3 dilated convolutional layers with
D = 1, D = 3 and D = 5 dilation rates are used to
fuse information around a single neuron while maintaining
local details [22]. The outputs of the three 3 × 3 dilated
convolutional layers are concatenated and the feature maps
are fed into the subsequent channel attention mechanism.

The concatenated features are pooled by adaptive average
pooling and adaptive maximum pooling, respectively. The
feature dimension obtained by two pooling layers is 1×1×C ,
where C is the number of channels. After adding the two
feature map together, a convolution of 1 × 1 × 64 and a
convolution of 1×1×192 is applied, followed by a Sigmoid
function to obtain the value. The result is then multiplied with
the features prior to the input channel being recorded [23].
This process is equivalent to reassessing the importance of
each feature channel after feature selection. The improved
channel attention mechanism is calculated as follows:

FR = σ (MLP(AvgPool(x) +MaxPool(x)))

= σ (W (xavg + xmax)) (1)

Ř = R× FR (2)
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FIGURE 4. The specific calculation process of X3
En, in which the Dashed line represents the attention mechanism.

where, σ refers to the Sigmoid function, FR represents the
parameter obtained afterR is input to the attentionmechanism
in the model, and Ř denotes the final output feature map.
By utilizing dilated convolution combined with differ-

ent receptive fields, we can more effectively differentiate
between background and spine without changing the output
size. Through the improved channel attention mechanism, the
features of the channel dimension and the importance of each
channel are learned without changing the dimension.

D. MEASUREMENT OF COBB ANGLE USING THE LDEP
METHOD BASED ON SEGMENTATION RESULTS
The initial phase involves segmenting the spine through the
utilization of a neural network model. Subsequently, the
determination of contour points for each vertebra follows,
where an ellipse is computed to approximate these points
using the equation 3 ellipse fitting algorithm [28]. The
calculated ellipse formula is then applied to the contour
points, yielding those with positive calculated values. The
first vertex is chosen as the point with the largest calculated
value. Following this, the points proximate to the first vertex,
including the vertex itself, are eliminated, resulting in a
refined point set. This iterative process is replicated to derive
the four key points, as depicted in Figure 5.

A(x − x0) + B(x − x0)(y− y0) + C(y− y0) + D = 0 (3)

Where, x0 and y0 represent the positions of the center of the
ellipse, while A, B, C , and D denote the parameters of the
ellipse.

Upon identifying the four key points, the upper and lower
boundaries of the vertebrae are determined using these points,
and the angle between the x-axis and the upper and lower
boundaries is calculated. Finally, the Cobb angle is obtained
by subtracting the minimum angle from the maximum angle.

Additionally, we utilized the semi-automatic polynomial
fitting algorithm proposed by Papaliodist to find the Cobb
angle and compare it with our method using the identified
circle centers [29]. This algorithm fits a polynomial curve

FIGURE 5. The red circles are the four points found by the LDEP method.

through the marked vertebral points, which are manually
marked by selecting a point on each vertebra. The curvature of
the spine is reflected by the spine curve, indicating the degree
and direction of curvature of a set of points at the center of
the spine. The tangent of this curve forms an angle with the
vertical and varies continuously along the height of the spine,
with the difference between the maximum and minimum
values representing the Cobb angle measured by this method.
The flow of the whole method is shown in Figure 6.

IV. EXPERIMENTS AND RESULTS
The software used for the experiments is implemented using
pytorch1.7. The experimental hardware configuration uses an
RTX 3090 GPU with 24 GB of memory. We train the model
using Adaptive Moment Estimation (Adam) with a batch size
of 2 and a learning rate of 0.001. All 155 images, 124 of which
were used as training set and the remaining 31 images were
used as test set images. The dataset of the training set was
expanded to 372 sheets through data augmentation techniques
including random deflections of up to 10◦ to the left and right,
horizontal flips, and vertical flips.

The performance of the proposed deep learning net-
work and the compared networks is evaluated using five
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FIGURE 6. Flow of Cobb angle computation that resides in the segmentation result, the LDEP method comprises the upper
branch, while the lower branch is dedicated to the function fitting method.

well-known classification metrics: mIoU, Dice, accuracy,
precision, and recall.

Accuracy represents the proportion of correctly classified
instances out of the total instances, measuring overall model
performance in classification tasks.

Precision measures the proportion of true positive pre-
dictions among all positive predictions made by the model,
indicating the accuracy of positive predictions.

Recall, also known as sensitivity, measures the proportion
of true positive instances that were correctly identified by the
model, indicating the model’s ability to capture all positive
instances.

mIoU (mean Intersection over Union) measures the aver-
age overlap between predicted and ground truth segmentation
masks across all classes in semantic segmentation tasks.

The Dice coefficient quantifies the similarity between
predicted and ground truth segmentation masks. Higher
values indicate better segmentation accuracy.

True Positive (TP) represents instances that are correctly
classified as positive, while False Positive (FP) represents
instances that are incorrectly classified as positive. True Neg-
ative (TN) represents instances that are correctly classified as

negative, and False Negative (FN) represents instances that
are incorrectly classified as negative.These metrics can be
calculated using the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Dice =
2*TP

2*TP + FP + FN
(7)

mIoU =
1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
) (8)

These five well-known classification metrics were eval-
uated to quantify the performance of the proposed deep
learning network.

A. VERTEBRAE SEGMENTATION RESULTS
Verify the effect of different dilated convolutions on the
results. The results are summarized in Table 1, where the
numbers in the first column indicate different dilation rates,
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TABLE 1. Segmentation performance metrics for different dilation rates, with the numerical values in the initial column representing distinct dilation
rates.

TABLE 2. Evaluation of Dice coefficients across different modules employing UNet as the foundational model.

respectively. To ensure accurate details of the segmentation
results, we always keep the dilation convolution with a
dilation rate of 1. As the dilation rate increases, the three
dilated convolutions at dilation rates of D = 1, D = 3 and
D = 5 are the best performers in Accuracy, Dice, and mIoU.

To confirm the effectiveness of the modules, we evaluate
the performance of different modules in UNet. The results are
shown in Table 2. The full scale connections, the attention
mechanism modules and the channels 64 upsampled outputs
are added to the network respectively. Dice coefficients were
used to evaluate the effectiveness of these blocks. The model
of Experiment 1 is the original UNet. In Experiment 2,
Experiment 3, Experiment 4 and Experiment 5, the output
of upsampling is unified into a convolutional layer with
channel 64. The difference between Experiment 2 and
Experiment 3 is whether the attention mechanism is added
to the upsampling. The model for Experiment 4 is UNet 3+.
Experiment 5 is our proposed method, and we use the same
comparison strategy between Experiment 4 and Experiment 5
as in Experiment 2 and Experiment 3. Both Experiment 5
and Experiment 3 are improved compared to the case with
no added attention mechanism. The difference between
Experiment 2 and Experiment 4 is whether full scale
connectivity is added or not. Compared with the original
UNet, the Dice coefficient of our proposed method is
improved by 5.24%.

Table 3 shows the five metrics of ATT UNet 3+, UNet
3+ [30], UNet++ [24], UNet [25], Deeplabv3+ [26],
SegNet [27], PSPNet [20], UNeXt [33], CBAM+Ref-UNet
3+ [34], EANet [40] and TransDeepLab [39]. In the segmen-
tation of ATT UNet 3+ mIoU performance is 86.21%, which
achieves different levels of improvement compared with
several other segmentation networks. Our model performs
another improved model based on UNet 3+ on the majority
of segmentation metrics for this dataset.

We compare the parameters and FLOPs of different image
segmentation models to assess their complexity. FLOPs

measure the computational load required for model inference.
As shown in Table 4, our ATT UNet 3+ model achieves
parameter and FLOP scores of 25.17M and 943.51G, respec-
tively. These outcomes indicate that the ATT UNet 3+ model
exhibits relatively high FLOPs, yet it maintains a notably
lower number of parameters compared to several other
models. Importantly, the model consistently outperforms its
counterparts in overall segmentation performance.

In Dice and mIOU, ATT UNet 3+ performs the best
among all compared neural networks. When the parameters
were examined after training the model, it became clear
that the enhanced channel attention mechanism skilfully
suppressed feature maps that inadequately captured the
intricacies of the spinal contours. Figure 7 shows feature
maps R of X4

Dn, X
3
Dn and X1

Dn, where R is formed by
concatenating feature maps using dilation convolution. The
red boxes highlight feature maps where R gains prominence
due to the enhanced channel attention mechanism, effectively
representing the spine contour. It’s worth noting that there are
192 of these feature maps, but due to space constraints, only
16 representative ones are shown.

Figure 8 shows some segmented images. It is worth noting
that the accuracy of the ATTUNet 3+ segmentation proposed
in this paper is higher than other networks in thoracic T1-T3
and lumbar L5, but there are still some artifacts and imperfect
segmentation. The figure shows representative images of
the vertebral body segments superimposed onto the original
x-ray images. The automatic segmentation of the upper and
lower boundaries of the vertebral body using ATT UNet
3+ is highly consistent with the original vertebral body and
performs well.

B. PERFORMANCE EVALUATION OF ANGLE
MEASUREMENT
To evaluate Cobb measurements, we compare Cobb
angles measured manually by an orthopedic surgeon with
Cobb angles obtained based on our automated computer
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TABLE 3. Comparisons of segmentation performance metrics between the proposed ATT UNet 3+ and different methods.

TABLE 4. Shows a comparison of Params and FLOPs on different methods, where FLOPs is entered by a uniform input size.

FIGURE 7. Some features maps after passing through the attention mechanism, with red boxes
indicating higher weights assigned to certain areas. (a) represents the feature map of X4

Dn,
(b) represents the feature map of X3

Dn, and (c) represents the feature map of X2
Dn.

measurements. The measurements are calculated using the
segmentation results of the 31 test images in the test
set. The stability of the Cobb angle calculation results is
assessed by calculating the mean absolute error (MAE),
standard deviation (SD), and Pearson correlation coefficient

between the manual and automated measurements. The
Pearson correlation coefficient is employed to quantify the
correlation between measured and true values [31]. We used
the segmentation results of ATT UNet 3+ and UNet 3+ to
calculate the Cobb angle.
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FIGURE 8. Segmentation results of the dataset on different methods. (a) original image, (b) ground truth, (c) Deeplab v3, (d) PSPNet,
(e) UNet 3+, (f) ATT UNet 3+.

As shown in Table 5, Cobb angle is calculated for vertebral
segmentation results. The error statistics show that the mean
absolute error and standard deviation of the ATT UNet
3+ and LDEP method with the orthopedist are 1.6◦ and
0.8◦, which are the smallest compared to other methods.
The Pearson correlation coefficient is 0.983. This indicates
that the overall performance of our proposed method for
automatic measurement of the Cobb’s angle is stable with
low bias. The results are most correlated with the manual
measurements by the orthopedic surgeon. Although the
MAE and SD of the UNet 3+ and LDEP measurements
of the Cobb angle are lower than those measured using the
polynomial function method, the Pearson coefficients show
less correlation than the two mentioned above. This indicates
that the LDEPmethod has more stable results when the image
segmentation is good.

V. DISCUSSION
We introduce a novel method for the automated assessment of
the Cobb angle in patients with Adolescent Idiopathic Scol-
iosis (AIS) employing the ATT UNet 3+ network. Operating
within an encoder-decoder framework, the network adeptly
delineates the contours of individual vertebrae. Subsequently,
the Local Directional Edge Profile (LDEP) method is applied
to pinpoint the four key points defining these contours.
The culmination of the process involves the computation
of the maximum Cobb angle for both the upper and lower
extremities of each vertebra, providing a comprehensive
quantitative evaluation of spinal deformities.

Figure 9 shows a boxplot comparing the segmentation
coefficients of spine X-ray image data using seven different
segmentation algorithms. The variation for a given data set
is illustrated. The blue dashed line is the mean value of
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TABLE 5. Error of Cobb angle based on segmentation results of ATT UNet 3+ and UNet 3+ using function fitting and LDEP methods.

FIGURE 9. The boxplot segmentation result of Deeplab V3+, PSPNet,
SegNet, UNet, UNet++, UNet 3+ and our model on Dice coefficient.

FIGURE 10. Visualisation of two Cobb angle calculation methods, (a) good
segmentation results and function fitting method, (b) bad segmentation
results and function fitting method, (c) good segmentation results and
LDEP method and (d) bod segmentation results and LDEP methods.

the data coefficients in the boxplot and the red line is the
median value of the data coefficients. As can be seen from the
graph, our model outperforms the other models. The results

show that the proposed segmentation network is more robust
than the existing segmentation network models. In terms of
other segmentation results, ATT UNet 3+ also shows the best
results in terms of segmentation accuracy, precision, Recall
and mIoU indices (Table 3). There was a strong correlation
(0.983) between the Cobb angle measured by the proposed
LDEP and the orthopaedic surgeon. The mean absolute error
of angle was 1.6◦.

Figure 10 shows the polynomial function fit and the
LDEP result with good and poor segmentation effects
for measuring the Cobb angle. Figure 10(a)(b) shows the
polynomial function fitting method, where the red points are
the centre of the fitted ellipse and the blue line fits the curve.
Figure 10(c)(d) shows the LDEP method, where the red dots
are the four points furthest from the ellipse fromwhich LDEP
is derived, and the blue and red lines are the Cobb angles of
the most curved vertebrae.

In Figure 10(a)(b), the difference between good and
poor segmentation results for fitting the spine curve with a
polynomial function is not significant. This is because the
polynomial fitting method only requires finding the position
of the fitted ellipse centre to fit the spine curve, but the error
in angle is larger (Table 5). As shown in Figure 10(c)(d), good
segmentation results in a better measurement of the Cobb
angle. Poor segmentation results lead to larger deflection
angles due to adhesions of the segmented vertebrae and
over-segmentation, which affects the measurement results,
indicating that good segmentation results are important for
the LDEP method to measure the Cobb angle. Combined
with the Pearson correlation coefficients in Table 5, we found
that the correlation coefficient of the polynomial fit (0.828)
is more relevant to the angle measured by the orthopaedic
surgeon when calculating the Cobb angle using poor segmen-
tation results than the correlation coefficient of the LDEP
(0.632). When segmentation results are poor, a polynomial
fit may be more appropriate to measure Cobb angle.

VI. CONCLUSION
This paper proposes an automatic Cobb angle measurement
method based on ATT UNet 3+ for surgical planning of
adolescent idiopathic scoliosis. Compared with other deep
learning algorithms, the method proposed in this paper
performs accurate segmentation of the vertebral body on
the AP view spinal X-ray images, and the Cobb angle
calculation is in good agreement with orthopaedic specialist.
The proposed method provides a potential tool to realize
the automatic estimation of Cobb angle and improve the
efficiency and accuracy of doctors’ diagnosing of scoliosis.
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However, this study has some limitations. The method
proposed in this paper was applied only to the frontal images
that capture the curvature of AIS patients. Recent studies
have shown that sagittal image plays an important role in the
clinical outcome of AIS and cannot be ignored. Our studywas
limited by the data set, which did not include both frontal
and sagittal spine images. Nevertheless, our method could
be applied to image segmentation in both planes to provide
additional information for surgical planning.
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