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ABSTRACT Most reconstruction algorithms for non-rigid three-dimensional (3D) images assume that
non-rigidity can be represented as a linear combination of a fixed number of rigid bases. However, this
assumption struggles to establish reliable shape functions and initial values for nonlinear and non-rigid
motions, decreasing reconstruction reliability. This paper introduces an enhanced-reliability reconstruction
algorithm for non-rigid 3D images. Our algorithm models the dynamic non-rigid shape basis as a low-
rank matrix composed of image points and depth factors, improving the restoration of non-rigid shape base
changes and providing accurate parameters for constructing objective functions. By leveraging manifold
alignment and physical continuity constraints, our method optimizes the function structures. Assuming
minimal reconstruction error and shape change, we solve for the motion structure parameters and select
the key initial shape basis value by minimizing the objective function with the L-M nonlinear optimization
method. Our experimental results on 3D image sequence reconstructions demonstrate significant error
reduction, underscoring our model’s credibility, robust reliability, and minimal re-projection error.

INDEX TERMS Non-rigid, 3D image reconstruction, shape reliability, low-rank matrix, improved objective
function.

I. INTRODUCTION
The analysis and understanding of visual information by
computers facilitate a more accurate simulation of the real
world, giving rise to the field of computer vision [1]. This
discipline primarily focuses on acquiring various real-world
details through the capture of 2D images, encompassing
shape and motion recognition of 3D scenes [2]. A prominent
research area within this field is the recovery ofmotion scenes
and their corresponding parameters from continuous image
sequences, commonly referred to as 3D motion vision. While
significant advances have been made in the reconstruction
of rigid bodies, exploring non-rigid body reconstructions
continues to present considerable challenges [3]. Non-rigid
3D image reconstruction seeks to recover a 3D model of
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non-rigid objects from 2D images captured from multiple
viewpoints, employing image processing and computer
vision techniques [4]. This technology has wide-ranging
applications in movie production, game development, and
industrial design [5], [6]. However, the complexity and
diversity of non-rigid motion render non-rigid 3D image
reconstruction a challenging task, with ensuring the reliability
of shape bases computation standing out as a particular
concern.

In the realm of 3D image reconstruction, Greffier et al.
employed deep learning algorithms to reconstruct original
images using methods such as Filtered Back Projection
(FBP), enhanced AIDR 3D (AIDR 3De), and AiCE at
three levels (mild, standard, and strong) [7]. This approach,
which relies on linear assumptions for reconstruction, falls
short in adequately addressing the impacts of nonlinear
deformations, thus proving ineffective in establishing stable
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and reliable shape objective functions for nonlinear, non-
rigid motion. On the other hand, Matthieu et al. suggested
training deep neural networks (DNNs) as denoisers to learn
a priori image models, which would replace hand-crafted
proximal regularization operators in optimization algorithms.
Their AIRI framework, aimed at imaging complex intensity
structures from visibility data, merges the robustness and
interpretability of optimization with the efficiency and
learning capability of neural networks [8]. Nevertheless,
this method encounters difficulties in practical applications,
particularly in selecting suitable initial values for nonlinear
non-rigidmotion, resulting in low reliability of reconstruction
results.

Lin et al. approached the challenge by converting optimal
spatial deformation into a nonlinear regularized variational
optimization problem, incorporating local smoothing and
input constraints. They leveraged data parallelism and
flash memory optimization strategies for online tracking
and reconstruction of non-rigid scenes [9]. Despite these
efforts, the method struggled to effectively manage non-
linear non-rigid motion during the research phase, impacting
the establishment of reliable shape objective functions and
leading to suboptimal reconstruction outcomes. Murase’s
study utilized a helical digital body phantom to generate
degraded projection data, employing system function graphs
and Gaussian noise. The entire system matrix (SM) was
calculated by linking each projection data set with slices for
3D image reconstruction [10]. However, this approach did
not adequately capture the characteristics and variations of
non-rigid motion, resulting in unreliable initial values for
non-linear non-rigid motion and diminished reconstruction
reliability.

In Jo’s research, attention modules were introduced, and
simple algebraic pre-smoothing techniques like Gaussian
filtering were applied to data. This pre-smoothed data served
to derive an operator for image reconstruction through
dynamic mode decomposition [11]. Although this method
facilitated camera calibration with rigid parts and subsequent
application to non-rigid reconstruction, it fell short in
establishing stable and reliable shape objective functions and
initial values for all non-rigid motions, posing challenges for
generalization in practical applications.

II. DESIGN OF NON-RIGID 3D IMAGE RECONSTRUCTION
ALGORITHM
A. THE CALCULATION OF LOW-RANK MATRICES FOR
DYNAMIC SHAPE BASES IN NON-RIGID 3D IMAGE
RECONSTRUCTION
Non-rigid body shapes undergo specific transformations at
different time points. To effectively complete non-rigid 3D
image reconstruction, it is essential to accurately describe
these dynamic shape changes. In this context, we utilize
a low-rank matrix, combined with image points and depth
factors, to represent the data structure of basis parameters in
dynamic shape for non-rigid 3D image reconstruction. This
approach enables the capture of both local and global features
of the shape, thereby better restoring the original non-rigid

shape basis’s change process and providing precise manifold
parameter values for the structure of the objective function.

The process for calculating the low-rank matrix for the
dynamic shape basis in non-rigid 3D image reconstruction
involves several steps:
Digitalization of Non-Rigid 3D Images: Utilize the coor-

dinates and depth factors of all image points to digitize the
non-rigid 3D image.
Construction of the Point Cloud Matrix: Based on the 3D

image, construct a point cloud matrix of the shape for a
specific frame.
Singular Value Decomposition (SVD): Use singular

value decomposition to arrange the constructed matrix in
descending order of importance. Then, select the first
kth singular values to retain the low-rank matrix for
describing the dynamic shape basis in non-rigid 3D image
reconstruction.

It is assumed that a classic pinhole cameramodel facilitates
the non-rigid 3D image acquisition process [12], [13],
allowing the non-rigid 3D image to be described as follows:

λU = K (Rt)w = Pw (1)

where λ denotes the depth factor, U = (u v1)T is the
homogeneous coordinates of the image point, K,R and t
denote the camera’s intrinsic matrix, rotation matrix and
translation vector corresponding to the camera’s shooting
position, respectively, and R and t also perform the camera’s
extrinsic matrix,w = (x y z1)T and P = K(Rt) denote homo-
geneous coordinates of 3D points and camera projection
matrix.

With total F frames and N 3D spatial points, the equation
is transformed as follows for the fth frame:

Uf λf = K(Rf tf )Yf (2)

where Uf =(uf ,1, uf ,2, . . . , uf ,N ) is the image matrix con-
sists of the points from the f -th image, λf represents
the diagonal matrix composed of all depth factors λf ,i,
Yf =(wf ,1,wf ,2, . . . ,wf ,N ) denotes a low-rank matrix com-
posed of all 3D spatial points at time f .
Finally, singular value decomposition is performed on

the shape point cloud matrix of the constructed fth frame
image. The singular values are arranged in descending order,
and the first kth singular values are retained. The low rank
matrix of the dynamic shape basis for non-rigid 3D image
reconstruction can be obtained as:

Yf =
Ikufkλfk
K(Rfk tfk )

(3)

where, Ik represents an orthogonal matrix.
Thus, the low rank matrix calculation of dynamic shape

basis for non-rigid three-dimensional image imaging is
completed. When an object undergoes rigid motion, the 3D
spatial point Yf remains unchanged throughout the motion.
Otherwise, Yf changes at each time instance f, representing a
dynamic process of shape base variation.
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B. DESIGN OF A STRONGLY RELIABLE OBJECTIVE
FUNCTION FOR NON-RIGID IMAGE RECONSTRUCTION
1) THE PROPOSED MODEL
The enhancement of reliability in our current method
fundamentally addresses a nonlinear optimization challenge
for dynamic shape bases. This involves identifying the
minimum value within a specific parameter structure. During
the training of parameters for non-rigid motion structures, the
chosen objective function aims to minimize the discrepancy
between the 3D coordinates of the manifold and the
transformed 2D coordinates of the manifold group. This
is based on assumed motion structure parameters within
the photography model, ensuring that the derived motion
structure parameters align closely with the actual observed
image points and their theoretically predicted 3D shapes.
By reducing this discrepancy, we enhance both the quality
and accuracy of the reconstruction results.

Thus, the developed objective function effectively syn-
chronizes the motion structure parameters with the manifold,
ensuring reliable shape reconstruction. In the context of
non-rigid motion, the structure parameters across continuous
frames exhibit minimal changes. Such physical continuity
is leveraged as a constraint in deriving the motion structure
parameter matrix. By incorporating physical continuity, the
objective function is designed to dampen the amplitude
of shape changes, thereby bolstering the reliability of
the motion structure parameters. In essence, the objective
function employsmanifold alignment and physical continuity
constraints to reconcile motion structure parameters with
observed data, yielding accurate and reliable outcomes. This
approach also stably navigates the challenges posed by
imperfect data.

Therefore, building on the previously described calculation
of the low-rank matrix for the dynamic shape basis in non-
rigid 3D image reconstruction, this process delineates the data
structure of parameters associated with this dynamic shape
basis. Additionally, it facilitates the acquisition of manifold
parameter values amid changes in the non-rigid shape basis.
During the projection of the manifold motion group, the
manifolds c, d, e, f and the centroid manifold C are used
to describe the translation of the object. Assuming that the
matrix formed by the 2D coordinates of these five points in
the ith frame is denoted as 8i, and the initial 3D coordinates
are denoted as 8′

i, then

8i =

[
u′
ic u′

id u′
ie u′

if u′
iC

v′ic v′id v′ie v′if v′iC

]
(4)

8′
i =

 cix cix cix cix cix
cix cix cix cix cix
cix cix cix cix cix

 (5)

The transformation function resulting from the equation
after camera transformation is:

8i =
[
quater (R)

]
×[quater(Qi)×8

′

i + Ti] (6)

In Equation (6), quater (R) represents the camera rotation
matrix, quater(Qi) represents the rotation vector of the ith

shape basis, Ti represents the translation vector of the ith

shape basis.
By subjecting each assumedmanifold for each frame to the

aforementioned camera transformation, we can obtain a 2D
matrix 8 composed of the five manifolds in the F frames.

8′

i =


u′

1c u′

1d u′

1e u′

1f u′

1C
v′1c v′1d v′1e v′1f v′1C
. . . . . . . . . . . . . . .

u′
Fc u′

Fd u′
Fe u′

Ff u′
FC

v′Fc v′Fd v′Fe v′Ff v′FC

 (7)

Equation (7) provides the solution of 2D manifold
coordinates through camera transformation with the assumed
3D coordinates of manifolds. After taking the difference
between the matrix 8 and the actual measured values of 2D
coordinates in the manifold group, shown in Equation (8),
we obtain the matrixDE1. Finally, we compute the two-norm
of all elements in this matrix to obtain de1:

de1 =

√√√√√ 5∑
j=1

2F∑
i=1

∥DE1∥
2

=

√√√√√ 5∑
j=1

2F∑
i=1

∥∥8ij − Mij
∥∥2 (8)

During the optimization and training of the entire motion
structure matrix, the displacement and velocity changes of
feature points between consecutive frames are slow for a
high-speed camera [14], [15]. Reflecting such a property in
the rotation matrix Q and translation matrix T of non-rigid
body motion, the variation in the rotation matrix QT reflects
the change in rotation angle between consecutive frames
according to the displacement difference formula 1S =

Si − Si−1 (where Si represents the displacement of a point
in the ith frame). Similarly, the expression of displacement
difference S in the translation matrix T represents the change
in the non-rigid body’s translational position during motion.
Therefore, the parameters in the ith frame should exhibit very
small changes compared to the (i − 1)th frame. Here, these
two matrices are combined into one matrix RS with size F6.

RSF6 =


θ1X θ1Y θ1Z X1 Y1 Z1
. . . . . . . . . . . . . . . . . .

θiX θiY θiZ Xi Yi Zi
. . . . . . . . . . . . . . . . . .

θFX θFY θFZ XF YF ZF

 (9)

Based on the above discussion, the difference between the
ith and the (i − 1)th the frames of RSF6 combines to a new
matrix RS′ with size (F−1)6 in Equation (10), as shown at
the bottom of the next page. Each element of this matrix
represents the variation in parameters between consecutive
frames in non-rigid body motion. Such changes are minimal
during the capture process of a camera.

Due to the continuity of non-rigid body motion and the
motion structure parameters reflected in the image sequence
obtained through high-speed capture [16], [17], the variation
between consecutive frames is very small. This introduces
the first constraint de2 added during the construction of
the objective function, describing the variation in the
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displacement of parameters between consecutive frames.

de2 =

√∑6

j=1

∑F−1

i=1

∥∥∥RS′
ij

∥∥∥2 (11)

Image sequences taken from the high-speed camera have
a resolution of 640 × 480 and a frame rate of at least
1000 frames per second, save rapidly moving objects and
subtle changes, and provide more accurate details. Assuming
the time interval t between frames of the extracted image
sequence, and the velocity interval for each frame’s image
capture is a small constant. The physical motion laws shows:

v̄i =
1s
t

=
Si − Si−1

t
and 1v = v̄i − ¯vi−1 (12)

The ratio of the displacement difference of an object during
this time interval to t is the average velocity of the motion.
Similarly, for a high-speed image sequence, such changes in
average velocity are also very small. Assuming the average
velocity from the ith to the (i−1)th frame is vi, then the average
velocity between the (i+ 1)th frame and the ith frame is vi+1.
This physical law is used into the motion parameter matrix
of the non-rigid body, shown as the difference matrix RS

′′

between the ith and (i − 1)th frames with size (F−2) × 6.
At this point, a constraint de3 is obtained, describing the
velocity changes in non-rigid body motion.

de3 =

√∑6

j=1

∑F−2

i=1

∥∥∥RS′′

ij

∥∥∥2
=

√∑6

j=1

∑F−1

i=1

∥∥∥RS′
ij − RS

′′

i−1j

∥∥∥ (13)

After this discussion, we have obtained the error de1
between the points describing the transformation of the
manifold motion group and the measured points as the main
subject for minimizing. Additionally, we have two constraints
de2 and de3 describing the displacement and velocity changes
of parameters in the non-rigid bodymotion process. In a set of
high-speed captured image sequences, the variations in these
two constraints between consecutive frames should be very
small. This results in a strong and reliable objective function
f (R,Q,T) used to determine the motion structure parameter
matrix.

f (R,Q,T) =

∑6

j=1

∑3

i=1
widei

= w1

√∑5

j=1

∑2F

i=1

∥∥8ij − Mij
∥∥2

+ w2

√∑6

j=1

∑F−1

i=1

∥∥∥RS′
ij

∥∥∥2
+ w3

√∑6

j=1

∑F−1

i=2

∥∥∥RS′
ij − RS′

i−1j

∥∥∥2
(14)

Min
Q,R,T

∥f (Q,R,T)∥ is the objective function used to train

themotion structure parametermatrix, which consists of three
motion structure parameter matrices Q,R,T that describe
camera transformations. Thesematrices represent the rotation
matrix of the shape basis, the camera rotation matrix, and the
translation matrix of the shape basis, respectively; w1,w2,w3
are the weight coefficients of different constraint parts in
the entire objective function. By considering the constraints
of reconstruction error and minimal frame changes before
and after shape deformation, the objective function aims to
achieve its minimum value, ensuring that the reconstruc-
tion results are closer to the actual observation data and
minimizing unreasonable shape changes. Therefore, by min-
imizing the objective function f (Q,R,T), the reliability of
the reconstruction results can be improved. Next, based
on the above, the Levenberg-Marquardt (L-M) nonlinear
optimization method is then employed to determine these
motion structure parameters [18], and complete the selection
of key initial values for the shape basis.

2) THE SELECTION OF INITIAL VALUES
The essence of solving the problem using nonlinear optimiza-
tion is to determine the description of the rotation matrix
Q and the translation matrix T. In the L-M optimization
method, these two parameters are treated as unknown.
First, introducing the initialization method for the rotation
matrix Q:
In this paper, a method combining factorization techniques

is used for the initialization of the rotation matrix Q
[19]. As analyzed in Chapter Three, considering a known
measurement matrix W2FP composed of feature points[
uij
vij

]
i= 1, . . . ,F
j= 1, . . . ,P from each frame of images (where F is

the number of image frames and P is the number of feature
points in one frame), the objective is to determine the 3D
structure S̃i3P and the rotation matrix Ri3×3 for each frame
image.

Assuming that the 3D shape of the non-rigid body is a
weighted linear combination of shape bases, we have: S̃i =∑K

l=1 ωilSl , where ωil is the weight coefficients, Sl is the
shape bases, and K is the number of shape bases. Therefore,
based on the number of shape bases K and the weighting
coefficient ωil , when K= 1,ωil = 1, corresponding to the
case of a rigid object; When K> 1,ωil> 1, it corresponds to
the case of non-rigid objects.

Under the weak perspective projection model, there is[
ui1, . . . , uiP
vi1, . . . , viP

]
= Ri(

∑K

l=1
ωilSl) + T ieTn (15)

where Ri represents the first two rows of the rotation matrix
Ri3×3 , T i is the first two elements of the translation vector

RS′

(F−1)6 =

 θ2X − θ1X θ2Y − θ1Y θ2Z − θ1Z X2 − X1 Y2 − Y1 Z2 − Z1
. . . . . . . . . . . . . . . . . .

θFX − θF−1X θFY − θF−1Y θFZ − θF−1Z XF − XF−1 YF − YF−1 ZF − ZF−1

 (10)
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Ti3×1 , and eTn represents the position vector of the object in
the camera coordinate system, eTn= [1, . . . , 1]1×n.
Transforming Equation (15) with the 2D coordinate origin

as the centroid, we have W̄ = M2F3KB3KP, where M2F3K
represents the projection from the 3D coordinates of the
shape basis to 2D image plane, B3K×P represents the three-
dimensional shape coordinates obtained from the shape
transformation of P feature points using the shape basis
matrix B.
The matrix M2F×3K contains information about the

rotation matrix. To further decompose the motion matrix
M and obtain the rotation matrix [R̄i] and the weighting
coefficient ωil , we perform singular value decomposition
(SVD) [20], [21] onM by rearrangingMwith a matrix block.

M =

[
MT

1 ,MT
2 , . . . ,MT

F

]T
(16)

Then, each matrix block is given by:

M i =
[
ωi1Ri . . . ωiKRi

]
2×3K (17)

where Ri =

[
ri1 ri2 ri3
ri4 ri5 ri6

]
. Reordering the matrix blocks,

we have:

M̃i =


ωi1
ωi2
.

.

.

ωiK


[
ri1 ri2 . . . ri6

]
= �̄iR̄i (18)

Clearly, the most rank of M̃i is 1. Therefore, performing
SVD on M̃i can decompose it into the deformed rotation
matrix R̄i and the weighted coefficient matrix �̄i. By apply-
ing SVD to each of the F matrices M̃i, we can obtain the
deformed rotation matrices R̄i and the weighted coefficient
matrices �̄i for each frame.

The decomposition result of Equation (18) is still not
unique. Thinking about M̃i = �̄iC 1

C R̄i for any non-
zero constant C , the C can be optimized by minimizing
Equation (19):

f (C) = min ∥�i − �i−1∥F (19)

Further, we can obtain Ri =
1
C R̄i and �i = �̄iC .

Adjusting the row vector Ri yields a 2 × 3 rotation
matrix R̄i. However, the rotation matrix obtained through the

singular value decomposition of M̃i is Ri =

[
ri1 ri2 ri3
ri4 ri5 ri6

]
.

Therefore, in order to avoid singular value problems,
maintain the continuity of rotation, and reduce numerical
errors, the quaternion method is employed to address rotation
matrices in this study [22]. The rotation matrix part for each
frame is expressed using three parameters Ri = [ai, bi, ci].
According to the quaternion method and the exponential

mapping of the rotation matrix, ai = ri6;b = −ri3;c = ri2
is used as the initial value for the rotation matrix Qi in the
ith frame [23]. Once Qi is obtained, it is substituted into the
objective function. At this point, Ti is initialized by a random

initialization method. Then, a nonlinear optimization method
is applied to the Equation (15) to obtain a set of values for Ti,
denoted as T′

i. Then, T
′
i and Qi are used as the initial values

for the final estimation of the motion structure parameter
matrix. This process significantly enhances the reliability of
the following reconstruction.

C. EUCLIDEAN RECONSTRUCTION
With the motion structure parameter matrices Q,R,T, the
known 2D feature points of image sequence are optimized
to obtain the 3D coordinates for each point. Let the known

2D feature points
[
uij
vij

]
i = 1, . . . ,F
j = 1, . . . ,P form the measurement

matrix

W2F×P =


u11 . . . u1p
v11 . . . u1p
. . . . . . . . .

uF1 . . . uFp
vF1 . . . uFp


(where F is the number of frames in the image and P is the
number of feature points in the image), the reconstruction
of non-rigid motion is as follows: For each point P in the
F frames, the known 2D coordinates of this point can be
represented as:

Wj =
[
u1j, v1j, . . . , uFj, vFj

]T (20)

Wj represents the jth feature point in the image sequence,
and it is a known feature point obtained from the
image sequence. The 3D reconstruction based on non-
linear optimization uses an assumed 3D feature point

W′
j =

 X1j Y1j Z1j
. . . . . . . . .

XFj YFj ZFj

 as the parameters to be solved. After

transforming it with the obtained parameter matrix, the 2D

coordinates Tj =

[
u′

1j, v
′

1j, . . . , u
′
Fj, v

′
Fj

]T
of the points are

obtained.
Then the matrix de4 shows the difference betweenWj and

Tj, which is the main part of the objective function. For the
jth feature point in the ith frame, the camera transformation is
given by:

de4=Tij−Wij =
[
quater (R)

]
×

[
quater (Qi)W′

ij+Ti
]
−Wij

(21)

In Equation (21), the known parameter is the jth feature
point in the measurement matrix, and the unknown parameter
of the objective function is the 3D coordinate point W′

ij to
be determined. Due to the continuity of the object’s motion,
the change in the displacement of the matrix de4 between
consecutive frames should be very small according to the
displacement difference formula 1S = Si − Si−1. Based on
this constraint, the strong reliability objective function for
the non-linear optimization of the j-th feature point W′

j is
obtained:

Min
w′

j

∥∥∥f (W′
j)
∥∥∥ =

√∑2F

i=3
∥DE4i1−DE4i−21∥

2 (22)
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Equation (22) is the objective function for the 3D
reconstruction of the jth feature point. Using the L − M
non-linear optimization method, W′

j is calculated as the 3D
coordinates of the jth point with size 3F . Then, applying
the same 3D reconstruction to all feature points, the 3D
coordinates of P feature points are represented by TS.

TS3FP =


WT

1

WT
2

. . .

WT
P

 (23)

Equation (23) represents a matrix of size 3FP, which is
the result of the 3D reconstruction of all feature points. This
matrix represents the 3D coordinates of the feature points,
enhancing the reliability of the reconstruction.

In summary, the proposed algorithm for non-rigid 3D
image reconstruction addresses the significant limitations
identified in existing algorithms, particularly their challenges
in establishing stable shape objective functions and determin-
ing initial values for nonlinear, non-rigid body movements.
The methodology of the algorithm unfolds in a series of
meticulously designed steps. Initially, it employs image
points and depth factors to construct a low-rank matrix that
accurately describes the dynamic shape basis of non-rigid
bodies. This matrix not only facilitates a better restoration
of the transformations of the non-rigid body shape basis
but also provides precise manifold parameters essential for
the formulation of objective functions. Subsequently, the
algorithm leverages manifold alignment and physical conti-
nuity constraints to optimize the construction of the objective
function. This optimization step is crucial for aligning the
motion structure parameters with the observed data and
reducing the amplitude of shape changes, thereby ensuring
the accuracy and reliability of the reconstruction results.

Further enhancing the robustness of the algorithm, con-
straints on reconstruction error and minimal frame-to-frame
shape changes are integrated. These constraints ensure that
the minimization of the objective function yields reconstruc-
tion results that closely align with actual observational data,
while also preventing unrealistic alterations in shape, thereby
improving the reliability of the reconstruction outcomes.
Following this, the L-M (Levenberg-Marquardt) nonlinear
optimization method is applied to solve for the motion
structure parameters and to select the key initial values of the
shape basis, based on the minimized objective function. The
culmination of these steps is the Euclidean reconstruction,
which, by using the solved motion structure parameters,
obtains the 3D coordinates of each point, achieving a reliable
reconstruction process. This comprehensive approach not
only overcomes the deficiencies of prior models but also sets
a new benchmark for accuracy and reliability in non-rigid 3D
image reconstruction.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL PARAMETERS
Experiment data is the Stanford 40 Actions dataset from
the Stanford Image Library, which is a large-scale image

and video database created by the Stanford Vision Lab. This
database contains multiple datasets, covering different tasks
in fields such as computer vision and machine learning.

The Stanford 40 Actions dataset contains approximately
9500 video clips, of which 6000 are male and 3500 are
female. There are 2500, 5000, and 2500 video clips for
different age distributions, including adolescents, young peo-
ple, and elderly people. And this dataset covers 40 different
categories of human actions. Therefore, use this dataset to
complete the reconstruction performance test of the proposed
algorithm. To ensure the effectiveness of the test, it is
necessary to set the experimental parameters, as shown in
Table 1.

TABLE 1. Parameter settings.

B. IMPACT OF THE IMAGE NUMBER ON THE PROPOSED
MODEL
Taking dynamic facial images as an example to verify the
impact of the image number on the proposed algorithm [24],
first a set of changing camera intrinsic parameters fi= 800+i
(i representing the i-th dynamic image) is generated, with
scale factor 1.1, distortion factor 0.5, and intrinsic matrix
(u0, v0) = (320, 240).

Then, 100 3D points within a unit sphere are randomly
generated and divided into three rigid body elements: the first
rigid body element consists of the first 50% of the space
points; the second consists of the middle 30%, and the
third consists of the last 20%. Simultaneously, the external
parameter matrix of the camera is varied to generate images
of sizes 640 × 480 from 20 to 200 frames. Adding 1 pixel of
Gaussian noise to each image 100 times under each number
of images, the average reprojection error e is calculated
in Equation (24), which refers to the difference between
the reconstructed 3D model and the original image, that is,
the difference between the reconstructed 3D model and the
original image after being reprojected back to the image
plane. It focuses more on the overall consistency between the
reconstructed 3D model and the original image.

e =
1
mn

∑n

j=1

∑m

i=1

1
λi,j

∥∥∥∥mi,j −

(
Pi

(
Xi,j
1

))∥∥∥∥ (24)

In Equation (24), e represents the reprojection error, i and j
denote the ith frame and the jth space point, m and n represent
the number of images and space points,mi,j and pi represent
the jth image point on the ith frame and the projection matrix
of the camera, Xi,j and ∥·∥ represent the jth 3D space point on
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the ith frame and the 2-norm, respectively, λi,j represents the
depth factor of the jth 3D spatial point in the ith frame.

Therefore, using this indicator, the impact of the image
number on the proposed model is analyzed to demonstrate
the reconstruction effect. The experimental results are shown
in Figure 1.

FIGURE 1. Variation of reprojection error with the number of images.

The physical meaning of Equation (24) is that it calculates
the average error between the reprojected image points
and the actual image points. A smaller reprojection error
indicates a higher reconstruction accuracy, while a larger
error implies lower reconstruction accuracy. Additionally,
to investigate the impact of the number of space points
on the algorithm, following the same procedure as above,
the camera’s internal parameters were varied, while the
number of space points ranged from 20 to 150. These space
points were divided into three rigid body elements according
to the aforementioned ratio. Using these 3D space points,
150 images were generated, and 1 pixel of Gaussian noise
was added to each image. The algorithm was run 100 times
for each number of space points, and the average reprojection
error was calculated, as shown in Figure 2.

FIGURE 2. Variation of reprojection error with spatial points.

From Figures 1 and 2, it can be seen that as the number
of spatial points and images increases, the amplitude of the
reprojection error in our algorithm will show a trend of first
increasing and then decreasing. The reason is that when the
number of spatial points and images is relatively small, the

number of equations and unknowns is close, making the
solution relatively unstable and more susceptible to noise,
resulting in a larger residual error; On the contrary, when
there are more spatial points and images, the number of
equations is greater than the unknowns, and the solving
process is more overconstrained and stable, so the residual
difference is relatively small. So as the number of spatial
points and images increases, the residual variation will show
a trend of first increasing and then decreasing, and eventually
stabilizing. This indicates that the number of images has a
certain impact on the model in this article. The more images
there are, the smaller the reprojection error, and the better the
reconstruction processing effect of the proposed algorithm.

C. ANALYSIS OF THE IMPACT OF DEPTH FACTOR VALUES
ON CAPTURING GLOBAL FEATURE QUANTITY
In non-rigid 3D image reconstruction, the value of depth
factor determines the field of view of camera imaging. Based
on the requirements of the high-speed camera used in the
article, the range of depth factor values is set to [0.01,0.04].
One image is randomly selected from the Stanford 40 Actions
dataset, and imaging is performed on the image at different
depth factor values. The number of global features that can be
captured is counted, and the more features can be captured,
the more, The better the subsequent reconstruction effect, the
capturing global features are shown in Table 2.

TABLE 2. Results of capturing global feature quantity.

According to the results presented in Table 2, as the
depth factor increases, there is an upward trend in the
number of global features that can be captured. This upward
trend is attributable to the fact that as the depth factor
rises, distant objects within the camera’s imaging range
become encompassed within the field of view, resulting in
an expanded number of global features that can be identified
and captured. Therefore, in the above parameter settings, the
depth factor values set are effective and can provide reliable
support for subsequent 3D image reconstruction to improve
the reconstruction effect.

D. RECONSTRUCTION RESULTS
Selecting any two samples from the moving facial image
and three frames each (62nd frame, the 98th frame, the 141st

frame, and the 51nd frame, the 52th frame, and the 58st frame,
respectively), we have Figure 3.
The selected three frames were reconstructed using the

algorithm proposed in this paper, and the results are shown
in Figure 4.
Additionally, to further illustrate the superior performance

of the proposed algorithm in non-rigid 3D image recon-
struction, five comparison algorithms from literature [7]
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FIGURE 3. Moving facial image sequence.

FIGURE 4. Model reconstruction results in this article.

based on deep learning, literature [8] based on regularization
operators, literature [9] based on translation kernel factor-
ization, literature [10] based on projection, and literature
[11] based on constrained bilateral smoothing and dynamic
mode decomposition were selected. These five comparison
algorithms were used to reconstruct the selected images in
the study, and the results are shown in Figures 5-9.

By analyzing Figures 4-9, it can be concluded that the
proposed algorithm can effectively restore the 3D structure
and motion of non-rigid bodies. The reconstruction results
of the selected image are basically consistent with the initial
image, indicating that the proposed algorithm can effectively
achieve the goal of 3D non-rigid body reconstruction.

There are certain differences between the reconstruction
results of the five comparative algorithms and the initial
image. Among them, the reconstruction results based solely
on deep learning algorithms have a small difference from the
initial image, but there are angle issues and missing details.
Therefore, comparing the reconstruction results of the five
comparative algorithms with the reconstruction results of the
algorithm in this paper, it can be seen that the robustness
and reconstruction effect of the algorithm in this paper are

FIGURE 5. Reconstruction model based on deep learning algorithm.

FIGURE 6. Reconstruction model based on regularization operator.

FIGURE 7. Reconstruction based on translation kernel factorization.

better than those of several comparative algorithms. The
main reason is that the algorithm in this paper solves the
problem of robustness degradation caused by the continuous
change of shape basis in non-rigid motion images. Compared
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FIGURE 8. Projection based reconstruction model.

FIGURE 9. Reconstruction model based on constrained bilateral
smoothing and dynamic mode decomposition.

with the fixed shape basis calculation applied in other
comparative algorithms, The proposed algorithm determines
the low rank matrix of the dynamic shape basis for non-
rigid 3D image reconstruction, describes the data structure
of the dynamic shape basis variables for non-rigid 3D image
reconstruction, captures local and global features of the
shape, and better represents the motion robustness process.
Therefore, compared with several comparative algorithms,
it has higher reconstruction robustness and effectiveness.

Further validating the local reconstruction results of the
proposed algorithm, AIDR 3D reconstruction technology is
an advanced medical image processing technique that uses
iterative methods to reconstruct high-quality 3D images. This
technology is based on a series of mathematical and physical
principles, including filtering, backprojection, reconstruction
algorithms, etc. It can shorten imaging time, reduce radi-
ation dose, and lower imaging costs. Therefore, AIDR 3D
reconstruction technology was selected for comparison with
the proposed algorithm. Taking the first set of male image

sequences as an example, AIDR 3D reconstruction and the
proposed algorithm were used to reconstruct the frontal,
lateral, and top views of the local nasal tip, and the compared
results were shown in Figures 10 and 11.

FIGURE 10. Comparison of frontal, lateral, and overhead views of the
reconstructed nasal tip using the proposed algorithm.

FIGURE 11. Comparison of frontal, lateral, and overhead views of the
reconstructed nasal tip using the AIDR 3D algorithm.

In Figures 10 and 11, the red circles and lines represent
the locally reconstructed nasal tip image using the proposed
algorithm, while the blue dots and lines represent the
local feature points of the nasal tip in the dynamic facial
image. From Figure 10, it can be observed that the locally
reconstructed nasal tip image using the proposed algorithm
conforms to the local features of the nasal tip in dynamic
facial images. From Figure 11, it can be observed that the
frontal image of the nasal tip reconstructed locally using
AIDR 3D reconstruction technology is basically consistent
with the proposed algorithm, and can well represent the
local feature points of the nasal tip. However, when
reconstructing the side and top views, the reconstruction
results are significantly different from the local feature points
of the nasal tip, and the reconstruction effect is not good
compared to the proposed algorithm. This indicates that the
reconstructed nasal tip of the proposed algorithm can better
reflect the characteristics of high nasal bridges in European
and American individuals, proving the effectiveness of the
proposed algorithm.

In order to visually illustrate the effect of incorporating a
constraint term for non-rigid motion and velocity variation
into the proposed algorithm, the left eye reconstruction results
of the proposed algorithm were compared with those of five
contrastive algorithms, as shown in Figure 12.

In Figure 12, the red circles represent the left eye
reconstruction results under the constraint of non-rigid
motion and velocity variation, while the blue dots indicate the
relative positions of the eye and eyebrow. Based on the results
in Figure 12, it can be observed that the proposed algorithm
clearly reflects the left eye reconstruction results under the
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FIGURE 12. Left eye reconstruction results of the proposed algorithm and
five comparison algorithms.

constraint of non-rigid motion and velocity variation, which
is consistent with the reconstructed model results presented
in this paper, and the relative positions of the eye and
eyebrow indicated by the blue dots are relatively accurate.
This indicates that the incorporation of a constraint for non-
rigid motion and velocity variation in the proposed algorithm
results in a more continuous deformation of the non-rigid
body, leading to a more accurate reconstruction.

E. RECONSTRUCTION PERFORMANCE
Back projection error refers to the error generated during
the projection process from a 3D model to a 2D image.
It measures the difference between the pixel values projected
by the model onto the image plane and the actual pixel
values. Compared to reprojection error, it focuses more on
the accuracy of individual pixel points and is more detailed.
It can be used to evaluate the accuracy and reliability of
reconstruction algorithms. Therefore, this article uses the
variation of back projection error during the iteration process
to prove the accuracy and reliability of this algorithm. The
back projection error can be defined as:

σ =
∥W−Wr∥F

∥W∥F
100% (25)

In Equation (25), W is the original measurement matrix,
and Wr is the measurement matrix obtained from the recon-
structed backprojection. The backprojection errors obtained
under the algorithm of this article and five comparison
algorithms are shown in Figure 13.
From Figure 13, it can be seen that when the number

of iterations reaches 1000, the average back projection
errors of reconstruction algorithms based on deep learning,
regularization operator, translation kernel decomposition,
projection reconstruction, constrained bilateral smoothing,
and dynamic mode decomposition are 0.59%, 0.80%, 0.90%,
1.32%, and 1.51%, respectively. In contrast, the average
inversion error of the proposed algorithm is only 0.33%.

This indicates that the proposed algorithm has the smallest
back projection error compared to the five comparison

FIGURE 13. Backprojection errors obtained under the proposed algorithm
and five comparative algorithms.

algorithms, indicating that the reconstruction results of
the proposed algorithm are more accurate and reliable.
This is because the proposed algorithm constructs a low
rank matrix describing the dynamic non-rigid body shape
basis by combining image points and depth factors before
reconstruction. The algorithm can effectively restore the
process of non-rigid body shape basis changes and optimize
the construction objective function using manifold alignment
and physical continuity constraints. The L-M nonlinear
optimization method is used to solve the problem and obtain
the key initial values of the shape basis, This further reduces
the back projection error of the reconstruction results, making
them closer to the actual shape changes, more accurate and
reliable, and having good reconstruction performance, which
can effectively achieve accurate reconstruction of non-rigid
3D images. To further verify the reconstruction performance
of the proposed algorithm, a 3D ShapeNet dataset was
selected for comparative testing of the back projection error
index and the above 5 comparison algorithms. Randomly
select 5 sets of images from this dataset for 3D recon-
struction, each containing 100 images. The back projection
error results of each algorithm reconstruction are shown
in Table 3.

According to the results obtained in Table 3, the proposed
algorithm can also have good reconstruction performance in
this dataset, with an average back projection error of 0.30%.
The reconstruction algorithms based on deep learning,
regularization operator, translation kernel decomposition,
projection reconstruction, constrained bilateral smoothing,
and dynamic mode decomposition have their respective
average back projection errors of 0.60%, 0.88%, 1.01%,
1.32%, and 1.59%, respectively. In contrast, the proposed
algorithm can still maintain a low reconstruction backprojec-
tion error, has good reconstruction accuracy, performs well in
reconstruction, and can ensure the quality of reconstruction
results. The reason is that the proposed algorithm utilizes
image points and depth factors to form a low rank matrix,
which can better capture the changing characteristics of
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TABLE 3. Back projection error result.

dynamic non-rigid body shape bases. By using low rank
representation, the dimensionality of the original data can
be effectively reduced while retaining important information,
which is beneficial for reducing information loss during
the reconstruction process and improving the accuracy of
the reconstruction. And through manifold alignment and
physical continuity constraints, the shape changes during
the reconstruction process are limited within a reasonable
range to avoid unreasonable distortion or deformation,
thereby helping to maintain the authenticity and stability
of the reconstruction results and reducing reconstruction
backprojection errors.

The Structural Similarity Index (SSIM) is a metric used
to compare the degree of similarity between two images.
The SSIM can be employed to assess the quality loss in
images and is widely utilized in image processing and
compression algorithms. It evaluates the similarity between
images by comparing three aspects: brightness, contrast, and
structure. Brightness compares the average brightness of the
images, contrast assesses the differences in contrast of the
images, and structure compares the structural information
in the images. All three aspects take into consideration
the characteristics of human visual perception, thus making
the evaluation more in line with human perception of
image similarity. The SSIM value typically ranges from
−1 to 1, where 1 indicates complete similarity between
two images, 0 indicates no similarity, and −1 indicates
complete dissimilarity. In order to verify the degree of
detail feature preservation in the 3D motion facial images
reconstructed using this algorithm, the restoration effect of
the algorithm on image details was compared with five
motion facial image comparison algorithms through SSIM
analysis. As shown in Figure 3, select the moving face image
of Sample 1 as the sample, extract 68 facial feature points,
and compare the SSIM index of the images obtained by
our algorithm with five comparison algorithms, as shown
in Figure 14.
From Figure 14, it can be observed that for the 68 facial

feature points, the SSIM indices of the images obtained using
reconstruction algorithms based on deep learning, regular-
ization operator, translation kernel factorization, projection-
based reconstruction, and constrained bilateral smoothing
and dynamic mode decomposition reach 0.962, 0.125, 0.569,
0.124, and 0.397, respectively.

FIGURE 14. SSIM index of images obtained by the proposed algorithm
and five comparison algorithms.

When using the algorithm proposed in this article for non-
rigid 3D image reconstruction, the SSIM index reaches a
maximum of 0.998, close to 1, indicating that the difference
between the reconstructed image using the algorithm pro-
posed in this article and the moving facial image is relatively
small. This is because the algorithm in this article uses image
points and depth factors to form a low rank matrix that
describes the dynamic non-rigid body shape basis, better
capturing facial motion and deformation features, and using
manifold alignment and physical continuity constraints to
optimize the objective function, further providing reliable
support for subsequent reconstruction, effectively maintain-
ing consistency between the reconstruction results and real
facial motion.

The consistency of curvature refers to the degree of sim-
ilarity between the reconstructed results and the real image
in terms of curvature properties in image reconstruction.
Curvature values are usually used to measure the similarity.
The closer the curvature value of the reconstructed results
is to the curvature value of the real image, the more the
reconstruction algorithm captures the curvature features of
the real image and can accurately restore the details of
curvature changes. It has good reconstruction performance
and can achieve accurate non-rigid 3D image reconstruction.
In order to verify the degree of detail restoration of non-
rigid 3D images reconstructed using the algorithm proposed
in this paper, 8 images were randomly selected from
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the Stanford 40 Actions dataset. The curvature values of
the reconstructed images using the algorithm proposed in
this paper were compared with those obtained from five
comparison algorithms based on the consistency index of
curvature, as shown in Figure 15.

FIGURE 15. Using the algorithm proposed in this article and five
comparison algorithms to calculate the curvature value of reconstructed
images.

From Figure 15, it can be seen that for any 8 selected
images, there is a significant difference between the curvature
values of the reconstructed images and the actual images
using reconstruction algorithms based on deep learning,
regularization operators, translation kernel decomposition,
projection reconstruction, constrained bilateral smoothing,
and dynamic mode decomposition. The curvature value of
the reconstructed image using the proposed algorithm is
consistent with the curvature value of the actual image. This
demonstrates the effectiveness of the proposed algorithm
in improving the degree of detail restoration in 3D image
reconstruction, thereby effectively enhancing the quality of
image restoration. This is because the proposed algorithm
optimizes the construction of the objective function through
manifold alignment and physical continuity constraints,
making the reconstruction results more in line with the
shape and characteristics of real objects. It also uses the
L-M nonlinear optimization method to solve the shape
based key initial values, better guiding and optimizing the
reconstruction process, and improving the degree of detail
restoration.

IV. DETAILED DISCUSSION
A. EXPERIMENTAL DESCRIPTION
Throughout the completion of the entire paper, the non-rigid
3D image reconstruction algorithm based on the reliability
of the deformable shape priors was subjected to three sets of
experiments.

Set 1: This experiment investigates the impact of the
number of moving facial images on the algorithm proposed in
this paper, using moving facial images as an example. Firstly,
generate variable camera internal parameters fi= 800+i,
set distortion factors of 1.1 and 0.5, and calibrate them
using the internal parameter matrix (u0, v0) = (320, 240);
Secondly, randomly generate 100 3D spatial points on a unit

sphere and divide them into 3 rigid body elements; Finally,
using different camera extrinsic matrices, generate 20-200
images with size 640 × 480, apply 1-pixel Gaussian noise to
each image using the IMNOISE function in MATLAB, run
100 times for each number of images, and then calculate the
average reprojection error.

Set 2: In the first step, 68 feature points were marked on the
moving face using a white marker pen, as shown in Figure 16.

FIGURE 16. Facial feature points marked with a white marker pen in a
certain frame of the image sequence.

These marker points will be used as features for extraction,
as shown in Figure 16. These points basically cover all
areas of the face, including parts such as the eye socket and
nose bridge that do not change significantly during facial
expression changes, as well as points like the mouth.

A larger number of points were taken at the mouth at the
first step, which can more clearly display these points with
larger changes during facial expression changes.

The second step is to use the SONY HDR-XR150E-400
megapixels high-speed camera to capture images, which
has a resolution of 4.2 million pixels and can accurately
extract the coordinates of these feature points. Approximately
10 seconds of facial expression changes were captured, and
then 150 frames of images were captured using professional
image capture software.

On step 3, MATLAB was used on simulation to extract
the 2D coordinates of these feature points for each frame,

forming a measurement matrix W2FP =


u11 . . . u1p
v11 . . . u1p
. . . . . . . . .

uF1 . . . uFp
vF1 . . . uFp

 (F

is the number of image frames, P is the number of feature
points in the image).

On Step 4, a 3D reconstruction process based on variable
shape basis reliability was carried out on the measurement
matrix. For each feature point, the 3D coordinates were taken
in 150 frames of the image. After reconstructing all feature
points, a matrix consisting of 68 feature points was formed,
each feature point represented by 3D coordinates as a 360∗68

matrix TS3FP =


WT

1
WT

2
. . .

WT
P

 (WT
i representing 3D coordinates

of the point i in 150 frames).
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Set 3: This experiment describes the performance of non-
rigid 3D image reconstruction, with indicators including
back projection error, similarity index, and consistency
of curvature. Firstly, obtain non-rigid 3D image data and
record projection data from different angles. Using the
collected projection data, the image is reconstructed using
the algorithm proposed in this article and five comparative
algorithms. Compare the reconstructed image with the
moving facial image. 68 feature points marked on moving
faces were loaded into a non-rigid 3D image reconstruction
algorithm program based on deformable basis reliability, and
experimental research was conducted.

B. RESULTS DISCUSSION
In the first set of experiments, as the number of spatial points
and images increases, the amplitude of the reprojection error
will show a trend of first increasing and then decreasing. This
is mainly because when there are a large number of spatial
points and images, the number of equations is more than the
unknowns, and the solving process is more overconstrained
and stable, so the residual difference is relatively small.
So as the number of spatial points and images increases, the
residual variation will show a trend of first increasing and
then decreasing, and will eventually stabilize [25].

In the second set of experiments, the algorithm proposed
in this paper can effectively restore the 3D structure and
motion of non-rigid bodies, and the reconstruction results of
the selected images are basically consistent with the initial
images. This is mainly because when the algorithm in this
article trains the motion structure parameters of non-rigid
objects, the selected objective function ontology is the image
model, and the difference between its 2D coordinates and the
image manifold group is the minimum value. When a non-
rigid object is in motion, the variation of its motion structure
parameters between the front and back frames is very small.
This physical continuity can provide constraints for obtaining
the parameter matrix of the motion structure. The algorithm
proposed in this article constitutes an objective function with
high reliability in these two aspects, effectively solving the
problem of reliability degradation caused by the continuous
change of shape basis in non-rigid motion images, and has
higher reconstruction reliability. The algorithm proposed
in this article has a good local reconstruction effect. For
the local image of the nasal tip, it can obtain the local
features of the nasal tip that match the motion of facial
images, better reflecting the high nasal tip characteristics of
Europeans and Americans. This is mainly because in this
article selects the appropriate reconstruction algorithm and
the correct parameter selection and optimization, thereby
effectively achieving good local reconstruction results. The
reconstruction results of the left eye under the constraint of
velocity variation in non-rigid body motion in this algorithm
are consistent with the reconstruction results of the moving
face image, and the relative position of the eye and eyebrow
is relatively accurate. This is mainly because the algorithm
proposed in this article incorporates physical laws into the
motion parameter matrix of non-rigid bodies, reflects them

in the matrix, and obtains a constraint to describe the velocity
change in non-rigid body motion. It also obtains the error
between the transformed points of the manifold motion group
as the minimum value subject and the actual measurement
points, as well as two constraints to describe the displacement
and velocity change of the parameters before and after
the frame during non-rigid body motion, thus, by adding
a constraint on velocity variation in non-rigid motion, the
deformation of the non-rigid body becomes more continuous,
and the position of the reconstructed 3D structure is more
accurate [26].
In the third set of experiments, the back projection error of

the algorithm proposed in this paper was the smallest, indi-
cating that the low-priced approximation of the measurement
matrix obtained by the algorithm proposed in this paper is
more accurate. This is mainly because the algorithm proposed
in this article effectively controls the complexity of the model
and reduces the possibility of overfitting. By retaining the
main low rank structures, the essential features of the data
can be better described without being affected by excessive
noise and details. The SSIM index obtained from non-rigid
3D image reconstruction using this algorithm is close to 1,
proving that the difference between the reconstructed image
using this algorithm and the moving face image in Figure 3
is smaller. This is mainly because the algorithm used in
this article uses nonlinear optimization to solve parameter
problems. By selecting appropriate initial values, it can
help accelerate the convergence speed of the optimization
algorithm and also help avoid getting stuck in local optima.
By providing an initial value close to the optimal solution,
the similarity between the two images can be improved,
thereby reducing the difference in non-rigid 3D images. The
curvature value of the reconstructed image in this article is
consistent with the actual curvature value of the image, which
is effective in improving the degree of detail restoration in
3D image reconstruction and also improving the quality of
non-rigid 3D image restoration. This is mainly because the
algorithm proposed in this article optimizes the construction
of the objective function through manifold alignment and
physical continuity constraints, making the reconstruction
results more in line with the shape and characteristics of real
objects. The L-M nonlinear optimization method is used to
solve the shape based key initial values, better guiding and
optimizing the reconstruction process, improving the degree
of detail restoration, and thus improving image quality [27].

V. CONCLUSION
This paper presents a novel reconstruction algorithm for
non-rigid 3D images, leveraging a low-rank matrix derived
from image points and depth factors to accurately represent
dynamic non-rigid shapes. By incorporating an improved
method for defining the nonlinear objective function and
selecting initial values, alongside classical nonlinear opti-
mization techniques, the algorithm effectively reconstructs
the 3D structure and parameter matrices for non-rigid
forms. Its key strengths include optimized objective function
and initial value computation, and a precise approach to
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transformation matrix calculation, ensuring consistent image
treatment. Simulation results confirm the algorithm’s high
reliability and its success in minimizing back projection
errors, highlighting its potential to advance non-rigid 3D
image reconstruction.
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