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ABSTRACT Graph drawing beyond planarity is a research area that has received an increasing attention
in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric
representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden
crossing configurations, a well-established subject in geometric and topological graph theory. In this context,
the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called k+-
real face graphs; for any integer k ≥ 1, a graph G is a k+-real face graph if it admits a drawing 0 in the
plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k
vertices of G (‘‘k+’’ stands for k or more); 2) We give tight upper bounds on the edge density of k+-real
face graphs, namely we prove that n-vertex 1+-real face and 2+-real face graphs have at most 5n− 10 and
4n − 8 edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the
boundary of the external face, 1+-real face and 2+-real face graphs have at most 3n− 6 and 2.5n− 4 edges,
respectively; 3) We characterize the complete graphs that admit a k+-real face drawing or an outer k+-real
face drawing for any k ≥ 1. We also provide a clear picture for the majority of complete bipartite graphs;
and 4) We establish relationships between k+-real face graphs and other prominent beyond-planar graph
families; notably, we show that for any k ≥ 1, the class of k+-real face graphs is not included in any family
of beyond-planar graphs with hereditary property.

INDEX TERMS Beyond-planar graph drawing, edge density, geometric graph theory, graph visualization,
inclusion relationships.

I. INTRODUCTION
Graph drawing (also known as graph visualization) is a
well-established research area that addresses the problem
of automatically computing readable visual representations
of graphs and networks, by developing models, algorithms,
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approving it for publication was Abdullah Iliyasu .

and systems [2], [3], [4]. Graph drawing finds application in
many real-world domains where data are naturally modeled
as complex graphs and the user can benefit from visualization
paradigms and tools for exploring the data space. Examples of
these domains include social sciences, software engineering,
biology, finance, and computer networks (see, e.g., [5], [6],
[7], [8], [9]). The importance of graph visualization has
also been highlighted in the contexts of machine learning,
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knowledge discovery, and explainable AI, which further
characterizes the interdisciplinary nature of this research area
(see, e.g., [10], [11], [12], [13]).

Within the above scenario, the study of non-planar
drawings of graphs with forbidden substructures has a
long tradition, stemming from topological and geometric
graph theory (see, e.g., [14]). This topic is commonly
recognized as beyond-planar graph drawing, and it has
become increasingly popular in the last two decades. From an
application perspective, this growth in interest is motivated by
the necessity of visually representing complex relational data
(modeled as non-planar graphs), by reducing the negative
impact of edge crossings on the readability of a graph
visualization. This motivation is further reinforced by some
human cognitive experiments designed to assess users’
analytical capabilities when specific types of edge crossings
are avoided in graph visualizations. See [15], [16], [17], and
[18] for surveys or books on the subject.
A beyond-planar graph family is a class of non-planar

graphs that can be drawn in the plane by avoiding some
specific type of edge crossing configurations. For instance,
for a given positive integer k , the family of k-planar graphs
contains all graphs that admit a drawing with no more
than k crossings per edge [19], [20], while k-quasi planar
graphs are those that can be drawn without k mutually
(i.e., pairwise) crossing edges [21], [22], [23], [24], [25],
[26]. A generalization of k-planar graphs, called min-k-
planar graphs has been recently proposed, in which for
any two crossing edges one of the two must contain at
most k crossings [27], [28]. Other prominent examples of
beyond-planar graph families are fan-planar graphs [29],
[30], [31], [32], [33], [34], [35], where an edge is not allowed
to cross two independent edges, and k-gap planar graphs
(k ≥ 1) [36], [37], [38], where for each pair of crossing edges
one of the two edges contains a small gap through which the
other edge can pass, and only k gaps per edge are allowed.
In other words, in a k-gap planar drawing it is possible to
assign each crossing to one of the two edges that form it,
in such a way that nomore than k crossings are assigned to the
same edge. Geometric properties of edge crossings have also
been proposed. In particular, right-angle-crossing graphs
(RAC graphs for short) are those graphs that admit a drawing
with straight-line edges such that any two crossing edges form
angles of 90◦ at their crossing point [39], [40]; generalizations
and variants of RAC drawings consider the possibility of
inserting bends along the edges or forbid crossing angles
that are below a given threshold (see, e.g., [41], [42], [43],
[44]). RAC graphs are among the most investigated families
in beyond-planar graph drawing, because there are human
cognitive studies showing that a good angular resolution at
the crossing points makes a graph layout more readable [45].
Refer to [16] for additional references on the subject.
Given a familyF of beyond-planar graphs, a core problem

with a long tradition, which originates from extremal graph
theory [46], [47], [48], is establishing the edge density for the
elements of F , i.e., the maximum number of edges that an

n-vertex graph in F can have with respect to n. Besides its
theoretical interest, finding upper bounds on the edge density
of graphs in a family F represents a key factor in the design
of recognition algorithms for F , i.e., algorithms that take as
input a graph and establish whether this graph belongs to
F (see, e.g., [30], [33], [49], [50], [51]). For example, it is
known that n-vertex 1-planar graphs and 2-planar graphs have
at most 4n − 8 edges and 5n − 10 edges, respectively, and
both these bounds are tight, in the sense that there are graphs
in these families that can actually achieve them [20], [52].
In the literature, a graph of F whose number of edges is
the maximum possible over its number of vertices is usually
called an optimal graph of F (see, e.g., [49], [53], [54], [55],
[56], [57]).

A complementary research direction investigates how
different beyond-planar graph families relate to each other in
terms of inclusion [16]. For instance, the family of simple k-
planar graphs is a subset of (k+1)-quasi planar graphs for any
k ≥ 2 [58]. Other examples of inclusion relationships involve
the families of fan-planar and k-gap planar graphs [33], [37].

A. CONTRIBUTION
In this paper we introduce a new hierarchy of graph families.
Namely, for any positive integer k , we define the family of
k+-real face graphs as follows. Let 0 be a graph G in the
plane, where edge crossing points are regarded as dummy
vertices. The drawing 0 divides the plane into topologically
connected regions, called faces (or cells): if 0 is a planar
drawing (i.e., if 0 does not have crossings), the boundary of
each face consists of vertices (and edges) of G; otherwise,
there are some faces whose boundaries contain dummy
vertices. We say that G is a k+-real face graph if it admits a
drawing such that each face boundary contains at least k real
vertices, i.e., k vertices of G (‘‘k+’’ stands for ‘‘k or more’’).
Note that, for any k ≥ 1, the family of (k + 1)+-real face
graphs is included in the family of k+-real face graphs. For
example, Figure 1 shows three different drawings of the same
graph, namely the complete graph on five vertices. While the
leftmost drawing does not belong to any family of k+-real
face drawings (as it contains a face formed by crossing points
only), the other two drawings are a 1+-real face and a 2+-real
face drawing, respectively.

The study of the k+-real face graph hierarchy has both
a theoretical and a practical motivation. From a theoretical
perspective, k+-real face drawings are a generalization of
planar drawings whose face sizes are above a desired
threshold [59], [60], [61]. Also, finding k+-real face graphs
can be regarded as a generalization to non-planar graphs of
the classical guarding planar graph problem [62], where the
vertices that cover the face set are the (real) vertices of G.
From the practical side, the advantage of computing k+-real
face drawings comes from the observation that faces mostly
consisting of crossing points carry out little information about
the relational dataset modeled by the graph and make the
layout less readable. Indeed, the number of real vertices per
face provides a measure of how much the drawing is far from
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FIGURE 1. Three different drawings of the complete graph K5: (a) A drawing with a face that has no vertices (in gray); (b) a
1+-real face drawing; (c) a 2+-real face drawing.

TABLE 1. Summary of density results in this paper; n, m, and χ denote the number of vertices, edges, and crossings, respectively.

being planar; when possible, faces formed only by crossing
points should be avoided.

It is also worth remarking that our study differs from all
previous approaches in the field of graph drawing beyond
planarity. Indeed, the class of k+-real face graphs focuses on
relating edge crossings to the structure of face boundaries,
rather than just considering forbidden crossing configurations
along edges. Our results are as follows:

• We provide tight upper bounds on the edge density of
k+-real face graphs, for all values of k , both in the
general case and in the constrained scenario in which
all vertices of the graph are forced to stay on the
external face. The constrained scenario can be seen as a
generalization of the study of outerplanar graphs to our
graph family, which we call outer k+-real face graphs.
We remark that similar constraints have been previously
studied for other families of beyond-planar graphs (see,
e.g., [30], [33], [51], [63], [64]). Table 1 reports the set
of our results on edge density. See also Table 2 for a
comparison between our results and previous results in
graph drawing beyond planarity.

• We use the edge density results to characterize the
complete graphs that admit k+-real face drawings, for
any integer k ≥ 1. Interestingly, we observe the
existence of k+-real face drawings of complete graphs
that match both the maximum value of k and the
minimum number of edge crossings, i.e., the so-called
crossing number of the graphs. We also provide a clear
picture for the majority of complete bipartite graphs.

• We establish inclusion relationships between k+-real
face graphs and families of beyond-planar graphs with
hereditary property, such as h-planar and h-quasi planar
graphs. Notably, we show that, for any positive integer k ,

the family of k+-real face graphs is not included in any
beyond-planar graph family with hereditary property.
However, we prove that this is not always the case if we
restrict our attention to optimal graphs.

We remark that very recently, and after the conference
version of the present paper was published [1], Kauf-
mann et al. [65] published a technical report about a new
general formula, used to provide alternative proofs for several
edge density results in the beyond-planar graph drawing area.
In particular, the authors of [65] describe an alternative proof
of the upper bounds on the edge density of unconstrained
k+-real face graphs given in our paper. The work in [65]
confirms the correctness of our results and reinforces the
scientific interest in the graph families introduced in our
article.

B. PAPER STRUCTURE
The remainder of the paper is structured as follows:
Section II discusses the literature that is mainly related to
our contribution; Section III contains basic notation and
terminology adopted throughout the paper; Sections IV andV
provide the edge-density results of k+-real face and outer
k+-real face graphs, respectively; Section VI focuses on k+-
real face drawings of complete graphs and complete bipartite
graphs; Section VII presents the results about inclusion
relationships of k+-real face graphs and other beyond-planar
graph families; Section VIII concludes with final remarks and
suggestions about future research directions.

II. RELATED WORK
Our work provides advances on two main lines of research
in graph drawing beyond planarity, namely the study of
the edge density of specific graph families and the study
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TABLE 2. Edge density bounds for some popular beyond-planar graph
families; n and m denote the number of vertices and edges of the graphs.
The bounds assume simple graphs and drawings.

of inclusion relationships among different graph families.
In the following we briefly survey the literature on these two
research lines, andwe also discuss other common topics in the
field.

A. EDGE DENSITY
The problem of establishing the maximum number of edges
that an n-vertex graph in a given beyond-planar graph family
can have is extensively studied in the literature. Notably,
the majority of beyond-planar graph classes that have been
investigated exhibit linear upper bounds on the edge density.
Nonetheless, unlike testing graph planarity, deciding whether
an input graph belongs to some given beyond-planar graph
family is typically an NP-hard problem. While the interested
reader can refer to the survey in [16] for the edge density
results of a wide range of graph families, we summarize
in Table 2 the bounds for some of the most popular
graph families. For each result, we report the corresponding
reference. Also, the symbol • indicates that the bound is tight;
the symbols + and × indicate that the bound is tight up to
an additive or to a multiplicative constant, respectively; the
symbol ◦ means that the bound may be far from being tight.

The definition of most of the families reported in Table 2
has already been given in Section I. The last three lines in the
table refer to straight-line RACdrawings (0-bendRAC), RAC
drawings with at most one bend per edge (1)-bend RAC),
and RAC drawings with at most two bends per edge (2)-
bend RAC). We also recall that every graph admits a RAC
drawing with at most three bends per edge, i.e, n-vertex 3-
bend RAC drawings can achieve the density of the complete
graph Kn [40].

B. INCLUSION RELATIONSHIPS
Table 2 shows that the maximum edge density of different
beyond-planar graph families is sometimes the same. In these
cases it is natural asking whether the two families coincide.
In fact, this is not true most of the times. For example,

although both 2-planar graphs and fan-planar graphs can have
up to 5n− 10 edges, it is proven that none of these classes is
included in the other [34].
There are also cases in which two families are not in any

inclusion relationship, even if the maximum edge density of
one of the two families is strictly less than the maximum edge
density of the other. To this regard, a remarkable example
is given by 0-bend RAC graphs (whose density is at most
4n−10), which are not included in the class of 1-planar graphs
(whose density can be higher, namely up to 4n − 8) [68].
As another example, there exist 1-gap planar graphs that are
not k-planar, for any given k ≥ 1 [38]. Recall that k-planar
graphs might have much higher density than 1-gap planar
graphs when k ≥ 3 (see Table 2).

A non-trivial inclusion relationship involves the hier-
archies of k-planar graphs and k-quasi planar graphs.
Namely, by using sophisticated rerouting arguments,
Angelini et al. [58] showed that every k-planar drawing can
be transformed into a (k + 1)-quasi planar drawing, for any
integer k ≥ 2. This implies that the family of k-planar graphs
is properly included in the family of k-quasi planar graphs.
Another interesting result by Bae et al. [38] establishes that
all 2k-planar graphs are k-gap planar, for any k ≥ 1; this
result is proven by exploiting the famous Hall’s theorem [69].
Refer to [16] for other relationships between beyond-planar

graph families.

C. OTHER TOPICS IN BEYOND-PLANAR GRAPH DRAWING
Although our paper concentrates on edge density and
inclusion relationships for k+-real face graphs, it is worth
remarking that other types of problems are studied in the
literature in the field of beyond-planar graph drawing. One
of them is the already mentioned recognition problem, that
aims to establish the membership of graphs to specific
graph families. Another problem concerns the stretchability
of topological drawings, that is, establishing whether a
certain type of beyond-planar drawing can be transformed
into a drawing of the same family using straight-line edges
only. While this is always true for planar graphs with
fixed embedding, as the famous Fary’s theorem proves [70],
there are examples of beyond-planar drawings that are not
stretchable, or that are stretchable only if we can change the
embedding [71], [72], [73], [74].

To conclude this short literature review, we observe that
many of the classical problems arising in beyond-planar
graph drawing are addressed in constrained scenarios.
As mentioned in Section I, some of our density results are
about the constrained scenario in which all vertices belong to
the external face. Other common constrained settings assume
that the vertices are drawn on two parallel lines (e.g., when
the graph is bipartite) or that all vertices lie on the same line
(called spine) and the edges are drawn on a given number of
distinct planes that contain this line (called pages). See [16]
for an extensive discussion of this and other topics on graph
drawing beyond planarity.
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TABLE 3. Symbols for the cardinality of sets of vertices, edges, and faces.

III. BASIC NOTATION AND TERMINOLOGY
Let G be a graph. We assume that G is simple, that is,
it contains neither multiple edges (also called parallel edges)
nor self-loops. We also assume, without loss of generality,
that G is connected, as otherwise we can just consider each
connected component of G independently. We denote by
V (G) and E(G) the set of vertices and the set of edges of G,
respectively. A drawing 0 of G is a geometric representation
of G that maps each vertex v ∈ V (G) to a distinct point of
the plane and each edge uv ∈ E(G) to a simple Jordan arc
between the points corresponding to u and v. We assume that
0 is a simple drawing (sometimes called good drawing in the
literature), that is: (i) adjacent edges do not intersect, except
at their common endpoint; (ii) two independent (i.e., non-
adjacent) edges intersect at most in one of their interior points,
called a crossing point; and (iii) no three edges intersect at a
common crossing point.

Refer to Figure 2 for an illustration of the next definitions.
Let 0 be a drawing of G. A vertex of 0 is either a point
corresponding to a vertex ofG, called a real-vertex, or a point
corresponding to a crossing point, called a crossing-vertex.
Observe that a crossing-vertex has degree four. We remark
that in the literature a plane graph obtained by replacing
crossing points with dummy vertices is often referred to as
a planarization [3]. We denote by V (0) the set of vertices of
0. An edge of 0 is a curve connecting two vertices of 0; an
edge of 0 whose endpoints are both real-vertices coincides
with an edge of G. We denote by E(0) the set of edges of 0.
Drawing 0 subdivides the plane into topologically connected
regions, called faces (sometimes called cells in the literature).
The boundary of each face consists of a circular sequence of
vertices and edges of 0. The set of faces of 0 is denoted by
F(0). Exactly one face in F(0) corresponds to an infinite
region of the plane, called the external face (or outer face)
of 0 (face fe in Figure 2(a)); the other faces are the internal
faces of 0. When the boundary of a face f of 0 contains a
vertex v (or an edge e), we also say that f contains v (or e).
From now on, we denote by n = |V (G)| and m =

|E(G)| the number of vertices and the number of edges of G,
respectively. For a drawing 0 ofG, we denote by ν = |V (0)|,
µ = |E(0)|, and ϕ = |F(0)| the number of vertices, edges,
and faces of 0, respectively. Also, we denote by χ = |V (0)\
V (G)| = ν − n the number of crossing-vertices of 0. For
example in Figure 2(b) the number of crossing-vertices of 02

is χ = 7. Table 3 summarized the symbols used to denote the
cardinality of the different vertex, edge, and face sets. Also,
refer to Table 5 at the end of the paper for a more comprehen-
sive glossary of the symbols used in the technical parts.

FIGURE 2. Two non-planar drawings 01 and 02 of the same graph G
having n = 13 vertices and m = 22 edges. In both drawings the
real-vertices are represented by empty circles, while the crossing vertices
are represented by black circles. (a) The number of vertices of 01 is
ν = 21 (it has 8 crossing-vertices). The number of edges and the number
of faces of 01 are µ = 38 and ϕ = 19, respectively. Face f1 is a 0-real face,
face f4 is a 2-real triangle while face f2 and face f3 are a 1-real
quadrilateral and a 2-real quadrilateral, respectively. Face fe is the
external face. For face f2 we have that δr

0
(f2) = 1, δc

0
(f2) = 3, and then

δ0(f2) = 4. The boundary of face f5 is not a simple cycle since vertex z is
traversed twice, then δ0(f5) = 6 because δr

0
(f5) = 5 and δc

0
(f5) = 1.

(b) Drawing 02 is obtained from 01 by rerouting the edge uv of G. 02 is a
1+-real face drawing and has ν = 20 vertices (with 7 crossing-vertices),
µ = 33 edges, and ϕ = 18 faces.

A. DEGREE OF VERTICES AND FACES
For a vertex v ∈ V (G), denote by δG(v) the degree of v in
G, i.e., the number of edges incident to v. Analogously, for
a vertex v ∈ V (0), let δ0(v) be the degree of v in 0. For
a face f ∈ F(0), let δ0(f ) denote the degree of f , i.e., the
number of times we traverse vertices (either real- or crossing-
vertices) while walking on the boundary of f clockwise. Each
vertex contributes to δ0(f ) the number of times we traverse
it (possibly more than once if the boundary of f is not a
simple cycle); see face f5 in Figure 2(a) for an example. Also,
denote by δr0(f ) the real-vertex degree of f , i.e., the number
of times we traverse a real-vertex of 0 while walking on the
boundary of f clockwise. Again, each real-vertex contributes
to δr0(f ) the number of times we traverse it. Finally, δc0(f )
denotes the number of times we traverse a crossing-vertex
of 0 while walking on the boundary of f clockwise. Clearly,
δ0(f ) = δr0(f ) + δc0(f ).

B. K+-FACE DRAWINGS
Given a graph G and a positive integer k , a k+-real face
drawing of G is a drawing 0 of G such that the boundary
of each face of 0 has at least k real-vertices. If G admits a
k+-real face drawing, we say that G is a k+-real face graph.
An outer k+-real face drawing ofG is a k+-real face drawing
0 ofG such that all its real-vertices are on the boundary of the
external face. If G admits an outer k+-real face drawing we
say that G is an outer k+-real face graph. We say that a face
f ∈ F(0) is an h-real face, where h is a non-negative integer,
if δr0(f ) = h. An h-real face of degree d is called an h-real
d-gon. An h-real 3-gon is also called an h-real triangle, and
an h-real 4-gon is also called an h-real quadrilateral. We say
that an edge e = uv ∈ E(0) is an h-real edge (h ∈ {0, 1, 2})
if |{u, v} ∩ V (G)| = h, that is, e contains h real-vertices.
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IV. DENSITY OF K+-REAL FACE GRAPHS
This sections gives tight upper bounds on the number of edges
that a k+-real face graph can have. All our proofs exploit
the well-known Euler’s formula for planar drawings, which
relates the number of edges, vertices, and faces. In our case,
the idea is to use several applications of this formula on (non-
planar) k+-real face drawings, where the vertices are both
the real-vertices and the crossing-vertices of the drawing, and
where the edges of the drawing are portions of edges of the
input graph.

We start by proving an upper bound on the number χ

of crossing-vertices in a k+-real face drawing. It will be
exploited to prove some of our edge density results.
Lemma 1: For any given k+-real face drawing drawing 0

of a graph G, the following inequality holds:

χ ≤
2 − k
k

· m+ n− 2 (1)

Proof: By hypothesis, each face f ∈ F(0) contains at least
k real-vertices. Since each real-vertex v ∈ V (G) can belong
to at most δG(v) faces of 0 and since

∑
v∈V (G) δG(v) = 2m,

we have that the number ϕ of faces of 0 is such that ϕ ≤
2m
k .

Also, the number of edges µ of 0 is such that µ = m + 2χ .
Hence, by Euler’s formula applied to 0, we have ϕ = µ+2−

ν = m+2χ+2−n−χ , and hence ϕ = m+χ+2−n. It follows
that χ = ϕ−m+n−2 ≤

2m
k −m+n−2 =

2−k
k ·m+n−2.□

A. K+-REAL FACE GRAPHS, WITH K ≥ 2
We first prove the edge density upper bound for the the case
k ≥ 3 (Theorem 1) and then we consider the case k = 2
(Theorem 2).
Theorem 1: Let k be an integer such that k ≥ 3. If G is

a k+-real face graph with n vertices and m edges, then m ≤
k

k−2 (n − 2), and this bound is tight. Also, the k+-real face
drawings of optimal n-vertex k+-real face graphs are exactly
the n-vertex planar drawings in which each face is a simple
k-gon.
Proof: Let 0 be any k+-real face drawing of G. When

k ≥ 3, the term 2−k
k is negative and, equivalently, k

k−2 is
positive. Since the number χ of crossing-vertices of 0 cannot
be negative, i.e., χ ≥ 0, by Equation (1) of Lemma 1 we have
that the number m of edges of G must satisfy the inequality
m ≤

k
k−2 (n− 2).

To show that the bound is tight, consider any n-vertex
planar graph with a given planar embedding, where each face
has exactly k vertices. By Euler’s formula, it is immediate to
see that such a graph has m =

k
k−2 (n− 2) edges.

Finally, for an n-vertex graph with m =
k

k−2 (n− 2) edges,
Equation (1) implies χ ≤ 0. It follows that in every k+-real
face drawing 0 of an optimal n-vertex k+-real face graph G
the number χ of crossings equals 0, that is, G is necessarily
planar. This implies that each face of 0 has degree k . Indeed,
since each face of 0 has at least k vertices, if one of these
faces had more than k vertices, then G would have more than
m =

k
k−2 (n− 2) edges, which is not possible. □

Theorem 2: IfG is a 2+-real face graph with n vertices and
m edges, then m ≤ 4n − 8, and this bound is tight. Also, the
optimal n-vertex 2+-real face graphs are exactly the optimal
1-planar graphs.
Proof:Let0 be any 2+-real face drawing ofG. With k = 2,

from Equation (1) of Lemma 1 we get χ ≤ n − 2. Since
µ ≤ 3ν−6, sinceµ = m+2χ , and since ν = n+χ , we have
m ≤ χ +3n−6, and therefore m ≤ n−2+3n−6 = 4n−8.
This proves the claimed upper bound on m.
To see that this bound is tight, consider the family of

1-planar graphs, which admit a drawing 0 with at most
one crossing per edge. Each face of 0 contains at least
two real-vertices (see also [75]), thus 0 is a 2+-real face
drawing. In particular, for n = 8 and for every n ≥ 12,
there exists an optimal 1-planar graph with n vertices and
4n−8 edges [20]. To complete the proof, we show that every
2+-real face drawing 0 of an optimal 2+-real face graph G is
also a 1-planar drawing of G, and hence that G is an optimal
1-planar graph. Suppose by contradiction that this is not true.
Since G does not have multiple edges, this implies that there
is at least one edge crossed twice in 0, and hence a face of
degree at least four in 0 (namely a face with at least two
real-vertices and two crossing-vertices). Since each other face
of 0 has at least degree three and since the sum of the degrees
of the faces of 0 equals twice the number µ of its edges,
we have 2µ ≥ 3(ϕ−1)+4 = 3ϕ+1. Since µ = m+2χ and
ϕ = m+χ+2−n, we getm ≤ χ−7+3n. From the optimality
of 0, we can plug m = 4n − 8 into the previous inequality,
and we get χ ≥ n − 1, which contradicts Equation (1) of
Lemma 1 when k = 2. □

B. 1+-REAL FACE GRAPHS
To prove an upper bound on the number of edges in 1+-
real face graphs, we exploit a discharging technique, which
has been successfully used in previous papers on other
beyond-planar graph families. See for example [22], [67], and
[44]. Intuitively, a discharging technique consists of assigning
an initial charge to the faces of the drawing, mainly based on
the number of real- and crossing-vertices of their boundaries,
and then moving some charges from faces with high capacity
to faces with smaller capacities, without increasing the total
charge. This idea, combined with Euler’s formula, is used
to count the maximum number of edges in the graph. More
formally, as in [22], we consider a charging function ch :

F(0) → R such that, for each f ∈ F(0), we set:

ch(f ) = δ0(f ) + δr0(f ) − 4 = 2δr0(f ) + δc0(f ) − 4 (2)

The value ch(f ) is called the initial charge of f . In practice,
each crossing-vertex of f contributes exactly once to the
initial charge of f , while each real-vertex contributes twice.
By using Euler’s formula, it can be easily seen that the
following relationship holds (refer to [22] for details):∑

f ∈F(0)

ch(f ) = 4n− 8 (3)
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FIGURE 3. (a) A 1+-real face drawing 0. (b) An example of augmentation
of 0 as described in the proof of Theorem 3; the added edges are gray
and thick.

The aim of a discharging technique is to derive from the initial
charging function ch a new function ch′ that satisfies the next
two properties (see also [22]):

• C1. ch′(f ) ≥ αδr0(f ), for some real number α > 0;
• C2.

∑
f ∈F(0) ch

′(f ) ≤
∑

f ∈F(0) ch(f )

If α > 0 is a real number for which a charging function ch′

satisfies C1 and C2, by Equation (3) we have: 4n − 8 =∑
f ∈F(0) ch(f ) ≥

∑
f ∈F(0) ch

′(f ) ≥ α
∑

f ∈F(0) δ
r
0(f ). Also,

since
∑

f ∈F(0) δ
r
0(f ) =

∑
v∈V (G) δG(v) = 2m, we get the

following:

m ≤
2
α
(n− 2) (4)

Thus, Equation (4) can be exploited to prove upper bounds on
the edge-density of a graph for specific values of α, whenever
we find a charging function ch′ that satisfies C1 and C2.
We are now ready to present the main result of this section.
Theorem 3: IfG is a 1+-real face graph with n vertices and

m edges, then m ≤ 5n− 10, and this bound is tight.
Proof: Let 0 be a 1+-real face drawing of G. We first

augment 0 and G with extra edges as follows (refer to
Figure 3 for an example). If some face f of 0 contains a
pair u and v of real-vertices but does not contain an edge uv
on its boundary, then we augment 0 (and G) with an edge
uv drawn in the interior of f , in such a way that it does not
create any crossing. We then repeat this process until every
pair of real-vertices in each face f is connected by an edge
on the boundary of f . Note that this augmentation is not
unique and may introduce multiple edges in G. However,
it does not create any 0-real faces and any faces of degree
two in the drawing; also, the drawing remains a 1+-real face
drawing. Denoted by 0′ the drawing resulting from the edge
augmentation on 0, for each face f ∈ F(0′) we have that
δ0′ (f ) ≥ 3 and 1 ≤ δr

0′ (f ) ≤ 3. Also, denoted by G′

the graph resulting from the augmentation on G, we have
V (G′) = V (G) and E(G) ⊆ E(G′); hence, an upper bound
on the number of edges m′ of G′ is also an upper bound on
the number of edges m of G.
Suppose given on 0′ the initial charging function ch :

F(0′) → R of Equation (2). If we are able to define a
charging function ch′

: F(0′) → R that satisfies C1 and C2

FIGURE 4. Illustration for the proof of Theorem 3.

for α =
2
5 , then by Equation (4) we get m ≤ m′

≤ 5n − 10,
and we are done. We show how to define ch′.

For every face f ∈ 0′, we initially set ch′(f ) = ch(f ) =

2δr
0′ (f ) + δc

0′ (f ) − 4. With this choice and with α =
2
5 ,

function ch′ satisfies C2. Also, C1 becomes 2δr
0′ (f ) + δc

0′ −

4 ≥
2
5δ

r
0′ (f ), that is, 8δr0′ (f ) + 5δc

0′ (f ) ≥ 20. Hence, since
δ0′ (f ) ≥ 3, C1 is always satisfied for each face f such that
either δr

0′ (f ) ≥ 2, or δr
0′ (f ) = 1 and δc

0′ (f ) ≥ 3. It follows
that, the only faces that do not satisfy C1 are the 1-real
triangles, i.e., each face t for which δr

0′ (t) = 1 and δc
0′ (t) = 2.

Indeed, for a 1-real triangle t the initial charge equals 0, thus
we need to suitably increase the value of ch′(t).
For each 1-real triangle t , let f be the face incident to the

unique 0-real edge of t; see Figure 4(a). Note that it must
be δ0′ (f ) ≥ 4. Indeed, if it were δ0′ (f ) = 3 then G would
contain two multiple edges (which is impossible becauseG is
simple) or there would be two adjacent edges of G that cross
in 0 (which is impossible because 0 is a simple drawing).
Also, since 0′ is a 1+-real face drawing, we have δr

0′ (f ) ≥ 1.
We apply a discharging operation, by moving a fraction 2

5 of
charge from f to t across their shared 0-real edge. In this way,
we set ch′(t) =

2
5 and reduce ch′(f ) by 2

5 . The total charge
of 0′ determined by ch′ does not change (hence C2 is still
satisfied) but now ch′(t) satisfies C1.

Since for a face f the reduction of ch′(f ) by 2
5 occurs across

a 0-real edge of f , the number of times this happens is at most
δc
0′ (f ) − 1. Therefore, after we have applied a discharging
operation for each 1-real triangle, the charge ch′(f ) of each
face f of degree at least four is such that:

ch′(f ) ≥ 2δr0′ (f ) + δc0′ (f ) − 4 −
2
5
δc0′ (f )

+
2
5

= 2δr0′ (f ) +
3
5
δc0′ (f ) −

18
5

Hence f satisfies C1 (i.e., ch′(f ) ≥
2
5δ

r
0′ (f )) if this relation

holds:

8δr0′ (f ) + 3δc0′ (f ) ≥ 18 (5)

It can be easily verified that the above relation is always
satisfied for a face f of degree at least four, except when f
is a 1-real quadrilateral (which consists of one real-vertex
and 3 crossing-vertices). Indeed, if f is a 1-real quadrilateral
it could have moved a fraction 2

5 of charge towards a 1-real
triangle t1 and a fraction 2

5 of charge towards another 1-real
triangle t2; see Figure 4(b). Both t1 and t2 share a crossing-
vertex x with f and with another face f ′. In this case ch′(f ) =
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FIGURE 5. (a) A pentagon of an optimal 2-planar drawing with five inner
chords that create a 0-real face. (b) To transform the 2-planar drawing
into a 1+-real face drawing, it is sufficient to add a vertex (in gray) inside
the 0-real face of each pentagon an connect this vertex to the
real-vertices of the pentagon.

ch(f ) −
4
5 = 1 −

4
5 =

1
5 =

2
5δ

r
0′ (f ) −

1
5 , thus f has

a deficit of 1
5 . Observe that the boundary of f ′ contains

two real-vertices adjacent to x, which are connected by an
edge due to the edge augmentation initially performed on
0. Hence, f ′ is a 2-real triangle and at this point we have
ch′(f ′) = ch(f ′) = 1 =

2
5δ

r
0′ (f ′) +

1
5 . It follows that ch

′(f ′)
has a surplus of 1

5 , and we can move this surplus from f ′ to f ,
i.e., we increase ch′(f ) by 1

5 and decrease ch′(f ′) by 1
5 . Since

this reduction of ch(f ′) can happen at most once for f ′, both f
and f ′ satisfy C1 at the end of this operation. This completes
the proof that m ≤ 5n− 10.
To show the tightness of the bound, consider the class of

n-vertex optimal 2-planar graphs, that is, graphs that admit a
drawing with at most two crossings per edge and that have the
maximum possible number of edges over all 2-planar graphs
with n vertices. Pach and Tóth [20] show that these graphs
have 5n − 10 edges. Also, Bekos et al. [76] show that an
optimal 2-planar drawing 0 has a regular structure, namely:
The crossing-free edges of0 form a pentangulationP(G) (i.e.,
every face is a simple cycle of degree five), and inside each
face of P(G) there are five crossing edges; see Figure 5(a).
We can transform an optimal 2-planar drawing 0 into a 1+-
real face drawing0′ by inserting, for each pentagon p ofP(G),
a real vertex inside the 0-real face of 0 that is contained in
the interior of p, and by connecting this vertex to each of the
five vertices of p; see Figure 5(b). If P(G) consists of h faces
(pentagons), the augmented drawing has n′

= n+ h vertices
and m′

= 5n′
− 10 edges. □

V. DENSITY OF OUTER K+-REAL FACE GRAPHS
In this section we provide tight upper bounds on the
maximum number of edges that an outer k+-real face graph
can have, depending on k . For an outer k+-real face drawing
0 of a graph G, we denote by Fint(0) ⊂ F(0) the subset
of internal faces of 0. Additionally, ϕint denotes the number
of internal faces of 0, that is ϕint = |Fint(0)|. Note that
ϕ = ϕint + 1. As for k+-real face graphs, we first give an
upper bound on the number χ of crossing-vertices in an outer
k+-real face drawing, which will be exploited to prove some
edge density results in this constrained scenario.
Lemma 2: Let G be a graph and let k be any positive

integer. If 0 is an outer k+-real face drawing of G then the

following holds:

χ ≤
2 − k
k

· m+
k − 1
k

· n− 1 (6)

Proof: By hypothesis, each face f ∈ Fint(0) contains at
least k real-vertices. Since each real-vertex v ∈ V (G) can
belong to at most δG(v) − 1 internal faces of 0 and since∑

v∈V (G)(δG(v)− 1) = 2m− n, we have that the number ϕint

of internal faces of 0 is such that ϕint ≤
2m−n
k , and therefore

ϕ ≤
2m−n
k +1. By Euler’s formula applied to 0, we have ϕ =

µ+2−ν = m+2χ +2−n−χ , and hence ϕ = m+χ +2−n.
It follows that χ = ϕ−m + n − 2 ≤

2m−n
k −m + n − 1 =

(1 −
1
k ) · n− (1 −

2
k ) · m− 1 =

2−k
k · m+

k−1
k · n− 1. □

A. OUTER K+-REAL FACE GRAPHS, WITH K ≥ 2
As for the unconstrained scenario, we first consider the case
k ≥ 3 and then the case k = 2.
Theorem 4: Let k be a positive integer such that k ≥ 3.

If G is an outer k+-real face graph with n vertices and m
edges, then m ≤

k−1
k−2 · n−

k
k−2 , and this bound is tight. Also,

the optimal n-vertex outer k+-real face drawings are exactly
the n-vertex outerplanar drawings whose internal faces are
simple k-gons.
Proof: Let 0 be any outer k+-real face drawing of G, with

k ≥ 3. Since the number χ of crossing-vertices of 0 cannot
be negative, by Equation (6) of Lemma 2 we have that 2−k

k ·

m+
k−1
k · n− 1 ≥ 0. Since 2−k

k is negative, this implies that
m ≤ ( k−1

k · n− 1) k
k−2 , and therefore m ≤

k−1
k−2 · n−

k
k−2 .

To see that the bound is tight, consider the family of n-
vertex outerplane graphs (i.e., outerplanar embedded graphs)
where each internal face has exactly k vertices. For such an
n-vertex graph, we have 2m = kϕint + n. Also, ϕint + 1 =

m+ 2− n, and hence ϕint = m−n+ 1. Thus, 2m = k(m−n+

1)+ n, which yields m =
k−1
k−2 · n−

k
k−2 . The final part of the

theorem follows from the same considerations as in the proof
of Theorem 1. □
Theorem 5: Let G be an outer 2+-real face graph with n

vertices and m edges. We have that m ≤ 2.5n − 4, and this
bound is tight. Also, the n-vertex optimal outer 2+-real face
graphs are exactly the optimal outer-1-planar graphs.
Proof: Let 0 be any outer 2+-real face drawing of G.

By Lemma 2, with k = 2, we get χ ≤
n
2 − 1. If we

remove from 0 exactly one edge of G per crossing-vertex,
we get an outerplanar graph with m′

= m − χ edges and n
vertices. Since a maximal outerplanar graph with n vertices
has at most 2n − 3 edges, we have m − χ ≤ 2n − 3, and
therefore m ≤ 2n − 3 + χ ≤ 2n − 3 +

n
2 − 1, that is,

m ≤
5
2n − 4 = 2.5n − 4. This proves that 2.5n − 4 is an

upper bound on the number of edges of G.
To show that this bound is tight, we describe an infinite

family of outer 2+-real face graphs whose number of edges
matches the bound. Refer to Figures 6(a) and 6(b). Let
h ≥ 1 be any positive integer. Construct a graph Gh
with n = 2h + 2 vertices and m = 2.5n − 4 edges as
follows. Suppose that in a drawing 0 of Gh the n vertices
are distributed along a circumference such that u and v are
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FIGURE 6. An optimal outer 2+-real face graph with (a) n = 8 vertices, and (b) n = 12 vertices. An optimal outer 1+-real face graph
with (c) n = 8 vertices, and (d) n = 11 vertices.

the bottom-most and the top-most vertices, respectively; this
means that there is a set Vl of h vertices encountered walking
from u to v on the circumference clockwise, and another set
Vr of h vertices encountered walking from u to v on the
circumference counterclockwise. The m edges of Gh are as
follows. There is a cycle of n edges that contains all n vertices
of Gh; it forms the boundary of the external face of 0. There
are other n− 3 internal edges that connect u to all vertices of
Gh that are not adjacent to u on the external boundary. Finally,
there are h edges, each connecting a pair of distinct vertices
in Vl ∪Vr that have a topological distance equal to two on the
external cycle, but not the two vertices adjacent to u. Hence,
m = n+ (n− 3) + h = 2.5n− 4.
We finally prove that every n-vertex optimal outer 2+-real

face drawing 0 is also 1-planar; since optimal outer-1-planar
graphs have at most 2.5n − 4 edges [63], [77], this will
imply that optimal outer 2+-real face graphs are exactly the
optimal outer-1-planar graphs. Suppose, by contradiction,
that an edge of G crosses twice in 0. This implies that
there is an internal face of 0 of degree at least 4. Therefore
2µ ≥ 3(ϕ−2)+4+n, which leads to 2µ ≥ 3ϕ−2+n. Since
µ = m+2χ and ϕ = m+χ +2−n, we have χ ≥ m+4−2n.
Since 0 is optimal, then m = 2.5n− 4, and hence χ ≥ 0.5n,
which contradicts Lemma 2 for k = 2. □

B. OUTER 1+-REAL FACE GRAPHS
As for 1+-real face graphs, we use a discharging technique to
prove an upper bound on the number of edges of outer 1+-real
face graphs. An outer 1+-real face 0 is edge-maximal if the
drawing obtained by adding to 0 any new edge between two
of its real-vertices is no longer outer 1+-real face. An example
of edge-maximal outer 1+-real face drawing is illustrated in
Figure 7(a). However, this graph is not optimal, because for
any n ≥ 3 there exist outer 1+-real face graphs that contain
3n− 6 edges (Theorem 6).
The next lemma is fundamental to prove Theorem 6.

It shows some important structural properties of edge-
maximal outer 1+-real face drawings. For an illustration of
the properties stated in the lemma refer to Theorem 7.
Lemma 3: Let G be an n-vertex outer 1+-real face graph,

with n ≥ 4, and let 0 be an edge-maximal outer 1+-real face
drawing of G. The following properties hold:

a) The boundary of the external face is a simple cycle
without crossing vertices and with exactly n real-
vertices.

b) Each internal face of 0 is either a 3-real triangle, or a
2-real d-gon (d ≥ 3), or a 1-real triangle, or a 1-real
quadrilateral.

c) We can map each 1-real triangle to exactly one face of
0 that is either a 2-real d-gon, for d ≥ 4, or a 1-real
quadrilateral, in such a way that: (i) at most (d−3) 1-real
triangles are mapped to the same 2-real d-gon; and (ii) at
most two 1-real triangles are mapped to the same 1-real
quadrilateral.

d) The number of 3-real triangles plus the number of
2-real d-gons is exactly n, and the number of 1-real
quadrilaterals is at most n− 4.

Proof: Let f0 be the external face of 0. Suppose by
contradiction that the boundary of f0 contains a crossing-
vertex c. Let u be the first real-vertex encountered starting
from c and moving on the boundary of f0 clockwise.
Analogously, let v be the first real-vertex encountered starting
from c and moving on the boundary of f0 counterclockwise.
Note that 0 does not have an edge uv. Indeed, since we are
assuming that c is on the external face, if 0 contained uv,
then either 0 would not be simple (which is impossible) or
some real-vertices would not be on the external face (which
contradicts the fact that 0 is outer 1+-real face). At this
point we can easily augment 0 by adding edge uv in the
external face while keeping the drawing outer 1+-real face,
which contradicts the fact that 0 is edge-maximal. This
proves that the boundary of f0 consists of exactly n real-
vertices and no crossing-vertices. Also, if the boundary of
f0 were not a simple cycle, we could add a minimal subset
of edges in the external face to achieve this property, while
keeping all real-vertices on the external boundary. Again, this
contradicts the edge-maximality of0 and completes the proof
of Property (a).

We now turn our attention to Property (b). Let f be any
internal face of 0. We first observe that either f has at most
two real-vertices or f is a 3-real triangle. Indeed, suppose
that f contains (at least) three real-vertices. If f is not a
triangular face than there must be two real-vertices u and
v in f that are not connected by an edge. Hence, we can
augment0 by adding an edge uv that splits f ; the new drawing
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FIGURE 7. (a) An edge-maximal outer 1+-real face drawing of a graph with 8 vertices and 17 edges. The faces filled in gray represent
1-real triangles. Each face fi with i ∈ {1, . . . , 7} is a 2-real triangle. The faces f8, f9, f10 are 1-real quadrilateral, and f11 is a 2-real
4-gon. (b) A mapping of the 1-real triangles to the other faces of the drawing; the mapping, showed by blue arrows, satisfies property
(c) of Lemma 3. (c) Another example of an edge-maximal outer 1+-real face drawing, with a mapping that satisfies property (c) of
Lemma 3 is shown.

would still be an outer 1+-real face drawing of G, which
contradicts the edge-maximality of0. Therefore, if f contains
three real-vertices then it must be a 3-real triangle. Suppose
now that f has exactly two real-vertices u and v. In this case,
by Property (a), f has an edge uv sharedwith the external face;
also, since f has degree d ≥ 3, the remaining d − 2 vertices
of f are all crossing-vertices, i.e., f is a 2-real d-gon. Finally
consider a face f with exactly one real-vertex v and suppose
for contradiction that it is neither a 1-real triangle nor a 1-real
quadrilateral. This implies that f has degree at least five, and
that there is a 0-real edge e in 0 shared by f and another face
f ′ that contains a real vertex u not adjacent to v. If we augment
0 with an edge uv that crosses e we get a new outer 1+-real
face drawingwith one edgemore than0, a contradiction. This
completes the proof of Property (b).

We now focus on Property (c). Let t be any 1-real triangle
of 0, let e be the 0-real edge of t , and let f be the face of 0

sharing ewith t . SinceG has no multiple edges, f cannot be a
1-real triangle. Also, since the boundary of f contains at least
two crossing-vertices, by Property (b), f is neither a 3-real
triangle nor a 2-real 3-gon. Hence, by Property (b), f is either
a 2-real d-gon, with d ≥ 4, or a 1-real quadrilateral. We map
t on f . In this way, every 1-real triangle is either mapped to
exactly one 2-real d-gon, with d ≥ 4, or to exactly 1-real
quadrilateral. Moreover, since each 2-real d-gon f , with d ≥

4, has exactly (d−3) 0-real edges on its boundary, atmost (d−

3) 1-real triangles are mapped to f . Analogously, since each
1-real quadrilateral f has exactly two 0-real edges, at most
two 1-real triangles are mapped to f . This completes the proof
of Property (c).

It remains to prove Property (d). By Property (a), the
boundary of the external face f0 consists of exactly n 2-real
edges. By Property (b), any 2-real edge is incident to an
internal face that is either a 3-real triangle or a 2-real d-gon,
with d ≥ 3. Also, since all real-vertices of 0 belong to f0,
each 3-real triangle is adjacent to f0. If there is no 3-real
triangle in 0, then each edge of f0 is incident to a 2-real
d-gon and, since no two 2-real d-gons share a 2-real edge,
there are exactly n 2-real d-gons. Suppose vice versa that
there are some 3-real triangles. Each 3-real triangle is incident
to two edges of f0 and to a third 2-real edge shared with
a 2-real d-gon. Hence, for each pair of external edges of

a 3-real triangle f , we count a pair of internal faces of 0

consisting of f and of the 2-real d-gon adjacent to f . This
implies that the number of 3-real triangles plus the number of
2-real d-gons of 0 equals n. Finally, consider the number of
1-real quadrilaterals in an outer 1+-real face drawing. To form
a single 1-real quadrilateral we need at least 5 vertices, and it
can be seen that any additional 1-real quadrilateral requires to
use at least one more vertex. Hence a drawing with a number
q of 1-real quadrilaterals requires at least n = q+ 4 vertices,
that is, q ≤ n− 4. □
Theorem 6: If G is an outer 1+-real face graph with n

vertices and m edges, then m ≤ 3n − 6, and this bound is
tight.
Proof: To prove the upper bound on the maximum number

of edges, it is enough to concentrate on edge-maximal outer
1+-real face drawings of G. Let 0 be such a drawing. If G
has three vertices only, then 0 is a planar 3-cycle and the
statement trivially holds. Assume that n ≥ 4. We exploit
a discharging technique like in the proof of Theorem 3.
However, in this case, we aim to show the existence of a
charging function ch′ that satisfies C1 and C2 for α =

2
3 .

If such a function exists then, by Equation (4), we get m ≤

3n − 6. For each face f ∈ F(0), initially set ch′(f ) = ch(f ),
where ch(f ) is the charging function of Equation (2). Denote
by f0 the external face of 0. Based on Properties (a) and (b) of
Lemma 3, it holds δ0(f0) = δr0(f0) = n and each internal face
of 0 is either a 3-real triangle, or a 2-real d-gon, or a 1-real
triangle, or a 1-real quadrilateral. At this point we have:

• ch′(f0) = 2δr0(f0) + δc0(f0) − 4 = 2n − 4; the charge
excess of f0 with respect to 2

3δ
r
0(f0) is

4
3n− 4.

• If f is a 3-real triangle, then ch′(f ) = 2; the charge excess
(and the charge deficit) of f is zero.

• If f is a 2-real d-gon, then ch′(f ) = d−2; hence, if d = 3
(i.e., f is a 2-real triangle) then f has a charge deficit of
1
3 , while if d ≥ 4 then it has an excess of d −

10
3 .

• If f is a 1-real triangle then ch(f ) = 0 and f has a charge
deficit of 2

3 .
• If f is a 1-real quadrilateral then ch(f ) = 1 and f has a
charge excess of 1

3 .

We now want to modify ch′ by moving charges from faces
with an excess to faces with a deficit, in such a way that C1
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is satisfied. Based on the aforementioned analysis, the only
faces with a deficit are the 2-real triangles (with a deficit of
1
3 ) and the 1-real triangles (with a deficit of 2

3 ).
Consider amapping of each 1-real triangle to either a 2-real

d-gon (with d ≥ 4) or to a 1-real quadrilateral that satisfies
the conditions (i) and (ii) in Property (c) of Lemma 3. We do
the following:

• For every 1-real triangle t mapped to a 2-real d-gon f ,
we decrease ch′(f ) by 2

3 and increase ch′(t) by 2
3 . After

this operation, ch′(t) satisfiesC1. Also, the charge ch′(f )
is decreased by at most (d − 3) 23 . Since the excess of f
before the operation was equal to d−

10
3 , the new excess

after the operation is at least d−
10
3 −(d−3) 23 =

1
3d−

4
3 ,

which is always non-negative for d ≥ 4. Hence, ch′(f )
still satisfies C1.

• For every 2-real triangle t , we decrease ch′(f0) by 1
3

and increase ch′(t) by the same quantity. After this
operation, ch′(t) satisfies C1. Also, since by Property
(d) of Lemma 3. the number of 2-real triangles is at
most n, the excess of f0 after this operation becomes
n − 4. For each 1-real quadrilateral f , we further move
one unit of charge from f0 to f . After this operation, the
excess of each 1-real quadrilateral grows from 1

3 to 4
3 .

At the same time, since by Property (d) of Lemma 3.
there are at most (n−4) 1-real quadrilaterals, the excess
of f0 either remains positive or becomes 0; hence, ch′(f0)
still satisfies C1.

• Finally, for 1-real triangle t mapped to a 1-real
quadrilateral f , we increase ch′(t) by 2

3 , so that it now
satisfies C1, and we decrease ch′(f ) by 2

3 . Since there
are at most two 1-real triangles mapped to f , the charge
of f is decreased by at most 4

3 , and therefore the excess
of f either remains positive or it becomes zero, which
still satisfies C1.

This completes the proof that m ≤ 3n − 6. To prove
that the bound is tight, for each n ≥ 3 we describe how
to construct an outer 1+-real face graph with n vertices and
m = 3n− 6 edges. If n = 3 then G is just a triangle, while if
n = 4 then G is K4 (which can be drawn with all vertices on
the boundary of the external face and a single edge crossing
inside). Let n ≥ 5. The construction of G is as follows;
see Figures 6(c) and 6(d). Start with a cycle of n vertices,
which defines the boundary of the external face in an outer
1+-real face drawing 0 ofG. Arbitrarily select a vertex v ofG
and augment 0 (andG) with n−3 internal edges that connect
v to all vertices that were not already adjacent to it. Finally,
let u be the vertex that immediately follows v while walking
on the external boundary of 0 clockwise, and let w be the
vertex that immediately precedes v by walking on the external
boundary of 0 counterclockwise. Augment 0 (and G) with
two interlaced chains of edges, each connecting a sequence of
pairs of vertices that have topological distance equal to two on
the external face but excluding the pair {u,w} and any other
pair that involves v (which is already connected to any other
vertex). If n is odd, each of these two chains consists of n−3

2

edges. If n is even, one of the chain consists of n−2
2 edges and

the other consists of n−2
2 − 1 edges. It is immediate to check

that, with this construction, G has 3n − 6 edges and 0 is an
outer 1+-real face drawing. □

VI. COMPLETE GRAPHS AND COMPLETE BIPARTITE
GRAPHS
In this section we study complete graphs and complete
bipartite graphs. For the complete graphs we provide a
characterization of those that admit k+-real face drawings, for
any k ≥ 1. Concerning complete bipartite graphs, for most of
them we are able to establish whether they belong or not to
the different k+-real face graph families; the question remains
open for few instances.

A. COMPLETE GRAPHS
Denote by Kn the complete graph on n vertices. The number
of edges of Kn is m =

n(n−1)
2 . From the edge density results

summarized in Table 1, the following facts immediately hold:

• Kn with n ≥ 9 is not a k+-real face graph, for any k ≥ 1.
• Kn with n ≥ 7 is not a k+-real face graph, for any k ≥ 2.
• Kn with n ≥ 5 is not an outer k+-real face graph, for any
k ≥ 1.

• Kn with n ≥ 4 is not an outer k+-real face graphs, for
any k ≥ 3.

On the positive side, we have the following:

• K3 and K4 are outer 2+-real face graphs (trivial).
• K5 is a 2+-real face graph (see Figure 1).
• K6 is a 2+-real face graph (see Figure 8(a)).
• K7 is a 1+-real face graph (see Figure 8(b)).
• K8 is a 1+-real face graph (see Figure 8(c)).

It might be interesting to observe that the k+-real face
drawings shown in Figure 8(a), Figure 8(b), and Figure 8(c)
correspond to drawings that match the crossing number for
the graphs K6, K7, and K8, respectively. Recall that the
crossing number of a graph G is the minimum number of
crossings required by any drawing of G in the plane.
The discussion above implies the following characteriza-

tion.
Theorem 7: The complete graphs that admit a k+-real face

drawing or an outer k+-real face drawing (with k ≥ 1) are
those reported in Table 4.

The following corollary immediately holds from Theo-
rem 7.
Corollary 1: For any k ≥ 1 and n ≥ 3, there exists an

O(1)-time algorithm that decides whether the complete graph
Kn is k+-real face or outer k+-real face.

B. COMPLETE BIPARTITE GRAPHS
Denote by Ka,b the complete bipartite graph on n = a + b
vertices, where a is the cardinality of one partition set and b
is the cardinality of the other partition set. Recall thatKa,b has
m = a · b edges. Without loss of generality, in the following
we always assume that b ≥ a. We start with the following.

68838 VOLUME 12, 2024



C. Binucci et al.: Graphs Drawn With Some Vertices per Face: Density and Relationships

FIGURE 8. (a) 2+-real face drawing of K6; (b) 1+-real face drawing of K7; (c) 1+-real face drawing of K8.

TABLE 4. Complete graphs that admit a k+-real face drawing or an outer
k+-real face drawing.

Lemma 4: For any b ≥ 2, the graph K2,b is a k+-real face
graph for k ≤ 4, whereas it is not k+-real face for k ≥ 5.
Proof: The graph K2,b is a planar graph for every b ≥ 2.

Also, in every planar embedding of K2,b all faces have degree
four. By Theorem 1, it follows thatK2,b is a k+-real face graph
for k ≤ 4, whereas it is not k+-real face for k ≥ 5. □

To study what happens for the complete bipartite graphs
Ka,b that are not planar, that is, those for which a ≥ 3 and
b ≥ a, we exploit the upper bounds on the number of
crossings summarized in Table 1, rather than their edge
density. Namely, the famous Zarankiewicz’s conjecture [78]
claims that the crossing number of Ka,b equals the value of
the following function:

Z (a, b) =

⌊a
2

⌋ ⌊
a− 1
2

⌋ ⌊
b
2

⌋ ⌊
b− 1
2

⌋
Kleitman [79] showed that the conjecture holds for

all values b ≤ 6 and also proved that the smallest
counterexample to Zarankiewicz’s conjecture (if any) must
occur for odd values of a and b. Furthermore, Woodall [80]
used a computer program to verify the correctness of the
conjecture for K7,7 and K7,9. Thus, the smallest unsettled
instances of Zarankiewicz’s conjecture are K7,11 and K9,9.
Observe that the number of edges of K9,9 is higher than the
maximum number of edges of any 1+-real face graph, thus
this graph (and every other complete bipartite graph with
higher edge density) does not have a k+-real face drawing,
for any k ≥ 1. About K7,11, we cannot use the same
argument. However, by Lemma 1 we know that a 1+-real

face drawing of a graph with n vertices and m edges has at
most m + n − 2 crossings; hence any 1+-real face drawing
of K7,11 cannot have more than 93 crossings. Nonetheless,
the crossing number of K7,10 equals Z (7, 10) = 225, and
the crossing number of K7,11 is larger than the one of K7,10.
It follows that also K7,11 is not 1+-real face, for any k ≥ 1.
Therefore, we can conclude that for every complete bipartite
graph Ka,b that might have a chance of being 1+-real face,
we can assume that the crossing number of Ka,b equals
Z (a, b). We now prove the following.
Lemma 5: For b ≥ 3 and k ≥ 3, the graph K3,b is not

k+-real face.
Proof: It is enough to show that the statement holds for

k = 3. By Lemma 1, a 3+-real face drawing has at most−m
3 +

n − 2 crossings. Hence, for b ≥ 3, the number of crossings
allowed in a 3+-real face drawing is at most 1. However, the
crossing number of K3,b is Z (3, b), which is always greater
than 1 when b ≥ 4. Hence K3,b is not 3+-real face if b ≥ 4.
To complete the proof, we must show that K3,3 is not

3+-real face. Suppose by contradiction that a 3+-real face
drawing 0 of K3,3 exists. As observed above, 0 has at most
one crossing. Call e one of the two crossing edges of K3,3 in
0, and let 0′ be the drawing obtained from 0 by removing
e. 0′ is planar and all its faces have degree four. Also, the
two end-vertices of e do not belong to the same face of
0′, as otherwise it would be possible to reinsert e in 0′

without crossings, which is impossible because K3,3 is not
planar. It follows that e cuts an edge of a degree-4 face
in 0′, by generating a triangular face in 0 with only two
real-vertices and one crossing-vertex, a contradiction. □
We also observe that for every graph Ka,b with a ≥ 4

(and b ≥ a) the upper bound of Lemma 1 is strictly less
than Z (a, b); thus Ka,b is not a 3+-real face graph if a ≥ 4.
This observation, together with Lemma 4 and Lemma 5,
immediately implies the following characterization.
Theorem 8: Let k ≥ 3. The complete bipartite graph Ka,b,

with b ≥ a is a k+-real face graph if and only if one of these
two conditions holds: (i) a ≤ 2, b ≥ 2, and k = 3; (ii) a =

2 and k = 4.
An implication of Theorem 8 is that there are no complete

bipartite graphs that are k+-real face for k ≥ 5. From
Theorem 8 we get the following corollary.
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Corollary 2: For any k ≥ 3 and for any given complete
bipartite graph Ka,b, there exists an O(1)-time algorithm that
decides whether Ka,b is k+-real face.
We now consider 2+-real face drawings of non-planar

complete bipartite graphs. By Lemma 1, the number of
crossings in any 2+-real face drawing of a graph with n
vertices is at most n− 2. Still using Zarankiewicz’s formula,
it is immediate to verify that this upper bound is below the
crossing number of Ka,b when one of the following cases
holds: (i) a = 3 and b ≥ 7; (ii) a = 4 and b ≥ 5; (iii)
a ≥ 5 and b ≥ a;
On the other hand, each of the few remaining graphs,

namely K3,3, K3,4, K3,5, K3,6, and K4,4, admit a 2+-real face
drawing, as shown in Figure 9. These considerations, together
with Lemma 4, imply the following characterization of the
complete bipartite graphs that are 2+-real face.
Theorem 9: A complete bipartite graph Ka,b, with b ≥ a,

is 2+-real face if and only if one of the following holds: (i)
a = 2; (ii) a = 3 and b ≤ 6; (iii) a = 4 and b = 4.
The next corollary immediately follows.
Corollary 3: Given any complete bipartite graph Ka,b,

there exists anO(1)-time algorithm that decides whether Ka,b
is 2+-real face.

We finally turn our attention to the study of the complete
bipartite graphs that admit a 1+-real face drawing, in addition
to those that also admit a k+-real face drawing for k ∈

{2, 3, 4}. By Lemma 1, the number of crossings in any 1+-
real face drawing of a graph with n vertices and m edges is at
most m + n − 2. As before, if we compare this upper bound
with the crossing number given by Zarankiewicz’s formula,
we can conclude that the graph Ka,b does not have a 1+-real
face drawing in each of the following cases: (i) a = 3 and
b ≥ 19; (ii) a = 4 and b ≥ 13; (iii) a = 5 and b ≥ 9; (iv)
a = 6 and b ≥ 7; (v) a ≥ 8 and b ≥ a.

On the positive side, we are able to establish that each
of the following complete bipartite graphs admits a 1+-real
face drawing (see Figure 10 and Figure 11): K3,7, K3,8, K3,9,
K3,10, K4,5, K4,6, K4,7, K5,5. It is interesting to observe that,
as for the complete graphs, also all k+-real face drawings
that we presented for the complete bipartite graphs match the
crossing number, that is, they achieve the minimum number
of crossings.

We leave it open to establish whether each of the following
complete bipartite graphs is 1+-real face or not: (i) K3,b for
b ∈ [11, 18]; (ii) K4,b for b ∈ [8, 12], (iii) K5,b for b ∈ [6, 8],
and (iv) K6,6.

We now consider the constrained scenario, that is outer
k+-real face drawings of complete bipartite graphs. We char-
acterize, for all values k ≥ 1, the complete bipartite graphs
that are outer k+-real face; for each graph listed below,
we indicate the minimum k for which it is outer k+-real face.

• K1,1 is outer 2+-real face (trivial).
• K1,2 is outer 3+-real face (trivial).
• K2,2 is outer 4+-real face (trivial).
• K2,3 and K2,4 are outer 2+-real face (see Figures 12(a)
and 12(b)); it is easy to verify that any outer k+-real face

drawing of these two graphs has at least one face with
only two real-vertices.

• K2,5 and K2,6 are outer 1+-real face (see Figures 12(c)
and 12(d)); it is easy to verify that any outer k+-real face
drawing of these two graphs has at least one face with
one real-vertex.

• K2,b with b ≥ 7 is not an outer k+-real face graph for
any k ≥ 1. It can be easily checked that in any drawing
of this graph with all faces on the external face, there is
at least one 0-real face.

• Ka,b with a, b ≥ 3 is not an outer k+-real face graph
for any k ≥ 1. It is sufficient to restrict to K3,3 and
verify that for any of the three non-symmetric circular
orderings of black and white vertices along the boundary
of the outer face, there is at least one 0-real face (see
Figure 13).

Based on the above facts, the following immediately holds.
Corollary 4: For any k ≥ 1 and for any complete bipartite

graph Ka,b, there exists an O(1)-time algorithm that decides
whether Ka,b is outer k+-real face.

VII. INCLUSION RELATIONSHIPS
We have observed that, by definition, the family of (k + 1)+-
real face graphs is properly included in the family of k+-real
face graphs, for any integer k ≥ 1. For k-planar graphs we
have the opposite: each k-planar graph is also (k + 1)-planar.
The results of Section IV yield some inclusion relationships
between the families of k-planar graphs and k+-real face
graphs, for k ∈ {1, 2}. Namely, Theorem 2 shows that 1-
planar graphs are 2+-real face graphs and that the sets of
optimal 1-planar graphs and optimal 2+-real face graphs
coincide. These relationships are summarized in Figure 14.
In the following, we prove a more general result about

the relationship between k+-real face graphs and any other
beyond-planar graph family with hereditary property. This
result (Theorem 10) implies that, for any fixed positive
integer k , there cannot exist a beyond-planar graph family
with hereditary property that includes the whole set of k+-
real face graphs, independent of the maximum edge density
of the two families. We now formalize this concept.

We say that a family F of beyond-planar graphs has the
hereditary property if any subgraph of a graph in F also
belongs to F . Most of the beyond-planar graph families
studied in the literature (see, e.g., [16]) have the hereditary
property. Conversely, k+-real face graphs do not always
satisfy this property; indeed, removing vertices from a k+-
real face graph G may give rise to a subgraph G′ whose
drawings necessarily have a face with less than k vertices.
However, it is immediate to see that any subgraph of G that
has the same vertex set of G is still a k+-real face graph.
We prove the following.
Lemma 6: For any integer k > 0 and for any family F of

beyond-planar graphs with hereditary property, there exists a
k+-real face graph that does belong to F .

Proof: Let G be any (connected) graph that does not
belong to F , i.e., G /∈ F . The idea is to augment G with
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FIGURE 9. 2+-real face drawings of K3,3, K3,4, K3,5, K3,6, and K4,4.

FIGURE 10. 1+-real face drawings for K3,7, K3,8, K3,9, and K3,10.

FIGURE 11. 1+-real face drawings for K4,5, K4,6, K4,7, and K5,5.

FIGURE 12. (a) and (b): outer 2+-real face drawings for K2,3 and K2,4, respectively. (c) and (d): outer 1+-real face
drawings for K2,5 and K2,6, respectively.

FIGURE 13. The three possible (non-symmetric) outer k+-real face
embeddings for K3,3; 0-real faces are colored gray.

vertices and edges so that the resulting graph G′ is a k+-real
face graph. If we are able to do that, then G′ cannot belong
to F , because otherwise also G would belong to F (due to
the hereditary property of F), which contradicts our initial
hypothesis.

To constructG′ starts from any drawing0 ofG in the plane.
If 0 is already a k+-real face drawing, we are done, i.e., G′

coincides with G. Otherwise, we augment 0 (and hence G)
into a new drawing 0′ as explained below; see Figure 15 for
an example of this augmentation. We first consider the set of
0-real faces of0. If this set is not empty, there must be a 0-real

FIGURE 14. Venn diagram describing relationships between k+-real face
graphs and k-planar graphs.

face f that is adjacent to a face f ′ containing a real-vertex v.
Add to 0 a new real-vertex u in the interior of f and connect u
to vwith an edge that crosses exactly one edge shared by f and
f ′. After this augmentation, the set of 0-real faces in the new
drawing is decreased by one element. Repeat this procedure
until there is no more 0-real faces in the drawing. Then, for
every face f of 0 with h < k real-vertices (if any), arbitrarily
select a real-vertex v of f , and attach to v a chain of k − h
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FIGURE 15. Example of the augmentation procedure in the proof of Lemma 6. The example shows how to construct an instance
in the family of 2+-real face graphs, which is not in the family of 1-planar graphs. (a) A drawing of a graph G that is not 1-planar;
it has only one 0-real face (filled in gray). (b) An augmentation that removes the 0-real face; the new elements (a vertex and an
edge) are in red. (c) A further augmentation that yields a 2+-real face drawing; for each face f with less than two vertices,
we attach an extra real-vertex to an arbitrary real-vertex on the boundary of f .

vertices in the interior of f . This creates a new face f ′ in place
of f , whose boundary has k real-vertices. Once all those faces
have been processed, the underlying graphG′ of the resulting
drawing is a (connected) k+-real face graph. □

Lemma 6 immediately implies the following.
Theorem 10: For any positive integer k , the family of k+-

real face graphs is not included in any beyond-planar graph
family with hereditary property.

We say that two graph families are incomparable if
none of the two families includes the other. Theorem 10
allows us to easily prove a series of incomparability
relationships.
Corollary 5: For any integers k ≥ 1 and h ≥ 3, the family

of k+-real face graphs is incomparable with the families
of h-planar graphs, min-h-planar graphs, and h-quasi planar
graphs.
Proof: Theorem 10 proves the existence of 1+-real face

graphs that are neither h-planar, nor min-h-planar, nor h-quasi
planar. On the other hand, since the maximum number of
edges of n-vertex h-planar graphs and min-h-planar graphs,
for h ≥ 3, can be greater than 5n − 10 [20], [27], [28],
[66], there exist h-planar graphs and min-h-planar graphs
that are not 1+-real face graphs (and hence that are not k+-
real face graphs, for any k ≥ 2). Similarly, h-quasi planar
graphs, for any h ≥ 3, can have higher density than 1+-
real face graphs, because 3-quasi planar graphs can have
up to 6.5n − 20 edges [21]. The claimed incomparabilities
follow. □
Corollary 6: For any k ≥ 2, the family of k+-real face

graphs is incomparable with each of the following families:
(i) 2-planar graphs; (ii) min-2-planar graphs; (iii) fan-planar
graphs; and (iv) h-gap planar graphs, for any h ≥ 1.
Proof: As we have already seen, n-vertex 2-planar graphs

can have up to 5n − 10 edges [52]. Similarly, min-2-
planar graphs [28], fan-planar graphs [35], and 1-gap planar
graphs [38] with n vertices can have up to 5n − 10 edges.
Since n-vertex 2+-real face graphs have at most 4n−8 edges
(Theorem 2), none of the three families above is included in
the family of 2+-real face graphs (and thus in the family of
k+-real face graphs, for any k ≥ 3). Theorem 10 proves the
other direction. □

FIGURE 16. A fan-planar drawing of K4,b. The two vertex sets of the
partition have distinct colors (black and white). If b ≥ 13, this graph is not
1+-real face, as its crossing number is too high with respect to the
maximum number of crossings allowed in any 1+-real face drawing.

VIII. CONCLUSION
This paper contributed to enhance the field of graph drawing
beyond planarity by introducing the hierarchy of k+-real face
graphs, for k ≥ 1. To the best of our knowledge, this is
the first beyond-planar graph family that concentrates on the
properties of face-boundaries, rather than just on the crossing
configurations along edges.

For any positive integer k , we provided tight upper bounds
on the number of edges that a k+-real face graph can have,
also in a setting in which all vertices must lie on the external
boundary of the drawing. The edge density results have
also been used to characterize the complete graphs that
admit a k+-real face drawing, for any value k ≥ 1, and
to provide a clear picture for almost all complete bipartite
graphs. We finally established an array of incomparability
relationships between k+-real face graphs and several types
of popular beyond-planar graph families. These relationships
are proved as a consequence of a general result, showing
that there cannot exist any beyond-planar graph class with
hereditary property that includes all k+-real face graphs,
regardless of the value of k .

A. LIMITATIONS AND OPEN PROBLEMS
The contribution of this paper mainly focused on providing
edge density bounds and relationships with previous graph
classes in the field of beyond-planar graph drawing. Our
combinatorial findings leave some unanswered questions;
also, several algorithmic aspects remain mostly unexplored.
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TABLE 5. Glossary of the main symbols used in the paper.

In the following we list some research directions that we
consider among the most relevant for future advances.

• Research direction 1. As we have seen, both optimal
2-planar graphs and optimal 1+-real face graphs have
density 5n − 10. Also, Theorem 10 implies that there
are 1+-real face graphs that are not 2-planar. It remains
open to establish whether the family of 2-planar graphs
and the family of 1+-real face graphs are incomparable
or not. Specifically, can we find a 2-planar graph that is
not 1+-real face? Observe that every 2-planar drawing
of an optimal 2-planar graph G is not 1+-real face, as it
contains 0-real faces. However, one cannot exclude in
principle thatG admits a 1+-real face drawing that is not
2-planar. In the same direction, one can wonder whether
there exist incomparability or inclusion relationships
between the family of 1+-real face graphs and the
families of min-2-planar, fan-planar, and 1-gap planar
graphs, all containing n-vertex graphs with up to 5n −

10 edges (see Table 2). In fact, at least for fan-planar
graphs, the results that we established in Section VI-B
for complete bipartite graphs lead to the following.

Lemma 7: There exist infinitelymany fan-planar graphs
that are not 1+-real face. In other words, the families of
1+-real face and fan-planar graphs are incomparable.

Proof: As observed in Section VI-B, each graph in
the infinite family of K4,b for b ≥ 13 is not 1+-real
face. However, all the graphs in this family can be easily
drawn as fan-planar graphs, as shown in Figure 16. □

• Research direction 2. A second line of research is
to establish the complexity of testing whether a graph
is k+-real face or outer k+-real face for a given k .
We remark that this type of decision problems is

known to be NP-hard for most of the families in
beyond-planar graph drawing, while it is sometimes
solvable in polynomial time when we restrict to optimal
graphs or other subfamilies (see, e.g., [30], [49], [81]).
If the recognition problem turns out to be NP-hard
also for the k+-real face graphs, one can investigate
its parameterized complexity. A related work in this
direction is [82]. We observe that our results lead to
some preliminary consequences about the recognition
of optimal k+-real face graphs when k > 2. Namely,
by Theorem 1, recognizing optimal k+-real face graphs,
for k ≥ 3, corresponds to recognizing planar graphs
that have an embedding with all faces of degree k .
This last problem is polynomial-time solvable for k ≤

6 and it is NP-complete for odd k ≥ 7 and for even
k ≥ 10 [83]. Further, by Theorem 2, recognizing
optimal 2+-real face graphs coincides with the problem
of recognizing optimal 1-planar graphs, which is linear-
time solvable [49].

• Research direction 3. It is interesting to study geomet-
ric k+-real face drawings, that is, k+-real face drawings
with straight-line edges. For example, as already done
for other beyond-planar graph families [39], [63], [71],
[72], [73], [74], [84] one can either establish tight
upper bounds on the edge density of graphs that admit
geometric k+-real face drawings or characterize the
non-planar embeddings that admit such a drawing. As a
preliminary consideration, we observe that the geomet-
ric setting for k+-real face drawings is actually more
restrictive than the topological setting. For example,
our Theorem 2 proves that every 2+-real face drawing
of graph with 4n − 8 edges is also 1-planar. On the
other hand, geometric 1-planar drawings have at most
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4n − 9 edges [63]. This implies that also the density of
geometric 2+-real face drawings is at most 4n− 9.

• Research direction 4. As explained in the introduction
of this paper, one of the practical motivations behind the
study of beyond-planar graph families is to increase the
readability of non-planar graph layouts. Nonetheless,
user studies that assess the advantage of avoiding
specific crossing configurations only exist for a limited
number of beyond-planar graph families (see, e.g.,
[15], [45], [85], [86]). It would be interesting to
design human cognitive experiments aimed to assess
users’ analytical capabilities when k+-real face draw-
ings are adopted in place of drawings that contain
several 0-real faces. Additionally, for the realization of
practical visualization systems, it is fundamental the
design and experimentation of efficient algorithms that
compute k+-real face drawings or approximations of
them.
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