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ABSTRACT The automatic pulmonary segmentation for chest X-ray(CXR) plays an important role in
assisting diagnosis. Many deep learning methods have the problems of high computational complexity
and low segmentation accuracy, which hinder the application to clinical workstations. Therefore, this
paper proposes a lightweight multiple attention network(LMA-Net), which improved U-Net by using the
progressive dilated convolution(PDC) for lightweight. A reinforced channel attention(RCA) and amultiscale
attention(MSA) are embedded in the decoder to further improve the network segmentation performance.
We fuse four types of pulmonary disease CXR from the COVID-QE-Ex dataset to generate a multi-source
heterogeneous dataset. Effectiveness of LMA-Net is shown by achieving Intersection over Union(IoU ) of
96.28%, Dice of 96.95%, Average symmetric surface distance(ASSD) of 13.11mm and Hausdorff Distance
95th percentile(HD95) of 81.12mm, respectively. It can be seen that lightweight of LMA-Net is achieved
according to parameter(Param) of 2.89M and floating-point operations(FLOPs) of 2.64G. This method can
effectively improve segmentation performance and speed.

INDEX TERMS Convolutional neural network, attention, lightweight, multi-source heterogeneous dataset,
medical image segmentation.

I. INTRODUCTION
Due to the pandemic of COVID-19, pulmonary diseases have
received more attention. It is highly sensitive and efficient
to use medical image for pulmonary diseases. Compared to
CT, chest X-ray(CXR) is widely applied to diagnose various

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

pulmonary diseases due to lower cost, lower radiation and
faster speed [1].

As shown in FIGURE 1, not every CXR is standardized.
Pulmonary segmentation becomes challenging due to sev-
eral factors: (1) non-pathological changes: the shape and
size of the pulmonary vary with age, gender and heart
size [2]; (2) pathological changes:the opacity caused by
severe pulmonary disease reaches a high-intensity value [3];
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FIGURE 1. There are four non-standard CXR images.

(3) foreign body coverage: the pulmonary field is obscured
by the patient’s clothes or medical equipment (pacemaker,
infusion line, medical catheter) [4]. For example, the medical
device implanted in the body affects the lung imaging in
FIGURE 1(a) and FIGURE 1(b). The boundary between the
albino lung area and the normal lung area in FIGURE 1(b)
and FIGURE 1(c) is blurred. In Figure 1(d), there is a
significant difference in lung morphology between females
and males. These unstable factors can cause delays and
misdiagnosis. Artificial intelligence partnering with massive
data will improve this dilemma [5].
Pulmonary segmentation is a crucial step in quantita-

tive analysis of CXR in computer-aided medical diag-
nostic systems [6], [7]. This initial step significantly
affects the performance of downstream analysis, such as
anomaly detection or classification of lung diseases, such as
cancer [7], [8].

With the development of deep learning methods, state-
of-the-art convolutional neural network(CNN) can auto-
matically learn ROI from a large dataset [9], which can
solve the delay and misdiagnosis caused by non-standard
images. However, the existing CNNs commonly used in
medical image processing usually have high computing
costs, especially on graphic processing unit(GPU). Deploying
deep learning models to medical workstations with limited
resources would lead to various restrictions for real-time
analysis. Therefore, on the premise of the accurate prediction,
it is necessary to further promote the development of models
towards lightweight and reduce the complexity in time and
space.

To address these challenges, this paper proposes a
lightweight multiple attention network(LMA-Net) for pul-
monary segmentation. Experimental results show that the
proposed method can effectively segment pulmonary region

from CXRs and achieve lightweight. The main contributions
of this paper are as follows.

• We design LMA-Net that incorporates four types of
pulmonary CXR to automatically segment pulmonary
region. This model can solve the delay and misdiagnosis
caused by non-standard images.

• Based on the encode-decode structure of U-Net [10],
we extend dilated convolution [11] to progressive
dilated convolution(PDC). In LMA-Net, PDC gradually
expands with the network deepening. Small-dilated
convolution effectively captures fine details in low-level
features, and large-dilated convolution captures seman-
tic information in high-level features. What’s more,
PDC develops the structure of depthwise separable
convolution [12] to achieve ultra lightweight, which is
crucial aspect in solving the problem of limited clinical
computing resources.

• To make full use of channel information in feature map,
we propose reinforced channel attention(RCA). Every
layer of decoder are embeded with RCA to handle
the concatenation of high-level and low-level features.
The RCA compresses the concatenated feature maps
to obtain the weights for each channel. Subsequently,
residual connection [13] is introduced to combine
the concatenated feature maps with the corresponding
weights several times to self-adaptively reinforce the
feature channel information and suppress irrelevant
features. The RCAs in different layers enable LMA-Net
to focus on the target features.

• Multi-scale attention(MSA) is introduced to subtly fuse
features at different scales to cope with feature loss,
which allows the fine details in low-level features and
the semantic information in high-level features to be
fully utilized. In addition, in order to overcome the
problem of class imbalance within feature channels,
a Channel Factor Enhancement(CFE) module is pro-
posed based on dimension transformation, which can
automatically calibrates the target region prediction to
improve segmentation performance.

II. RELATED WORK
In this paper, CNN and attention mechanism are introduced
for medical image segmentation.

A. U-NET VARIANTS FOR MEDICAL IMAGE
SEGMENTATION
Deep learning methods such as CNN [14] have excellent
performance for medical image segmentation tasks in
recent years. Fully convolutional network(FCN) [15] is a
successful network in image segmentation. Inspired by the
encoder-decoder architecture of FCN, subsequently, the 2D
U-Net [10] has been developed and widely implemented
for medical image segmentation tasks. Since the invention
of U-Net, many improved networks based on U-Net have
great performance for medical image segmentation tasks.
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In [16], R2U-Net referred to the idea of recurrent CNN
and residual CNN to gain the precise segmentation results.
The U-Net has also been extended into attention modules
such as Attention U-Net [17], which introduced the Attention
gates(AGs) and replaced hard-attention with soft-attention.
U-Net++ [18] is a nested architecture of U-Net, which
adopts dense connection to eliminate gradient problems,
reuse feature and enhance feature propagation. Trans
U-Net [19] is the combination of transform and U-Net, where
transform can provide global self-attention based on the
U-Net. These methods show quite high performance for
medical image segmentation tasks. However, these state-
of-the-art models have problems of high complexity and
parameter quantity. There are various limitations in deploying
above models to workstations with limited computing
resources.

B. ATTENTION MECHANISM
Attention mechanism originates from human vision research
and is often used in computer vision research [20]. The
attention mechanism simulates the human behavior of paying
attention to a few more important words in the process of
reading [21], [22]. In the research of computer vision, in order
to make full use of limited resources and focus on specific
relevant feature information, the attention mechanism is
realized through dynamic adaptive weighting of feature
information [23].

SEnet [24] automatically strengthens channel informa-
tion of features through learning, and uses the obtained
importance to enhance features and suppress features that
are not important to the current task. Woo et al. [25]
creatively proposed CBAM, which combines the attention
mechanism of channels and spaces, and automatically obtains
the importance of each feature space to enhance features
related to segmented targets and suppress unimportant
features in the current task. With the development of
deep learning, recently many new attention mechanisms
not only focus on performance but also on lightweight.
Wang et al. [26] not only proposed an effective channel
attention module ECA, which realized lightweight, but also
achieved significant performance gains. Hou et al. [27]
proposed a coordinate attention(CA) that is new efficient
attention mechanism, which can encode the horizontal and
vertical location information into the channel attention,
so that the network can focus on a wide range of location
information without too much computation. Dai et al. [28]
proposed a trainable second-order channel attention (SOCA)
module, which adaptively rescale the channel-wise features
by using second-order feature statistics for more discrimina-
tive representations. Yang et al. [29] proposed parameter-free
attention module(SimAM), which inferred 3-D attention
weights for the feature map in a layer without adding
parameters to the original networks. D2-Net [30] address
the problem of finding reliable pixel-level correspondences
under difficult imaging conditions. LCNet [31] introduces
a partial-channel transformation (PCT) strategy to minimize

computing latency and hardware requirements of the basic
unit.

In conclusion, existing attention mechanisms not only
achieve high performance, but are also moving towards
lightweight. Therefore, following the current development
steps, we propose a lightweight network based on U-Net
and multiple attentions. This method can effectively improve
segmentation performance and speed.

III. METHODS
A. LMA-NET: LIGHTWEIGHT MULTIPLE ATTENTION
NETWORK
In medical image segmentation, U-Net preserves high-level
semantic features and low-level spatial details by using
a skip connected symmetric encoder-decoder architecture,
which is crucial for accurately dividing organ boundaries
and fine structures [10]. The proposed methodology utilizes
its basic architecture to construct a lightweight multiple
attention network (LMA-Net). The LMA-Net has been
specifically designed to facilitate the accurate localization of
the elusive lung area, and subsequently, deftly execute CXR
image segmentation with clinical precision. This network
has skip connections which can fuse different scale features,
improves the convolutional modules to achieve lightweight,
and uses multiple attention modules to improve segmentation
performance.

The structure of LMA-Net is shown in FIGURE 2, where
LMA-Net innovatively proposes progressive dilated con-
volution(PDC) [11] and reinforced channel attention(RCA)
[24] to replace the classical convolutional modules of five
scales. The proposed PDC improves the strategy in [11]
to achieve lightweight and avoid the problem about the
local information loss due to the excessive expansion of
the dilated convolutional kernel. The PDC captures more
global information while preserving local information loss.
The proposed RCA improves the dual-channel feature fusion,
and adopts residual connection [13] to avoid gradient
disappearance and explosion caused by network deepening.
To avoid the loss of significant information during decoding,
the LMA-Net aggregates the multi-scale feature maps by
using channel connection. Then the target features can be
extracted by using the multiscale attention (MSA).

The proposed LMA-Net uses five PDCs to replace the
classical convolutional modules in the encoder, and the
dilated rate d increases with the network deepening. The
proposed RCA accepts the cascade features of the low-level
features from the encoder and high-level features from the
decoder, so as to obtain more relevant channel weight factors.
In addition, four output feature maps from RCA are spliced,
and the proposed MSA is used to process the cascade feature
map to obtain target features map.

B. PROGRESSIVE DILATED CONVOLUTION
Due to the complexity and uncertainty of the CXR images,
in general, CXR images will contain many different organs or
tissues. It is not easy to distinguish these organs and tissues
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FIGURE 2. The proposed lightweight multiple attention network(LMA-Net). Blue rectangle and d correspond the progressive dilated convolution
and expansion rate, respectively. We use four reinforced channel attention(RCA) to replace the classical convolutional modules. Green rectangle
MSA represents multiscale attention.

FIGURE 3. (a)The dilated convolutional kernel with the shape of 3 ∗ 3 under dilated rate d of 1, 2 and 3. (b)The classical convolutional operation.
(c)The dilated convolutional operation with d = 2.

in clinical situations. The classical convolutional kernel
would ignore the organ features with large receptive field
while processing medical images in the forward propagation
process.

Therefore, the LMA-Net uses dilated convolution [11]
to improve the classical convolutional kernel to solve the

problem of large receptive field feature loss, but retains
the basic structure of depthwise separable convolution.
We set the groups of depthwise separable convolution
as the greatest common divisor of input channel num-
ber and output channel number to minimize the Param
and FLOPs.
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As shown in FIGURE 3(a), the dilated convolutional kernel
can be seen as an expansion of the classical convolutional
kernel, where the dilated rate is expressed by a positive
integer d . As shown in FIGURE 3(b), the process of the
classical convolution can be expressed as:

α = k⊛f =

C∑
l=1

r∑
i=−r

r∑
j=−r

k(i, j)fl(px + i, py + j) (1)

where k represents the convolutional kernel of size (2r +

1)(2r + 1). The input f ∈ RC∗H∗W in FIGURE 3 contains C
feature channels, and H ,W represent the height and width of
input, respectively(C = 1 in section III-B). ⊛ represents the
convolutional operation. k(i, j) represents an element in the
convolutional kernel k , where (i, j) ∈ {(i, j)|i ∈ [−r, r], j ∈

[−r, r], r ∈ N }. (px , py) represents the coordinates of a pixel
in the input f . fl(px + i, py + j) represents a pixel of the
l-th channel in input f . Eventually, the result α represents a
pixel point in the output f ′, where α is obtained by sliding the
convolutional kernel k once in the input f .
As shown in FIGURE 3(a), the dilated rate d can separate

and expand receptive field of the convolutional kernel k . The
dilated convolution helps the network learn more contextual
features, such as lung and lung lesion area, without increasing
the time and space complexity.

In LMA-Net, the dilated rate d increases with the network
deepening. The process of PDC is shown in FIGURE 3(c)
when d = 2, which can be expressed as:

α = k⊛d=2f =

C∑
l=1

2r∑
i=−2r

2r∑
j=−2r

k(i, j)fl(px + i, py + j) (2)

where ⊛d=2 is convolutional operation with dilated rate of
d = 2.
From FIGURE 2, FIGURE 3(c) and EQUATION 2, we can

see that the excessive increase in dilated rate inevitably leads
to the loss of local image information [11]. To address this
issue, we propose an improved strategy where the dilated rate
slowly increases with the network deepening, ensuring that
more global image information is captured while retaining
more local fine detail.

C. REINFORCED CHANNEL ATTENTION
Inspired by CBAM [25], we propose a reinforced channel
attention(RCA) module which is shown in FIGURE 4. The
proposed RCA is used to replace the classical convolutional
module in the decoder, which can make full use of the
channel information. The decoding process often involves
upsampling and concatenation operations, which can lead to a
loss of fine-grained details and spatial context. RCAmodules
strategically placed in the decoder can help mitigate this
issue by recalibrating channel-wise feature responses based
on their global dependencies, ensuring that important details
are preserved and emphasized during the upsampling process.

First of all, let fr ∈ R2C∗H∗W represent the concatenated
feature map. A 3∗3 convolution is used to smooth fr obtained

FIGURE 4. Structure of reinforced channel attention(RCA) module with
residual connection. The η1 and η2 represent the channel factors.

of two different f ′
p to get f ′

r , and the process is expressed as:

f ′
r = conv(fr ) (3)

Subsequently, RCA implements global average pooling(Pga)
and global maximum pooling(Pgm) to compress the dimen-
sion of f ′

r to 2C ∗ 1 ∗ 1 in parallel. After pooling, two
different feature maps with size 2C ∗ 1 ∗ 1 are sent to the
sharedmultilayer perceptron(MLP) to get two channel factors
η1 and η2(η1, η2 ∈ [0, 1]2C∗1∗1). MLP consists of two fully
connected layers, with the ReLU function after the first layer
and the Sigmoid function after the second layer. The above
process is represented as:

{ηi}
2
i=1 = MLP(Pgm(f ′

r ),Pga(f
′
r )) (4)

The channel factors can guide feature maps to automati-
cally highlight the relevant feature channels and restrain the
irrelevant feature channels. Different from the channel atten-
tion in CBAM [25], we introduce residual connection [13] in
RCA to avoid gradient explosion and gradient disappearance
due to network deepening. Through residual connection,
η1 and η2 are multiplied by f ′

r from convolutional operation
respectively. Eventually, the results of multiplication is added
by fr pixel-wisely to obtain f ′′

r ∈ R2C∗H∗W , and the above
process is expressed as:

f ′′
r = η1 ∗ f ′

r + η2 ∗ f ′
r + fr (5)

D. MULTISCALE ATTENTION
Benefiting from multiscale architecture of U-Net, the nearest
interpolation is utilized to up-sample four feature maps
from RCA of different scales, as shown in FIGURE 2.
After up-sampling, four feature maps {fi}4i=1 are gotten
with a same dimension of C ∗ H ∗ W (C = 4 in
section III-D). Concatenating {fi}4i=1 channel-wisely and
getting fm ∈ R4C∗H∗W , the fm represents the input feature
map of multiscale attention(MSA) module. The process of
generating fm is specifically expressed as:

fm = Concat(f1, f2, f3, f4) (6)

The first module of MSA is the ChannelGate, as shown
in FIGURE 5(a). To highlight the channel correlation of
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FIGURE 5. Structure of the proposed multiscale attention(MSA) module with residual connection. Red rectangle represents global maximum
pooling(Pgm). Orange rectangle represents global average pooling(Pga). The µ1 and µ2 represent the channel factors. Green rectangle represents
channel factor enhancement(CFE) module.

FIGURE 6. The overlap-adding procedure.

concatenated feature maps fm, fm is sent to global average
pooling(Pga), global maximum pooling(Pgm) and MLP to
obtain channel factors {µi}

2
i=1 ∈ R4C . The channel factors

can be used to distinguish the importance of channels.
Subsequently,µ1 andµ2 are added to obtain β ∈ R4C , which
serves as input to channel factor enhancement(CFE) module.
The transformation of β is shown in FIGURE 6.
Specifically, CFE utilizes compression and expansion

operations to enhance the information of different dimensions
in the feature map fm. Firstly, β is reshaped to obtain β1 ∈

R2
√
C∗2

√
C (C = 4 in section III-D) without changing the

amount and value of the data. Subsequently, all elements
of β1(i, :) in β1 are summed and averaged to obtain β2 ∈

R2
√
C∗1, i = 1, 2, . . . , 2

√
C . After the above compression,

each pixel in β2 captures more contextual information. Next,
β2 is replicated 2

√
C times to obtain β3 ∈ R2

√
C∗2

√
C , and

then β3 is reshaped to obtain β4 ∈ R4C without changing the
amount and value of the data. Therefore, the dimensions of
β4 are the same as the dimensions of β. To fit the dimensions
of the MSA input fm, each β4(j, 0) are replicated H ∗ W
times, so C single-channel feature maps of size H ∗ W is
obtained, where H = W and j = 1, 2, . . . , 4C . Finally, the
single-channel feature maps are concatenated channel-wisely
to obtain β5 ∈ R4C∗H∗W . The process of channel factor
enhancement(CFE) is specifically described in Algorithm 1.
After dimension-based transformation of CFE, β5 is

fed into sigmoid to obtain the enhanced channel factor
β6 ∈ [0, 1]4C∗H∗W . Eventually, we use Hadamard product

to multiply the input fm and the β6 pointly to obtain
f ′
m ∈ R4C∗H∗W .
The second module of MSA is the SpatialGate, which is

used to achieve spatial attention, as shown in FIGURE 5(b).
MSA consists of two 3 ∗ 3 convolutional modules and one
CFE module. Firstly, the SpatialGate uses 3∗3 convolutional
module to smooth f ′

m, which is then activated by sigmoid to
obtain γ ∈ [0, 1]C∗H∗W . Subsequently, the γ is processed
by use of the CFE to obtain γ ′

∈ [0, 1]4C∗H∗W . In addition,
we use residual connections to recover feature information
loss as the network deepening. Eventually, γ ′ is processed
using 3 ∗ 3 convolutional module to obtain prediction p ∈

RC∗H∗W , which is used to calculate the loss function with
the ground truth, as shown in FIGURE 2.

E. LOSS
BCEWithLogitsLoss is a loss function for binary classifica-
tion. It combines the sigmoid function with the binary cross
entropy(BCELoss). p is the feature map predicted by the
LMA-Net. Before calculating the loss, we activate p using
sigmoid to obtain p ∈ [0, 1]C∗H∗W . In binary classification
problems, the pixel yi in the ground truth y is usually 0 or 1.
The BCEWithLogitsLoss formula is expressed as:

L =
1
N

N∑
i=1

[
yi · log(σ (pi)) + (1 − yi) · log(1 − σ (pi))

]
(7)

σ (x) =
1

1 + e−x
(8)

where L is the BCEWithLogitsLoss, yi is the i-th pixel in the
ground truth y and pi is the i-th pixel in the prediction p, and
N represents the number of samples and σ () is the sigmoid
function.

IV. EXPERIMENTS
A. DATASETS
Experiments are conducted on the public dataset COVID-
QU-Ex. The researchers of Qatar University have compiled
the COVID-QU-Ex dataset, which consists of 34,613 chest
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Algorithm 1 Channel Factor Enhancement(CFE)

Input: feature map β ∈ R4C

Output: feature map β4 ∈ R4C∗H∗W

1: count = 0
2: for i = 0 to 2

√
C − 1 do

3: for j = 0 to 2
√
C − 1 do

4: β1[i, j] = β[count, 0]
5: count = count + 1
6: end for
7: end for
8: count = 0
9: for i = 0 to 2

√
C − 1 do

10: for j = 0 to 2
√
C − 1 do

11: count = count + β1[i, j]
12: end for
13: β2[i, 0] = count / j
14: end for
15: for i = 0 to 2

√
C − 1 do

16: for j = 0 to 2
√
C − 1 do

17: β3[i, j] = β2[i, 0]
18: end for
19: end for
20: count = 0
21: for i = 0 to 2

√
C − 1 do

22: for j = 0 to 2
√
C − 1 do

23: β4[count, 0] = β3[i, j]
24: count = count + 1
25: end for
26: end for
27: for i = 0 to 4C do
28: for j = 0 to H do
29: for k = 0 to W do
30: β5[i, j, k] = β4[count, 0]
31: end for
32: end for
33: if i > 0 then
34: Channelconcatenation
35: end if
36: end forreturn β5

X-ray (CXR) images, including 11,956 lung images of
COVID-19 infection, 5,897 lung images of Viral Pneumo-
nia(VP), 6,059 lung images of Bacterial Pneumonia(BP)
and 10,701 normal lung images. Four typical images of
these four categories are shown in FIGURE 7. Ground
truths are provided for the entire dataset. This is the
largest ever created lung mask dataset. The download
address of dataset COVID-QU-Ex is https://www.kaggle.
com/datasets/anasmohammedtahir/covidqu.

The number of training set, validation set and testing
set is shown in TABLE 1 for four types of CXR images.
In our study, we carefully considered the balance between
these subsets to ensure that the model could efficiently and
quickly learn from the training set, avoid overfitting through

FIGURE 7. (a) to (d) represent four types of input images, which are
COVID-19, Viral Pneumonia(VP), Bacterial Pneumonia(BP) and Normal
respectively.

TABLE 1. Distribution of dataset.

validation, and provide a fair assessment of its usability via
the testing set. Therefore, we randomly collect and split the
dataset into 4000, 480 and 480 for training, validation and
testing in three different datasets respectively.

To avoid training termination due to inconsistent images,
we preprocess the entire dataset before training, such as
grayscale, tensor transformation, and random cropping.
Preprocessing ensures pulmonary image size of 1*256*256.

B. IMPLEMENTATION DETAILS
The LMA-Net is implemented using Pytorch framework.
For network training, the BCEWithLogitsLoss is used as
the loss function, while adaptive moment estimation(Adam)
optimization with initial learning rate of 1e-3, standard beta
values of (0.9, 0.999) and eps of 1e-8 is applied to minimize
this loss. The LMA-Net is trained for 300 epochs with a batch
size of 8. All experiments are conducted on GeForce RTX
3090 with 24 GB of memory.

C. EVALUATION INDICATORS
Specifically, the LMA-Net is evaluated by use of intersection
over union(IoU ), dice coefficient(Dice), average symmetric
surface distance(ASSD) and 95th percentile of the haus-
dorff distance(HD95). The IoU and Dice are respectively
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defined as

IoU =
|p ∩ y|
|p ∪ y|

(9)

Dice =
2|p ∩ y|
|p| + |y|

(10)

where p and y denote prediction and ground truth respectively,
Both ASSD and HD95 are used to calculate the surface

distance and measure the accuracy of the segmentation
boundary. The ASSD calculates the average distance between
predicted boundary and ground truth boundary, while
HD95 calculates the maximum distance between the two
boundaries. ASSD and HD95 are defined as

ASSD =

∑
a∈Sa minb∈Sbd(a, b) +

∑
b∈Sb mina∈Sad(b, a)

len(Sa) + len(Sb)
(11)

HD95 = 0.95max[max
a∈Sa

min
b∈Sb

d(a, b),max
b∈Sb

min
a∈Sa

d(a, b)]

(12)

where Sa and Sb indicate the predicted segmentation bound-
ary and the manual segmentation boundary respectively. Both
a and b indicate pixels on the boundary, and d(·, ·) is distance
function. len() represents the sum of pixels that make up the
boundary Sa or Sb.

D. EXPERIMENTAL RESULTS
This paper takes COVID-QU-Ex as the research object
and carries out four groups of experiments. In order to
verify the effectiveness of each module in LMA-Net,
ablation experiments are conducted. In addition, LMA-Net is
compared with the current advanced segmentation network.

TABLE 2. Ablation experiments for segmentation results.

1) ABLATION EXPERIMENTS FOR SEGMENTATION RESULTS
The proposed LMA-Net takes the U-Net as the baseline,
where LMA-Net includes progressive dilated convolution
(PDC), reinforced channel attention(RCA) and multiscale
attention(MSA). To verify the effectiveness of combining
different network, we compared LMA-Net with six variants
of different combinations of PDC, RCA and MSA. Specifi-
cally, PDC means progressive dilated convolution used only
in the encoder of the baseline. RCA represents reinforced
channel attention used only in the decoder of the baseline.

MSA represents multiscale attention used only in decoder of
the baseline.

TABLE 2 presents quantitative comparison of the
LMA-Net and other variants lung segmentation, where
IoU , Dice, ASSD and HD95 are adopted to evaluate the
segmentation effect. It can be observed that LMA-Net has
the highest score of 96.28% and 96.95% respectively in IoU
and Dice. At the same time, in the comparison between
ASSD and HD95, LMA-Net is also close to the best MSA,
reaching 13.11mm and 81.12mm respectively. FIGURE 8
shows the visual comparison of different CNNs dealing with
CXR segmentation task.

2) ABLATION EXPERIMENTS FOR COMPUTING COST
We randomly generate a tensor f ∈ R1∗256∗256 as the
input of the segmentation models to test computing cost and
inference time. Then, the parameters(Param), floating point
operations(FLOPs) and inference time of networks can be
tested. As show in TABLE 3, the LMA-Net outperforms
all other variants in Param, FLOPs and inference time, and
the corresponding values are 2.89M, 2.64G and 609.31ms,
respectively. It follows that LMA-Net can effectively reduce
the number of parameters and floating point operations in the
segmentation process. This method can effectively improve
segmentation speed.

TABLE 3. Ablation experiments for computing cost.

3) COMPARISON WITH OTHER METHODS FOR
SEGMENTATION RESULTS
LMA-Net is compared with seven state-of-the-art methods
which are U-Net, FCN, DenseNet, U-Net++, Attention
U-Net, R2U-Net and MFM-Net. These models are all
retrained on COVID-QU-Ex.

As shown in TABLE 4, segmentation results of
the segmentation models are listed in the contrastive

TABLE 4. Comparison with other methods for segmentation results.
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FIGURE 8. Visual comparison of ablation experiments for lung segmentation. The red arrows highlight some mis-segmentations. The blue border is
the result of manual segmentation. The green border is the predicted segmentation result.

FIGURE 9. Visual comparison between LMA-Net and state-of-the-art networks for lung segmentation. The red arrows highlight some
mis-segmentations. The blue border is the result of manual segmentation. The green border is the predicted segmentation result.

TABLE 5. Comparison with other methods for computing cost.

experiment. It shows that the LMA-Net has good segmen-
tation performance. The LMA-Net obtains a IoU of 96.28%,
which is a great improvement compared with 93.85% of U-
Net. Although the LMA-Net is similar to the Attention U-Net
and R2U-Net in segmentation performance, our model is far
less than other models for comparative experiments in terms
of Param and FLOPs, as shown in TABLE 5. FIGURE 9
shows the visual comparison of different CNNs dealing with
CXR segmentation task.

4) COMPARISON WITH OTHER METHODS FOR COMPUTING
COST
We randomly generate a tensor f ∈ R1∗256∗256 as
the input of the segmentation models to test computing

TABLE 6. Generalization comparison with other methods for
segmentation results.

cost. Then, the parameters(Param), floating point opera-
tions(FLOPs) and inference time of networks can be tested.
As show in TABLE 5, the LMA-Net outperforms other
state-of-the-art networks in Param, FLOPs and inference
time, and the corresponding values are 2.89M, 2.64G and
609.31ms, respectively. Although the LMA-Net has more
parameters than MFM-Net, its segmentation performance is
much higher than MFM-Net. It follows that the LMA-Net
achieves lightweight while ensuring superior segmentation
performance.

5) COMPARISON FOR GENERALIZATION
LMA-Net is compared with seven state-of-the-art methods
which are U-Net, FCN, DenseNet, U-Net++, Attention
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FIGURE 10. Visual comparison between LMA-Net and state-of-the-art networks for colonic polyps segmentation. The red arrows highlight some
mis-segmentations. The blue border is the result of manual segmentation. The green border is the predicted segmentation result.

U-Net, R2U-Net and MFM-Net. These models are all
retrained on the colon polyp dataset Kvasir-SEG.

As shown in TABLE 6, segmentation results of the
segmentation models are listed in the contrastive experi-
ment. It shows that the LMA-Net has good segmentation
performance. The LMA-Net obtains a IoU of 97.10%, which
is a great improvement compared with 95.96% of U-Net.
Although the LMA-Net is similar to the U-Net++ and
Attention U-Net in segmentation performance, our model
is far less than other models for comparative experiments
in terms of Param and FLOPs, as shown in TABLE 6.
FIGURE 10 shows the visual comparison of different CNNs
dealing with Kvasir-SEG segmentation task.

V. DISCUSSION AND CONCLUSION
In this paper, we explore the possibility of deep learning
to assist in medical diagnosis. To address the two key
issues of limited computing resources in clinical medical
workstations and low accuracy of deep learning networks
for medical image segmentation, a lightweight multiple
attention network(LMA-Net) is proposed to achieve pul-
monary segmentation of CXR images, which is used to assist
diagnosis. This method improves the classical convolutional
module to achieve lightweight, and innovatively proposes
reinforced channel attention and multiscale attention to
heighten segmentation accuracy. In addition, the COVID-
QU-Ex dataset is improved and multiple lung lesion images
are fused to improve the generalization of the segmentation
network. Compared with other approaches, it verifies that
the proposed method is superior through comprehensive
experiments. To conclude, we will explore imagedriven
methods for lesion recognition in future work.
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