IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 April 2024, accepted 9 May 2024, date of publication 13 May 2024, date of current version 21 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3400672

== RESEARCH ARTICLE

A Blockchain Oracle Interoperability Technique
for Permissioned Blockchain

ASMA A. ALHUSSAYEN ™, KAMAL JAMBI™~, MAHER KHEMAKHEM ~, AND FATHY E. EASSA

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Corresponding author: Asma A. Alhussayen (aalhussayen @stu.kau.edu.sa)

ABSTRACT Blockchain interoperability has become an essential requirement for the advancement of
blockchain technology in numerous fields. Enterprise organizations are increasingly utilizing permissioned
blockchains to manage and store their organizations’ data and transactions in a private immutable ledger.
Interoperability enables permissioned blockchain platforms to communicate and exchange information
which is paramount for fully exploiting permissioned blockchains as facilitators for B2B applications.
Additionally, the cross-network invocation of smart contracts under agreed conditions enhances business
operations. Blockchain oracles can enable permissioned blockchain interoperability and cross-network
transactions in a seamless and private manner. However, they have not been studied in the literature
as interoperability techniques between permission blockchains. This study proposes a blockchain oracle
interoperability technique designed specifically for permissioned blockchain platforms. We presented the
architecture of the blockchain oracle interoperability technique and a prototypical implementation to
demonstrate the practicality of the proposed technique. In addition, we obtained cross-network transaction
latency measurements and analyzed the results.

INDEX TERMS Permissioned blockchain, blockchain interoperability, blockchain oracle, cross-network

transactions.

I. INTRODUCTION
Distributed Ledger Technology (DLT) is a digital transaction
record system that allows multiple parties in different
locations to have access, validation, and data manipulation
across a networked database. The DLT infrastructure and
protocols were designed to facilitate data record management
among several distributed users by recording the history
of modifications, ensuring data reliability and providing
immutable records. This technology is enabled by cryptog-
raphy, consensus algorithms, validity rules, governance and
smart contracts. Blockchain is the most famous form of
DLT that has attracted the interest of many researchers and
practitioners leading to technological advancements in the
area and the development of various types of blockchains and
DLT systems that serve different applications [1].
Blockchain has gained popularity owing to its appli-
cations in the field of cryptocurrencies and digital asset

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Destefanis

management [2]. The proliferation of cryptocurrency
blockchain-based applications and the wide variety of
digital currencies have necessitated the development of
asset transfer and exchange techniques among different
cryptocurrencies. In addition, several blockchain platforms
have begun to utilize smart contracts to automate the
execution of business logic between participants when
certain predefined conditions are met. This resulted in
extending the application domain of blockchains beyond
cryptocurrencies to other industries such as supply chain
management, health care insurance, smart city applications
and governmental services [3]. Various blockchain systems
with various structures and protocols have been designed
and implemented to satisfy the distinct requirements of each
application domain. According to a survey paper conducted
by Khan et al. [4], blockchain systems can be considered
homogeneous when they share similar data structures,
execution environments and programming language of smart
contracts. Heterogeneous blockchains on the other hand
have dissimilar data structures, execution environments and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

68130

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-9354-1161
https://orcid.org/0000-0001-5238-7356
https://orcid.org/0000-0002-1287-1634
https://orcid.org/0000-0003-3987-9051
https://orcid.org/0000-0003-3982-6355

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

use different programming languages to develop their smart
contracts.

Interoperation between blockchain networks, whether
homogeneous or heterogeneous, soon became an area
of interest to many researchers in both academia and
industry [5]. Techniques for achieving interoperation and
supporting cross-network transactions varied based on the
purpose of the interoperation and the type of blockchain
network supported. Consequently, diverse interoperability
solutions have been developed to address the need for
blockchain-based systems to communicate and expand the
capabilities of blockchain systems. The majority of the
developed techniques were designed to allow asset transfer
and exchange between different blockchain platforms, mostly
supporting public blockchains and had the disadvantage of
increased transaction costs [5]. When it comes to arbitrary
data exchange among private blockchain networks, there is
noticeable lack in the interoperability techniques designed
specifically to allow private blockchain networks perform
cross-network transactions and exchange data.

A blockchain oracle is a type of interoperability technique
developed to integrate blockchain systems with external
sources such as legacy systems, web applications and IoT
devices to feed external data to smart contracts within a
blockchain network or retrieve data from the blockchain to
external systems [6]. Oracles have enhanced the capabilities
of smart contracts and enabled blockchain-based systems to
be integrated with existing business applications. However,
oracles have not yet been studied as an interoperability tech-
nique between heterogeneous private blockchain networks
to allow for cross-network transactions and arbitrary data
exchange. According to a survey paper [7], oracles have
the potential to overcome many of the limitations of the
existing interoperability approaches, and there is a need
to perform an in-depth study and analysis of blockchain
oracle performance as an interoperability technique between
blockchain networks.

In this study, we present the design of an interoperability
technique for permissioned blockchain platforms to com-
municate and execute cross-network transactions through
blockchain oracles. We explain the technique in the context
of two widely known permissioned blockchain platforms:
Hyperledger Fabric and R3 Corda. To the best of our
knowledge, this is the first study to demonstrate blockchain
oracles as an interoperability tool for cross-network trans-
actions between heterogeneous permissioned blockchains.
Employing the proposed technique does not require any
changes in the interoperating blockchain platforms, except
for the deployment of interoperability software components
to manage cross-network communication and transactions.
In addition, the technique preserves the decentralized feature
of the blockchain network because each blockchain includes
oracle nodes with interoperability components inside the
blockchain network itself. In addition, we conducted a
performance evaluation to measure the transaction latency
of cross-network transactions, and the results show that our

VOLUME 12, 2024

proposed solution can achieve interoperability between per-
missioned blockchains with a minimal increase in transaction
latency. The main contributions of this study are threefold:

1. We present the blockchain oracle interoperability tech-
nique and its components.

2. We implement a prototype of the interoperability tech-
nique and demonstrate its feasibility.

3. We perform an analysis and acquire performance mea-
surements of the cross-network transaction latency.

Il. PAPER ORGANIZATION

The remainder of this paper is organized as follows:
Section III provides the background on blockchain,
blockchain interoperability and blockchain oracle. Then,
we discuss research papers that cover private blockchain
interoperability and blockchain oracle topics in Section IV.
Section V describes the research methodology followed by a
detailed explanation of the Blockchain oracle interoperability
technique in Section VI. Then, we present the prototype
implementation of the proposed solution and the performance
evaluation in Section VII. We then compare the features of
our interoperability technique with the techniques discussed
in the related work in Section VIII. Next, we discuss
the limitations and future work in Section IX. Finally,
we conclude the paper in Section X by summarizing the
results of the study and future work.

lll. BACKGROUND

This section provides the background information required to
understand the concepts investigated in this study. We begin
with the definition of blockchain, its key elements and
different types of blockchain networks. Next, a definition of
the interoperability of blockchain systems is presented along
with different approaches to interoperability. Blockchain
oracles were subsequently introduced.

A. BLOCKCHAIN NETWORKS
Blockchain is a distributed database system that stores
validated transaction records in a linked list called chains [3],
[1]. Transactions stored in blocks are known to be immutable
and publicly available for participating peers to view [2].
Blockchain has gained popularity as an enabling technology
for Bitcoin, which was introduced by Satoshi Nakamoto in
2008. Blockchain was a decentralized network of anonymous
peers participating in submitting transactions and reaching
consensus through the Proof of Work (PoW) protocol.
Security, immutability, transparency, independence, and
anonymity are strong features of blockchains that make
cryptocurrency systems possible [8]. The blockchain struc-
ture that enabled these likable features also gave blockchain
certain disadvantages, namely, high cost and low transac-
tion throughput, which limited its applicability to specific
application domains. Different blockchain network structures
and consensus mechanisms have been developed to meet the
specific requirements of additional application domains such

68131

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

as business applications, governmental services, and hospital
management systems.

Currently, blockchain platforms are classified into three
categories, and each category is suitable for a specific set of
application areas. The categories of blockchain platforms are
as follows:

1) PUBLIC (PERMISSIONLESS) BLOCKCHAINS

Public blockchains are the first blockchains to appear;
they are also known as permissionless blockchains because
any one can join the network and contribute without the
permission of a central authority. Public blockchains are com-
pletely decentralized and offer openness and transparency
such that any peer node can participate in the reading,
writing, verification, and consensus processes of transactions
submitted and stored in the chain. Economic incentives
are used to reward participating nodes as encouragement
for their role in mining activities to verify transactions
and reach a consensus [9]. Public blockchains also offer
anonymity; hence, transactions are not traceable to specific
users. In addition, public blockchains are known to be
trustless and tamperproof because of the distributed ledger
stored at each node. Therefore, if any node holds a modified
copy of the ledger, it is considered corrupt and rejected
by the majority of the peer nodes. Consensus mechanisms
are an important part of public blockchains and play an
essential role in their performance and security. The two
most prevalent methods for reaching consensus in public
blockchains are Proof-of-Work (PoW) and Proof-of-Stake
(PoS). Furthermore, the source code is usually open source,
and anyone can verify transactions, detect bugs, and propose
changes because no valid record or transaction can be
changed on the network [10].

2) PRIVATE (PERMISSIONED) BLOCKCHAINS

Private blockchains, also known as permissioned chains,
are centralized blockchains with a central authority granting
permission to peer nodes and authorizing access to data.
Unlike public blockchains, only authorized nodes can join
the network and participate in the management of data
on the chain. Optionally, some private blockchains allow
public non-permissioned nodes to read data for auditing
in specific organizations. These characteristics of private
blockchains limit their application to business applications
involving a small group of entities [9]. Similar to public
blockchains, private blockchains are peer-to-peer networks
with distributed ledger that offer immutable and transparent
storage of transactions. Limiting access to permissioned
nodes makes private blockchain networks much smaller than
public blockchain networks. The consensus mechanisms of
private blockchains are also different from those of public
blockchains because only authorized peer nodes inside the
organization participate in the consensus process rather
than anyone with computing power [10]. Proof-of-Authority
(PoA) and Practical Byzantine Fault Tolerance (pBFT) are

68132

two of the most widely used consensus algorithms for private
blockchains.

3) HYBRID (CONSORTIUM) BLOCKCHAINS

A hybrid blockchain is a combination of both public and
private blockchains in a network. In a hybrid blockchain, the
network is partially distributed such that every participating
node has a copy of the ledger and can commit transactions but
only authorized permissioned nodes participate in the block
generation and consensus process. This type of blockchain
has emerged as a solution for organizations that share
common data and transactions with other organizations,
but also has private data that require restricted access [9].
A hybrid blockchain employs smart contracts to verify
transactions and records and maintain confidentiality of the
information inside the network. The identity of a member
node is only revealed to peer nodes that share common
transactions. Hybrid blockchains usually incorporate a mix of
consensus algorithms to achieve the security, scalability, and
decentralization features required in this type of blockchain
network. For example, PoW may be used for public access
and PoS for permissioned access, thus providing both
security and efficiency. The combination of public and private
blockchain features has allowed the wide adoption of hybrid
blockchains in various application areas. The Hyperledger
Project is a prominent example of a hybrid blockchain
platform designed for business solutions [10].

Each category described above has certain challenges
and limitations. Public blockchains suffer from limited
scalability, a lack of privacy, and high computational
power. Private blockchains avoid the limitations of public
blockchains but are only accessible to a set of people
and are costly to set up and maintain compared to public
blockchains. Although hybrid blockchains are designed to
combine the features of public and private networks, they
do not offer complete transparency for the public users of
the network, and they offer fewer incentives than public
blockchains [10], [11]. Among these categories, private
blockchains provide the most secure and privacy-preserving
blockchain solution for organizations that require enhanced
privacy and security, while providing immutable records of
transactions for auditing and inner organization management.

B. BLOCKCHAIN INTEROPERABILITY

As blockchain technology advances with different technolog-
ical approaches and architectures to serve a wide range of
application areas, it has become imperative to develop inter-
operability solutions that allow blockchain based systems to
communicate with each other. In recent years, research stud-
ies have discussed blockchain interoperability definitions,
types, and techniques to propose an interoperability solution
that enables communication between different blockchain
systems. Blockchain interoperability allows blockchains to
communicate with each other and with external systems
and hardware, such as legacy systems and IoT devices.

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

In [12], Abebe et al. defined blockchain interoperability as the
“semantic dependence between distinct ledgers to transfer or
exchange data or value, with assurance of validity.” In [13],
Hardjono et al. presented blockchain interoperability from
an application-level view, as they focused on the completion
of a transaction and its sub-transactions, independent of the
blockchain systems executing the transactions. Pang in the
research study presented in [14] provides a broad definition
of blockchain interoperability that goes beyond cross-chain
asset transfers and includes the ability to execute smart
contracts across heterogeneous blockchains in a seamless and
secure process. A comprehensive definition of blockchain
interoperability is provided by the National Institute of
Standards and Technology (NIST) in their technical report
in [15], where they describe blockchain interoperability
as “‘a composition of distinguishable blockchain systems,
each representing a unique distributed data ledger, where
atomic transaction execution may span multiple heteroge-
neous blockchain systems, and where data recorded in one
blockchain are reachable, verifiable, and referable by another
possibly foreign transaction in a semantically compatible
manner.”

Blockchain interoperability enables the wider adoption
of blockchain networks in various business applications
that need to integrate different blockchain systems to
meet their business requirements. Various interoperability
techniques have been developed to fulfill the demands and
features of interoperability required by different application
areas. As a result, three categories of interoperability
techniques were identified: cryptocurrency-directed interop-
erability approaches, Blockchain Engines, and Blockchain
Connectors [16]. The following is a brief description of each
category:

1) CRYPTOCURRENCY-DIRECTED INTEROPERABILITY
(PUBLIC CONNECTORS)

Techniques in this category are designed specifically to allow
digital asset transfers/exchanges using protocols of public
blockchains. Three known methods belong to this category:
side chains, notaries and Hashed Time Locks [16], [17], [14].
These methods were designed with public blockchains in
mind and therefore assume that gateways are not trusted; and
as a result, they are not suitable for permissioned (private)
blockchain networks.

2) BLOCKCHAIN ENGINES (BLOCKCHAIN OF BLOCKCHAINS
- BOB)

Blockchain of Blockchains are similar to the side chains
method in that they connect secondary chains to the main
chains. Howeyver, interconnected blockchains are customized
to interoperate and are built for specific applications.
BOB platforms support flexibility, high throughput, and
compatibility, but only blockchains built using their platform
and protocols may interoperate. The Cosmos and Polkadot
platforms are popular examples of BOBs [16].

VOLUME 12, 2024

3) BLOCKCHAIN CONNECTORS (HYBRID CONNECTORS)

As the name suggests, interoperability between public and
private blockchains is allowed in this approach. Techniques in
this category utilize DApps to communicate with participat-
ing blockchain networks through a layer of abstraction that
incorporates a group of standard procedures. ‘“‘Blockchain
Migrators, “Blockchain Agnostic Protocols and “Trusted
Relays™ are popular example of interoperability methods
under this category [16].

Kayikciet al. [18] described a different categorization of
available blockchain interoperability techniques, as defined
by the World Economics Forum in their white paper
published in 2022:

4) CROSS AUTHENTICATION

This includes methods that enable interoperability between
different blockchain networks or between blockchain and
other existing systems. Three known methods belong to
this category: 1) Notaries, which is a centralized method
that allows both asset and arbitrary data transfer; 2) Relays,
which use side chains and are completely decentralized
for asset and arbitrary data transfer, but require the use
of specific developed protocols and platforms; 3) Hash-
Locking, an efficient technique that has gained wide adoption
but only supports digital asset exchange.

5) ORACLE

Oracle nodes are used to provide external data to the
blockchain or extract data from the blockchain through the
implementation of specific smart contracts. They are consid-
ered by several researchers to be interoperability techniques
between blockchain systems and other non-blockchain sys-
tems. However, a recent survey paper published by Ezzat et al.
in 2022 [7] presented blockchain oracles as a promising
interoperability technique between blockchain systems and
compared it with existing techniques.

6) API GATEWAYS

In this approach, several APIs are developed to act as gate-
ways that interact with participating blockchain platforms
and applications to perform assets or arbitrary data exchange.
APIs are programs written to control and govern access
to participating blockchain networks and perform cross-
authentication between interacting blockchains. Although
APIs are easy to develop, they centralize trust and are
unsuitable for a wide range of blockchain networks.

In addition to the categorizations described above,
Hewett et al. [17] classified the data types included in
blockchain interoperability as either digital asset exchange
or arbitrary data exchange. For digital asset exchange,
interoperating blockchains transfer or swap assets in a
decentralized system without an intermediary. Arbitrary data
exchange involves cross-network transaction execution and
external smart contract invocation between interoperating

68133

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

blockchains, which results in the transfer of data or the
modification of stored data on participating blockchains.

C. BLOCKCHAIN ORACLE

Oracles are trusted nodes that provide external data feed to
blockchain networks. Blockchain oracles were first used to
provide real-time data from external sources (typically web
based sources) to blockchain networks to be used during
smart contract execution. Later, oracles were used to push
data into external sources from blockchain networks [19].
The correction of smart contract execution is therefore
dependent on the correctness of the fetched data, which
makes it critical for blockchain oracles to verify the validity
and authenticity of the provided data. The operation of
blockchain oracles and the type of data being fetched to
or pulled out of the blockchain network relies on the
Service Level Agreement (SLA), instructions, and end
points [20]. A popular example of a blockchain oracle system
is Chainlink [21], which is a decentralized data-feed oracle
system. The aim of Chainlink is to fetch external data and
verify its authenticity for smart contracts using a network of
computers and incentives as motivation.

The main advantage of Oracles is that they are easy to
implement and integrate into any blockchain system [17].
Nevertheless, they have several disadvantages. First, oracle
nodes are considered as central agents between blockchains
and external data sources, thus centralizing trust. Second,
oracle nodes present reliability issues because they are
considered as single points of failure of the system. Third,
oracle nodes gather data from multiple data sources, which
poses some computational complexity and lead to poor
performance [17].

Various blockchain oracles are used and can be cat-
egorized based on different characteristics. According to
Beniiche [22], there are three different classifications of
blockchain oracles. When considering the network admin-
istration of nodes, oracles can either be centralized or
decentralized, as described in the following:

o Centralized Oracles: A single oracle node is utilized to
run on a single server and gather data from a single data
source. This type of Oracle system leads to a single point
of failure because it is the main source that provides the
required external data to smart contracts.

o Decentralized Oracles: designed to solve the single
point of failure limitation, a distributed network of oracle
nodes running on different servers gathers data from
multiple data sources, thereby delivering more reliable
and trusted data to the blockchain.

Another categorization of Oracle systems depends on the
data source from which the external data are gathered, which
can be of three types:

o Software Oracles: In this type, data are gathered from
software systems, such as cloud servers, APIs, websites,
or other blockchain systems.

« Hardware Oracles: This type of oracle system delivers
data collected from the real world, such as from sensors,

68134

medical equipment, QR scanners, RFID tags, robots, and
IoT devices.

o Human Oracles: Experts and specialists’ input.

The final categorization considers the direction of data
flow and identifies two types:

o Inbound Oracles: Pull data from data sources (off-

chain) to smart contracts (on-chain).

o Outbound Oracles: push data from smart contract to

the external world.

Many researchers have directed their studies towards
developing blockchain oracle systems that integrate
blockchain networks with other non-blockchain systems and
have not considered blockchain oracles as an interoperability
technique between blockchain networks. Ezzet et al. [7]
presented blockchain oracles as a possible blockchain
interoperability technique and discussed its capabilities and
compared it with other existing interoperability techniques.
The study also discussed design implementations to ensure
the reliability and trust of blockchain oracles as an efficient
interoperability technique.

IV. RELATED WORKS

In this section, we discuss research papers that have studied
interoperability techniques between private blockchain net-
works, followed by related work on blockchain oracles in the
area of blockchain interoperability.

A. PRIVATE BLOCKCHAIN INTEROPERABILITY
Private permissioned blockchain systems are suitable for
Business-to-Business (B2B) applications because they apply
strict privacy and security measures and deliver busi-
ness requirements with smart contracts and workflows.
Organizations are increasingly showing interest in private
blockchain systems to store their data and manage and
monitor business transactions. Therefore, it is pivotal to
design an interoperability technique capable of allowing
business transactions between private blockchain systems
in a seamless and secure manner. However, research on
interoperability solutions for private blockchain networks is
limited. Among the studies on blockchain interoperability,
we selected those that focused on permissioned blockchain
platforms. The following is a summary of related work on
private blockchain interoperability and its limitations.
Ghaemi et al. [23] proposed an interoperability solution
for permissioned blockchains, based on the publish-subscribe
design pattern. Interoperation is achieved between a source
blockchain and a destination blockchain through an inter-
mediary blockchain (broker). To avoid centralization, peers
from participating blockchains participate in the governance
of the broker blockchain. A participating blockchain can be
a publisher in the interoperability process and create fopics
to share specific information and update it when needed.
Subscriber blockchains can select topics to subscribe to and
view published information. The broker blockchain is respon-
sible for storing published topics and notifying subscriber
blockchains when the topics are updated. A prototype of

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

the proposed solution was implemented, and an evaluation
was conducted to assess the performance and measure
transaction throughput and latency. The interoperability
method described in this paper only deals with data sharing
but does not allow cross-blockchain transactions or smart
contract invocations.

Dinh et al. [24] described a blueprint for interoperable
blockchains by focusing on the requirements of private
blockchain networks. The proposed architecture is designed
to achieve cross-chain transactions and communication with
controlled access. The designed solution adds three com-
ponents for handling interoperability-related functionalities
to the existing blockchain software stack, thereby avoiding
the need to build a new blockchain software system. They
presented a high-level description of a general-purpose
interoperation approach for private blockchain networks
with access control. A detailed description of the proposed
architecture and its components is required, and further
research is required to evaluate the efficiency of the proposed
solution.

Khan et al. [4] conducted an extensive survey of
blockchain interoperability techniques for public and private
blockchains. An analysis of the interoperability techniques
and requirements revealed that complete interoperability can
be achieved through identity management, consensus mech-
anisms, cryptographic management, and smart contracts of
interoperating blockchain systems. They further stated that
smart contracts are the most critical part of private blockchain
interoperability. In addition, they identified privacy, security,
scalability, degree of confidence, and direction of transactions
as characteristics of the interoperability techniques by
which they are compared and analyzed. The study revealed
that there is a lack of research analyzing and evaluat-
ing smart contract-based interoperability for blockchain
systems.

Bayraktar and Goren [25] studied private blockchain
interoperability to provide design guidelines and princi-
ples for developing interoperability systems among private
blockchains. In addition, they described an interoperability
architecture that was developed following the identified
design principles. The researchers proposed the publish-
subscribe method as the most appropriate for private
blockchains’ interoperability and suggested the following
features for the interoperability of smart contracts:

1. Smart contract to publish the desire to become a member
in interoperability system.

2. Smart contracts to publish the services available for
external blockchains.

3. Authorization smart contracts that allow invited users to
interoperate with participating networks.

4. Smart contracts to subscribe to published services by
member blockchains.

5. Smart contracts to become a member of the end-to-end
chain.

6. Smart contracts to sign up as a member chain to trace the
end-to-end process.

VOLUME 12, 2024

The developed architecture for interoperability aims to
avoid centralization and single point of failure by deploy-
ing the interoperability solution on each interoperating
blockchain. The solution is described at a high level and
consists of publishing and subscription modules and separate
ledgers for interoperation transactions. This study can be
considered a good reference for developing a more detailed
interoperation architecture, but it is only applicable to
homogeneous blockchains.

Bradach et al. in [26], acknowledged the lack of inter-
operability solutions for permissioned blockchain platforms
and proposed an interoperability gateway following the
design principles suggested by Abebe et al. [12] and
Ghaemi et al. [23]. The design of the solution was based
on a social security exchange scenario between Hyperledger
Fabric and Corda. The interoperability gateway comprises
three main components: two connectors (one for each
platform) and a router. The router coordinates communication
between the two platforms and employs a static blockchain
discovery mechanism. The connectors are implemented to
communicate with the blockchain platform they belong to
and provide an interface to communicate with the router.
The proposed solution focuses on routing messages from one
blockchain to another but does not provide details on handling
transactions and replying to incoming queries. Important
features of blockchain, such as consensus and validating
transactions, have not been discussed. The study also lacks
performance evaluation of the implemented prototype.

In [27], the researchers continue their study on
the gateway-based solution described previously by
Bradach et al. in [26]. They describe additional components
to their solution to make it more general and applicable
to wider range of blockchain platforms. Additionally, they
provide an initial prototype evaluation to test the effectiveness
of the gateway-based solution. Two frameworks, LCIM
and CBIDD, were used to assess the solution, providing
different perspectives on its effectiveness and suitability for
permissioned blockchain interoperability. The LCIM model
helped determine the level of interoperability achieved by
the solution, while the CBIDD framework verified that
the gateway-based solution was appropriate for the applied
scenario. The gateway-based approach is simple to use and
does not require any change to participating blockchain
networks. It is however a centralized solution which does
not comply with the essential decentralization property of
blockchain systems.

The authors in [28] introduce T-ODAP, a secure protocol
designed to enable secure asset exchange between permis-
sioned blockchains without needing a trusted third party
during the interoperation process. The proposed protocol
uses a Decentralized View Storage (DVS) implemented with
Polkadot and a connector built with Hyperledger Cactus.
The paper models participants as rational agents using game
theory, which helps in understanding how participants are
likely to behave in this system, ensuring that the protocol is
designed in a way that encourages participants to act honestly.

68135

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

The system was evaluated to test its robustness against
attacks, ensuring that it can withstand malicious attempts
to disrupt that asset transfer process. The proposed solution
is complex and costly compared to simpler counterparts
and the paper described an initial implementation of the
solution. A full implementation and performance evaluation
of this interoperability technique is required to assess its
feasibility. Also, the use of Polkadot and Hyperledger Cactus
for implementing the main components of the system limits
the applicability of the solution to supported blockchain
platforms.

PIECHAIN is a Kafka-based interoperation framework
described in [29]. The aim of the designed framework
is to allow cross-chain read/write transactions between
participating blockchains focusing on ensuring the atom-
icity and liveness feature required in such transactions.
In addition, the researchers acknowledge the importance of
eliminating the need for a trusted third party to facilitate
the cross-chain transactions by replacing it with cross-chain
services that communicate through an event log making
the process more efficient and reliable. The researchers
showcase a practical use of PIECHAIN through a cross-
chain auction, demonstrating how users with tokens on
different blockchains can participate in bidding for an
asset on another blockchain, highlighting blockchain’s real-
world application. The approach described in this paper is
limited in its description to auction applications and allowing
asset exchange, while it could be explored as a method
of interoperability for wider range of applications. Further
research is required to evaluate the performance of this
approach and compare it with existing methods.

1) DISCUSSION

Although existing interoperability solutions for private
blockchains have succeeded in meeting the requirements
of interoperability, they have several limitations that hin-
der their application. Some solutions require interoperable
blockchains to have some degree of compatibility between
them. Others are designed only to support asset exchange,
which limits their application area. In addition, the majority
of the studies described in the literature lack detailed
design and architecture descriptions and require thorough
evaluation to acquire performance measurements. Among
the interoperability approaches described in the reviewed
literature, the publish-subscribe approach [25], [23] for
private blockchain interoperability appears to be the most
promising and fulfilling for business applications. The
solution proposed in this study explores blockchain oracles
as an interoperability tool between permissioned blockchain
networks as an alternative to existing techniques. Oracles
do not require compatibility between interacting blockchain
systems, and they achieve both digital and arbitrary data
exchange. In addition, blockchain oracles are relatively easy
to implement and do not require changes to blockchain
platforms.

68136

Similar to our approach, is the gateway-based technique
described in [26] and summarized in the related work
section. Although their approach is based on Hyperledger
Fabric and Corda, their design lacks some important
features of blockchain interoperability such as the ability
to execute cross-network write/update of a state in par-
ticipating blockchain networks. Also, the ability to handle
failed transactions was not included in their design. Their
evaluation of the implemented prototype was limited to
functional testing without conducting performance testing
and analysis. Our research study aims to explore the
feasibility of blockchain oracles as interoperability technique
by describing in detail the design of the main components
and their interactions to execute both cross-network read
and write transactions between participating blockchain
networks. In addition, we conduct a performance evaluation
to measure the transaction latency, which is an important
metric to be considered when assessing the feasibility and
applicability of an interoperability solution.

B. BLOCKCHAIN ORACLE

Many of the related works in the blockchain oracle focus on
guaranteeing the validity of the gathered data and ensuring
trust in the blockchain oracle. The following is a summary of
related work in blockchain oracle.

The research paper in [30] described a blockchain oracle
framework designed to guide blockchain developers who
need to employ blockchain oracles to provide external data to
and from the blockchain network. The researchers conducted
a systematic literature review (SLR) to explore the different
origins of information used by oracles, validation techniques
of gathered data, encryption mechanisms of incoming and
outgoing data, properties of oracles, and how they can
be integrated with blockchain platforms. According to this
study, smart contracts and software modules are the most
widely used technique for integrating blockchain oracles
with blockchain platforms. The results of the SLR were
summarized in a table to guide developers and provide a
reference for different techniques to utilize and integrate
blockchain oracles with a specific blockchain platform.
For permissioned blockchain-based systems, the framework
suggests using custom-developed smart contracts to integrate
a single-source Oracle and using a third-party validation
technique to validate the data.

Researchers in [31] proposed a Decentralized Oracle
Network (DON) to act as a trusted source of external
information gathered from different web sources and verified
by a network of oracle nodes. In addition to the nodes that
gather and verify data, bridge nodes are used to integrate
the oracle network with public smart contract platforms,
such as Ethereum. Bridge nodes are used to listen to and
detect requests for external data on the Ethereum network,
format the requests, broadcast them on the DON, and then
gather and submit the result to the Ethereum network.
The interoperability technique with the public blockchain,

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

Ethereum, was only briefly discussed, giving key points on
how to achieve interoperability without technical details.

Beniiche [22] studies different types of blockchain oracles,
how they were classified, their technical architecture, design
patterns and the use case scenario of each type. The main
focus of this study is the trust issue known in blockchain
oracles and existing solutions to verify the authenticity of
the data feed. They explain two examples of widely used
blockchain oracles: Oraclize and Chainlink. The researcher
further discusses the human oracle type as a solution to the
centralized trust issue and how human oracles can strengthen
the trust of fetched data.

In [6], the researchers study the different blockchain
oracles technologies developed to solve what is known
as the ‘‘oracle problem,” which refers to the challenge
of verifying the integrity and correctness of the data
feed. In this research, blockchain oracle implementation
techniques are categorized in to two main types: voting-based
approaches and reputation-based approaches. The voting-
based approach relies on a group of users called verifiers
or certifiers who vote on the correctness of certain data
and are rewarded if their vote is correct. The reputation-
based approach consists of two main processes. First,
an authenticity-proof technique is utilized to assess the
trustfulness and integrity of the gathered data. In each
category, variable methods were developed to overcome
the security weaknesses introduced by blockchain oracles.
Researchers have also presented several challenges that
required further research, such as increasing the performance
speed of blockchain oracles, reducing costs, enhancing
security, and managing different query types. Although this
paper presented a thorough investigation of blockchain oracle
techniques, their focus was on enhancing the trust of the
data feed and quarantining security, specifically for public
blockchains.

Another study discussing the challenge of enhanc-
ing trust in blockchain oracles was conducted by Al-
Breiki et al. [32]. The researchers identified four main
characteristics of blockchain oracles, by which they were
categorized. Blockchain oracles can be classified as software,
hardware, or human oracles when considering the data
source. Depending on the number of oracle nodes utilized to
provide the data feed, the blockchain oracle can implement
either a centralized trust model or a decentralized trust
model. Request-response, publish-subscribe, and immediate-
read are three design patterns chosen depending on the
type of data needed by the blockchain system. Considering
the direction of the data feed, blockchain oracles can be
either inbound oracles (insert data from external sources
into smart contracts) or outbound oracles (deliver data from
smart contracts to external systems). Existing widely used
blockchain oracle systems such as Provable, TownCrier, and
Chainlink are explained in detail, discussing their trust-
enabling mechanisms, strength and weaknesses. Several
challenges and research areas have been identified, such as
the need for a decentralized and reliable design of oracle

VOLUME 12, 2024

systems, and the need for decentralized identity management
and registration for the oracle nodes to increase trust.

Miihlberger et al. [33] performed an analysis to measure
the performance of four oracle system design patterns. Design
pattern categorization is based on the direction of the data
flow (inbound or outbound) and the initiator of the data flow
(push or pull) from the point of view of the blockchain sys-
tem. The researchers implemented proof-of-concept imple-
mentations of four oracles on an Ethereum test network
and acquired transaction latency and cost measurements that
helped characterize each design pattern. The results showed
that oracles that push data into the blockchain have higher
transaction latency than pull-based oracles, which read data
from the blockchain. The characterization of the oracle design
patterns was based on their performance on an Ethereum test
network. Further examination of the design patterns on differ-
ent blockchain networks may lead to different performance
results.

Another study focusing on enhancing the trust and
reliability of blockchain oracles was conducted by Liu and
Feng [34]. This paper proposes a new blockchain oracle
method based on the aggregation signature technique of
Bohen-Lynn-Shacham (BLS) to provide reliable off-chain
data. The method consists of five main steps: sending the
data request to all the oracle nodes, collecting signatures
from oracle nodes, committing the query data, verifying the
validity of the oracle signatures, and finally performing the
aggregation signature function. An analysis of the system
performance was performed on an Ethereum private network
to measure the cost and time consumption of the aggregate
signature method. This method verifies each signature before
performing aggregation; therefore, it consumes more time
and gas as the number of oracle nodes increases.

Pupyshev et al. [35] proposed GRAVITY architecture,
for an interoperability system that enables cross-chain
communication between different blockchain platforms and
interoperability with other external systems through oracles.
The proposed architecture comprises a network of oracle
nodes that own accounts in all participating blockchain
platforms in addition to software modules that perform data
extraction, task scheduling, and manage communication with
supported blockchain networks and an internal ledger. Two
consensus algorithms are designed: an Oracle consensus is
implemented in the target blockchain to decide which data
feed is valid, and a Pulse consensus is implemented in
the GRAVITY network to select a set of oracle nodes that
verify the data based on their reputation. The researchers
provided a detailed description of the components of the
proposed system, oracle smart contracts, and workflow
pattern. The described interoperability system is suitable for
public blockchains and complex to implement. Additionally,
performance analysis is required to measure the latency of
such a complex system.

Ezzet et al. [7] conducted a thorough study on blockchain
oracle capabilities as an interoperability technique and
compared it with existing popular blockchain interoperability

68137

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

techniques. According to their study, many blockchain inter-
operability solutions suffer from some limitations, such as
requiring some degree of compatibility between blockchain
platforms, introducing central authority, and supporting
digital asset exchange without support for arbitrary data
exchange. The researchers examined the blockchain oracle
tools that exist in the literature and presented a detailed
comparison between them, highlighting their strengths and
weaknesses. The study concludes that blockchain oracles
need to be studied and examined as an alternative inter-
operability tool to the existing techniques. In addition,
performance analysis studies are required to measure the
main aspects of blockchain oracle interoperability systems
such as transaction latency, scalability, and throughput.

1) DISCUSSION

So far, published studies on blockchain oracles have mainly
focused on validating incoming and outgoing data and
providing a trusted source of data to blockchain networks.
Although the benefits of blockchain oracles as interoper-
ability techniques are apparent and can overcome some
of the challenges of existing interoperability techniques,
there are no published research studies that describe such
an interoperability system. To the best of our knowledge,
blockchain oracles have not yet been studied or analyzed
as interoperability tools between permissioned blockchain
systems. In this paper, we present interoperability based on
blockchain oracles between two widely used permissioned
blockchain platforms, and we perform a performance anal-
ysis to evaluate the transaction latency of cross-network
transactions.

V. RESEARCH METHODOLOGY
This research study is prepared with the aim to explore the
feasibility of an Oracle-based system to allow interoperability
between two permissioned blockchain networks. The study is
conducted in the following steps:

1. The requirements for the Oracle-based interoperability
system are explained in the context of two widely used
permissioned blockchain platforms: Hyperledger Fabric
and R3 Corda.

2. The main operations for achieving interoperability
through the Oracle-based system are defined.

3. Using the five-layer architecture of blockchain platform,
the main components responsible for delivering the
interoperability operations are explained in detail using
Hyperledger Fabric and Corda as examples to simplify the
explanation.

4. Detailed description of the interactions between the com-
ponents of the interoperability system are also described.

5. Performance evaluation is conducted to measure the
transaction latency using a prototypical implementation of
the designed Oracle-based system with minimal network
setup for Hyperledger Fabric and Corda.

68138

6. Test cases are designed to measure both local and cross-
network transactions for read and write operations to
compare between the local transaction latency and cross-
network transactions and analyze the results.

VI. BLOCKCHAIN ORACLE INTEROPERABILTY SYSTEM
Blockchain networks have reached multiple application
areas, leading to the development of numerous blockchain
platforms that target specific requirements. Hyperledger Fab-
ric [36] is a leading permissioned blockchain platform that
target all types of business areas. The platform provides high
security and performance, as well as access to management
tools and support for business logic implementation. Several
projects based on Fabric are already in production with
a growing number of participating parties and operations.
Famous members of Hyperledger Fabric that have running
blockchain systems include Walmart, FedEx, and Visa.

Another widely used permissioned blockchain is the R3
Corda framework [37], which was designed and built for
regulated financial institutions. Corda provides strong privacy
assurance through its distinct architecture, where each peer
has its own view of the ledger, storing only a subset of
the ledger. To offer a strong degree of security and privacy,
communication in a Corda network is P2P with any broadcast
having to use the Network Map Service to loop over. Several
large companies use the Corda blockchain, such as Citibank,
HSBC, and Metlife Insurance.

Both the Hyperledger Fabric and Corda platforms are
becoming important facilitators for large business and
financial corporations. Consequently, their interoperation
is an evident requirement for these businesses to conduct
daily transactions seamlessly. Therefore, the Oracle based
interoperability technique described in this section enables
communication between the Hyperledger Fabric network and
the Corda network through cross-network transactions that
perform read and write operations on both ledgers while
maintaining ledger consistency. Although the blockchain
oracle interoperability technique is explained in the context
of Hyperledger Fabric and R3 Corda, it can be applied
to any permissioned blockchain platform. The following
assumptions are made for the proposed solution:

1. Both networks involved in the oracle interoperability
system recognize and form a common understanding
of the cross-network transactions performed on both
networks.

2. Participating blockchain networks’ security is dependent
on each network’s design and settings.

3. The users involved in the cross-network transactions trust
each other and accept each other’s validity proofs.
Generally, a blockchain platform is built following a five-

layer architecture designed to deliver the basic specifications

of a blockchain network. Hyperledger Fabric and Corda
both follow the five-layer architecture, although they have
different concepts of application and vision. Similarly, the

Oracle-based interoperability system is designed based on the

same five-layer architecture to ensure that the specifications

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

Hyperledger Fabric

s

Contract Layer)
Cross-network

Application Smart Contracts
Sman COnlmcts}

Consensus Layer

Cross-network
Verification

Network Layer .."
pop g Cross-ne_twqu
Communication

RAFT Kafka

Data Layer

Cross-network

Blocks :
Transaction

[Transactions

Oracle-based '\
I : Interoperability . |
System

Corda
e Application Layer
O
]
4 Contract Layer
Cross-network
lication CorD,
\ CorDapps 0 i
4 Consensus Layer B
Cross-network RAFT Kafka
Verification
J
(» Network Layer
Cross-network |
Communication| : ek
. J
: Data Layer
Cross-network | & | opain | frransactions
Transaction | :
\ i 4

. -
s s s sssEEsEESsEEESESSEEEEEEERERRES

FIGURE 1. Layered architecture of Hyperledger Fabric and Corda platforms with the components of the Oracle-based Interoperability system.

of both blockchain networks are delivered, as shown in
figure 1. The basic operations performed in the oracle-based
interoperability technique are as follows:

1.
2.

Listen for events on both Corda and Hyperledger Fabric.
Identify cross-network events emitted from both net-
works.

Handle cross-network events and create transactions that
perform read or write operations on both networks.
Validate transactions and ensure executed transactions are
stored in both networks.

As shown in figure 1, The Oracle-based interoperability

technique is divided into two main parts:

o First, cross-network transactions need to be defined

and implemented in the Contract layer and the rules

VOLUME 12, 2024

for verifying and validating them are included in the
Consensus layer of both the Hyperledger Fabric and
Corda platforms.

Second, the Oracle Service node includes two main
components that interact with the Network and Data
layers of both blockchain platforms. The Cross-network
Communication and Cross-network Transaction com-
ponents are responsible for establishing connections
with Hyperledger Fabric and Corda peer nodes and for
handling requests between the two platforms.

The Cross-network Transaction and Cross-network Com-
munication components in the Oracle Service node are
shown in more detail in the conceptual diagram in figure 2,

68139

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

HFConnectionOracle

return a grpc connection Cros:
with peer endpoint, TLS -
credentials, channelName, ’
chainCodeName and !

signer private key ; Hyperledger Fabric Connection

import grpc
import contract from HL
import connect from HL i

import textDecoder

export async HFConnectionOracle

readCorda calls Corda contract to
read data and writes to
Hyperledger ledger with data from
Corda and returns result

—

-------------------- » export cordaOracleNode

1 returns URL address of the
Corda Oracle node and
Authorization credentials

Corda Connection

: readController calls hyperledger
fabric contract to read data and
H writes to corda ledger with data
i from hyperledger and returns

- result

. H

writeCorda calls Corda contract to ’ H H

N writeController calls hyperledger

Index
write data to Corda and update ’ Hyperledger Fabric Query APl
Hyperledger ledger and returns ! ... Jcorda.listen
result import HFConnectionOracle s

1 import cordaO:

< startHyperledger

Corda Controllers

%, fabric contract to write data to
. y 1 hyperledger and update corda
Import HFConnectionOracle 1 ledger and returns result
'

import cordaOracleNode

import eventinterface
import requestBody
import Contract

export async startHyperledger
|func async eventListening()
\func readEvent()
|func readCorda(requestBody)
func writeCorda(requestBody)
4
Oracle Event Types

export eventinterface

v export enum cordaEvent

export enum HLEvent lficsesanaanad .

----------- » export requestBody

import Contract
import eventinterface

import requestBody

export async readController (request, response)

export async writeController (request, response)

Format of request
body and assign
request ID

\ N —
Y
Corda Requests API

FIGURE 2. Conceptual diagram showing the modules implemented in the oracle service node of the oracle-based interoperability system.

which demonstrates how these components are connected to
perform cross-network transactions.

The following subsections provide more details about the
modules in Hyperledger Fabric, Corda, and Oracle Service
nodes of the Oracle-based Interoperability system, and how
they interact to achieve read and write operations between a
Hyperledger Fabric network and a Corda network.

A. HYPERLEDGER FABRIC

Smart contracts in Hyperledger Fabric are written to
implement business logic and enforce rules for executing
transactions on the ledger. When there is a need to interact
with Corda to fetch data or update the ledger, the smart
contract for executing that transaction should be implemented
with respect to the following:

e Smart contracts that require cross-network read or write
operation are identified and implemented to emit cross-
network events.

o If the smart contract requires a cross-network transac-
tion, then the required cross-network transaction type is
passed as an argument.

68140

e The event is then added to the transaction response to
be recorded in the blockchain and handled by the oracle
node listener.

e Chaincode-level endorsement policies should be defined
and approved by channel members to establish vali-
dation rules for endorsing a transaction submitted and
signed by an oracle service node.

B. CORDA
Corda transactions are processed through workflows initiated
by auser to execute an operation on a state. For each operation
to be executed on a state, a workflow is implemented to
handle the transaction until it is completed and recorded.
When a cross-network transaction is required, it should be
specified in each workflow that handles the transaction,
in addition to implementing an ““Oracle Service’” module that
operates as follows:
o Receive the state on which the transaction is executed,
the type of cross-network event, and the owner or

initiator of the workflow.
e Create HTTP client.

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

o Check the type of cross-network event, and generate the
request body accordingly.

« Identify the oracle node that handles the type of event
and call the corresponding API to handle the cross-
network event.

o Generate the request using HTTP request and send it to
the oracle service node.

When implementing workflows that include cross-network
transaction, the following must be considered in the imple-
mentation:

« Obtain member information of the node that initiated the

flow.

o If the initiator of the flow is the Oracle node, then
the transaction is formed with the Oracle signature in
addition to the signatures of the participating nodes, and
the transaction is submitted to the Notary node/s.

« If the initiator is any other member of the network and
the arguments of the flow contain a call to a smart
contract on Hyperledger, then the ‘“Oracle Service”
module is called along with the state, initiator, and cross-
network transaction type.

C. ORACLE SERVICE NODE

The conceptual diagram illustrated in figure 2 shows the
modules in the Oracle Service Node. The Cross-network
Communication component includes a Corda Connection
module and a Hyperledger Fabric Connection module.
Although the implementations of both modules are different,
they both establish connections with the oracle/peer nodes
in each blockchain network. The Cross-network Transaction
component includes modules that handle formatting and
submitting requests and responses for incoming and outgoing
transactions in both networks. The following subsections
explain each module in detail.

1) CROSS-NETWORK COMMUNICATION

The Cross-network Communication component includes two
connection modules: one for handling the Corda connection
and the other is responsible for the Hyperledger Fabric
connection. Both connection modules interact with the
Cross-network Transaction modules to allow incoming and
outgoing transactions from the network. The implementation
of the modules is shown in figures 3 and 4, and described as
Follows:

o Corda Connection: communication with Corda oracle
nodes and peers is through HTTPS connection and
requests and responses are handled by the Javascript
library “Axios.” In a configuration file, the URL
addresses of the oracle nodes and all peers whose states
are shared with the oracle node and hence are accessible
via the oracle are stored. The cordaConnection module
then imports the configuration file and uses it to create,
for each oracle node and peers that share a state with
the oracle node, an instance of Axios, and configures the
URL address and peer credentials for authorization.

VOLUME 12, 2024

cordaConnection.ts

import axios from”axios”;
import config from “./config.json”

// Set the address and authorization for each oracle and peer node in the configuration file
config.forEach(function(item)

export const item.host = axios.create(

//Set the address
baseURL.: | /[+if
//Configure the authorization with the credentials of each node
const auth = 'Basic' + Buffer.from(i username:i

const headers =

" + item.address,

toString('base64');

Authorization: auth,
‘Content-Type’: ‘application/json’,

»
}

config.json
[

“host": "a.com”,
“username": "auser",
"password": "apassword",
“"type": "oracle",
"address": "Xxxxxxxx"

“host": "b.com",
“username": "buser",
"password": "bpassword",
"type": “peer"

"address": “yyyyyyyyy"

}
1

FIGURE 3. Corda connection module.

o Hyperledger Fabric Connection: Connection to Hyper-
ledger Fabric is achieved by establishing a gRPC
connection. For Hyperledger Fabric, the connection
must include the channel name and the chaincode to
which the cross-network transactions belong. In addition
to the MSP ID, the private key, user certificate, and
peer endpoint of the oracle node. The connection also
returns the gateway connection information. The peer
information is stored in a configuration file and later
fetched by the hyperledgerConnection according to the
cross-network transaction received as an argument. The
cross-network transaction includes the transaction id and
the name of the chaincode to fetch the corresponding
peer node from the configuration file.

2) CROSS-NETWORK TRANSACTIONS

To handle the formatting, submission, and validation of
cross-network transactions, the following modules are imple-
mented:

e Oracle Event Types: This module stores the interfaces
of the cross-network transaction services offered in
both Corda and Hyperledger Fabric. It is accessed
by the Hyperledger Fabric Query API and the Corda
Controllers to retrieve the interface of a requested cross-
network transaction.

o Corda Requests API: Also used by both Hyperledger
Fabric Query API, the Corda Controllers and the
Utils modules. This module creates a request Id and
returns the request body from the corresponding Corda
workflow for each Corda cross-network request.

68141

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

h o dnert fion e
yP g

import * as grpc from '@grpc/grpe-js';

import { connect, Contract, Identity, Signer, signers } from '@hyperledger/fabric-gateway";
import { promises as fs } from 'fs';

import { TextDecoder } from 'util';

import ./peers.json. //Configuration file containing peers information

// Function to return connection information of the oracle node based on the received cross
network transaction sent in the format {txId}.{chaincode}
export const useHyperledgerConnectionOracle = async (crossNetTx: string) =>

// Get the chaincode name from the cross network transaction passed as argument
const chaincodeName = crossNetTx.split(“.”)[1];

// Return the oracle node with the chaincode name from the configuration file
const oracleNode = peers[chaincodeName];

// Get the channel name and MSP ID of the oracle node
const channelName = oracleNode.channelName;

const mspld = oracleNode.mspld;

// Path to oracle private key directory

const keyDirectoryPath = oracle.Node.keyDirectoryPath;
// Path to user certificate

const certPath = oracleNode.certPath;

// Path to peer TLS certificate

const tisCertPath = oracleNode.tisCertPath;

// Gateway peer endpoint

const peerEndpoint = oracleNode.peerEndpoint;

// Gateway peer SSL host name override.

const peerHostAlias = oracleNode.peerHostAlias;

const utf8Decoder = new TextDecoder();
const client = await newGrpcConnection();
const gateway = connect({

client,

identity: await newldentity(),

signer: await newSigner(),

async function newGrpcConnection(): Promise<grpc.Client> {
const tisRootCert = await fs.readFile(tisCertPath);
const tisCredentials = grpc.credentials.createSsl(tisRootCert);
return new grpc.Client(peerEndpoint, tisCredentials, {
‘grpc.ssl_target_name_override': peerHostAlias,
);

async function newldentity(): Promise<ldentity> {
const credentials = await fs.readFile(certPath);
return { mspld, credentials };

async function newSigner(): Promise<Signer> {
const files = await fs.readdir(keyDirectoryPath);
const keyPath = path.resolve(keyDirectoryPath, files[0]);
const pnvateKeyPem await fs. readFuIe(keyPath)
const pr ey = crypto. Pr KeyPem);
return signers.! neanvateKeyS|gner(pnvateKey)

}

return { client, gateway, channelName, chaincodeName, mspld, utf8Decoder };

peers.json

“chaincodeX": {
“channelName*: "ch1”,
“mspld*: "msp1*,
“peerHostAlias"™: "xxx",
“"keyDirectoryPath": "/etc/users/xxx/msp/keystore/*,
“certPath": "/etc/users/xxx/msp/signcerts/cert.pem/*,
“tisCertPath®: */etc/peers/xxx/tis/ca.crt®,
“peerEndpoint": "xxx.org"

h

"chaincodeY": {
“channelName": “ch2",
"mspld”: "msp2°,
“peerHostAlias": "yyy*,
"keyDirectoryPath®: */etc/users/yyy/msp/keystore/,
“certPath": “/etc/users/yyy/msp/signcerts/cert.pem/*,
"tisCertPath": “/etc/peers/yyy/tis/ca.crt”,
“peerEndpoint*: "yyy.org"

}

}

FIGURE 4. Hyperledger connection module.

o Utils: This module uses the Oracle Event Types module,

the connection model of both Corda and Hyperledger
Fabric, and the Corda Request API module. It is
responsible for asynchronously calling requests and
waiting for the result of a transaction execution to return
the results, whether successful or not.

o Hyperledger Fabric Query API: This module uses the

Corda connection and Hyperledger Fabric connection
modules. It also has access to the smart contracts
defined in the chaincode to which the Oracle node has
access. This module is the event listener for events

68142

emitted Hyperledger Fabric. If an event is detected, the
type of event is determined to call the corresponding
cross-network transaction from the Utils module. If the
transaction reads data from Corda and is executed
successfully, then a transaction is created with the
retrieved data and Oracle’s signature, and submitted to
be recorded on the Hyperledger Fabric ledger. If the
transaction writes to the Corda ledger, then the Corda
Oracle node is called to retrieve information about
the state on which the transaction is executed. The
transaction is then created with Oracle’s signature and
submitted to Corda for execution and to be recorded on
the ledger. Simultaneously, a transaction representing
the changes made on Corda is created and submitted
to Hyperledger Fabric to be executed and recorded
on the ledger. If the transaction execution in Corda is
unsuccessful, a transaction is submitted to Hyperledger
Fabric to overwrite the previous transaction (rollback)
and maintain consistency between the two ledgers. The
implementation of the Hyperledger Fabric Query API is
shown in figure 5.

Corda Controllers: For each cross-network event emit-
ted in Corda, a controller is implemented to handle it.
An observer API is used to detect the cross- network
events, determine the event type and call the appropriate
controller. The controller uses the Corda connection
and Hyperledger Fabric connection modules. It also
has access to both the Corda Request API and Oracle
Event Types in order to create the request body and
retrieve the interface of cross-network services provided
in Hyperledger Fabric. If the controller performs a
read operation and retrieves data from the Hyperledger
Fabric, then using the

appropriate service interface from the Oracle Event
Types module a transaction is created, signed by Oracle,
and submitted to Hyperledger Fabric. If the read transac-
tion is executed successfully, then another transaction is
created using the data retrieved from Hyperledger Fabric
and signed by Oracle to be submitted to Corda. If the
controller performs a write operation on the Hyperledger
Fabric, then a request to fetch the data record that will
be modified is submitted to the Hyperledger Fabric.
Once the matching data record is found, a transaction
is created with the input data from Corda and Oracle’s
signature and then submitted to be executed and
recorded on the Hyperledger Fabric ledger. Another
transaction reflecting the transaction that occurred on
Hyperledger Fabric is created and signed by Oracle
to be executed and recorded on Corda. A rollback
function is called when transaction execution is unsuc-
cessful. To further explain this module, the readCon-
troller and writeController implementations are shown
in figure 6.

Index: This is the main module that uses both the Corda
Controllers and the Hyperledger Fabric Query API. This
module defines the endpoints for Corda to perform read

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

TABLE 1. Transaction latency measurements in seconds obtained from the evaluation with ten different test data.

Test Test Test Test Test Test Test Test Test Test AVG Standard
Input Input Input Input Input Input Input Input Input | Input Deviation
Transactions #1 #2 #3 #4 #5 #6 #1 #8 #9 #10
Corda Transaction Latency in Seconds
Local Transactions
Create Policy 26.30 243 223 22.26 30.37 28.31 28.30 26.29 2226 | 2223 | 253 3.05
UpdatePolicy | 3, 50 | 3041 | 3842 | 2833 | 3041 | 3439 | 2638 | 2833 | 3841 | 3648 | 3278 | 433
Cross-network Transactions
Create & Read
data from HF | 2844 | 3031 | 3036 | 2632 | 2425 | 3233 | 2832 | 3030 | 24.26 | 28.36 | 28.33 2.7
Update C&HE |5 4 | 3035 | 2823 | 3428 | 3839 | 2422 | 3637 | 3236 | 36.34 | 3835 | 33.12 4.6
Rollback Transactions
Create
Rollback 30.29 30.30 26.25 26.25 30.31 26.28 28.31 28.33 30.35 | 22.22 | 27.89 2.67
Update
Rollback 32.35 30.30 28.29 30.31 26.28 28.33 30.29 26.26 30.27 | 3042 | 29.31 1.97
Hyperledger Fabric Transaction Latency in Seconds
Local Transactions
Create Bill 2.15 203 | 2.03 203 | 203 | 203 | 202 | 203 | 204 | 203 | 2.05 0.04
Update Bill 1y 7 | 405 | 405 | 406 | 405 | 405 | 406 | 405 | 506 | 406 | 416 | 032
Cross-network Transactions
Create & Read
from Corda | 36:46 | 2633 | 2632 | 2832 | 32.33 | 2435 | 28.33 | 2841 | 2842 | 2836 | 28.77 | 3.4l
Update HE& C | 5, 55 | 3030 | 2636 | 2633 | 3034 | 2629 | 2628 | 3037 | 3043 | 2835 | 2854 | 2.1
Rollback Transactions
Create
Ty 203 | 212 | 198 | 207 | 197 | 206 | 204 | 204 | 2.06 | 2.01 | 2.04 0.05
Update
Rollback 225 | 212 | 413 | 215 | 405 | 411 | 398 | 400 | 400 | 403 | 349 | 091
TABLE 2. Mean and standard deviation of transaction latency in seconds.
Create New State / Data Record UpdateBxistingStaterfata Rollback Transactions
Record
Blockchain Local Cross-network Local Cross-network | Create New Update
Network Transaction Transaction Transaction Transaction State / Data Existing
(Read) (Write) Record State / Data
Record
M SD M SD M SD M SD M SD M SD
Corda 253 3.05 28.33 2.7 32.78 4.33 33.12 4.6 27.89 | 2.69 | 29.31 | 1.97
Hygz;‘:;‘cger 205 | 004 | 2877 | 341 | 416 | 032 | 2854 | 201 | 2.04 | 0.05 | 349 | 091

and write operations and then starts event listening on
both Corda and Hyperledger Fabric.

VIl. EVALUATION OF THE BLOCKCHAIN ORACLE
INTEROPERABILITY SYSTEM

To demonstrate the applicability of the Oracle Inter-
operability technique described in the previous section,
we implemented a prototype system consisting of two

VOLUME 12, 2024

blockchain networks with oracle nodes to perform cross-
network transactions. A permissioned blockchain for a
hospital billing system was built atop the Hyperledger Fabric
platform using a minimal setup that contained two peer
organizations, one of which was the dedicated Oracle node,
a Raft ordering service node, and one channel with the
Payment System chaincode deployed on. Smart contracts
containing the business logic and cross-network transaction

68143

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

readController.ts

import Request, Response from ‘express’

|mpoﬂ cordaOracle from Cordaconnection
Oracle from

|mpoﬂ eventinterface from Types

import leq

import Contract from hypeﬂedgemabnc-galeway

import crossNetworkTransaction from Utils;

export const readDataController = async (req: Request, res: Response) =>

// Get data from Observer request
const { userData, owner, crossNetworkData }: cordaEvent = req.body;

// Retrieve Hyperledger Fabric Oracle node information based on the required cross network data

, gateway, await Data);
const network = gateway. gelNotwovk(chamelNyno)
const contract = network.get

// Function to fetch required data from Hyperledger Fabric
const hyperledgerData = async (contract: Contract): Pro o> =>
{

const resultBytes = await contract. i Data’);

const resultJson = utf8Decoder.decodel(resultBytes);

const result = JSON.parse(resultJson);

return result;

k

// Get data from Hyperledger Fabric
const hfData = await hyperledgerData(contract);

// Create Corda transaction with fetched data from Hyperledger
const rData, owner, hfData);
cordaOracle.post(/", JSON: stringify(transactionBody));

// Check transaction execution result

const success = await txResult (userData, hfData);

// Log error if transaction not created

if ('success)
console.log(Error trying to transaction: txName = ${userData});
catch (error)
console.log(error);

}

k

writeController.ts

import Request, Response from ‘express'
import cordaOracle from Cordaconnection
import Oracle from

import eventinterface from Types

import
import Contract from hyperledger/'abnc gateway
import crossNetworkTransaction from Utils;

export const writeDataController = async (req: Request, res: Response) =>

// Get data from Observer request
const { userData, owner, crossNetworkData }: cordaEvent = req.body;

// Retrieve Hyperledger Fabric Oracle node mlormahon based on the required cross network data
, gateway, wait Data);

const network = gateway. gelNetwork(channelName)

const contract = network.getCi

// Function to fetch required data from Hyperledger Fabric
const Data = async : Contract): P =>
{

const = await contract i Data’);

const resultJson = utf8Decoder.

const result = JSON.parse(resultJson);

return result;

)3

//Function to write data to Hyperledger Fabric
const writeHyperledgerTx=async(contract: Contract, userData: string): Promi: =>
{

const = await contract.submit
const tJ: = utf8Decoder.

const result = JSON.parse(resultJson);
return result;

b3

// Get data from Hyperledger Fabric
const hfData = await hyperledgerData(contract);

Tx', userData);

// Create Hyperledger transaction updating the fetched data from Hyperledger with the data from the user
await writeHyperledgerTx(contract, userData);

// Create Corda transaction reflecting the executed transaction on Hyperledger
const Data, owner, hfData);
cordaOracle.post('/', JSON stringify(transactionBody));

// Check transaction execution result
const success = await txResult (owner, userData);

// 1f unsuccessful transaction execution, roll back Hyperledger transaction
If (success)
await writeHyperledgerTx(contract, hfData);

FIGURE 5. Implementation of a read and write controller in Corda.

calls were programmed using JavaScript. On Corda, a health-
insurance policy permissioned blockchain network was built
consisting of two nodes, one of which was the oracle node.
Contracts, states, and workflows containing business logic
and cross-network transaction calls were written in the
Kotlin programming language. The components of the Oracle
Interoperability Service system, as described in the previous
section, were implemented in the Typescript programming
language and deployed on the oracle nodes in both networks.

68144

Hyperledger Fabric Query API

import cordaOracle from cordaConnection
import rOracle from F

import smartContract from chaincode
import eventinterfaces from Types

import cordaRequestBody from cordaRequests
Import crossNetworkTransaction from Utils

onnection

export asynchronous function startHyperledger()

const {chaincodeName, gateway, channelName} = await hyperledgerConnectionOracle ();
const network = gateway.getNetwork (channelName);
const startEventListening = async (network)
{
const events = await network.getChaincodeEvents(chaincodeName);
void readEvents (events); // run asynchronously
return events;

1s function readEver // check event type and call corresponding cross-

network transaction

If (events.eventName == hyperledgerEvent.read)

const hyperledgerData = payload;
const cordaData = await getCordaData (hyperledgerData); //fetch requested data from
Corda
const updateHFLedger (cordaData); // write to hyperledger fabric ledger with data from
Corda

If (events.eventName == hyperledgerEvent.write)

const previousHyperledgerData = getContract (payload.id); //store previous data for
rollback

const hyperledgerData = payload;

const cordaData = await getCordaData (hyperledgerData); //fetch requested data from

Corda

const updateC = cordal (cordaData.id, Data);

await cordaOracle.post (JSON.: s!nnglfy(updateCordaBody) /hwrite to Corda ledger with
Data from hyperledger

const updateHFLedger (hyperledgerData); //update hyperledger fabric to represent

changes in corda
const success = await txResult (cordaData.id, hyperledgerData); //returns transaction
execution result

If ('success)
const updateHFLedger (previousHyperledgerData); //roll back hyperledger update
If unsuccessful update in Corda

}

startEventListening(network);

}

FIGURE 6. Hyperledger fabric query APl module.

On Hyperledger Fabric, the billing system creates and
manages patient bills for two types of patients: self-paying
patients and insured patients. For self-pay patients, all bill-
related transactions are performed without the need to interact
with the health insurance system in Corda. Transactions for
issuing and managing insured patients’ bills interact with the
health insurance policy system to retrieve and modify the
patients’ insurance policy information.

On Corda, a new insurance policy is created for a person
either by using user input or by retrieving information from
the hospital billing system. Likewise, insurance policies are
updated by executing transactions locally without the need to
interact with Hyperledger Fabric, or by issuing cross-network
transactions to update the person’s hospital bill according to
the changes made to the insurance policy. In cross-network
transactions that write to and modify ledgers, rollback
transactions are executed when cross-network transaction
execution fails to maintain ledger consistency.

The prototypical interoperability system was evaluated
using 12 test cases designed to verify the cross-network
transaction functionalities and measure their transaction
latency on both networks. The test cases were designed to
assess the following system functionalities:

e Local transactions to create and update data

records/states in both networks.

o Cross-network transactions to read data from Corda and

Hyperledger Fabric.

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

« Cross-network transactions to write data to the ledger in
Corda and Hyperledger Fabric.

« Rollback transactions to maintain ledger consistency in

case cross-transactions failure in either network.

We benchmarked the measurements of the cross-network
transaction latency against the local transaction latency
measurements to assess the performance of the Oracle-based
interoperability system. The networks were setup in Docker
V. 24.0.5 and the measurements were performed on an
Ubuntu Pop!_OS 22.04 LTS running on an Intel-Core i7-
8700K CPU @ 3.70 GHz x 12 with 32 GB RAM. Each test
case was executed 10 times with different inputs to calculate
the average transaction latency and standard deviation, which
helps to understand the stability of the blockchain networks
involved in the cross-network transaction. Table 1 shows the
results obtained for both the Corda network and Hyperledger
Fabric (Abbreviated as C and HF, respectively). These
measurements are summarized in Table 2 to focus on the
calculated transaction latency average and standard deviation.
A comparison of the average cross-network transaction
latency results with the local transaction latency results show
that the resulting increase in transaction latency is in the
order of seconds, which is a reasonable increase for the end-
to-end execution of cross-network transactions. The mean
transaction latency for creating a new state locally in Corda is
25.3 seconds, whereas the same transaction when performing
a cross-network read operation requires an average time of
28.3 seconds with only a 3 second increase for performing the
cross-network read. The state update transactions are slightly
higher than the create transactions, which is expected because
of the increased complexity of the transaction workflow. The
local update transaction latency mean time is 32.8 seconds
and the cross-network transaction latency mean time is
33.12, which is a slight and acceptable increase. The mean
transaction latency for the rollback transactions of the read
and write cross-network operations are in the same range
as the local transactions and cross-network transactions in
Corda.

As for the Hyperledger Fabric network, there is a
noticeable difference in the transaction latency between
local transactions and cross-network transactions. However,
when compared with the Corda transaction latency time,
the increase in cross-network transaction latency is under-
standable because transactions in Corda generally incur a
higher transaction latency than Hyperledger Fabric. Local
transaction for creating a new data record in Hyperledger
Fabric is performed with a mean transaction latency of
2.05 seconds, whereas the cross-network (read) transaction
is executed with an average of 28.8 seconds which is close to
the cross-network read transaction performed in Corda. The
local update transaction in the Hyperledger fabric requires
4.16 seconds, whereas the cross-network write transaction
incurs an increase of approximately 24.3 seconds which is
also reasonable because of the interaction with the Corda
network. The mean time of rollback transaction latency
in Hyperledger Fabric is in the same range as the local

VOLUME 12, 2024

transactions latency time of Hyperledger Fabric because the
cross-network transaction with Corda failed, and there was
no increase in the transaction latency.

= Local Transactions Cross-network Transactions

40

32

24

e ——

0
Create New Record

Update Existing Record Rollback Transaction

FIGURE 7. Line graph depicting local transaction latency and
cross-network transaction latency of the Hyperledger fabric network.

= Local Transactions Cross-network Transactions

40

33

26

19

12

5

Create New State Update Existing State Rollback Transaction

FIGURE 8. Line graph depicting local transaction latency and
cross-network transaction latency of the Corda network.

The line charts shown in figures 7. and 8. depict the
transaction latency difference between local transactions and
cross-network transactions in both the Hyperledger Fabric
and Corda networks. For the Corda network, the average
transaction latency of cross-network transactions (in green)
is slightly higher than that of local transactions (in blue);
however, they are still in the same range and are considerably
close. In Hyperledger Fabric, the graph demonstrates how the
cross-network transactions that read and write to Corda are
in the same range as the Corda network transaction latency,
but are significantly higher than the local Hyperledger Fabric
transaction. However, the cross-network transaction line
drops to a range closer to the Hyperledger Fabric local
transactions line when the cross-network transaction fails,
and rollback transactions are executed.

68145

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

TABLE 3. Comparison between our oracle-based technique and other techniques in the literature.

Proof of
concept

Performance
evaluation

Study
reference
number

Fully
decentralized

Existing BC
frameworks
unmodified

Data-based
interoperability

Blockchain
agnostic

Smart contract
invocation

Cryptocurrency-
based
interoperability

CAUCRAR S
RN
WM UM
NN N NN

This Paper

CAX AR AX L
RN
TR NN NENEN
LR X X

The standard deviation value obtained from the transaction
latency of the transactions in Corda, whether local or
cross-network, is higher than the standard deviation of the
Hyperledger Fabric transactions. This indicates that the
transaction latency in Corda is not steady and has varying
values, whereas Hyperledger Fabric has more consistent
values. This is due to the difference in the way the networks
handle transaction execution, where Hyperledger Fabric
broadcasts the transaction to all members of the channel,
whereas Corda does this on a peer-to-peer basis, resulting in
a higher management overhead.

It is worth mentioning that various factors affect the
transaction latency such as the block size, the number of
nodes and organizations participating in the network, the
chosen consensus algorithm, the applied encryption method
and the method of transaction execution, which can be
either batch or sequential. The evaluation performed in
this study was sufficient to prove the feasibility of the
Oracle-based Interoperability technique for achieving cross-
network transactions between two permissioned networks
with an acceptable transaction latency time. However, further
evaluation is required to measure the scalability of this
interoperability solution and the performance measurements
with a higher number of participating nodes to measure the
transaction throughput.

VIIi. COMPARATIVE ANALYSIS

In this section we compare the Oracle-based interoperability
method with the interoperability solutions described in the
“Related work” section. The comparison is done using
6 features identified in a recent survey paper [5] to
assess interoperability solutions for blockchain systems.
We added a seventh feature, ‘‘Performance Evaluation”,
since it is essential to measure the technique’s performance
to ensure acceptable performance of the system and identify
weaknesses and possible bottlenecks. We also considered
“Smart contract invocation” as important interoperability
feature to expand the capabilities of the interoperation
process. Table 3 shows the comparison between the Oracle-
based system described in this paper with the studies
described in the “Related Work™ section. It is clear that the
Oracle-based technique has advantage over other recently
developed techniques as it satisfies most of the features used
for assessing blockchain interoperability techniques. It is

68146

also evident that majority of the proposed techniques are
centralized and lack performance evaluation measurements
that would be helpful to properly assess their suitability as
interoperation techniques for permissioned blockchains.

IX. LIMITATIONS AND FUTURE WORK

The performance evaluation showed acceptable latency mea-
surements compared with the local transaction measurements
for each blockchain platform. However, Hyperledger Fabric
experienced high transaction latency when interoperating
with Corda, it is worth exploring methods to lower the
transaction latency between them and experiment with other
blockchain platforms to gain more understanding on the
performance of the system. Moreover, Further evaluation is
required to gain precise performance measurements under
varying network setups and configurations to accurately
assess the efficiency of our Oracle-based Interoperability
technique. In future work, we aim to conduct an extensive
performance evaluation to obtain important performance
measurements, such as transaction throughput and scalability,
using multiple oracle nodes and a higher number of peer
nodes with the use of a network benchmarking tool.
We also seek to perform a comparative study between the
performance of our interoperability solution and existing
interoperability solutions. Additionally, we plan to study
how to integrate multiple permissioned blockchain plat-
forms using an oracle-based interoperability framework with
connectors that allow easier integration and require less
developer effort.

X. CONCLUSION

Currently, various private blockchain platforms exist that
provide tools for enterprise organizations to build their
private blockchain networks and implement their business
processes. Thus, the design of an interoperability technique
that fits the specific requirements of private permissioned
blockchain networks is necessary for the advancement of
private blockchains. The literature review of existing private
blockchain interoperability solutions revealed the limitations
and current challenges. To the best of our knowledge,
blockchain oracle has not been studied as an interoperability
technique that allows smart contract invocation between
permissioned blockchain networks.

VOLUME 12, 2024

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

IEEE Access

In this paper, we presented an Oracle-based Interoper-
ability technique between two of the most widely used
permissioned networks, Hyperledger Fabric and Corda. The
components of the system are described in detail, and a
prototypical system is developed to evaluate the feasibility of
the proposed interoperability solution. The prototype system
is evaluated to measure the transaction latency of cross-
network transactions and obtain the average latency and
standard deviation. The cross-network transaction latency
was compared with the local transaction latency, showing a
slight and acceptable increase in Corda. However, the dif-
ference between local and cross-network transaction latency
in Hyperledger Fabric was significant but understandable
because of the interaction with Corda, which has a higher
transaction latency and affects the overall cross-network
transaction latency. Our proposed Oracle-based Interoper-
ability technique is relatively straightforward to implement
and integrate with any permissioned blockchain system.
It allows permissioned blockchain networks to perform cross-
network transactions to exchange data and execute business
transactions.

REFERENCES

[1] A. Gorkhali, L. Li, and A. Shrestha, “Blockchain: A literature review,”
J. Manage. Analytics, vol. 7, no. 3, pp. 321-343, Jul. 2020, doi:
10.1080/23270012.2020.1801529.

[2] B. K. Mohanta, D. Jena, S. S. Panda, and S. Sobhanayak, ‘““Blockchain
technology: A survey on applications and security privacy chal-
lenges,” Internet Things, vol. 8, Dec. 2019, Art. no. 100107, doi:
10.1016/j.i0t.2019.100107.

[3] C. Zhang and Y. Chen, “A review of research relevant to the emerging
industry trends: Industry 4.0, IoT, blockchain, and Bus. Analytics,” J.
Ind. Integr. Manage., vol. 05, no. 01, pp. 165-180, Mar. 2020, doi:
10.1142/52424862219500192.

[4] S. Khan, M. B. Amin, A. T. Azar, and S. Aslam, ‘“Towards
interoperable blockchains: A survey on the role of smart
contracts in blockchain interoperability,” IEEE Access, vol. 9,
pp. 116672-116691, 2021, doi: 10.1109/ACCESS.2021.3106384.
https://doi.org/10.1109/access.2021.3106384

[5] S.D.Kotey, E. T. Tchao, A. Ahmed, A. S. Agbemenu, H. Nunoo-Mensah,
A. Sikora, D. Welte, and E. Keelson, “Blockchain interoperabil-
ity: The state of heterogenous blockchain-to-blockchain communica-
tion,” IET Commun., vol. 17, no. 8, pp. 891-914, Mar. 2023, doi:
10.1049/cmu2.12594.

[6] A. Pasdar, Y. C. Lee, and Z. Dong, “Connect API with blockchain: A
survey on blockchain Oracle implementation,” ACM Comput. Surveys,
vol. 55, no. 10, pp. 1-39, Oct. 2023.

[7]1 S. K. Ezzat, Y. N. M. Saleh, and A. A. Abdel-Hamid, ‘“Blockchain
oracles: State-of-the-Art and research directions,” IEEE Access, vol. 10,
pp. 67551-67572, 2022, doi: 10.1109/ACCESS.2022.3184726.

[8] Y.Lu, “Blockchain: A survey on functions, applications and open issues,”
J. Ind. Integr. Manage., vol. 3, no. 4, Nov. 2018, Art. no. 1850015, doi:
10.1142/5242486221850015x.

[9] Y. Lu, “The blockchain: State-of-the-art and research challenges,” J. Ind.
Inf. Integr., vol. 15, pp. 80-90, Sep. 2019, doi: 10.1016/].jii.2019.04.002.

[10] K. K. Vaigandla, R. Karne, M. Siluveru, and M. Kesoju, “Review on
blockchain technology : Architecture, characteristics, benefits, algorithms,
challenges and applications,” Mesopotamian J. Cyber Secur., vol. 1,
pp. 73-85, Mar. 2023.

[11] I. Priyadarshini, “Introduction to blockchain technology,” Cyber Secur.
Parallel Distrib. Comput., vol. 1, pp. 91-107, Mar. 2019.

[12] E. Abebe, D.Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy, P. Novotny,
V. Pandit, V. Ramakrishna, and C. Vecchiola, “Enabling enterprise
blockchain interoperability with trusted data transfer (Industry Track),” in
Proc. 20th Int. Middleware Conf. Ind. Track. NY, USA: Assoc. for Comput.
Machinery, Dec. 2019, pp. 29-35, doi: 10.1145/3366626.3368129.

VOLUME 12, 2024

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]
(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

T. Hardjono, A. Lipton, and A. Pentland, “Toward an interoperabil-
ity architecture for blockchain autonomous systems,” IEEE Trans.
Eng. Manag., vol. 67, no. 4, pp. 1298-1309, Nov. 2020, doi:
10.1109/TEM.2019.2920154. https://doi.org/10.1109/tem.2019.2920154
Y. Pang, “A new consensus protocol for blockchain interoperability
architecture,” IEEE Access, vol. 8, pp. 153719-153730, 2020, doi:
10.1109/ACCESS.2020.3017549. https://doi.org/10.2139/ssrn.3632084
R. Ramadoss, “Blockchain technology: An overview,” IEEE Potentials,
vol. 41, no. 6, pp. 6-12, Nov. 2022, doi: 10.1109/MPOT.2022.3208395.
https://doi.org/10.6028/nist.ir.8202

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey on
blockchain interoperability: Past, present, and future trends,” ACM Com-
put. Surveys, vol. 54, no. 8, pp. 1-41, Nov. 2022, doi: 10.1145/3471140.
N. Hewett, M. van Gogh, and L. Pawczuk, “Inclusive deployment
of blockchain for supply chains: Part 6 -A framework for blockchain
interoperability,” in Proc. World Economic Forum, 2020, pp. 1-11.

Y. Kayikcr and N. Subramanian, “Blockchain interoperability issues in
supply chain: Exploration of mass adoption procedures,” Stud. Big Data,
vol. 1, pp. 309-328, Feb. 2022.

S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
“Blockchain-enabled smart contracts: Architecture, applications,
and future trends,” [EEE Trans. Syst. Man, Cybern. Syst., vol. 49,
no. 11, pp. 2266-2277, Nov. 2019, doi: 10.1109/TSMC.2019.2895123.
https://doi.org/10.1109/tsmc.2019.2895123

Chainlink. (2019). Enterprise Smart Contracts: Trusted Computation
Framework & Chainlink. Accessed: Dec. 22, 2023. [Online]. Available:
https://blog.chain.link/driving-demand-for-enterprise-smart-contracts-

L. Breidenbach, C. Cachin, B. Chan, A. Coventry, and S. Ellis, “Chainlink
2.0: Next steps in the evolution of decentralized oracle networks,”
Chainlink Labs, 2021, pp. 1-136, vol. 1.

A. Beniiche, “A study of blockchain oracles,” 2020, arXiv:2004.07140.
S. Ghaemi, S. Rouhani, R. Belchior, R. S. Cruz, H. Khazaei, and P. Musilek,
“A pub-sub architecture to promote blockchain interoperability,” 2021,
arXiv:2101.12331.

T. T. A. Dinh, A. Datta, and B. C. Ooi, “A blueprint for interoperable
blockchains,” 2019, arXiv:1910.00985.

S. Bayraktar and S. Goren, “Design principles for interoperability of
private blockchains,” in The International Conference on Deep Learning,
Big Data and Blockchain (DBB 2022). Cham, Switzerland: Springer, 2022,
pp. 15-26.

B. Bradach, J. Nogueira, G. Llambias, L. Gonzalez, and R. Ruggia, “A
gateway-based interoperability solution for permissioned blockchains,” in
Proc. 18th Latin Amer. Comput. Conf. (CLEI). IEEE, 2022, pp. 1-10.

G. Llambias, B. Bradach, J. Nogueira, L. Gonzélez, and R. Ruggia,
“Gateway-based interoperability for distributed ledger technology,” CLET
Electron. J., vol. 26, no. 2, pp. 1-17, Sep. 2023.

C. Pedreira, R. Belchior, M. Matos, and A. Vasconcelos, ‘“Trustable
blockchain interoperability: Securing asset transfers on permissioned
blockchains,” Authorea Preprints, 2023.

D. Reijsbergen, A. Maw, J. Zhang, T. Tuan, and A. Datta, “Demo:
PIEChain—A practical blockchain interoperability framework,” in Proc.
IEEE 43rd Int. Conf. Distrib. Comput. Syst. (ICDCS). IEEE, 2023, pp.
1021-1024.

K. Mammadzada, M. Igbal, F. Milani, L. Garcia-Bafiuelos, and R.
Matulevicius, “Blockchain oracles: A framework for blockchain-based
applications,” in Business Process Management: Blockchain and Robotic
Process Automation Forum: BPM 2020 Blockchain and RPA Forum,
Seville, Spain, September 13—18, 2020, Proceedings 18 (Lecture Notes in
Business Information Processing). Springer, 2020, pp. 19-34.

A. S.de Pedro, D. Levi, and L. I. Cuende, “WitNet: A decentralized oracle
network protocol,” 2017, arXiv:1711.09756.

H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic,
“Trustworthy blockchain oracles: Review, comparison, and open
research challenges,” IEEE Access, vol. 8, pp. 85675-85685, 2020, doi:
10.1109/ACCESS.2020.2992698. https://doi.org/10.1109/access.2020.
2992698

R. Miihlberger, S. Bachhofner, E. C. Ferrer, C. Di Ciccio, I. Weber,
M. Wohrer, and U. Zdun, “Foundational Oracle patterns: Connecting
blockchain to the off-chain world,” in Business Process Manage-
ment: Blockchain and Robotic Process Automation Forum: BPM 2020
Blockchain and RPA Forum, Seville, Spain, September 13-18, 2020,
Proceedings 18 (Lecture Notes in Business Information Processing).
Springer, 2020, pp. 35-51.

X. LiuandJ. Feng, “Trusted blockchain Oracle scheme based on aggregate
signature,” J. Comput. Commun., vol. 9, no. 3, pp. 95-109, 2021, doi:
10.4236/jcc.2021.93007.

68147

http://dx.doi.org/10.1080/23270012.2020.1801529
http://dx.doi.org/10.1016/j.iot.2019.100107
http://dx.doi.org/10.1142/s2424862219500192
http://dx.doi.org/10.1109/ACCESS.2021.3106384
http://dx.doi.org/10.1049/cmu2.12594
http://dx.doi.org/10.1109/ACCESS.2022.3184726
http://dx.doi.org/10.1142/s242486221850015x
http://dx.doi.org/10.1016/j.jii.2019.04.002
http://dx.doi.org/10.1145/3366626.3368129
http://dx.doi.org/10.1109/TEM.2019.2920154
http://dx.doi.org/10.1109/ACCESS.2020.3017549
http://dx.doi.org/10.1109/MPOT.2022.3208395
http://dx.doi.org/10.1145/3471140
http://dx.doi.org/10.1109/TSMC.2019.2895123
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.4236/jcc.2021.93007

IEEE Access

A. A. Alhussayen et al.: Blockchain Oracle Interoperability Technique for Permissioned Blockchain

[35] A. Pupyshev, D. Gubanov, E. Dzhafarov, I. Sapranidi, I. Kardanov,
V. Zhuravlev, S. Khalilov, M. Jansen, S. Laureyssens, I. Pavlov, and
S. Ivanov, “Gravity: A blockchain-agnostic cross-chain communication
and data oracles protocol,” 2020, arXiv:2007.00966.

[36] E. Androulaki et al., ““Hyperledger fabric,” in Proc. 13th EuroSys Conf.,
Apr. 2018, pp. 1-18, doi: 10.1145/3190508.3190538.

[37] R. Brown, J. Carlyle, I. Grigg, and M. Hearn. (2016). Corda:
An Introduction. [Online]. Available: https://www.smallake.kr/wp-
content/uploads/2016/10/corda-introductory-whitepaper-final.pdf

ASMA A. ALHUSSAYEN received the B.Sc. degree in computer science
and the M.Sc. degree in software engineering from the College of Computer
and Information Sciences, King Saud University, Riyadh, Saudi Arabia,
in 2006 and 2017, respectively. She is currently pursuing the Doctor of
Philosophy (Ph.D.) degree in computer science (CS) with the Faculty
of Computing and Information Technology, King Abdulaziz University,
Jeddah, Saudi Arabia. She is also a Teaching Assistant with the Department
of Software Engineering, College of Computer and Information Sciences,
King Saud University. Her research interests include blockchain, distributed
systems, software engineering, cloud computing, tangible user interface, and
human—computer interaction.

KAMAL JAMBI received the M.S. degree in
computer science from Michigan State University,
East Lansing, in 1986, and the Ph.D. degree
in computer science from Illinois Institute of
Technology, Chicago, in 1991. He was a PI
in many research projects from KACST and
KAU. He was a Former Vice Dean at Graduate
Studies and Scientific Research, FCIT. He was
the Chairperson at the Department of Computer
Science. He is currently a Professor of computer
science with King Abdulaziz University, Jeddah, Saudi Arabia. His research
interests include Al, deep learning, blockchain, resilience, and bigdata.

68148

MAHER KHEMAKHEM received the Master of
Science and Ph.D. degrees from the University
of Paris Sud (Orsay), France, in 1984 and 1987,
respectively, and the Habilitation (Accreditation)
degree from the University of Sfax, Tunisia,
in 2008. He is currently a Full Professor of
computer science with the Faculty of Computing
and Information Technology, King Abdulaziz
University, Saudi Arabia. His research interests
include distributed systems, HPC, performance
analysis, networks security, and pattern recognition.

FATHY E. EASSA received the B.Sc. degree in
electronics and electrical communication engi-
neering from Cairo University, Egypt, in 1978, and
the M.Sc. and Ph.D. degrees in computers and
systems engineering from Al Azhar University,
Cairo, Egypt, in 1984 and 1989, respectively.
He was a joint supervision at the University of
Colorado, USA. He is currently a Full Professor
with the Department of Computer Science, Faculty
of Computing and Information technology, King
Abdulaziz University, Saudi Arabia. His research interests include agent
based software engineering, cloud computing, software engineering, big
data, distributed systems, exascale system testing.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3190508.3190538

