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ABSTRACT Channel decoding algorithms based on model-driven deep learning, also known as channel
neural decoding algorithms, have received a lot of attention in recent years. However, the internal parameters
and number of layers of the current channel neural decoding algorithm cannot be changed after training. Once
changed, retraining of the channel neural decoding network is required. Hypernetwork is a neural network
that can generate internal parameters for the main neural network to reduce the training cost of the main
neural network and improve the flexibility of the main neural network. In this study, a novel hypernetwork
based channel neural decoder is proposed for neural belief propagation algorithms (NBP), including the
neural normalized min-sum (NNMS) and neural offset min-sum (NOMS) algorithms. According to the type
of information interaction between the hypernetwork and the main decoding network, hypernetwork-based
channel neural decoders can be divided into two types: static and dynamic. The internal parameters of the
static hypernetwork-based channel neural decoder can be updated as needed without retraining of the main
network. In addition to this benefit, the number of layers of the dynamic hypernetwork-based channel neural
decoder can also be adjusted. Experimental results show that, compared with the existing NNMS decoding
algorithms, the proposed hypernetwork-based NNMS decoding algorithms can achieve better performance
on both low-density parity-check (LDPC) and Bose-Chaudhuri-Hocquenghem (BCH) codes.

INDEX TERMS Model-driven, hypernetwork, channel neural decoding, LDPC codes, BCH codes.

I. INTRODUCTION
Channel decoding algorithm is an important part of the
communication physical layer and is used to improve the
reliability of communication. As deep learning has achieved
great success in the fields of computer vision, speech
signal processing, and natural language processing, deep
learning-based channel decoding algorithms, also called
channel neural decoding, have become a hot research topic
in recent years. Driven by the application of the Internet
of Things and research on sixth-generation (6G) mobile
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communications, there is an even greater need for low-
power, low-latency, and low-complexity decoders for short
and moderate codes. Deep learning has been proven to
improve the belief propagation (BP) decoding performance
of short and moderate codes, which provides a new direction
for research on decoders with balanced performance and
complexity [1]. Channel neural decoding can be mainly
divided into two classes [1], one is model-free (data-driven)
deep learning based decoder, and the other is model-driven
deep learning based decoder. The model-free deep learning
based decoder uses general neural network architectures,
such as deep neural networks (DNN), convolution neural
network (CNN), recurrent neural network (RNN), etc.,
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to decode without using communication expert knowledge,
which is a data-driven approach. The authors in [2] used
general neural networks to decode random codes and achieve
maximum a posteriori (MAP) decoding performance for
very short block codes. Due to the shortcoming that neural
network (NN)-based decoders are only effective for very
short block codes, the authors in [3] proposed to replace
the sub-components of the polar decoding algorithm with
NN-based decoders. In this way, the scalability of channel
decoding based on deep learning is achieved. The authors
of [4] and [5] proposed RNN and CNN-based decoders
to decode convolutional and turbo codes, respectively. The
authors in [6] uses syndrome decoding to eliminate the
overfitting problem that often occurs when training codeword
sets. The model-free method generally uses fully connected
neural network or RNN to implement the iterative process
of the decoding algorithm. However, this method lacks
interpretability for decoding performance, it is difficult
to analyze the reliability of decoding results, and usually
requires a large number of trainable parameters.

The model-driven deep learning based decoder is obtained
by parametrizing traditional decoding algorithms, where
the Tanner graph is unfolded into a neural network in
which learning weights are added to each edge. The unfold
method was proposed in [7] and has now become a
bridge between traditional communication iterative algo-
rithms and model-driven deep learning based communication
algorithms. Using the unfold method, the authors in [8]
and [9] proposed the neural belief propagation (NBP)
algorithm, where the BP algorithm is first unfolded into a
neural network, and trainable learning weights are added
to every edge in tanner graph. The experimental results
show that the performance of NBP decoding algorithm for
high-density parity check (HDPC) code exceeds that of BP
decoding algorithm. The authors in [10] unfolded offset
min-sum (OMS) into the form of a neural network and
proposed the neural offset min-sum (NOMS) algorithm,
which has lower computational complexity than the NBP
algorithm. The authors then applied the syndrome loss to
the neural normalized min-sum (NNMS) algorithm [11],
thus realizing the unsupervised training of channel neural
decoding algorithm. The authors in [12] and [13] then
applied the NNMS algorithm to the long low-density parity-
check (LDPC) code. The authors in [14] proposed a
high-performance neural min-sum (MS) decoding method,
which makes full use of the lifting structure of the protograph
LDPC (P-LDPC) codes. The authors of [15] proposed a deep
learning based decoder for polar codes, and gave the hardware
architecture of the basic calculation block in the decoder.
The authors of [16] proposed more hardware-friendly OMS
and scaling offset min-sum (SOMS) decoders for Polar
codes. The differences in hardware implementation between
OMS and multiple scaling min-sum (MSMS) decoders
are also given. The authors of [17] and [18] proposed a
hardware architecture of Syndrome-based DL decoder, which

is suitable for implementation in FPGA devices. Channel
neural decoding surpasses traditional decoding in terms of
decoding performance, but there are still many difficulties in
highly mobile time-varying channel environments and noise
levels. Once the neural decoder is fixed after training, the
learning weights and the number of layers cannot be changed.
Once the noise level or the number of layers changes,
it needs to be retrained and the stability and optimality of the
algorithm can no longer be guaranteed.

Hypernetwork, first proposed in [19], uses one network to
generate internal parameters for another network to reduce
training costs and improve the flexibility of the layers of
the main neural network [20]. To increase the adaptability
of machine learning (ML)-based multiple input multiple
output (MIMO) detection to different channel environments
and noise levels, the authors of [21] and [22] introduced
hypernetwork into ML-based MIMO detection and proposed
HyperMMNet and HyperEPNet, respectively. The authors
in [23] proposed the HyperRNN architecture for an end-
to-end downlink channel estimation scheme for massive
MIMO frequency division duplex (FDD) systems, achieving
lower normalized mean square error (NMSE) for channel
estimation and higher sum-rate for beamforming. The authors
in [24] applies hypernetwork to the channel estimation
algorithm in Reconfigurable Intelligent Surface (RIS) aided
communication system.

The authors of [25] turned the message graph of algebraic
block codes into a graph neural network (GNN) whose
learning weights were generated using a hypernetwork. Thus
solving the challenge that GNNs for message passing are dif-
ficult to train. However, [25] only focuses on the BP decoding
algorithm, and does not involve the more hardware-friendly
min-sum algorithm. Compared with BP algorithm, NMS and
OMS algorithms have lower computational complexity and
storage complexity, which are more suitable for hardware
implementation [26]. Similarly, compared with the NBP
algorithm, NNMS and NOMS algorithms have been widely
studied and applied because of their lower computational
complexity and storage complexity [9], [10], [12], [13], [14].
NNMS and NOMS are, respectively, unfolded from the NMS
and OMS algorithms into the form of neural networks [9].
In recent years, based on the NNMS algorithm, the authors
in [27] and [28] proposed a higher performance version
NNMS+ algorithm and a lower complexity version based
on tensor-train (TT) decomposition TT-NNMS+ algorithm,
so that different versions can be selected for application
according to needs. Similarly, the authors of [29] proposed
a low-complexity neural OMS (NOMS) algorithm based on
tensor-ring (TR) decomposition. However, these variants of
NNMS and NOMS algorithms require retraining when the
learning weights need to be updated or the number of layers
needs to be changed, which requires a large training cost.
That is, the current channel neural decoding algorithms lack
adaptability to changes in the environment and decoding
network structure.
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In this paper, we propose a novel hypernetwork based
channel neural decoder for the neural belief propagation
algorithm (NBP), including the neural normalized min-sum
(NNMS) and neural offset min-sum (NOMS) algorithms.
We divide hypernetworks designed for channel neural
decoders into two types, namely static hypernetwork and
dynamic hypernetwork. Static hypernetwork can provide
learning weights for the entire main network, but cannot
adapt to changes in the number of layers of the main
decoding network without redesign and redeployment of
the hypernetwork. By generating the learning weights for
each layer of the main neural decoder through a separate
hypernetwork unit, the dynamic hypernetwork can extend
channel neural decoders to an arbitrary number of layers
without redesign and redeployment. Our main contributions
can be summarized as follows:

• We propose the static hypernetwork based channel neu-
ral decoding algorithms, including the NNMS algorithm
and NOMS algorithm. The hypernetwork generates
learning weights for the main channel neural decoding
algorithm, avoiding repeated training of the main neural
decoder when the internal parameters (learning weights)
need to be updated.

• We propose channel neural decoding algorithms, includ-
ing NNMS algorithm and NOMS algorithm, based
on the dynamic hypernetwork, in which a separate
hypernetwork unit is used to generate weights for each
layer of the main neural decoder. In addition to the
advantage that the internal parameters can be updated,
the number of layers of the main neural decoding
networks can be dynamically expandedwithout redesign
and redeployment of the hypernetworks.

• We perform extensive experiments to validate the
proposed algorithms on LDPC, BCH and Hamming
codes. The results show that the performance of the pro-
posed hypernetwork-based NNMS decoding algorithm
is about 0.1 ∼ 0.2 dB better than the original NNMS
decoding algorithm.

The remainder of this paper is organized as follows.
In Section II, we provide the preliminaries, including the
NNMS algorithm, NOMS algorithm, the NBP algorithm
and hypernetwork. In Section III, we describe the static
hypernetwork frameworks for channel neural decoding
algorithms. We propose dynamic hypernetwork frameworks
for channel neural decoding algorithms in Section IV. The
experimental results are provided in Section V, followed by
the conclusion in Section VI.

II. PRELIMINARIES
A. NNMS DECODING
The layers of the NNMS algorithm can be divided into three
types: check node (CN) layer, variable node (VN) layer and
output layer. Assume that a codeword x is transmitted through
a communication systemwith BPSKmodulation, the channel
noise conforms to Gaussian distribution, and the receiving

vector is y. The log-likelihood ratio (LLR) of the v-th bit of
the received signal vector can be computed as

lv = log(
P(yv|xv = 0)
P(yv|xv = 1)

) =
2yv
σ 2 (1)

where σ 2 is the variance of the channel noise, yv is the
observation value of the v-th value of the received vector.

The decoding process of LDPC codes can be represented
by iterative messages passing between VNs and CNs. The
message utv,c propagated from the VN v to CN c for iteration
t is given by

utv,c = lv +

∑
c′∈N (v)\c

ut−1
c′,v (2)

where N (v) represents the set of CNs connected to VN v,
N (v) \ c represents the set N (v) excluding CN c.
The difference between the calculation of CNs in the NMS

algorithm and NNMS algorithm is that a trainable learning
weight vector is added, as shown below [12]

utc,v =

∏
v′∈M (c)\v

sign(u(t−1)
v′,c ) min

v′∈M (c)\v

∣∣∣α(t−1)
v′,c × u(t−1)

v′,c

∣∣∣ (3)

where α
(t−1)
v′,c is the added trainable learning weight, utc,v is the

message transmitted from CNs to VNs for iteration t , ut−1
v′,c is

the messages transmitted from VNs to CNs for iteration t−1,
M (c) is the set of all VNs connected to CN c, M (c) \ v is the
set M (c) excluding VN v.

Similarly, the difference between the calculation of VNs in
the NMS and NNMS algorithms is that a trainable learning
weight vector is added, as shown below [12]

utv,c = lv +

∑
c′∈N (v)\c

β
(t)
c′,v × u(t)c′,v (4)

where β
(t)
c′,v is the added trainable learningweight. CN andVN

layers constitute the hidden layers of NNMS neural network.
The calculation of the output layer of the NNMS algorithm

directly inherits the output calculation of the NMS algorithm.
The soft output message stv of VNs for the maximum number
of iterations is given by

sTv = lv +

∑
c′∈N (v)

uTc′,v, (5)

oi = σ (sTv ) (6)

where σ (x) = (1 + e−x)−1 is the activation function used
in the NNMS decoding algorithm and T is the maximum
number of iterations.

At the end of the decoding iteration, the final decision can
be written as

x̂v =
1 − sgn(sv)

2
(7)

where sgn is a sign function, sgn(sv) means the sign of sv.
There are two loss functions that are often used during the

training of the channel neural decoding algorithm, one is the
cross-entropy loss function, and the other is the syndrome
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loss function. The cross-entropy loss function is defined as
follows

L (x, o) = −
1
N

N∑
i=1

xi log(oi) + (1 − xi) log(1 − oi). (8)

where oi is the i-th bit of the estimated information output by
the NNMS algorithm, and xi is the i-th bit of the transmitted
codeword. The cross-entropy loss function L (x, o) refers
to the concept of cross-entropy to measure the difference
between the output o of NNMS decoding and the source
codeword x.

Based on NNMS algorithm, the authors in [27] proposed
theNNMS+ algorithm, which uses different learningweights
for different edges [27]. They replace the trainable learned
weight vector α

(t−1)
v′,c in the NNMS algorithm with a trainable

learned weight matrix A(t−1)
v′,c ∈ R2. The calculation of the

check layer (3) is updated as follows

U t
c,v =

∏
v′∈M (c)\v

sign(U (t−1)
v′,c ) min

v′∈M (c)\v
|A(t−1)

v′,c × U (t−1)
v′,c |

(9)

where U t
c,v is the calculation of the messages from CNs to

VNs for iteration t .
From the calculation of the CN layer of the NNMS

algorithm (3) to the calculation of the CN layer of the
NNMS+ algorithm (9), the trainable learning weights are
changed from a one-dimensional vector to a two-dimensional
matrix. The decoding performance of the NNMS+ algorithm
has been greatly improved, at the cost of increasing computa-
tional complexity. We reduced the computational complexity
of the NNMS+ algorithm by using tensor decomposition and
joint-way in [27] and [28].

B. NOMS
The model-driven NOMS algorithm is similar to the NNMS
algorithm, including an input layer, multiple iterative hidden
layers, and an output layer. The hidden layer is composed of
a CN layer and a VN layer. In the hidden layer, it is the same
except that the multiplication parameter of the CNs layer
becomes a subtraction parameter. The CNs layer is given as
[12]

utc,v = max( min
v′∈M (c\v)

|utv′,c| − β tv′,c, 0) ·

∏
v′∈M (c\v)

sign(utv′,c).

(10)

where the learning parameter is β tv′,c, which is called the
offset factor. β tv′,c is used to correct the error caused by
the OMS decoding algorithm approaching the BP decoding
algorithm.

The VNs layer is given as [10]

utv,c = wtv,c(lv +

∑
c′∈N (v\c)

ut−1
c′,v ). (11)

where the learning parameter is wtv,c.

FIGURE 1. Overview of Channel Neural Decoding with Hypernetwork.

Finally, the output of each iteration can be expressed as

stv = wtv(lv +

∑
c′∈N (v)

utc′,v), (12)

oi = σ (stv) (13)

where activation function σ (x) and and the cross-entropy loss
are the same as NNMS algorithm.

C. HYPERNETWORK
Hypernetwork are neural networks that can generate param-
eters for the main neural network [20], similar to the
relationship between a genotype (the hypernetwork) and a
phenotype (the main network) in nature [19]. As shown in
Fig. 1, the main network is a neural network that performs
learning tasks, essentially learning a parameterized function
g(:,W ) based on input data to complete the required tasks.
The learning parametersW of the main network are provided
by a hypernetwork, which is the main function of the
hypernetwork. More precisely, the hypernetwork is also a
neural network, and its goal is to learn another parameterized
function f from the input X to generate W , which are the
learning parameters of the main network.

Hypernetwork can increase the adaptability of the main
network. Avoid retraining the main network when the internal
parameters or the number of network layers need to be
changed, which greatly reduces the training cost [19], [22].
In addition, there are some hypernetwork solutions that can
improve the performance of the main network [25].

III. STATIC HYPERNETWORK-BASED CHANNEL
NEURAL DECODING
Hypernetwork solution consists of two neural networks, one
is the main channel neural decoding network [13], and
the other is the hypernetwork, which generates learning
weights for the main network. The hypernetwork consists
of a dense neural network of l layers. We use the tanh
function as the activation function of the hypernetwork. The
input of the hypernetwork is the same as the input of the
main network, which is the received log likelihood ratio
(LLR) value vector [27]. The hypernetwork is trained using
stochastic gradient descent (SGD) under the guidance of the
cross-entropy loss function.

NNMS and NOMS decoding algorithms have a very
good balance between complexity and performance, which
makes them very promising to be applied to communication
systems. The position of learning weights in these two
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FIGURE 2. Static Hypernetwork based Channel Neural Decoding.

decoding algorithms and their role in decoding are obviously
different. This is the reason why we choose NNMS and
NOMS decoding algorithms as the main decoding network.

A. STATIC HYPERNETWORK-BASED NNMS DECODING
In the hypernetwork based NNMS decoding algorithm,
hypernetwork provides learning weights for the entire NNMS
decoding network. Let the hypernetwork be represented by
a parameterized function f . In (3), the learning weights
generated by the static hypernetwork can be expressed as

utc,v =

∏
v′∈M (c)\v

sign(u(t−1)
v′,c )

min
v′∈M (c)\v

∣∣∣f (:,W (t−1)
α ) × u(t−1)

v′,c

∣∣∣ (14)

whereW (t−1)
α are the learning weights of the static hypernet-

work f to generate the learning weights α
(t−1)
v′,c . Note that the

weights are initialized as Gaussian random numbers with zero
mean and unit variance.

As shown in Fig. 2, the static hypernetwork generates
all required learning weights {α1

v′,c, . . . , α
t
v′,c, . . . , α

T
v′,c} for

the entire main NNMS network at once, which makes it
unnecessary to retrain the NNMS network when the learning
weights of the NNMS decoding network need to be changed.
Because in the static hypernetwork based channel neural
decoding algorithm, the optimal learning weights can be
obtained by training the hypernetwork.

B. STATIC HYPERNETWORK-BASED NOMS DECODING
In the hypernetwork based NOMS decoding algorithm,
hypernetwork provides learning weights for the NOMS
decoding network, which exist in the update equations of the
check nodes. In (10), the learning weights generated by the

static hypernetwork can be expressed as

utc,v = max( min
v′∈M (c\v)

|utv′,c| − f (:,W (t−1)
β ), 0)

·

∏
v′∈M (c\v)

sign(utv′,c). (15)

where W (t−1)
β are the learning weights of the static hyper-

network f to generate the learning weights β tv′,c. Similarly,
hypernetwork can generate all required learning weights for
the NOMS decoding network at once.
Compared with the original channel neural decoder, the

channel neural decoder based on the static hypernetwork
has an additional l-layer dense neural network, which
requires more storage resources and higher computational
complexity. However, the advantage of using hypernetwork
is that it can reduce the cost of training channel neural
decoders. On the other hand, the cost of complexity
can also be reduced through model compression methods
[27], [28].

IV. DYNAMIC HYPERNETWORK-BASED CHANNEL
NEURAL DECODING
The static hypernetwork can generate learning weights
for the entire main network, avoiding retraining the main
network when the learning weights of the channel neural
decoding network need to be changed. However, the size
of the learning weight vectors output by the hypernetwork
is fixed. Once the number of layers of the main network
changes, the output dimension of the hypernetwork needs
to be changed, resulting in the need to redesign and
redeploy a suitable hypernetwork [19], [22]. In order to solve
this issue, We propose a dynamic hypernetwork solution,
in which the hypernetwork dynamically generates learning
weights for the main network, which can vary online across
layers.
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FIGURE 3. Dynamic Hypernetwork based NNMS Algorithm.

A. DYNAMIC HYPERNETWORK-BASED NNMS DECODING
In (3), the learning weights generated by the dynamic
hypernetwork can be expressed as

utc,v =

∏
v′∈M (c)\v

sign(u(t−1)
v′,c )

min
v′∈M (c)\v

∣∣∣f (t−1)(:,Wα) × u(t−1)
v′,c

∣∣∣ (16)

where f (t−1)(:,Wα) is the dynamic hypernetwork for NNMS
decoding algorithm at the t-th iteration, Wα are the learning
weights of the hypernetwork.

Different from the static hypernetwork based NNMS
decoding algorithm in which the hypernetwork generates all
learning weights for the entire main network at once, in the
proposed dynamic hypernetwork based NNMS decoding
algorithm, a hypernetwork unit is used to realize information
interaction with the main network at each layer. As shown in
Fig. 3, the hypernetwork dynamically provides the learning
weight vectors {αtv′,c, (t = 1, . . . ,T )} or the learning weight
tensors {At

v′,c, (t = 1, . . . ,T )} to the NNMS network at
each layer, and the NNMS network provides the information
{S t−1
v , (t = 1, . . . ,T )} required for calculation to the

hypernetwork. Each G is a hypernetwork unit consisting
of a l-layer dense neural network. Different from the
static hypernetwork based NNMS decoding algorithm, each
hypernetwork unit in the dynamic hypernetwork based
NNMS decoding algorithm can share learning weights across
layers. In addition, the network structure of each unit in
the dynamic hypernetwork solution is the same. Repeated
iterations of a unit can be used to implement multiple unit
structures. Therefore, when the number of NNMS network
layers needs to change, there is no need to redesign and
redeploy the hypernetwork solution [19], [22].

B. DYNAMIC HYPERNETWORK-BASED NOMS DECODING
The learning weights for the NOMS decoding algorithm
in (10) can be generated by the dynamic hypernetwork as

utc,v = max( min
v′∈M (c\v)

|utv′,c| − f (t−1)(:,Wβ ), 0)

·

∏
v′∈M (c\v)

sign(utv′,c). (17)

FIGURE 4. BER and FER Performance of the HyperNNMS Algorithms on
BCH Code (127,106).

where f (t−1)(:,Wβ ) is the dynamic hypernetwork for NOMS
decoding algorithm at the t-th iteration, Wβ are the learning
weights of the hypernetwork. Similarly, the number of
layers of the dynamic hypernetwork-based NOMS decoding
algorithm can be changed without redesigning and redeploy-
ing the hypernetwork solution.

V. EXPERIMENTAL RESULTS
In this section, we choose three different codes, including
BCH, Hamming and LDPC, to verify the performance of
our proposed hypernetwork based channel neural decoding
algorithms. For the convenience of comparison with the
NNMS and NOMS decoding algorithms, we choose the
LDPC code used in [12], [13], [27], and [28]. The code rate
r = 0.75 and the code length N = 576. The batch size B
for the parallel decoding process, during the inference phase,
is set to 120. Tensorflow 2.0 is used as the DL framework for
the simulation.

In the simulation experiment, the static hypernetwork is
a four-layer deep neural network. There are 32 neurons in
every layer. The dynamic hypernetwork consists of multiple
units, which are implemented by multiple iterations of a
unit, where each unit is a four-layer deep neural network.
The tanh function and cross entropy are used as activation
function and loss function respectively. Randomization is
used during the initialization of the algorithm. In the
following experiments, for the static and dynamic hyper-
networks based channel neural decoding algorithms, only
the hypernetwork is trained to generate learning weights for
the main decoding network. When the experimental results
are shown in the following figures, for convenience, we let
S-HyperNNMS and D-HyperNNMS represent the NNMS
decoding algorithm based on static and dynamic hyper-
networks, respectively. S-HyperNOMS and D-HyperNOMS
represent NOMS algorithms based on static and dynamic
hypernetworks, respectively.
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FIGURE 5. BER and FER Performance of the HyperNNMS Algorithms on
LDPC Code (576,432).

FIGURE 6. BER and FER Performance of the HyperNNMS Algorithms on
LDPC Code (576,432).

A. PERFORMANCE OF HYPERNETWORK-BASED
NNMS ALGORITHM
Fig. 4 shows the bit error rate (BER) and frame error
rate (FER) performance comparison of the proposed static
hypernetwork based NNMS decoding algorithm, dynamic
hypernetwork based NNMS decoding algorithm and NNMS
algorithm for BCH code. The code length of BCH is 127 bits,
and the information bit is 106 bits. The number of iterations
of the decoding algorithm is set to 5, because there are input
and output layers, which is equivalent to a 12-layer NNMS
decoding network. It can be seen from Fig. 4 that in the
low SNR region, the performance of the static hypernetwork
basedNNMSdecoding algorithm is almost the same as that of
the NNMS algorithm. As the SNR increases, the performance
of the static hypernetwork based NNMS decoding algorithm
outperforms the NNMS algorithm. In both low and high

FIGURE 7. BER and FER Performance of the HyperNNMS Algorithms on
BCH Code (63,45).

FIGURE 8. BER and FER Performance of the HyperNNMS Algorithms on
Hamming Code (7,3).

SNR regions, dynamic hypernetwork based NNMS decoding
algorithm performs about the same as that of the NNMS
algorithm. In the middle SNR region, dynamic hypernetwork
based NNMS decoding slightly outperforms the NNMS
algorithm. This means that based on the NNMS algorithm,
static hypernetwork based NNMS decoding and dynamic
hypernetwork based NNMS decoding algorithms can not
only avoid retraining of the main network, but also slightly
improve BER and FER performance.

In addition, we also conducted experiments on LDPC
codes, as shown in Fig. 5 and Fig. 6. In Fig. 5, the
NNMS algorithm has almost the same performance as the
HyperNNMS algorithm at low SNR. With the increase of
SNR, the performance of static hypernetwork based NNMS
decoding and dynamic hypernetwork based NNMS decoding
algorithms exceed that of NNMS algorithm. Compared with
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FIGURE 9. BER and FER Performance of the HyperNOMS Algorithms on
LDPC Code (576,432).

FIGURE 10. BER and FER Performance of the HyperNOMS Algorithms on
BCH Code (127,106).

the case where the decoding network has 12 layers, when
the decoding network has 32 layers in Fig. 6, the FER
performance advantage of the HyperNNMS algorithm is
greater than that of the NNMS algorithm.

We also conducted experiments on BCH (63,45) code and
Hamming (7,3) code, and the results are shown in Fig. 7
and Fig. 8. It can be seen from the Fig. 7 and Fig. 8 that
with the increase of the SNR, the performance of the static
hypernetwork based NNMS decoding algorithm is more and
more superior to that of the NNMS algorithm, whether it
is a BCH code or a Hamming code. For Hamming code,
the performance of dynamic hypernetwork based NNMS
decoding is slightly lower than that of the NNMS algorithm.
The performance of dynamic hypernetwork based NNMS
decoding on Hamming codes is slightly lower than that
of NNMS algorithm. For BCH code, the performance of
dynamic hypernetwork based NNMS decoding is between

FIGURE 11. BER and FER Performance of the HyperNOMS Algorithms on
BCH Code (63,45).

FIGURE 12. BER and FER Performance of the HyperNOMS Algorithms on
Hamming Code (7,3).

that of static hypernetwork based NNMS decoding algorithm
and NNMS algorithm.

B. PERFORMANCE OF HYPERNETWORK-BASED NOMS
ALGORITHM
The HyperNOMS decoding algorithm has also been verified
on LDPC, BCH and Hamming codes, and the results are
shown in Fig. 9 to Fig. 12. As can be seen from Fig. 9, the
decoding performance of HyperNOMS is almost the same
as that of the original NOMS, unlike the performance of
HyperNNMS that exceeds the original NNMS algorithm.
As for the performance on BCH codes, the performance of
both dynamic and static HyperNOMS decoding algorithms
has been significantly degraded, which exceeds 0.5dB in the
high SNR area, as shown in Fig. 10 and Fig. 11. Finally,
the performance results of HyperNOMS on Hamming codes
are shown in Fig. 12, which is slightly lower than the
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performance of the original NOMS. The reason is that the
training of hypernetwork does not make the learning weights
of the main NOMS decoding network reach the optimal
state.

VI. CONCLUSION
The static hypernetwork based channel neural decoding
algorithms have been proposed, which can avoid retraining
of the main network when the learning weights of the
main decoding network need to be changed. We have
also proposed the dynamic hypernetwork based channel
neural decoding algorithms, which allows the number of
layers of the main decoding network to be changed when
needed without redesign and redeployment the hypernet-
work. We validated the proposed hypernetwork based NNMS
and NOMS decoding algorithms using LDPC, BCH, and
Hamming codes. Experimental simulation results show that
the performance of the hypernetwork-based NNMS decoding
algorithm is slightly better than the original NNMS decoding
algorithm for BCH and LDPC codes. The performance
of the hypernetwork-based NOMS decoding algorithm has
experienced some degradation.
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