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ABSTRACT Trajectory tracking control for robot manipulators is an attractive topic in the research
community. This is a challenging problem because robot manipulators are complex nonlinear systems.
Furthermore, the tracking control performance for robot manipulators is greatly affected by input constraints
and external disturbances. This paper proposes a novel H∞ optimal controller for robot manipulators with
asymmetric input constraints and external disturbances based on adaptive dynamic programming (ADP).
Firstly, a strict feedback nonlinear system is used to represent the robot manipulator dynamics, and then
a feedforward controller is designed to construct the tracking error dynamics. Secondly, a value function
is introduced, and the Hamilton-Jacobi-Isaacs equation is made and approximated online by the principle
of adaptive dynamic programming. Thirdly, the optimal control law and disturbance compensation law
are determined. The stability and convergence of the proposed algorithm are analyzed by the Lyapunov
technique. Finally, the controller performance is verified through simulation and experimental results with
STM32F407 of STMicroelectronics.

INDEX TERMS Robot manipulators, asymmetric input constraints, adaptive dynamic programming, H∞

optimal control.

I. INTRODUCTION
Tracking control for robot manipulators is a complex problem
because robot manipulators are nonlinear systems with
unknown and uncertain parameters [1], [2]. Furthermore,
the manipulators are often affected by external disturbances
and constrained inputs. For many decades, such a problem
has attracted much attention from researchers. In [3],
a neural adaptive PID control scheme was applied to robot
manipulators with uncertain parameters without measuring
velocity and acceleration. A self-tuning fuzzy controller
was introduced in [4] for robots with uncertain param-
eters. A robust mode predictive controller was proposed
in [5] for robots with disturbances. In [6], an adaptive
fuzzy sliding controller and disturbance observer were
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presented. Additionally, neural adaptive sliding controllers
were proposed in [7] and [8], in which radial basis function
neural networks (RBFNNs) are applied to estimate unknown
nonlinear functions. Overall, using neural networks [7], [9]
or fuzzy models [6], the adaptive sliding controller has
effectively handled the tracking control problem for robots
with disturbances, but they cannot handle input saturation,
leading to poor or even unstable control performance [10],
[11].

He et al. [12] proposed an adaptive controller based on
RBFNN to eliminate the effect of the input saturation. In [13],
an adaptive fuzzy dynamic surface controller was introduced
for robot manipulators, in which the input saturation was
considered using a smooth function along with the mean
value theorem. On the other hand, the backend systems were
designed in [14], [15], and [16] to solve the input saturation.
More generally, in [17], an asymmetric saturation model
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based on a Gaussian error function was applied to handle
the influence of asymmetric input saturation. An adaptive
neural controller and a hyperbolic tangent function were also
proposed in [18] to deal with the phenomenon. Additionally,
in [19], a controller for asymmetrically constrained inputs
was designed by converting a system with asymmetrically
constrained inputs into a system with symmetrically con-
strained inputs. In [20], a constraint controller was built based
on the asymmetric barrier Lyapunov function. However, the
proposed algorithms mentioned above do not minimize any
cost function, which means they are not optimal. Therefore,
the goal of robust optimal control is important and equally
challenging.

The robust optimal control problem in an H∞ control
manner is solved if the optimal control law and the external
disturbance compensation law are determined. Generally,
the laws depend on the solution of the Hamilton-Jacobi-
Issac (HJI) equation [21]. Unfortunately, solving the HJI
equation is a challenge since it is a higher-order nonlinear
differential equation and has no analytical solution. Recently,
ADP, a reinforcement learning (RL) version, has become
a useful method for approximating online solutions of HJI
equations [21], [22]. Robust optimal control algorithms were
designed for robots in [23] and [24], but they used function
approximations with double NNs. On the contrary, in [25],
the H∞ optimal controller was designed based on ADP
combined with the zero-sum game theory and implemented
with only one NN, but the input constraint problem was not
mentioned. In [26], the saturated optimal tracking controller
using RLwas offered for a robot manipulator, but the external
disturbance rejection was not mentioned. The robust optimal
control algorithm was introduced in [27], where rejecting
disturbances was offered but dealing with saturated inputs
was not considered. In our previous work [28], we designed
an H∞ optimal controller for single-wheel robots with input
constraints but did not address the asymmetrically saturated
inputs. In addition, an H∞ optimal control algorithm
with asymmetrically saturated inputs was proposed in our
previous work [29]; however, the algorithm only considers
nonholonomic mobile agents. In [30] and [31], optimal
control algorithms with asymmetrically saturated inputs
were designed, but the algorithms did not consider external
disturbances and were only applied to affine nonlinear
systems. We designed a constrained optimal controller for
robot manipulators with asymmetrically saturated inputs
based on ADP in [32]; however, the algorithm did not
consider external disturbances and was only performed on
simulations.

To the best of our knowledge, the problem of H∞

optimal control for robot manipulators with asymmetric input
saturation and external disturbance has not been solved.
Although, the H∞ performance indexes of the manipulators
can be easily obtained by combining the zero-sum game
theory and ADP, the indexes cannot be robust stable under
asymmetrically saturated inputs. Therefore, this paper is the
first work using the ADP method to design a constrained

H∞ optimal controller (CHOC) for robot manipulators with
asymmetric input constraints and external disturbances. The
main contributions of this paper are shown as follows:

1) Different from the works in [24], [25], [26], and [27],
we design a new feedforward controller to convert
the robust optimal tracking control problem with
asymmetric input saturation for robot manipulators into
a robust optimal control problem for affine nonlinear
systems.

2) Unlike the work in [24], we design a robust optimal
control method based on ADP and game theory
to determine the optimal control and disturbance
compensation laws. Furthermore, the RL algorithm
uses only one NN instead of two for an online estimate
of the solution of the HJI equation to reduce the
computational complexity.

3) Instead of using only the persistent excitation (PE)
condition, we apply the concurrent learning (CL)
technique to avoid affecting the actuator and ensure fast
convergence.

The remainder of the article is organized as follows: Section II
presents the robot manipulator’s dynamics and the control
objective. Section III provides the design of the feedforward
controller and the CHOC. Section IV shows the simulation
and experimental results. Finally, Section V gives the
conclusion of the paper.

II. PROBLEM FORMULATION
A. KINEMATIC AND DYNAMIC MODEL OF ROBOT
MANIPULATOR
Consider a model of an n-link robot manipulator with
asymmetric input constraints and disturbances described by
the following kinematic and dynamic equations [33], [34]:

P(xP, yP, zP) = F(δ), (1)

δ = I (xP, yP, zP), (2)

H(δ)δ̈ + C(δ, δ̇)δ̇ + G(δ) + F(δ̇) = τ − τd , (3)

where xP, yP, and zP are the position values of X ,
Y , and Z , respectively, in the OXYZ coordinate system,
P = [xP, yP, zP]T represents the endpoint position in the
workspace, δ ∈ Rn×1 is joint variable, F(δ) : Rn

→ R3 is a
function of forward kinematics, I (xP, yP, zP) : R3

→ Rn is a
function of inverse kinematics, H(δ) ∈ Rn×n is a symmetric
and positive definite inertial matrix, C(δ, δ̇) ∈ Rn×n is the
Coriolis-centripetal matrix, G(δ) ∈ Rn×1 is gravity vector,
F(δ̇) ∈ Rn×1 is the static friction vector, τd ∈ Rn×1 is the
disturbances vector, and τ = [τ1, τ2, . . . , τn]T ∈ Rn×1 is the
control inputs vector. τ is bounded by

χ1 ≤ τi ≤ χ2, i = 1, 2, · · · , n, (4)

with |χ1| ≤ |χ2|.
Property 1: The matrices H(δ), C(δ, δ̇), G(δ), τd are

bounded by mmin ≤ ∥H(δ)∥ ≤ mmax, ∥C(δ, δ̇)∥ ≤ cmax,
∥G((δ))∥ ≤ gmax, ∥τd∥ ⩽ dmax, where mmin, mmax, cmax,
gmax, dmax are positive constants.
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FIGURE 1. Control structure diagram.

Remark 1: Property 1 is practical by δ and δ̇ are bounded.
Due to the physical limitations of the electrical drive
circuit and motors, the control inputs are constrained.
The case of asymmetric input constraints occurs when
the actuator is partially reduced in efficiency, changes
in the mechanical structure, and the faulty power drive
circuit.
In preparation for the CHOC design, the system (3) is
represented as a strict-feedback nonlinear system, i.e.,{

δ̇ = Fδ(δ) + Gδ(δ)ψ
ψ̇ = Fψ (δ, ψ) + Gψ (δ, ψ)τ +Kψ (δ, ψ)τd

(5)

where Fδ(δ) = 0n×1, Gδ(δ) = In, ψ = δ̇, Fψ (δ, ψ) =

−H−1(δ)(C(δ, δ̇)ψ +G(δ) + F(δ̇)) ∈ Rn×1, Gψ (δ, ψ) =

H−1(δ) ∈ Rn×n, Kψ (δ, ψ) = −H−1(δ) ∈ Rn×n.
Remark 2: Fψ (δ, ψ), Gψ (δ, ψ), and Kψ (δ, ψ) are

bounded by ∥Fψ (δ, ψ)∥ ≤ m−1
min (cmax + gmax)∥ψ∥,

∥Gψ (δ, ψ)∥ ≤ m−1
min, ∥Kψ (δ, ψ)∥ ≤ m−1

min. The upper bounds
of Fψ (δ, ψ), Gψ (δ, ψ), and Kψ (δ, ψ) are only intended to
demonstrate stability for closed-loop system and are not used
in the control law. Therefore, determining the values of the
upper bounds of Fψ (δ, ψ), Gψ (δ, ψ), and Kψ (δ, ψ) is not
necessary.

B. CONTROL OBJECTIVE
The controller’s objective is to control the tracking of
the desired trajectory in the workspace, ensuring that
lim
t→∞

∥eP∥ = lim
t→∞

∥P− Pd∥ = 0 when the external

disturbances are zeros, with Pd = [xPd , yPd , zPd ]T being the
desired position in the workspace. In the first step, we use
inverse kinematic equations to convert the desired trajectory
in the workspace to joint space. The CHOC is implemented
in the second step to ensure tracking the desired trajectory for
robot manipulators with asymmetric input constraints in the
joint space, i.e., providing lim

t→∞

∥∥δ(t) − δref (t)
∥∥ = 0when the

external disturbances are zeros, where δref (t) ∈ Rn×1 is the
reference trajectory in the joint space. However, the external
disturbances are non-zeros; thus, the objective is to design
the control law to make the tracking errors L2-bounded [35].
We use forward kinematic equations to convert the trajectory
from joint space to workspace. These steps are described in
Fig. 1.
Assumption 1: δref (t) is smooth and bounded.

III. ASYMMETRICALLY CONSTRAINED H∞ OPTIMAL
CONTROL
This section designs an CHOC for the robot manipulator.
First, the feedforward control law is designed to convert
the problem of H∞ optimal tracking control for the robot
manipulator into an issue of H∞ optimal control for an affine
nonlinear system. Then, the asymmetrically constrained H∞

optimal control law is designed based on ADP method
combined with the game theory.

A. FEEDFORWARD CONTROL
In this section, we design feedforward control inputs, then
transform the system (5) into an affine nonlinear system,
known as an augmented system. The design steps are
developed based on the backstepping technique [36].
Step 1: Define the tracking error as eδ = δ − δref , eψ =

ψ − ψref . Then, the dynamics of the position tracking errors
are presented as

ėδ = −δ̇ref + Gδ(δ)ψ∗
ref + Gδ(δ)ψa

ref + Gδ(δ)eψ , (6)

where ψref = ψ∗
ref + ψa

ref are the virtual control inputs, ψ
∗
ref

are the virtual optimal control inputs,ψa
ref are the feedforward

virtual control inputs designed as

ψa
ref = G−1

δ (δ)(δ̇ref + K1eψ − K2eδ). (7)

By substituting (7) into (6), the dynamics (6) is rewritten as

ėδ = Gδ(δ)ψ∗
ref + K1eψ − K2eδ + Gδ(δ)eψ

= F̄δ(eδ, eψ ) + ψ∗
ref + eψ , (8)

where F̄δ(eδ, eψ ) = K1eψ −K2eδ , K1 and K2 are the positive
definite matrices.
Step 2: The dynamics of the angular velocity tracking

errors are calculated as follows:

ėψ = −ψ̇ref + Fψ (δ, ψ) + Gψ (δ, ψ)τ ∗
+ Gψ (δ, ψ)τ a

+Kψ (δ, ψ)τd , (9)

where τ = τ ∗
+ τ a, τ ∗ are the actual optimal control inputs,

τ a are the feedforward actual control inputs designed as

τ a = G−1
ψ (δ, ψ)(ψ̇ref + Fψ (eδ, eψ ) − Fψ (δ, ψ) − eδ

− K3eδ − K4ėδ). (10)

By substituting (10) into (9), the dynamics (9) is rewritten as

ėψ = F̄ψ (eδ, eψ ) + Gψ (δ, ψ)τ ∗
− eδ +Kψ (δ, ψ)τd , (11)

where F̄ψ (eδ, eψ ) = Fψ (eδ, eψ ) − K3eδ − K4ėδ , K3 and K4
are the positive definite matrices.
Lemma 1: Consider the following augmented system:

Ż = F̄δψ (eδ, eψ ) + Gδψ (δ, ψ)µ∗
+Kδψ (δ, ψ)d, (12)

where
Z = [eTδ , e

T
ψ ]

T , F̄δψ (eδ, eψ ) = [F̄T
δ (eδ, eψ ), F̄

T
ψ (eδ, eψ )]

T ,
Gδψ (δ, ψ) = diag

[
Gδ(δ),Gψ (δ, ψ)

]
, Kδψ (δ, ψ) =

diag[0n×n,Kψ (δ, ψ)], µ∗
= [ψ∗T

ref , τ
∗T ]T , µa =

[ψaT
ref , τ

aT ]T , µ = [ψT
ref , τ

T ]T = µ∗
+ µa,
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d = [01×n, τTd ]
T . Suppose the feedforward virtual

control inputs are presented as (7), and the feedforward
actual control inputs are presented as (10). Then, the H∞

optimal control issue for the dynamics (5) and dynamics (12)
are equivalent.

Proof: For dynamics (5), we select the Lyapunov
function form

J1 =
1
2
eTδ eδ +

1
2
eTψeψ . (13)

Taking derivative of (13) and combining (8) and (11) yields

J̇1 = eTδ F̄δ(eδ, eψ ) + eTψ F̄ψ (eδ, eψ ) + eTδ ψ
∗
ref

+ eTψGψ (δ, ψ)τ
∗

+ eTψKψ (δ, ψ)τd + eTδ eψ − eTψeδ.

(14)

It can be seen that eTδ eψ = eTψeδ . Thus, (14) becomes

J̇1 = ZT (F̄δψ (eδ, eψ ) + Gδψ (δ, ψ)µ∗
+Kδψ (δ, ψ)d).

(15)

For dynamics (12), we select the Lyapunov function form

J2 =
1
2
ZTZ. (16)

Taking derivative (16) and combining (12), one has

J̇2 = ZT (F̄δψ (eδ, eψ ) + Gδψ (δ, ψ)µ∗
+Kδψ (δ, ψ)d).

(17)

It can be easily seen that, if µ∗ makes the dynamics (12)
stable, then J̇2 < 0. Through comparison of (17) and (15),
J̇2 < 0 implies J̇1 < 0. It can be concluded that the
dynamics (5) is also stable. Therefore, theH∞ optimal control
issue of the dynamics (5) is converted to the H∞ optimal
control issue for dynamics (12).

This completes the proof.
Remark 3: The feedforward virtual control inputs and the

feedforward actual control inputs are designed as (7) and (10),
and constrained by{

χ1 − ν1 tanh(1) ⩽ ψa
refi ⩽ χ2 − ν2 tanh(1)

χ1 − ν1 tanh(1) ⩽ τ ai ⩽ χ2 − ν2 tanh(1)
(18)

where i = 1, 2, · · · , n, |ν1| < |χ1|, |ν2| < |χ2|. We can see
that if ψ∗

refi and τ
∗
i are designed to satisfy the constraint ν1 ≤

ψ∗
refi ≤ ν2, ν1 ≤ τ ∗

i ≤ ν2, then vrefi and τi will be limited by
χ1 ≤ ψref ≤ χ2, χ1 ≤ τi ≤ χ2.

B. H∞ OPTIMAL CONTROL
This section designs the asymmetrically constrained H∞

optimal control law for dynamics (12) based on the ADP
method combined with the game theory [22]. To derive the
controller, we give the following definitions.
Definition 1 [37]: Consider the Ż = F(Z, µ), Z ∈

Rn with Z0 being the equilibrium point. Z0 is said to
be ultimately uniformly bounded (UUB) if there exists a
compact set ℧ ∈ Rn so that for all Z0 ∈ ℧, there exists a

bound C and time T (C,Z0) such that ∥Z − Z0∥ ≤ C for all
t > t0 + T .
Definition 2 [21]: The system (12) has L2-gain less than

or equal ρ ∀d ∈ L2 [0,∞], 0 ⩽ T ⩽ ∞ if the following
expression is satisfied:

T∫
0

(ZT2Z + 𭟋(µ))dτ ⩽ ρ2

T∫
0

(dT d)dτ, (19)

where 2 is the positive definite matrix, 𭟋(µ) is the energy
cost function and non-negative, µ is an estimate of µ∗ at
time t , and ρ > 0 is the attenuation level of the disturbance.

Based on the condition (19), the cost function is presented
as

V (Z) =

∞∫
t

κ(τ )dτ, (20)

where κ(t) = ZT2Z + 𭟋(µ) − ρ2dT d .
By the control inputs are asymmetrically saturated, the

energy cost function is chosen as [30] and [40]

𭟋 (µ) = (ν2 − ν1)
∫ µ

ν2+ν1
2

tanh−T
(
2s− ν2 − ν1

ν2 − ν1

)
Rds,

(21)

where R = diag(R1, . . . ,Rn) > 0. Defining ϱ = (ν2 + ν1)/2
and ς = (ν2 − ν1)/2, (21) is rewritten as

𭟋 (µ) = 2ς
∫ µ

ϱ

tanh−T
(
s− ϱ

ς

)
Rds. (22)

We apply integral by parts and perform some conversion
steps. We can derive that

𭟋 (µ) =2ς tanh−T (
µ− ϱ

ς
)R(µ− ς )+ς2R̄ ln(1̄ − (

µ− ϱ

ς
)
2
),

(23)

with R̄ = [R1, . . . ,Rn], 1̄ = [1, . . . , 1]T ∈ Rn×1.
Consider the Hamilton function, which has the following

form:

H (Z, µ, d,VZ ) = ZT2Z + 𭟋 (µ)− ρ2dT d

+ VTZ
(
F̄δψ + Gδψµ+Kδψd

)
, (24)

with VZ = ∂V(Z)
/
∂Z . The optimal value function V∗(Z) is

determined by using zero-sum game theory:

V∗(Z) = min
µ

max
d

∫
∞

0
κ(τ )dτ. (25)

ADP and the zero-sum game theory are used to find the
optimal value V∗(Z) that satisfies the Nash condition

V∗(Z) = min
µ

max
d

∫
∞

0
κ(τ )dτ = max

d
min
µ

∫
∞

0
κ(τ )dτ.

(26)

Then, the saddle point (µ∗, d∗) exists, where µ∗ is the
optimal control law, d∗ is the disturbance compensation law.
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To ensure the Nash condition (26), the following Isaacs
condition must be satisfied:

min
µ

max
d
H(Z, µ, d,V∗

Z ) = max
d

min
µ
H(Z, µ, d,V∗

Z ).

(27)

The saddle point (µ∗, d∗) is determined through
the stationary conditions ∂H(Z, µ, d,V∗

Z )/∂µ = 0,
∂H(Z, µ, d,V∗

Z )/∂d = 0. Hence, we obtain µ∗ and d∗ as
follows:

µ∗
= −ς tanh(

1
2ς

R−1GTδψV
∗

Z ) + ϱ, (28)

d∗
=

1
2ρ
KT
δψV

∗

Z , (29)

where V∗

Z = ∂V∗(Z)
/
∂Z .

Substituting (28) and (29) into (24), we obtain the HJI
equation as follows:

H∗Z, µ∗, d∗,V∗

Z ) = ZT2Z + 𭟋
(
µ∗

)
− ρ2d∗T d∗

+ V∗T
Z

(
F̄δψ + Gδψµ∗

+Kδψd∗
)

= 0.

(30)

If V∗(Z) of the HJI equation (30) is found, one can
determine µ∗ and d∗. The minimal positive definite smooth
solutions V∗(Z) always exist [21]. However, it cannot be
obtained by analytical methods. Therefore, we need to
estimate the solution of equation (30). With the requirement
of a simple online approximation algorithm, a simple NN is
applied and presented as follows:

V∗(Z) = ϖ T ζ (Z) + ε(Z), (31)

V∗

Z = ϖ T ∂ζ (Z)
∂Z

+
∂ε(Z)
∂Z

= ϖ T ζZ + εZ , (32)

where NN has a structure with one hidden layer and one
output, ϖ ∈ Rhc is the weight vector, ζ (Z) : Rn

→ Rhc is
a smooth function vector and a completely independent basis
set that satisfies Assumption 2, hc is a number of hidden cells,
ε(Z) is the approximation error.
Assumption 2 [39]: ∥ζ (Z)∥ ≤ sζ , ∥ζZ∥ =

∥∂ζ (Z) /∂Z∥ ≤ s∇ζ , ∥ε (Z)∥ ≤ sε, ∥εZ∥ =

∥∂ε (Z) /∂Z∥ ≤ s∇ε, where sζ , s∇ζ , sε, s∇ε are positive
constants.

The Hamilton function (24) becomes

H(Z, µ∗, d∗,ϖ T ζZ ) = ZT2Z + 𭟋(µ∗) − ρ2d∗T d∗

+ϖ T ζZ
(
F̄δψ + Gδψµ∗

+Kδψd∗
)

= εH , (33)

where εH = −εTZ (F̄δψ + Gδψµ∗
+Kδψd∗).

Asϖ are unknown, the value function is given as follows:

V̂(Z) = ϖ̂ T ζ (Z). (34)

Using V̂(Z) for (28) and (29), the approximate control laws
of (28) and (29) are expressed as

µ̂ = −ς tanh(
1
2ϱ
R−1GTδψζ

T
Zϖ̂ ) + ϱ. (35)

d̂ =
1
2ρ
KT
δψζ

T
Zϖ̂ . (36)

Similarly, the Hamiltonian function becomes

H(Z, µ̂, d̂, ϖ̂ T ζZ ) = ZT2Z + 𭟋(µ̂) − ρ2d̂T d̂

+ ϖ̂ T ζZ (F̄δψ + Gδψ µ̂+Kδψ d̂)
= εe, (37)

where εe is the Hamilton function approximation error.
From (33) and (37), we can obtain

εe = −ϖ̃ T ζZ (F̄δψ + Gδψ µ̂+Kδψ d̂) + εH , (38)

where ϖ̃ = ϖ − ϖ̂ . If we propose a parameter tuning
law to minimize E =

1
2ε

T
e εe, then ϖ̂ → ϖ . Applying the

algorithm gradient descent combined with the CL technique,
the parameter tuning law designed as

˙̂ϖ = −α
9

(9T9 + 1)2
(9T ϖ̂ + κ(t))

− α
∑P

i=1

9(ti)

(9(ti)T9(ti) + 1)
2 (9(ti)T ϖ̂ + κ(ti)),

(39)

where κ(t) = ZT2Z + 𭟋(µ̂) − ρ2d̂T d̂ , 9 = ζZ (F̄δψ +

Gδψ µ̂ + Kδψ d̂), α > 0 is the learning rate. We use the
CL technique in (39) to relax the PE condition and ensure
convergence fast. 9(ti), κ(ti) are stored in {9(ti), κ(ti)}Pi=1,
with {9(ti)}Pi=1 must be linearly independent, i.e. rank(9(t1),
9(t2), . . . , 9(tP)) = P.

The approximate error dynamics of the weights can be
determined as follows:

˙̃ϖ = −α9̄(9̄T ϖ̃ − ε̄e) − α
∑P

i=1
9̄(ti)(9̄T (ti)ϖ̃ − ε̄e(ti)),

(40)

with 9̄ = 9
/
(9T9 + 1), ∥ε̄e(s)∥ =

∥∥εH/(1 +9T9)
∥∥ ⩽

sε̄, where sε̄ is a positive constant.

C. PROOF OF STABILITY AND CONVERGENCE
The following theorem analyzes the stability and convergence
of the CHOC.
Theorem 1: Consider the tracking error dynamics (12)

with asymmetrically constrained inputs and disturbances. Let
Assumptions 1-2 be satisfied. Assuming the cost function is
defined in (20), the optimal control law is determined by (35),
and the disturbance compensation law is defined by (36),
where the on-line adjustment of the values is determined
by (39). Then, the tracking and approximation errors are
UUB.

Proof: Select a Lyapunov function as

J3 = V∗(Z)︸ ︷︷ ︸
J31

+
1
2
trace

(
ϖ̃ T ϖ̃

)
︸ ︷︷ ︸

J32

. (41)

Taking derivative J31 along trajectories of Ż = F̄δψ +

Gδψ µ̂+Kδψ d̂ , we can get

J̇31 = V∗T
Z Ż = V∗T

Z (F̄δψ + Gδψ µ̂+Kδψ d̂)
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= V∗T
Z (F̄δψ + Gδψµ∗

+Kδψd∗)

+ V∗T
Z Gδψ (µ̂− µ∗) + V∗T

Z Kδψ (d̂ − d∗). (42)

Observing (30) and (32), (42) becomes

J̇31 = −ZT2Z − 𭟋
(
µ∗

)
+ ρ2d∗T d∗

+ Gδψ
(
ζ TZϖ + εZ

)
(µ̂− µ∗)

+Kδψ
(
ζ TZϖ + εZ

)
(d̂ − d∗). (43)

Using Young’s inequality to (43), we can derive that

J̇31 ≤ −ZT2Z − 𭟋
(
µ∗

)
+ ρ2d∗T d∗

+
1
4

∥∥∥Gδψ (
ζ TZϖ + εZ

)∥∥∥2 +
∥∥µ̂− µ∗

∥∥2
+

1
4

∥∥∥Kδψ (
ζ TZϖ + εZ

)∥∥∥2 +

∥∥∥d̂ − d∗

∥∥∥2.
(44)

On the other hand, we can gain ZT2Z ≥ λmin (2) ∥Z∥
2,

with λ (.) is an eigenvalue of the matrix. Then, (44) is
rewritten as follows:

J̇31 ⩽ −λmin (2) ∥Z∥
2
+ ρ2

∥∥∥d̂∥∥∥2
+

1
4

∥∥∥Gδψ (
ζ Tz ϖ + εZ

)∥∥∥2 +
∥∥µ̂− µ∗

∥∥2
+

1
4

∥∥∥Kδψ (
ζ TZϖ + εZ

)∥∥∥2 +

∥∥∥d̂ − d∗

∥∥∥2 − 𭟋
(
µ∗

)
.

(45)

Applying inequality (x + y)2 ≤ 2
(
x2 + y2

)
, we can derive

that

J̇31 ≤ −λmin (2) ∥Z∥
2
+ ρ2

∥∥∥d̂∥∥∥2
+

1
2
(
∥∥∥Gδψζ TZϖ∥∥∥2 +

∥∥GδψεZ∥∥2) +

∥∥∥2ς tanh(ξ̂ )∥∥∥2
+

∥∥2ς tanh(ξ∗)
∥∥2 +

1
2

∥∥∥Kδψ∥∥∥2∥∥ζZ∥∥2∥ϖ∥
2

+
1
2

∥∥GδψεZ∥∥2 +
1

2ρ2

∥∥∥Kδψ∥∥∥2∥∥ζZ∥∥2∥ϖ̃∥
2

+
1

2ρ2

∥∥∥Kδψ∥∥∥2 ∥εZ∥
2
− 𭟋

(
µ∗

)
, (46)

where ξ̂ =
1
2ς R

−1GTδψζ
T
Zϖ̂ , ξ∗

=
1
2ς R

−1GTδψ (ζ
T
Zϖ + εZ ).

We can easily deduce that 𭟋(µ∗) ≥ 0 , (46) becomes

J̇31 ≤ −λmin (2) ∥Z∥
2
+ η2∥ϖ̃∥

2
+ η1, (47)

where
η1 =

1
2G

2
δψ max(s

2
∇ζ s

2
ϖ + s2ε) + 8ς2 +

1
2K

2
δψ max(

3
2 s

2
∇ζ s

2
ϖ +

s2ε +
1

2ρ2
s2ε), η2 =

1
2ρ2
K2
δψ maxs

2
∇ϖ , ∥ϖ∥ ≤ sϖ , sϖ > 0,

Gδψ max = max {1,m−1
min}, Kδψ max = m−1

min.
Taking derivative J32 along (40) we have

J̇32 = −αϖ̃ T4ϖ̃ + αϖ̃ T (9̄ε̄e +

∑P

i=1
9̄(ti)ε̄e(ti)), (48)

FIGURE 2. Actual Scorbot-ER.

where 4 = 9̄9̄T
+

∑P
i=1 9̄(ti)9̄T (ti) > 0. Applying

Young’s inequality to (48), we can deduce that

J̇32 ≤ −(α − 1)λmin(4)∥ϖ̃∥
2
+
α2

4
(P+ 1)s2ε̄ . (49)

Observing (47) and (49), J̇3 becomes

J̇3 ≤ −λmin (2) ∥Z∥
2
− η3∥ϖ̃∥

2
+ η4, (50)

where η3 = (α − 1)λmin(4) − η2, η4 = η1 +
α2

4 (P + 1)s2ε̄ ,
α >

η2
λmin(4)

+ 1.
J̇3 < 0, if and only if

∥Z∥ >

√
η4

λmin (2)
= sZ

∥ϖ̃∥ >

√
η4

η3
= sϖ̃

(51)

It can be concluded that if the tracking errors ∥Z∥ or the
approximation errors ∥ϖ̃∥ exceed stable regions, then J̇3 <
0, i.e., the tracking errors or the approximation errors are
pulled inside the stable regions. In other words, the tracking
and approximation errors are UUB [37] (see Definition 1).

This completes the proof.

IV. SIMULATION AND EXPERIMENT
This section verifies the performance of the CHOC through
simulation and experiment. The results are compared with the
robust adaptive controller (RAC) [8].

Consider the Scorbot-ER robotic manipulator [38], illus-
trated in Figs. 2, 3, where l1 = 0.35m, le = 0.025m,
l2 = 0.222m, l3 = 0.222m. The position of P is determined
by

P =

xPyP
zP

 =

(l3cosδ3 + l2cosδ2 + le)cosδ1
(l3cosδ3 + l2cosδ2 + le) sin δ1

l3 sin δ3 + l2 sin δ2 + l1

 . (52)
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FIGURE 3. The scheme of Scorbot-ER.

FIGURE 4. Evolution of NN weights.

The matrices of the components in the dynamics equation
have the following form:

H(δ) =

H11 0 0
0 σ6 l2σ2 cos(δ3 − δ2)
0 l2σ2 cos(δ3 − δ2) σ7

 ,
(53)

C(δ, δ̇) =

11δ̇2 +12δ̇3 11δ̇1 12δ̇1
−11δ̇1 0 −13δ̇3
−12δ̇1 13δ̇2 0

 , (54)

F(δ̇) =

 σ8δ̇1 + σ11 sgn(δ̇1)
σ9δ̇2 + σ12 sgn(δ̇2)
σ10δ̇3 + σ13 sgn(δ̇3)

 , (55)

G(δ) =
[
0 σ1g cos δ2 σ2g cos δ3

]T
, (56)

where H11 = H111 + H112 + H113 + H114, H111 =

2σ1le cos δ2, H112 = 2σ2(le + l2 cos δ2) cos δ3, H113 =

0.5σ3 cos(2δ2), H114 = 0.5σ4 cos(2δ3) + σ5, 11 =

−(σ1le sin δ2 + σ2l2 sin δ2 cos δ3 + 0.5σ3 sin(2δ2)), 12 =

−(σ2(le + l2 cos δ2) sin δ3 + 0.5σ4 sin(2δ3)), 13 =

l2σ2 sin(δ3 − δ2), σ1 = σ4 = σ7 = 0.006, σ2 = 0.002,
σ3 = σ5 = σ6 = 0.011, σ8 = σ9 = σ10 = 0.52,
σ11 = 0.019, σ12 = σ13 = 0.018, δ(0) = [0.01, 0.01, 0.01]T ,
δ̇(0) = [0, 0, 0]T , χ1 = −0.8, χ2 = 0.9. The desired

FIGURE 5. Trajectory tracking of CHOC and RAC in joint space:
(a) Position δ1; (b) Position δ2; (c) Position δ3.

FIGURE 6. Angular velocity of joints of CHOC and RAC: (a) ψ1; (b) ψ2;
(c) ψ3.

trajectory of Pd is described as follows:

Pd =

xPdyPd
zPd

 =

0.36 + 0.05 sin(0.08π t)
0.05 cos(0.08π t)

0.4

 . (57)

A. SIMULATION
The parameters of the CHOC are selected as K1 = K2 =

K3 = K4 = diag[10, 10, 10], the initial weights are zeros,
2 = I ∈ R6×6, R = I ∈ R6×6, α = 100, ν2 = 0.15,
ν1 = −0.1, ρ = 0.5, χ2 = 0.9, χ1 = −0.8, the activation
function is

ζ (e) = [e2δ1, eδ1eδ2, eδ1eδ3, eδ1eψ1, eδ1eψ2, eδ1eψ3, e
2
δ2,
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FIGURE 7. Position tracking errors of CHOC and RAC in joint space:
(a) CHOC; (b) RAC.

FIGURE 8. Angular velocity tracking errors of CHOC and RAC in joint
space: (a) CHOC; (b) RAC.

eδ2eδ3, eδ2eψ1, eδ2eψ2, eδ2eψ3, e2δ3, eδ3eψ1, eδ3eψ2,

eδ3eψ3, e2ψ1, eψ1eψ2, eψ1eψ3, e
2
ψ2, eψ2eψ3, e

2
ψ3]

T ,

the sampling period T = 0.01s. The control law of RAC
is given as τ = f̂ (z) + K6s − υ, where f̂ (z) is RBFNN
and is an approximation of f (z), f (z) = H

(
δ̈ref + K5ėδ

)
+

C
(
δ̇ref + K5eδ

)
+ G + F , K5 = K6 = diag[10, 10, 10],

s = ėδ + K5eδ , υ = −K7 sgn(s), K7 = 0.2. We change the
model parameters at the 60th second for both control laws,
i.e., the values σ1, σ2, . . . , σ12, and σ13 are changed to double

FIGURE 9. Trajectory tracking of CHOC and RAC in the worksapce:
(a) Position xP ; (b) Position yP .

FIGURE 10. Tracking errors of CHOC and RAC in the workspace: (a) CHOC;
(b) RAC.

the initial values. Fig. 4 presents the convolution of the NN
weights, where the weights converge after 10s. At the time
of load change (60th second), the weights change to adapt to
the load change and then continue to converge. The results
of comparing the trajectories of the positions of CHOC and
RAC in joint space are illustrated in Fig. 5. Fig. 6 shows
CHOC and RAC’s angular velocity tracking trajectory. The
position and angular velocity tracking errors of the controllers
in joint space are illustrated in Figs. 7, 8. The comparison
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FIGURE 11. Position of point P of CHOC and RAC: (a) During learning;
(b) After convergence.

FIGURE 12. The optimal control inputs of CHOC.

results show that CHOC’s ability to track trajectories in the
joint space is better than RAC’s. CHOC’s position tracking
error does not exceed 12.10−4 rad. When the load changes
suddenly, the position tracking error increases but does not
exceed 4.10−3 rad and then returns to the value 12.10−4 rad
(see Fig. 7). In addition, Fig. 8 shows that CHOC’s angular
velocity tracking error has a smaller value than RAC.

The position trajectories in the controllers’ workspace
are shown in Fig. 9. The tracking errors in the controllers’
workspace are shown in Fig. 10, which indicates that the
tracking errors of CHOC are smaller than RAC. The tracking
error of CHOC in the workspace is less than 0.6 mm for the
X -position, 0.45 mm for the Y -position, and 0.6 mm for the
Z -position (see Fig. 10). The position of point P of CHOC
and RAC are illustrated in Fig. 11, where Fig. 11a shows
the results during the learning process, and Fig. 11b shows
the results after convergence. The control inputs of CHOC
are presented in Figs. 12 and 13a, where Fig. 12 shows the
optimal feedback control inputs and Fig. 13a illustrates the
actual control torque inputs. The control torque results of
RAC are presented in Fig. 13b. Fig. 12 shows that the optimal
control inputs are within the allowable asymmetry limit and

FIGURE 13. Control torques of CHOC and RAC: (a) CHOC; (b) RAC.

FIGURE 14. Experimental results of the trajectory tracking of CHOC and
RAC in the workspace: (a) Position xp; (b) Position yp.

change value when the minimum and maximum thresholds
are reached, which leads to the actual control torques not
violating the asymmetry constraint (Fig. 13a). Since RAC
does not handle the influence of input constraints, the control
torques fluctuate enormously in the early stages (Fig. 13b).
After the algorithms converge, the actual control torques of
CHOC reach the optimal value while the torques of RAC do
not (Fig. 13). The simulation results show that CHOC has
better control performance than RAC.

B. EXPERIMENT
In this section, we present experimental results on Scorbot-
ER. Scorbot’s hardware is set up as follows (see Fig. 2):
The drive motor of the robot joints is a DC motor with a
built-in gearbox with a gear ratio of 127.7:1. In addition,
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FIGURE 15. Experimental results of the tracking error of CHOC and RAC in
the workspace: (a) CHOC; (b) RAC.

FIGURE 16. Experimental results: Position of point P of CHOC and RAC
after convergence.

the motors are equipped with optical encoders to measure
the angular velocity and angular position of the joints. The
control algorithms are implemented on the STM32F407
microcontroller. To interface the STM32F407 with the
motors, we use the L298 driver circuit.

For the CHOC and RAC algorithms, we use convergence
weights from simulation to make real-time learning faster.
The position tracking trajectories in the workspace of CHOC
and RAC are presented in Fig. 14. The position tracking
errors of CHOC in the workspace are shown in Fig. 15a,
indicating that the tracking errors are significant in the
early stages and small as the algorithm converges. Fig. 15b
shows tracking errors of RAC in the workspace. Comparing
the tracking errors of CHOC and RAC, we quickly see that
the tracking errors of CHOC are smaller than RAC. Fig. 16
presents the position of point P of CHOC and RAC after
convergence, showing that CHOC’s tracking performance is
better than RAC’s. Through experimental results, the control
effectiveness of CHOC has been verified.

A video illustrating experimental results can be found at
the following URL: https://www.youtube.com/watch?v=A-
S4Chi5798.

V. CONCLUSION
The H∞ optimal control algorithm has been proposed
for robot manipulators with asymmetric input constraints
and disturbances. The feedforward control is proposed
to transform the H∞ optimal control problem for robot
manipulators into the H∞ optimal control problem for
the affine systems. The constrained optimal control and
disturbance compensation laws have been built based on
ADP and the game theory. The proposed control algorithm
has been analyzed to show that the closed-loop dynamics
is UUB stable and the control parameters converge to
the near-optimal values. The performance of the proposed
algorithm has been verified through comparative simulation
and experimental results. CHOC can be developed to be
applied to multi-agent systems, such as decentralized control
of robot manipulators or some multiple robot manipulator
operations. Future work will focus on decentralized optimal
control of robot manipulators and distributed optimal control
for multi-robot systems.
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