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ABSTRACT Recent work in crowd counting focuses on counting over detected individuals rather than
estimating the number of people in the image. However, existing crowd localization methods directly detect
the head point or region of individuals, which may entail non-responsibility of the outputs that fall outside the
grid. Our proposed Pseudo Square Label Network (PSL-Net) presents a novel method for crowd counting and
localization, which takes advantage of the anchor-free detection in which PSL-Net predicts the probability
of the center point that fall into the responsible grid, while indirectly detecting an individual outside of
the responsible grid through box regression and centerness estimation. This study proposes to supervise
with pseudo square label(PSL), which is generated around point annotation with fixed size. Furthermore,
we design a partial many-to-one matching algorithm to assign precise labels by only matching within PSL
during the training phase, and associate the predicted points with their responsible grids through centerness
during the inference phase. As a result, not only PSL-Net achieves state-of-the-art on ShanghaiTech Part A
and B, which are the most popular datasets in crowd counting, but also achieves state-of-the-art among the
point detection-based methods in crowd localization.

INDEX TERMS Crowd counting, crowd localization, anchor-free object detection, point estimation, video
surveillance.

I. INTRODUCTION anchor-based detection with bounding box(bbox) [2], [3],

After the recent crowd incident [1], the necessity of crowd
counting, which estimates the number of people in crowd
images, has been raised in the field of crowd analysis.
In general, conventional crowd counting estimates the
number of individuals in the crowd using a neural network
that utilizes image patches or density maps. However,
users of surveillance systems in the real world expect to
monitor crowds and capture abnormal situations, which
cannot be achieved through conventional crowd counting
only. Therefore, the current crowd counting research has been
focused on crowd localization, predicting the exact location
of each individual, rather than solely predicting the number
or density map as in a general approach.

The crowd localization is distinguished into two repre-
sentatives as shown in Fig. 1. The first is conventional
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[4], [5], [6], displayed at the top, and anchor-based detection
with points [10], [11], [12], [13], displayed at the middle.
Additionally, there are segmentation-based approaches [7],
[8], [9]. The bbox detection method involves directly
predicting the left-top position of the head bbox (x, y), length
of the bbox side (w, h) and probability within a responsible
grid (i.e., a grid cell). Since there is one anchor point per grid
cell detecting bbox, there may be inevitable false negatives
when dense crowds occupy the same grid cell, as shown
at the top of Fig. 1. The point detection method involves
directly predicting the center coordinate (x,y) of the human
head and probability. However, there is no constraint on the
reachable distance from each anchor point. Consequently,
several anchor points exceed the responsible grid to match
with the ground truth(GT) points located outside of the grid,
leading to an increase in non-responsible predictions.

In order to compensate for the shortcomings of previous
methods, we propose a novel method, Pseudo-Square-Label
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FIGURE 1. Comparative illustration of head detection on crowd by ours between the

other method.

Network (PSL-Net), to indirectly estimate the center of
the human head region as the (X,y) coordinate form by
predicted Bbox as shown in Fig. 1. Specifically, for the
responsible prediction of the center point on the human head
region, PSL-Net uses the way of anchor-free object detection
that separates the anchor point on output and the center
point of the object. Therefore, unlike the previous anchor-
based works, which directly estimates the surrounding
Bbox area(x, y, w, h) [2], [3], [4], [5], [6] or the center
coordinates (x, y) [10], [11], [12], [13] of the human head
object for each anchor point, PSL-Net directly estimates
the distances (I, 1, t, b) from the anchor point to the four
sides of bbox containing the anchor point and indirectly
estimates the coordinate of the human head center point.
Thus, the responsibility of prediction on PSL-Net is always
preserved, even if the center point of the human head falls
the outside of the responsible grid, because every output
is generated from an anchor point fixed at the center of
the grid cell. PSL-Net also employs specific strategies to
ensure accurate predictions. During training, it utilizes a
partial many-to-one label assignment to create positive pairs
based on local adjacency. Meanwhile, PSL-Net estimates the
centerness of predictions in inference phase, which represents
the likelihood of a human head being present at each anchor
point. This approach minimizes the inclusion of irrelevant
positive samples during training and selects reliable outputs
with high probability and centerness in the inference phase.
Additionally, because the ultimate objective of PSL-Net
is to estimate head center coordinate precisely, the PSL-Net
does not need the costly man-made Bbox label which has
the same size with each head on training phase. Instead,
the PSL-Net make and use predetermined pseudo square
labels(PSL), which do not require additional optimization
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process fitting bbox to the real head size, to avoid expensive
annotation costs. The size of the predetermined PSL is
designated through grid search about the head object sizes,
which varies with distance, angle and resolution of the
camera, in crowd images. And as a result, PSL-Net utilizes
3 types of pseudo-square labels that are large enough to
recognize the existence of the human head with the naked eye.

In summary, The main contributions of this work are:

1) We propose the PSL-Net using the way of anchor-free
object detection to make responsible estimation of
head center points even if it is placed outside of the
responsible grid.

We propose a partial many-to-one matching algorithm
used in the training phase and centerness estimation used
in inference phase to accurately assign positive labels to
proximate ground truth-anchor pairs.

We propose a label assignment step using three types
of predetermined pseudo square labels without any
additional annotation costs. Additionally, PSL-Net can
be applied to crowd analysis tasks such as individual
recognition, tracking, or flow analytics at the crowd
level.

Our proposed PSL-Net achieves state-of-the-art perfor-
mance in crowd counting across multiple benchmark
datasets, surpassing existing point/box detection frame-
works in crowd localization benchmarks.

Following Sec.II briefly reviews existing studies in the
field of crowd counting and elaborates the head point
detection methods. Sec.III explains the details of the PSL-Net
such as responsible prediction on the inference phase,
label assignment algorithm on the training phase, and the
network design. Sec.VI presents experimental results of
PSL-Net and the performance comparison with other works.

2)

3)

4)
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Ablation studies and the consideration also explained in this
section. Finally, Sec.V provides a summary of this study.

Il. RELATED WORKS

This section reviews the related works for crowd counting
and crowd localization, a branch of crowd counting. The
works are based on bbox detection, segmentation, and point
detection, which are similar to the proposed methods.

Most of the recent works for crowd counting make the
density map on pixel level [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24] or image patch level [25], [26], [27]
to precisely estimate the number of people in a crowd.
They use effective spatial information extracted by various
local features and its fusion, context information extracted
through attention mechanism, and perspective information.
Those works have been nominated as a good candidate for
crowd surveillance systems. However, individual locations on
acrowd, which is required from recent crowd analysis, cannot
be identified by density map-based methods without an addi-
tional post-processing [28] or an independent localization
module [29] to find the peak point on the density map. Also,
even if additional processes to get individual locations are
used, it is still difficult to distinguish individuals in congested
crowds [15].

Crowd localization based on bbox detection has evolved
from redirecting general purpose object detection mod-
els [2], [5] to developing the optimized novel architec-
ture [30]. Furthermore, recent studies [3], [4], [7] devise
pseudo bbox label optimization that adjusts the size of
each person’s head, which uses additional modules or
optimization processes, to avoid the problems related with
annotation cost on crowd images. Most of these utilize the
way of anchor-based bbox detection that predicts the bbox
coordinates and the probability of the object at each anchor
point. In other words, visually identifiable objects can be
predicted on each anchor point. As shown in Fig. 1, if crowd
density increases, the number of people in each grid cell also
increases. Then it makes it challenging to predict bounding
boxes for each specific object due to object occlusion and can
significantly reduce performance by increasing the number of
false negatives.

Recently, the crowd localization based on the point
detection has been proposed to supplement the shortcomings
of bbox detection [10], [11], [12], [13]. These methods also
detect heads like the conventional anchor-based methods,
but the prediction objective is the center point instead
of the object region of the human head. Therefore, the
label takes the form of a coordinate (x,y) which helps
to minimize the limitations related to occlusion between
heads and avoid the shortcomings about costs of bbox
format annotation. P2P-Net [10] demonstrated exceptional
performance in high-density crowd images and has achieved
state-of-the-art results in several benchmarks in the field of
crowd counting.

To be more specific, P2P-Net [10] uses a convolutional
neural network (CNN) with an encoder-decoder structure to
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FIGURE 2. Non-responsible output example on P2P-Net [10].

form an output that is reduced to 1/s compared to the input,
as shown in Fig. 2. The output includes: (T) (Ax, Ay), which
is the mahalanobis distance between the anchor point (A, Ay)
and the predicted center point (Ax + Ax, A, + Ay) on the
target image, and (2) probability, which indicates whether a
human exists in the predicted location (). As long as P2P-
Net [10] uses an anchor-based detection that predicts the
coordinates and probability of the object at each anchor point,
the predicted probability (2) could be responsible only when
the predicted point (A + Ax, Ay + Ay) exist in responsible
grid cell region of its anchor point s X s in target image.

However, the anchor point on P2P-Net [10] can predict
coordinates outside of its responsible grid, as shown in
Fig. 2 and it cannot be responsible for the predicted
probability. In high-density crowd images, the number of
people in a responsible grid are increased and the number
of anchor points around the GT points are decreased.
Therefore non-responsible output is increased naturally and
the reliability of output would be decreased. Furthermore,
it is hard to determine the most confident prediction by only
probability among the candidate anchor points, and it can
cause multiple false positives.

lll. METHODOLOGY

This section describes the details on the proposed method,
PSL-Net. Firstly, we explain the inference process of
PSL-Net for responsible output, which is emphasized as the
main contribution. Next, the label assignment algorithm using
PSL is proposed. Finally, details about the network design and
loss functions are provided.

A. OUTPUT CONFIGURATION

As previously stated, PSL-Net indirectly detects the head
point based on the anchor-free detection inspired by
FCOS [41] to ensure responsibility of prediction. Therefore,
PSL-Net outputs the three predictions for each anchor point
of the output, as illustrated in Fig. 3.

(D Bbox distance B : The bbox regression denoted as
(I, r,t, b) is prediction of the distance from the anchor
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FIGURE 3. Responsible output example on our PSL-Net.

point to the outermost edge of the target object box, as in
anchor-free object detection. It is not necessary for the
center point of the predicted box to be on the responsible
grid. It is important that the anchor point must exist
inside the predicted box, and the center point of the
predicted box may exist outside the responsible grid of
the anchor point. The proposed method can preserve the
responsibility for the predicted point (i.e., the person’s
head), regardless of whether the head is within or outside
of the responsible grid.

() Probability P : The probability in object detection refers
to the confidence that the predicted box area belongs to
a specific class, regardless of whether an anchor-based
or anchor-free method is used. However, the proposed
method only requires the point of the head existing at
the center of the detected bbox rather than the entire
region of the head area. The proposed method predicts
the probability (2) of the head existing at the center of
the detected box area in (). Since each anchor point
predicts based on its responsible grid, the probability
may have different values when multiple anchor points
simultaneously predict the same head point.

(3 Centerness C : The estimation of centerness associates
the responsible grid with the predicted point in the
anchor-free method. It also indicates the normalized
distance between the center point of the head and the
anchor point, in the proposed method. The anchor-free
method does not consider the association between the
responsible grid and the predicted point. However, it is
natural that the closer they are to each other, the
more reliable the prediction is. Therefore, the proposed
centerness is used to estimate the reliability of the
predicted point in addition to 2).

Therefore, the proposed method evaluates the reliability
of the prediction using score in (1), which is calculated by
multiplying the probability by the weight obtained by the
square root of the centerness, unlike the existing methods
that use only the probability to distinguish positive and

VOLUME 12, 2024

GT Point with
Pseudo Square label

Negative Anchor Point

Positive Anchor Point

Matched pair of GT points
and Anchor points

FIGURE 4. lllustration of the partial many-to-one matching process.

negative results. In particular, \/E helps to further refine the
localization of the PSL-Net by assigning a higher weight
to the anchor point near the predicted point. Accordingly,
experiments related to C have been conducted (see Table 4).

score = P x \/E (1)

In summary, the proposed method preserves responsibility
for predicted points obtained through bbox regression,
whether they are located inside or outside the responsible
grid. Fig. 3 shows that the most reliable prediction can be
selected for accurate localization based on centerness, when
multiple anchor points predict the same GT point with high
probability.

B. LABEL ASSIGNMENT

The PSL-based label assignment algorithm is proposed to
distinguish the positive or negative predicted points for each
batch in the training process, which is the method of matching
the anchor point with GT based on their adjacency.

Our method is partial many-to-one matching, as shown in
Fig. 4. For each GT, The pair of the anchor point and GT
is matched based on the hungarian algorithm [31], which
minimizes the cost matrix of the adjacency and probability.
Based on the assumption that reachable distance from anchor
point to GT is limited to the radius y of inscribed circle of
the PSL. Since the hyperparameter y defines the maximum
margin between the anchor points and GT points, the optimal
value varies depending on the distribution of the distances
between anchor points and GT points in the input image.
The cost matrix M with respect to the adjacency Lpj,y and
probability P is defined as in (2):

M, G) = LppuA, G) - P;
l1Aj — Gill2 4
W p
where G denotes to the set of GT points G; (i € [0,1)),
and the A denotes to the set of the anchor points A; (j €
[0, J)) of the input image. As PSL for each G; is assigned
with a length of 2y, the each of elements in cartesian
product of A and G can be used to calculating the DIoU
loss [32] (Lpiu(G, A), £ € [0,2]) of bboxes BF’,BJA, and
the probability matrix also can be comprised from the each
pair. Therefore, the shape of the cost matrix M is (I, J).

By using the DIoU loss which is defined with the ratio
of the diagonal distance (d) to the L2-distance between

=1—IoUB" B®) +
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two boxes in the cost matrix, GT could be matched to the
nearest anchor points among the adjacent anchor points.
Additionally, the DIoU loss encourages the predicted points
to be close to the center of the head(i.e., GT), by suppressing
the large regressed bbox, so that the predicted point could be
near the responsible grid. During the one-to-one matching,
if the unmatched anchor point in PSL region is not remained,
the matched positive point with minimum DIoU could be
matched repeatedly with GT. It is also intended to be
suppressing the distant pairs as mentioned. As a result,
The proposed label assignment algorithm prepares the
asymmetrical pairs for training PSL-Net. In other words,
GT can be matched only with the single predicted point, while
the predicted point can be matched with multiple GT. The
aforementioned process is described in Algorithm 1.

Algorithm 1 Algorithm for Partial Many-to-One Matching

Require: N is the number of samples in an batch; I is the
number of the GT points in an image; J is the number
of the predictions in an image; G; is the set of GT, G; €
R&2, B;G’ is the set of PSL of the G;; A; is Anchor points
of Responsible Grid, A; € RMZ, BJA is the set of PSL of
the Aj; f’j is probability map of an image, fA’j e R*;D
is a function that calculates the DIoU loss between two
input boxes; H is a function that associates the two input
matrices

Ensure: X is a set of matched index of predictions; Y is a set
of matched index of GT

. X <0
22 Y <@

3: for0 <n < Ndo

4 let my be the pair-wise D of BA
and BG my € R™

5: let mp, be the pair-wise matrix of
i)j by G, my, € R/

M <~ mg —m,
: x,y < HM)

8: ind_x, ind_y < where(D(A,, G,) > 2)
maximum of DIoU is 2

9: for 0 < ix,iy <ind_x,ind_y do

10: Yiy < argmin(M,y)

11: end for

12: X=XUx

13: Y=YUy

14: end for

15: return X, Y

> The

In order to supervise the proposed method, the three
types of labels for each output are assigned to the positive
predicted points through the matching process: (1) PSL with
the length of 2y surrounding GT, 2) The one-hot encoding
of probability to be a head, (3) centerness C between GT and
their positive points via (3). On the other hand, the negative
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predicted points are only assigned the labels of 2).

I1Aj — Gill2
C*=1- ]T 3)
To ensure identification of individuals in densely populated
crowd images, we set (1) PSL large enough to identify for
the head rather than the fit bbox for each head. Therefore,
PSL-Net forwards the features of the contextually identifiable
bbox of the head with the background.
After assigning the label, the loss function is calculated
by taking the weighted sum of each output loss, as shown
in equation (4).

L =MLp+ MLp+ M3Lc 4

For the positive predicted samples, Lp is the loss function
for the output (D), and L¢ is the loss function for the
output (3), which is formulated as respectlvely (5),and (6). Lp
is DIoU loss of PSL BG and regressed bbox B of its matched
positive sample, and Lc¢ is the Cross Entropy loss [33] of
estimated centerness é’j and its label C;*.

Z Z 1% Lpiou (BY, B)) )

ZZ 177 Le(CF. C)) (6)

For training the cla551flcat10n, the loss function Lp uses
all predicted samples, including both positive and negative
samples from output (2). However, the probability of the
positive samples could be underestimated, as the proportion
of the number of positive samples / in the entire number
of samples J is significantly small, which result in the class
imbalance. Thus, we add Cross Entropy of positive samples
to the Weighted Cross Entropy [34] of the entire samples,
for intensifying the positive samples in the training process,
as shown in (7).

~|b;

1 J
23> 1Y Lew(Pi. Py)
1 ’ l0 J
_j{azz ObjLCE(PuP)
0 0

+(1-a) Z Z UL Byl @)

In addition, we use hyperparameter o to adjust the scale
of Weighted Cross Entropy, because the negative samples are
relatively large in number. Then we use the hyperparameter
B for Cross Entropy of the positive samples to avoid
overestimating the positive samples.

C. NETWORK DESIGN
The network architecture of PSL-Net consists of the three

steps: encoder, decoder and detector, as shown in Fig.5. The
VGG16BN [35]-based encoder extracts the low level feature
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FIGURE 5. Network architecture of our proposed PSL-Net.

map of 1/8 size and high level feature map of 1/16 size
from the input image, and then feed-forward to the decoder.
This hierarchical structure using multi-level feature maps
is commonly used in object detection methods [36], [37]
to extract a multi-scale feature. The decoder element-wise
summates the high-level feature map and the low-level
feature map using a convolution module that consists of a
3 x 3 convolution, batch normalization and dropout. More
specifically, the high-level feature map is upsampled to be
the same size as the low-level feature map for element-wise
summation. From this added feature map, the coarse feature
map is finally extracted by the convolutional module, then
forwarded to the detector. The detector is composed of the
three heads as follows : the classifier for probability P, the
box regressor for bbox B and the centerness estimator for
centerness C , where the activation function for each outputs
are softmax, relu, and sigmoid, respectively. In the case of
a box regressor, we restrict each side of the box to e to
avoid exploding gradients. There is no constraint for the
input size of the image, likewise in Fully Convolutional
Network [38]. Formally, if the input size of the image is
(H, W), the shape of the anchor points of each output is
H /s x W /s. In other words, the H /s x W /s of grid cells are in
the target image, where each cell has the size of s x s. In terms
of the computational cost, PSL-Net uses an anchor point in
each grid cell, whereas [10] uses four anchor points in each
grid. The number of parameters of PSL-Net is 19,203,400
while [10] has 21,579,344 parameters. Despite using only one
anchor point in each grid cell, PSL-Net has shown improved
performance.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) DATASETS
For an experiment and evaluation of the proposed method, the
most popular benchmark datasets such as ShanghaiTech [21]
and UCF-QNREF [39] for crowd counting, and NWPU [40]
for crowd localization are used.

ShanghaiTech [21] is a representative benchmark for
crowd counting. It devided into type A(SHTA) and type
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B(SHTB). While SHTA mostly consists of images of
extremely congested crowds, SHTB consists of images of
a relatively sparse crowd. Each type has 300, 400 training
data and 182, 316 test data. The average resolution of the
images in SHTA is 589 x 868, which is smaller than other
benchmarks, but, on average, 501 head annotations are spread
into each image. Also, the resolution of all images in SHTB
is 768 x 1024.

UCF-QNREF [39] is also a representative benchmark for
crowd counting. It contains 1201 training data and 334 testing
data with diverse information, such as a wide range of camera
angles, light variation, and crowd density distribution, which
can be used to make the crowd counting method. Also this is
a huge and well-generalized benchmark, which has a diverse
size of heads on multi-environment images compared to the
other benchmarks. So it is used to pre-train the proposed
method before its fine-tuning on evaluation phase.

NWPU-crowd [40] is the largest crowd localization
benchmark, consisting of 5,109 images with 2,133,375
annotations. This is a well-generalized higher resolution
benchmark, which has an average resolution of 2191 x
3209 and contains 351 negative samples. It also represents a
large appearance variation of the head and supports not only
point-wise annotation but also box-level annotation.

2) HYPERPARAMETERS, DATA AUGMENTATIONS AND
ENVIRONMENT
In the training phase, we use an Adam optimizer with a
learning rate of 1e-4 and a batch size of 16, and the resolution
of the input data on the batch is fixed to 128 x 128, which is
randomly cropped from the original input image. Also, the
hyperparameters for the loss function were experimentally
determined to be @ = 0.45, = 0.01, A1 = 0.1, »» = 0.01,
A3 = 0.01. In addition, the extremely high-resolution image
samples were downsized to 1792 x 2304 to avoid excessive
processing costs and too many negative samples from the
remaining anchor points, which would degrade the overall
performance.

To augment the input data, we adopted random scaling and
flipping and the other details of augmentation are the same as
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P2P-Net [10]. Additionally, the training and evaluation of the
proposed method is conducted on the server with the NVIDIA
RTX 3080Ti and Ubuntu LTS 20.04. and it is implemented by
PyTorch 2.0.1 and Python 3.9.16.

N
1 n
MAE = Z} Iy — I, (8)

MSE =

1

N Z(in - In)z

N n=1

(N : Num. of test imgs,

I, I, : Num. of GT and positive output on n'h img)
©)

To evaluate our PSL-Net on the benchmark datasets,
we measure the Mean Absolute Error(MAE) as in (8) and
the Root Mean Squared Error(RMSE) as in (9), which
are common metrics for evaluation in crowd counting.
Considering that most of the works using the formulation of
RMSE presented as Mean Squared Error(MSE), we refer to
RMSE as MSE when comparing with others.

In addition, we measure the precision, recall, and F1-score
on NWPU, which are commonly used metrics for crowd
localization evaluation.

B. EVALUATION

We evaluate the performance of our proposed method for
crowd counting based on SHTA, SHTB, and UCF-QNRF.
Also, we evaluate the performance of crowd localization
based on NWPU as well. Due to the extremely variable
attributes on the head size in the crowd image by its
resolution, we distinguish the proposed PSL-Net into 3 types
based on the hyperparameter y that used for training as
follows: PSL-Net(y = 18), PSL-Net(y = 24), PSL-
Net(y = 44). Accordingly, y of PSL-Net(y = 18) was
set to 18 considering the relatively low image resolution
and mostly small head size, y of PSL-Net(y = 44) was
set to 44 considering the high image resolution and mostly
large head size, and y of PSL-Net(y = 24) was set to
24 in between. y was determined by data analysis and
hyperparameter grid search of each benchmark dataset.

We compare the performance of crowd counting with
crowd counting methods and crowd localization methods
separately, as shown in Table 1, 2, respectively.

Compared to related works in Table 1, which only estimate
the number of crowds with a density map or image patch,
the three types of PSL-Net are superior to LovitCrowd [25],
which is state-of-the-art on SHTA. In particular, we focus on
the best-performing PSL-Net(y = 18), which achieved the
MAE of 49.9 and the MSE of 77.6, reducing the MAE by
4.9 and the MSE by 3.3 compared with the existing state-of-
the-art method. In addition, also on SHTB, all of the PSL-Net
outperformed the existing state-of-the-art GauNet [14]. The
PSL-Net(y = 24) reduces the MAE by 0.4 and MSE by 0.7.
PSL-Net(y = 44) achieved the second best performance on
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MAE and MSE with 85.5 and 144.4, respectively on QNRF.
Nevertheless, the proposed method not only reduces the MSE
by 9.3 with respect to the existing best MAE [14], but also
reduces the MAE by 1.5 with respect to the existing best
MSE [25]. These results imply that PSL-Net is comparable
to the state-of-the-arts on QNRF. Moreover, PSL-Net can
localize individuals in a crowd, which other works in Table 1
cannot do.

Table 2 shows the results of the comparison with related
works, which can localize individuals using bbox or point
detection or segmentation. The three types of PSL-Net are
superior to FGE-Net [11], which is the state-of-the-art on
SHTA. The best-performing PSL-Net(y = 18), reduces
the MAE by 1.7 and MSE by 7.4 compared with the
existing state-of-the-art method, as on SHTB, all the PSL-Net
outperform the existing state-of-the-art P2P-Net [10]. The
PSL-Net(y = 24) reduces the MAE by 0.4 and the MSE
by 0.7. Howerer, on QNRF, PSL-Net(y = 44) achieved the
best performance with respect to the MSE, and the second
best performance in terms of MAE. Since the difference with
the best MAE is only 0.3, while the MSE is improved by 10.1,
it could be considered comparable to the exisiting state-of-
the-art FGE-Net [11]. As a result, PSL-Net fully achieved
state-of-the-art based on MAE and MSE in SHTA, SHTB,
and comparable performance to state-of-the-arts in crowd
counting. As a result, for crowd counting, PSL-Net achieved
state-of-the-art based on MAE and MSE in SHTA, SHTB,
and comparable performance to the state-of-the-art on QNRF.

As mentioned above, we evaluate performance based
on the NWPU test dataset. Since NWPU consists of
particularly high-resolution images, the performance of our
PSL-Net(y = 44), which shows outstanding performance
on the high-resolution benchmark QNREF, is compared with
other state-of-the-art methods based on the point detection.
As shown in Table 3, the proposed method achieved the
best F1-score and recall compared to the existing state-of-
the-art point- based method [10], which improved by 1.5%
and 4.5% respectively. Even though the precision of ours is
1% lower than that of the existing state-of-the-art P2P-Net,
our PSL-Net demonstrates its superior performance in both
crowd counting and localization, considering that PSL-Net
outperformed P2P-Net in terms of MSE on QNRF.

C. ABLATION STUDY

1) EFFECT OF CENTERNESS AS A SCORE WEIGHT

Firstly, we examine the effect of the centerness C as the
weight for the inference score by the ablation study, as shown
in Table 4, where the scale of C is adjusted by the square
or the square root. As mentioned before, the scale of C
is amplified by its square root, while its scale is reduced
by the square of C, since ¢ hat ranges from 0 to 1.
In conclusion, the proposed method outperformed when
increasing the scale of C’, which implies that the centerness
of the predicted points is also important as the probability P.
However, the more amplified the scale of \/E (e.g.,{yg)

VOLUME 12, 2024



J. Ryu, K. Song: Crowd Counting and Individual Localization Using Pseudo Square Label

IEEE Access

TABLE 1. Comparison of the counting performance with state-of-the-art works for crowd counting only.

Method Strategy SHTA SHTB QNRF
MAE MSE MAE MSE MAE MSE
VGG+GPR [40] density map 112.4 176.9 13.1 19.4 203.5 3433
MCNN [21] density map 110.2 173.2 26.4 41.3 - -
DM-Count [18] density map 59.7 95.7 7.4 11.8 85.6 1483
M-SFANet+M-SegNet [15] density map 57.5 94.4 6.3 10.0 87.6 147.7
GauNet [14] density map 54.8 89.1 6.2 99 81.6 153.7
SESL [27] Image patch 82.7 122.8 14.9 255 145.8 249.0
TransCrowd [26] Image patch 66.1 105.1 9.3 16.1 97.2 168.5
LoViTCrowd [25] Image patch 54.8 80.9 8.6 13.8 87.0 1419
PSL-Net(y = 18) point detection 49.9(8.8%) 77.6(4.0%) 6.0 9.9 929 1564
PSL-Net(y = 24) point detection 50.6 79.0 5.8(5.3%) 9.2(6.9%) 87.9 148.7
PSL-Net(y = 44) point detection 50.4 77.9 6.1 10.0 855 1444
TABLE 2. Comparison of the counting performance with state-of-the-art works on crowd counting with localization.

Method Strategy SHTA SHTB QNRF

MAE MSE MAE MSE MAE MSE
Tiny Faces [2] bbox detection 237.8 422.8 - - - -
LSC-CNN [4] bbox detection 66.4 117.0 8.1 12.7 120.5 218.2
PSDDN+ [3] bbox detection 65.9 112.3 9.1 14.2 - -
Topocount [8] segmentation  61.2 104.6 7.8 13.7 89 159
Crowd-SDNet [12] segmentation  65.1 104.4 7.8 12.6 - -
RAZ [29] point detection 65.1 106.7 8.4 14.1 116 195
P2PNet [10] point detection 52.7 85.0 6.2 9.9 853 1545
FGENet [11] point detection 51.6 85.0 6.3 10.5 852 158.7
PSL-Net(y = 18) point detection 49.9(3.2%) 77.6(8.6%) 6.0 9.9 929 156.4
PSL-Net(y = 24) point detection 50.6 79.0 5.8(6.1%) 9.2(6.9%) 87.9 148.7
PSL-Net(y = 44) point detection 50.4 77.9 6.1 10.0 85.5 144.4(6.5%)

TABLE 3. Comparison of the crowd localization performance of point
detection methods on NWPU test dataset.

Methods F1-Score Precision Recall
RAZ [29] 0.599 0.666 0.543
CLTR [13] 0.694 0.676 0.685
P2P-net [10] 0.712 0.729 0.695
PSL-Net(y = 44) 0.727 0.719 0.735

TABLE 4. Experimental result with respect to centerness.

Score (Th >0.5) MAE MSE
P x QQ 50.96 79.58
PxC 50.86 79.79
Px Ve 49.97 77.67
Px Ve 50.14 78.01

could degrade the performance, implying that the essential
factor for classification is P in the end. Thus, the key effect
of C could be interpreted as the auxiliary weight to produce
the more reliable predictions among the candidates close to
the GT.

2) EFFECT OF MATCHING PROCESS CONFIGURATION

Then, as shown in Table 5, we evaluate the effect of the dis-
tance metric and the cardinality of matching used between GT
and anchor point in the label assignment during the training
process of the proposed method. In terms of the distance
metrics, we observe the difference between L2-Distance
used for matching by P2P-Net [10], and DIoU of the
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TABLE 5. Experimental result with respect to label assignment algorithm.

Matching Cardinality Distance metric MAE MSE
1:1 L2 distance 52.66 80.36
Partial N:1 L2 distance 55.87 86.54
1:1 DIoU with PSL  52.69 81.03
Partial N:1 DIoU with PSL  49.97 77.67

proposed method, and in terms of the matching cardinality,
we observe the difference between one-to-one matching and
partial many-to-one matching. The experiments with other
matching cardinalities are not implemented because, in the
case of one(many)-to-many matching, the accuracy decreases
due to the indiscriminately predicted positive sample, while
in the case of many-to-one matching, the negative sample
is excessively increased by sparse prediction, as indicated
in P2P-Net [10]. In terms of one-to-one matching, our
experimental results show similar performance regardless of
the distance metrics. We guess that this is due to the fact
that anchor points are assigned GT based on their distance
in both metrics. We also analyze that this might decrease
the reliability with respect to crowd localization, as it might
contain the pairs that are far from each other. In contrast,
in terms of our proposed partial many-to-one, the results
show that there is a huge gap between using DIoU and using
L2-distance, as the performance with DIoU is increased while
the performance with L2-distance is decreased. We interpret
this result that the relative distance by DIoU is more effective
than the absolute pixel-level distance by L2-distance, when
using the proposed method that allows the repeated anchor
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points of single GT. Also, we suggest that it is effective that
DIoU is based on the central distance.

3) EFFECT OF PSEUDO SQUARE LABEL

We explore the effect of the proposed PSL on the bbox
regression, as shown in Table 6. We compare the three types
of bbox labels. The ablation study on the bbox label used
the following settings: PSL generated by randomly selecting
y from the natural numbers in the range of 18 to 44, and
the man-made label fitting individual’s head annotated by
human, which provided by NWPU benchmark dataset, and
PSL generated by setting y to 44. As a result, our proposed
method with static PSL achieved the best performance based
on the overall metrics. In terms of Fl-score, the proposed
method improves by 3% compared to random PSL and
by 11% compared to the man-made labels. The man-made
labels have the strict matchable boundary for small scale
features in comparison to PSL, while they have the relaxed
matchable boundary for large scale features. Thus, frequent
false positives are caused by the strict man-made labels
lacking background or foreground information, since the
majority of crowd images have small heads, which makes it
difficult to accurately identify individuals.

TABLE 6. Experimental result with respect to Pseudo square label.

label F1-Score Precision Recall
Man-made Bbox Label 0.615 0.568 0.671
Pseudo Square Label(random) 0.691 0.717 0.667
Pseudo Square Label(static) 0.727 0.719 0.735

D. ANALYSIS

The purpose of our proposed PSL-Net is to accurately detect
individuals in a crowd with responsibility, which is based on
anchor-free object detection where the region of the detection
is auxiliary. Therefore, PSL based on y intends to provide
the appropriate region for PSL-Net to accurately predict the
center point of the head, instead of providing the exact region
of the individual head.

¥ (@) Annotated bbox to fit head size

(b) Pseudo square label on PSL-Net

FIGURE 6. Visual state of a person within the fit bbox(a) and within our
PSL(b).

In Fig. 6(a), It is challenging the supervision by the
label (a) without the contextual information of the back-
ground, as it is not clearly identified that there is a person
when annotated to fit the head size. Thus, we analyze that
PSL-Net does not require optimization or annotation for the
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(c) Visual difference based on resolution

(b) Visual difference based on camera angle

FIGURE 7. Visual state in crowd images based on attributes.

adaptation of PSL to fit the head size, which is demonstrated
by the ablation study. However, this doesn’t mean that y
always has to be large. The large y makes the supervision
of the proposed method challenging, as there are multiple
instances that do not require the background information in
the same PSL. Therefore, it is essential for PSL-Net to assign
the appropriate value to y .

We review the effect of y with respect to the benchmark
datasets, as shown in Fig. 7, 8. Each of the benchmark
datasets has differences in their attributes of distance, angle
and resolution, which affect the distribution of head size
in the crowd images. In accordance with the distance from
camera to the individuals, we observe the various scales
of the same image, as shown in Fig. 7(a). Even with the
same resolution, the prediction error in the left image could
significantly reduce the performance because the image is
dense and lacks human-like visual features. On the contrary,
the right image is sparse and intuitively identifiable as human,
thus the prediction error has a negligible impact on the overall
performance. In Fig 7.(b), according to the camera angle,
we observe that the visual features of the heads are clearly
different in spite of the similar scale. Fig. 7(c) shows the
two images that differ in resolution. The scale of the heads
in both images seems to be similar. Nevertheless, we notice
that it is more difficult to extract the visual feature of the
head from the left high-resolution image (560 x 560) than
from the right low-resolution image(160 x 160) when it is
cropped as a patch of the same size (60 x 60). Thus, we assign
different y to each benchmark dataset due to the imbalance
of information caused by the attributes mentioned above.

As shown above, we present the result of experiments that
PSL-Net is supervised under the three different y of PSL.
Each y of the PSL-Net is determined through the grid search
from 16 to 48, considering the attributes of each benchmark
dataset. The result shows that PSL-Net(y = 18) outperforms
on SHTA, which has high crowd density and low resolution,
PSL-Net(y = 24) outperforms on SHTB, which has small
resolution but relatively large head size due to low density of
crowd, and PSL-Net(y = 44) outperforms on UCF-QNREF,
which has relatively large head size and high resolution.
In Fig. 8, it can be seen that the visualization of the three
types of PSL which achieve optimal performance on each
benchmark dataset. Notably, the results show that PSL on the
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SHTA

SHTB

FIGURE 8. Visualization result of the three types of PSL on the representative image of each

benchmarks.

representative image of each benchmarks contains generally
visible features, which means the crowds in the image of
SHTA, SHTB, and QNRF are mostly covered but not much
overlapped by PSL with y = 18, 24, 44, respectively. Since
the image of QNRF has very high resolution, it can be
observed that PSL is about twice as large compared with
SHTA, while it is visually appropriate.

However, we found that the grid search or hyperparameter
tuning based on heuristics are inevitable, when it applied
to new datasets. Furthermore, in terms of label assignment
process, we found that the most of the target value of
the centerness is close to upper limit, following chi-square
distribution. Thus, In future research, we will devise to
determine y of PSL adaptively and to make the target value
of centerness follows the normal distribution for the purpose
of robustness on the various resolution.

V. CONCLUSION

We proposed a new crowd counting and localization method
PSL-Net based on pseudo square bbox label, which is
responsible for prediction through anchor-free detection and
precisely localizing individuals in crowd by the centerness
estimation. PSL-Net preserves responsibility of the pre-
dictions by indirect detection of the outside responsible
grid, unlike the existing point-based detection methods that
directly detect the coordinates of the heads. In addition,
PSL-Net estimates the centerness and bbox for the precise
localization, and includes a partial many-to-one algorithm to
match GT with the closest anchor point as possible. As a
result, PSL-Net achieved state-of-the-art on ShanghaiTech
Part A and Part B datasets, which are the most popular
datasets in crowd counting, and partially superior than
state-of-the-art on QNRF dataset. Furthermore, PSL-Net
outperformed other point-detection based methods on the
NWPU datasets, which is also a widely used dataset for
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crowd localization. In future research, we will expand our
method to enhance its robustness on multi-scale features,
including adaptive determination of y and improving the
representativeness of the centerness.
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