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ABSTRACT Accurate identification of rice ears is crucial for assessing rice yield. Present research
mainly relies on single-scale image data for rice ears detection and counting. However, these approaches
are susceptible to misdetection and omission due to the intricate environmental conditions in fields. The
combination of multi-source images can better overcome the limitations of single-scale images. In this study,
based on the YOLOVS5s target detection algorithm, a method for rice ears detection and counting applicable
to multi-source images is proposed by integrating image data collected by cell phones and UAVs during
the rice heading and maturity periods. The proposed method introduces Attention-based Intrascale Feature
Interaction (AIFI) to reconstruct the backbone feature extraction network, optimizing feature expression
interaction and enhancing handling of the model of advanced semantic information. Additionally, Simplify
Optimal Transport Assignment (SimOTA) is employed to achieve a more refined label assignment strategy,
thereby optimizing detection performance of the model and addressing difficulties in detecting multiple
targets in high-density rice ears environments. Finally, Channel-wise Knowledge Distillation for Dense Pre-
diction (CWD) is utilized to enhance the performance of the model in dense prediction tasks by transferring
knowledge between different channels. The experimental results demonstrated good performance of the
model on datasets comprising rice at the heading and maturity stages, achieving Precision, Recall, and mAP
values of 93%, 85.3%, and 90.3%, respectively. The coefficients of determination (Rz) for the linear fit
between test results and the actual statistical results of the model were 0.91, 0.91, 0.90, and 0.88, respectively.
The proposed model performs well in the mixed dataset and can be utilized more effectively for accurate
identification and counting of rice ears.

INDEX TERMS Rice ears recognition, YOLOv5s, CWD distillation, multi-source images.

I. INTRODUCTION

Rice serves as the primary food source for humankind, and
the stabilization of its production holds profound implica-
tions for global food security, agricultural economies, and
social stability. Ensuring accurate monitoring of rice pro-
duction is essential for agricultural producers to predict
harvests and devise plans for increased yields [1]. The
yield of rice and other cereal crops largely depends on
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the number of ears per unit area. In large-scale produc-
tion scenarios, traditional manual ears counting methods are
not only time-consuming and laborious but also prone to
errors [2], [3]. Therefore, there is an urgent need for an
efficient and accurate automated ears counting method that
meets the requirements of both production and scientific
research.

With the rapid development of artificial intelligence and
computer vision technology, many researchers have con-
ducted studies on rice ears recognition and counting [4],
[5]. Currently, Rice ears detection methods are mainly
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divided into two categories: image segmentation techniques
based on color, texture, and other phenotyping features,
and object detection techniques based on deep learning [6].
Reza et al. [7] converted UAV RGB images to LAB color
space, and based on color feature differences, rice ears
segmentation was performed using K-means clustering and
graph cut algorithms. The segmentation relative error ranged
from 6% to 33%, and the recognition accuracy was found
to be unstable. Hayat et al. [8] proposed an unsupervised
Bayesian learning method based on acquired UAV rice ears
images, which can classify the rice ears and perform seg-
mentation counting based on the statistical properties of
the pixels in the image, achieving an F1 score of 82.1%.
Shao et al. [9] combined the LC-FCN [10] model based
on transfer learning with the watershed algorithm [11] to
achieve field rice ears detection and counting, with an accu-
racy of 89.88%. The segmentation methods employed in
the above-mentioned studies have already achieved basic
recognition of rice ears. However, the application of such
methods in real field scenarios is relatively limited, with
exhibiting weaker robustness and universality. They are
mostly applicable only to upright and unobstructed rice
ears, making it challenging to identify information from
overlapping, irregular shapes, and rice ears in complex
backgrounds.

The target detection algorithm, based on deep learning
techniques, addresses the limitations of traditional image
segmentation methods by utilizing convolutional neural
networks (CNN) to extract more advanced feature infor-
mation (e.g., shape, attitude) of rice ears in paddy field
environments [12], [13]. Current deep learning models for
target detection are mainly categorized into regression-based
single-stage models (e.g., Single Shot MultiBox Detector,
You Only Look Once) [14], [15] and candidate region-based
two-stage models (e.g., R-CNN, Fast-RCNN) [16], [17].
In the application of the two-stage model, Zhang et al. [18]
optimized Fast-RCNN using dilated convolution and pro-
posed a multi-fertility rice ears detection model with a
mean Average Precision (mAP) of 80.3%. Xu et al. pro-
posed a multi-scale hybrid window rice ears detection
method, MHW-PD, based on convolutional neural networks
to enhance the feature richness of rice ears [19]. They
combined it with a fusion algorithm to reduce the prob-
ability of duplicate model detection frames, achieving an
average counting accuracy of 87.2%. Compared to the two-
stage model, the single-stage model can directly output
position and category information of the target without
the need for additional candidate region generation steps,
thereby possessing a faster detection speed. Zhou et al. [20]
improved the Visual Geometry Group Network (VGGNet)
[21] convolutional neural network framework and proposed
a region-based fully convolutional network rice ears detec-
tion model (R-FCN), which successfully mitigated the model
leakage problem by introducing a linear non-maximum sup-
pression method. The model achieved an accuracy of 86.8%
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on the UAV image test dataset. Sun et al. [22] proposed
a curved rice ears detection model based on YOLOv4,
utilizing the lightweight MobileNetV2 [23] as the backbone
feature extraction network. Convolutional Block Attention
Module (CBAM) is introduced in the image feature fusion
stage, and soft Non-Maximum Suppression (NMS) is used
to address the rice ears occlusion problem, achieving a
mAP of 90.32% and a frames per second (FPS) of 44.46.
Wang et al. [24] employed a novel method for removing
duplicate detection frames to optimize the YOLOvV5x model
and proposed a rice ears detection model named PanicleDe-
tect. They addressed the issue of missed detection of small
target ears by adjusting the resolution of the input image of
the model, achieving a mAP of 92.77% and a Mean Absolute
Percentage Error (MAPE) of 3.44%. However, most of the
above studies only focus on the detection and application
of single-scale image data, which is prone to misdetection
and omission when applied to the complex field environment.
Additionally, the constructed models have high requirements
on the data acquisition method and lack the versatility to
be tested on platforms of different scales. These problems
restrict the deployment of such methods in actual field
environments.

Therefore, in this study, an innovative and generalized
rice ears detection model was proposed based on YOLOVSs.
By thoroughly optimizing the backbone network and the
feature learning strategy, to ensure the model achieve good
detection results when dealing with images of rice ears from
various sensors and different growth periods. The main con-
tributions are summarized as follows:

1) A new rice ears dataset was established, compris-
ing Handphone and UAV images captured at the
heading and maturity stages. This dataset aims to
enhance the generality and generalization ability of the
model, enabling adaptation to platforms of different
scales.

2) The Simplify Optimal Transport Assignment (SimOTA)
method is introduced to optimize the label assignment
of rice ears. This approach enables a more detailed
understanding of the positional information of each rice
ears in the image, facilitating efficient identification
and localization of each rice ear.

3) The Attention-based Intrascale Feature Interaction
(AIFI) module is utilized to reconstruct the backbone
feature extraction network of YOLOvSs. This improve-
ment strengthens processing of advanced semantic
feature of the model

4) By employing the Channel-wise Knowledge Distilla-
tion for Dense Prediction (CWD) distillation method,
the student model AOD-YOLO is developed to learn
deeper features from the teacher model YOLOv5m.
This approach effectively enhances the recognition per-
formance of the student model in dense paddy fields,
achieving a balance between lightweight design and
accuracy.
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TABLE 1. Rice ears dataset.

Training Valid Test Total

Dataset

atase Set Set Set images
Heading Handphone 689 104 80 873
stage UAV 743 89 107 939
Maturity Handphone 481 51 59 591
stage UAV 235 24 23 282
Total 2148 268 269 2685

Il. MATERIALS AND METHODS

A. DATA SOURCES

The dataset for this study was obtained from Nanxun Dis-
trict and Deqing County, Huzhou City, Zhejiang Province,
China. To enhance the generalization ability of the model,
images of rice heading and maturity stages were captured
using three devices: the iPhone 14 Pro, Huawei Mate 50,
and DJI Mavic 3 UAV. These images were obtained from
diverse angles, heights, light intensities, sharpness levels, and
within complex surroundings featuring varying degrees of
object occlusion. Subsequently, image enhancement opera-
tions such as flipping, translation, panning, noise addition
were applied, resulting in a total of 2685 images. During
the field experiment, the Handphone was positioned directly
above the rice ears and into a 30-degree angle of about 400 ~
600 mm height focusing imaging. For the iPhone 14 Pro and
Huawei Mate50, the image resolutions were 4032 x 3024 and
4160 x 3120, respectively. There were 873 pictures taken
during the heading stage and 591 pictures during the maturity
stage. The UAV flew at a height of Sm above the rice canopy
and maintained a uniform speed of 3m/s, obtaining images at
1-second intervals. The image resolution was 5280 x 3986,
with a total of 939 images obtained during the heading stage
and 282 images obtained at the maturity stage. All images
were stored in JPG format, and the data descriptions are
shown in Table 1.

In this study, LabelMe (http://labelme.csail.mit.edu/
Release3.0/), a generic image annotation tool for target detec-
tion tasks, was utilized to annotate the rice ears images. The
primary focus was on annotating the living rice ears, while the
rest of the image components were uniformly labeled as back-
ground. The generated JSON file is then converted into a TXT
file containing class names and rice ears coordinates using
Python. The total number of input labels for model training
is 208,942. The processed dataset is randomly divided into
training, validation, and test sets in a ratio of 8:1:1, and the
labeled images are shown in Figure 1.

B. MODEL STRUCTURE AND OPTIMIZATION

1) YOLOv5s NETWORK

YOLO is a contemporary deep learning algorithm exten-
sively employed in target detection. It detects multiple
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FIGURE 1. Manual annotation of images for datasets.

target boxes and categories in an image simultaneously
through a single forward pass network. Compared to tra-
ditional two-stage detection algorithms, YOLO -captures
global image information, utilizes Anchor Boxes to accom-
modate multi-sized targets, and reduces computational
complexity. These characteristics provide it with an advan-
tage in real-time video processing and resource-constrained
environments.

YOLOVS is the fifth iteration of the YOLO series. Com-
pared to more advanced versions like YOLOv6 and YOLOV7,
YOLOVS5 demonstrates significant advantages in inference
speed, model weights, and memory usage, striking a balance
between real-time processing and accuracy. Additionally,
compared to YOLOvS8, YOLOVS boasts mature deployment,
wider usage, and superior performance on CPU. The network
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FIGURE 2. The network structure of YOLOv5s.

model structure of YOLOVS is divided into four versions:
YOLOVSs, YOLOv5m, YOLOvVSI, and YOLOVSx.

In this study, YOLOvSs was selected as the benchmark
model, suitable for real-time detection tasks on mobile
devices due to its fast execution speed and small parameter
amount. The network primarily comprises input, backbone
feature extraction network, neck network, and head network,
with the network structure diagram illustrated in Figure 2.
Additionally, three methods, namely SimOTA, AIFI, and
CWD distillation, were employed in this study to optimize
the YOLOVS5s network.

2) SIMPLIFY OPTIMAL TRANSPORT ASSIGNMENT

In the process of rice ears recognition using the YOLOvSs
model, the utilization of predefined anchor frames poses
challenges in accurately assigning relevant prediction frames
to true labels in complex surroundings. This issue becomes
more noticeable for rice ears exhibiting varying sizes, pos-
tures, and levels of occlusion. The traditional static label
assignment strategy with fixed thresholds often results in two
or more positive samples in the generated prediction box,
which fails to meet the stringent positional accuracy require-
ments, leading to false detections, omissions, and instances
of multiple detections.

To address these issues, the SImOTA method [25] is intro-
duced to optimize the label assignment of rice ears, enabling
a more detailed understanding of the positional information
of each rice ears in the image. SimOTA approaches the label
assignment problem from a global perspective, considering
the real box as the supplier and the model-predicted boxes in
the training data as the demanders. By defining the unit trans-
portation cost between each demander and supplier, it seeks
the optimal allocation scheme for positive and negative sam-
ples to minimize the global transportation cost. This approach
provides a more flexible and efficient label allocation, thereby
improving performance of the model in complex scenarios.
Specifically, Anchors are initially utilized for screening, tak-
ing into account factors such as location Intersection over
Union (IoU), background target, and category. Next, the loss
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function is calculated to construct cost and IoU matrices, and
k candidate boxes are dynamically assigned to each target box
based on the top 10 IoU values in the IoU matrix. Finally,
the top k candidate boxes are filtered according to the cost
matrix, excluding duplicate candidate boxes to identify the
best candidate box with the smallest cost value. The flowchart
of method is shown Figure 3.

Input | Centerpriog| . . |Screenout| Candidate boxes & o Confidence loss
(AGmN) Candidate regions al= 120 peis P! i

Dynamic_k

Best candidate

Regression loss
box it

G

FIGURE 3. SimOTA workflow.

where I represents the input rice ears image, A represents a set
of anchor points, G represents the real value labeling of the
rice ears in image I, m represents the number of iterations, and
A represents the weighting coefficient with a value of 5. Since
the study focuses on single-category target detection, the
transportation cost is primarily weighted by the weighted sum
of the confidence loss, cg.bj , and the bounding box regression
loss, ),C:.eg. The calculation method for the cost is shown as
Equation (1).

obj

W A (1)

C,'j =cC ij
cij represents the transportation cost of an instance of rice
ears in the image from the ith real box to the jth prediction

box.

3) ATTENTION-BASED INTRASCALE FEATURE INTERACTION
Due to environmental factors and growth conditions, rice ears
may fall, droop, and split, resulting in the mechanism of
fusing different scale feature information in the SPPF layer
of the YOLOvS5s backbone network inapplicable.

Therefore, in this study, the AIFI [26] module is intro-
duced to reconstruct the backbone feature extraction net-
work of YOLOvSs. This allows the model to focus more
intensively on learning the high-level features of the rice
ears (e.g., shape and pose), while reducing the process-
ing of low-level features. As a result, the model can
better distinguish between rice ears with different shapes
and levels of occlusion. The introduction of this module
effectively reduces the power consumption the compu-
tational resources of the model, improves robustness of
the model in practical applications, and enhances its suit-
ability for the task of rice ears detection in complex
environments.

Furthermore, to alleviate the impact of the AIFI module on
the weight of the model, this study reconstructs the backbone
network of YOLOvS5s. A Convolutional layer is introduced
before the AIFI layer to reduce the dimension of the fea-
ture map, consequently reducing the number of parameters
and computational workload of the model. The reconstructed
backbone network is shown Figure 4.
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FIGURE 4. Backbone network reconstruction figure.

4) CHANNEL-WISE KNOWLEDGE DISTILLATION FOR DENSE
PREDICTION

The rice ears recognition task encounters complex environ-
mental changes, uncertainty in lighting conditions, diversity
of rice ears poses, and occlusion. These factors contribute
to the poor performance of existing models in addressing
this task and make it challenging to achieve accurate rice
ears detection. To address the above-mentioned challenges,
this study introduces the CWD distillation method [27]. The
core idea of CWD distillation involves comparing the channel
attention distributions of the teacher network and the student
network. These distributions are treated as probability dis-
tributions, and the difference between them is measured in
terms of KL dispersion, which captures channel information.
This allows the student network to better leverage information
from the teacher network to enhance its perception and com-
prehension of fine-grained features. In addition, the method
retains high-level semantic information while focusing on
detailed features at the channel level. This enhancement
improves the accurate recognition of fine structures by the
student network, thereby better addressing the problem of
dense target recognition in complex scenarios. The loss func-
tion calculation method for CWD is shown in Equation (2).

2 C H

D33 i

c=1 h=1

Peac er L) k)
x log (M) )

Prudent (h, w, ¢)

Pteacher (h,w,c)

LCWD represents the loss function of CWD, T represents
the hyperparameter (temperature), H and W represent the
height and width of the feature map, h and w represent
the spatial location on the feature map, and C represents the
channel index. Pteacher (h, w, c) represents the probability of
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FIGURE 6. AOD-YOLO network structure.

the network of the teacher having channel c at location (h, w),
and Pstudent(h, w, ¢) represents the probability of the network
of the student having channel c at location (h, w).

In this study, YOLOv5m is chosen as the teacher network,
while the enhanced YOLOvSs network serves as the stu-
dent network. AIFI is introduced into the teacher network
YOLOv5m to align the structure of the backbone feature
extraction network between the two models. The distillation
process is illustrated in Figure 5.

5) MODEL OPTIMIZATION

Based on the methods of SImOTA, AIFI, and CWD described
above, this study proposes an improved rice ears detec-
tion model named AOD-YOLO. AOD-YOLO effectively
addresses the recognition challenges brought by dense occlu-
sion and shape variations of rice ears in practical paddy field
environments.

The model structure is shown in Figure 6. Among them, the
AIFI module replaces the SPPF layer in the YOLOVS5s back-
bone network, CSPdarknet53, enhancing the ability of the
model to extract high-level semantic features. This enables
the model to more accurately capture abstract information
related to the rice ears in the image, improving its ability
to distinguish rice ears with different shapes and degrees of
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occlusion. Simultaneously, the SImOTA method is employed
to optimize the label matching strategy of the model, improv-
ing its accuracy in label matching. This enables the model to
comprehend the location information of each rice ear in the
image more intricately, facilitating precise localization and
identification of rice ears within the image. Moreover, the
CWD method is applied to distill the three output layers of
the backbone feature extraction network. This facilitates the
transfer of knowledge from the teacher model to the student
model. The purpose is to guide the student model in acquiring
a more profound understanding of the detailed features of
rice ears, thereby enhancing the discriminative ability of the
model. This method helps address the challenge of dense rice
ears recognition in complex scenes.

C. MODEL PERFORMANCE EVALUATION

The commonly used model evaluation metrics in target detec-
tion tasks are mAP, Precision (P), Recall (R), Coefficient of
Determination (R%), Mean Absolute Error (MAE), and Root
Mean Square Error (RMSE).

P and R are defined as the ratios of TP to FP and TP to
FN, respectively. The IoU value was utilized to determine
whether the detection frame matched the rice ears bounding
box. Matched detection frames were labeled as true positives
(TP), unmatched ones were labeled as false positives (FP),
background regions mistakenly detected as rice ears were
labeled as true negatives (TN), and undetected rice ears were
labeled as false negatives (FN). Average Precision (AP) is
a metric that measures the accuracy of an object detection
algorithm at different confidence levels, while mAP averages
the AP values across all categories. Higher mAP values indi-
cate higher accuracy of the network in the object detection
task, serving as a comprehensive indicator of the overall
performance of the model. The calculation formulas are as
shown in equations (3) to (6).

TP
P= — 3)
FP+ TP
TP 4
" FN +TP “)
1
AP:/ P(R)d (R) 5)
0
mAP = M (6)
n

Model testing results were validated using the R2, MAE,
and RMSE. The R? is used to measure how well the model
fits the actual data, the MAE measures the average prediction
error, and the RMSE focuses on outliers and overall accuracy.
The calculation formulas are as shown in equations (7) to (9).

2 (Sj - 5}')2

RP=1- . (7)
2 Zj (Sj - S/’)z
1 m ~
MAE = — 37" |5, -5 ®)
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Ill. RESULTS

A. EXPERIMENTAL ENVIRONMENT

The hardware platform for training the rice ears recognition
model consisted of an AMD EPYC 7742 64-Core Processor
with 80 GB RAM and an NVIDIA GeForce RTX 3090 GPU
with 24 GB of video memory. The software platform used
included PyTorch 1.12.0, CUDA 11.3, and cuDNN 8.2, along
with Python 3.8.

The most suitable parameters are determined through
fine-tuning during the model training iterations. Stochastic
Gradient Descent (SGD) is selected for model parameter
optimization. The initial learning rate is set to 0.01, the
weight decay value is 0.937, the NMS threshold is 0.45,
the confidence threshold is 0.25, and the IoU threshold is
0.5. The cosine annealing method with learning rate decay
is employed for 300 training epochs (iteration rounds). The
batch size, representing the number of training images in each
batch, is set to 32.

As shown in Figure 7, the selected parameters are deemed
suitable for model training by observing the figure of the loss
function change. With the increase of epochs, the loss curve
gradually decreases and stabilizes, indicating that the model
has converged.

B. ABLATON EXPERIMENTS

To evaluate the performance of the AOD-YOLO algorithm in
rice ears detection, YOLOVSs is utilized as the base model.
The improved method is gradually introduced, and the effec-
tiveness of the improved method is verified through ablation
experiments. The results are presented in Table 2.

The experimental design is divided into three steps.
Firstly, the model label matching strategy is optimized by
introducing the SimOTA method. Without changing the
model size and computation, the experimental results show
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TABLE 2. Ablation experiments.

) Weights FLOPS P R mAP@0.5 mAP@0.5:0.95
SimOTA AIFI CWD MB) (% 10%) %) %) %) %)
- - - 13.7 15.8 92.3 82.9 88.4 0.553
N - - 13.7 15.8 92.4 83.9 88.9 0.552
J v - 14 15.7 92.5 83.9 89.2 0.554
v v J 14 15.7 93 85.3 90.3 0.577

TABLE 3. Comparison results of different models based on the same dataset.

Parameters Weight FLOPs P R o

Model * 109 (MB) * 107 ) %) mAP@0.5 (%)
YOLOV7-tiny 6 11.7 13 90 77.3 83.4
YOLOvV7 36.4 71.3 103.2 94.8 87.4 90.5
YOLOVSs 11.1 21.4 28.4 86.2 77 84.1
YOLOv8n 3 5.97 8.1 87 77 83.9
AOD-YOLO 7.1 14 15.7 93 85.3 90.3

that the P of the model improves by 0.1%, R by 1%, and 1.0

mAP by 0.5%, reaching 92.3%, 82.9%, and 88.45%, respec-

tively. Secondly, the AIFI module replaces the SPPF module

. . . 0.81

in the backbone network, and a new convolutional layer is

introduced to reconfigure the backbone network. Although

the model weights increase slightly by 0.3 MB to 14 MB, the .5 0.6/

computational effort is reduced by 0.1 x 10° to 15.7 x 10°. §

Accordingly, P and mAP are improved by 0.1% and 0.3% £ 041 —— YOLOVSs

to 92.5% and 89.2%, respectively. Finally, YOLOv5m was YOLOV5s-SimOTA

u§ed as the teacher model, and the YOLOV35s network Wlth 021 YOLOV5s-SimOTA-AIFI

SimOTA and AIFI was employed as the student model, which AOD-YOLO

underwent feature distillation using the CWD method. The

experimental results show that P, R, and mAP are improved 0‘%_0 02 0.4 0.6 0.8 1.0

by 0.5%, 1.4%, and 1.1% to 93%, 85.3%, and 90.3%, respec- Recall

tively. This study also tested the model using the P-R plot
curve method for the original network YOLOVSs and the
progressively improved network, as shown in Figure 8. The
larger the area under the curve (AUC), the better the detection
performance of the model. In conclusion, these three opti-
mization steps significantly improve the model performance
and effectively reduce the probability of false and missed
detections.

C. COMPRISON OF DIFFERENT DETECTION MODELS

Under the premise of ensuring the consistency of the dataset,
this study fully demonstrates the good performance of
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FIGURE 8. Precision - recall diagram.

AOD-YOLO by comprehensively comparing it with state-
of-the-art models in the YOLO series of current mainstream
target detection models. The specific comparison results are
shown in Table 3.

Compared to YOLOvV7 and YOLOvS8s, the AOD-YOLO
model achieves significant advantages in terms of the number
of parameters, computation, and weights. The number of
parameters of AOD-YOLO is 7.1 x 10°, the computation is
15.7 x 10°, and the weights are 14 MB, which are only 19.2%
and 63.9% of those of YOLOvV7 and YOLOv8s, respectively.
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Additionally, the mAP of the AOD-YOLO model is 6.2%
higher than that of the YOLOv8s, demonstrating superior
detection accuracy at a relatively small model size. Although
the mAP of the YOLOvV7 model is slightly higher than that
of the AOD-YOLO model by 0.2%, the weights, parame-
ter counts, and computation of YOLOv7 model are 5.09,
5.13, and 6.57 times higher than those of the AOD-YOLO,
respectively. Compared to YOLOv7-tiny and YOLOv8n,
AOD-YOLO demonstrates far superior detection accuracy,
with a P of 93%, R of 85.3%, and mAP of 90.3%. These
metrics are 0.3%, 8%, and 6.9% higher in AOD-YOLO
than in YOLOV7-tiny and YOLOV8n, respectively. Although
AOD-YOLO may be slightly inferior in lightweight met-
rics, its high level of detection accuracy makes it ideal for
real-world applications and helps avoid problems of missed
and false detections that can occur when models are deployed
on mobile devices.

The AOD-YOLO model is compared with the
YOLOv7-tiny, YOLOvV8n, and YOLOv8s models for real
picture detection, using a UAV photo and two Hand-
phone pictures taken from different angles for validation
experiments. As shown in Figure 9, the blue detection
boxes represent missed detections of rice ears for the
YOLOv7-tiny, YOLOvV8n, and YOLOv8s models relative to
the AOD-YOLO model, while the purple detection boxes
represent Mis-checked and over-checked detections of rice
ears by these models. Observing the experimental results,
itis evident that the AOD-YOLO model exhibits significantly
higher detection accuracy in complex field environments.
This suggests that the AOD-YOLO model has stronger
performance and robustness relative to the YOLOv7-tiny,
YOLOvV8n, and YOLOvVS8s models when dealing with the
task of rice ears detection under challenging background
conditions.

D. MODEL COUNTING VERIFICATION ANALYSIS

To comprehensively verify the robustness, effectiveness, and
generalization ability of the trained models in real-world sce-
narios, this study selects thirty Handphone images including
rice heading and maturity stages, as along with UAV images.
Each of these images is drawn from the test dataset and serves
as an evaluation sample. These field rice ears images will be
detected and counted using two models, AOD-YOLO and
YOLOVvSs, respectively. Linear regression analysis will be
used to evaluate the prediction effect of the models and further
measure the performance of the models in the detection of
rice ears at the heading and maturity stages.

As shown in Table 4 and Figure 10, the R? values of
the AOD-YOLO model for Handphone and UAV images at
the heading and maturity stages are 0.91, 0.90, 0.90, and
0.88, respectively. The MAE values are 3.87, 5.27, 4.73,
and 7.29, and the RMSE values are 5.04, 6.95, 6.05, and
9.38, respectively. For the YOLOvS5s model, the R? values
are 0.90, 0.88, 0.88, and 0.87, the MAE values are 4.51,
7.38, 5.96, and 8.32, and the RMSE values are 5.84, 9.12,
7.48, and 10.35, respectively. It can be observed that the
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FIGURE 9. A comparison figure of multi-model detection counts. Blue
detection boxes represent missed detections of rice ears relative to the
AOD-YOLO model. The purple detection boxes represent Mis-checked and
over-checked detections of rice ears.

prediction performance of the AOD-YOLO model proposed
in this study outperforms that of the original YOLOv5s model
for all datasets.

Among them, AOD-YOLO has better prediction perfor-
mance for Handphone and UAV images during the rice
heading growth period. This is attributed to the enhanced
ability of the model to accurately capture high-level features,
facilitated by the regular shape of rice ears and reduced
occlusion during the heading period. This aids in delicately
identifying the edges and shapes of each rice ears. The pre-
diction performance of AOD-YOLO in Handphone and UAV
images at the maturity stage is slightly weaker than that at
the heading stage. This is attributed to the fact that the rice
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TABLE 4. Accuracy evaluation of test results of different models.

MODEL STAGE  INSTRUMENT  R2 MAE RMSE MODEL STAGE  INSTRUMENT  R2 MAE  RMSE
Heading Handphone 0.91 3.87 5.06 Heading Handphone 090 451 5.84
ACD- stage UAV 090 527 695 stage UAV 088 738 912
YOLOVS5s
YOLO Maturity ~ Handphone 090 473  6.05 Maturity ~ Handphone 088 596  7.48
stage UAV 088 729 938 stage UAV 087 832 1035
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FIGURE 10. The linear fitting results of AOD-YOLO and YOLOV5s for rice
ears dataset from different platforms and growth stages are as follows:
(a) for the heading stage Handphone dataset, (b) for the heading stage
UAV dataset, (c) for the maturity stage Handphone dataset, and (d) for the
maturity stage UAV dataset.

ears are dense and the occlusion is increased, resulting in
blurred target edges, which makes it difficult for the model
to accurately identify and locate each rice ear. Additionally,
during this growth period, the overall structure of the rice ears
changes because it has been tilted, bent, and split, making
it difficult for the model to capture the complete shape of
the target. This leads to mis-checked and over-checked, and
affects the detection accuracy of the model.

VOLUME 12, 2024

IV. DISCUSSION

Existing studies typically concentrate on processing either
UAV or smartphone images but overlook the integration
of both, thereby limiting the generalizability of the model.
To address this problem, this study proposes a comprehen-
sive rice ears detection method, AOD-YOLO, which aims to
enable the model to accurately recognize rice ears in images
obtained by platforms with different scales across different
rice growth stages.

In addition to the YOLO series of the models, this study
also compares the performance of the proposed method
with other existing improved rice ears detection methods.
Including the improved YOLOv4 detection model for iden-
tifying curved rice ears using UAV images proposed by
Sun et al. [22], which has a mAP of 89% and an FPS of
44.46. The rice ears counting algorithm RFF-PC proposed
by Chen et al. [28], which employs a multiscale convolution
(MSConv) and feature pyramid fusion (FPF) strategy and has
an average counting accuracy of 89.80%. Zhang et al. [29]
proposed an improved rice multiple fertility detection model
based on Fast-RCNN, which utilizes Inception_ResNet-v2 to
reconstruct the feature extraction network and adopts the fea-
ture pyramid network (FPN) and regional proposal network
(RPN) fusion to integrate multi-scale semantic information,
achieving a mAP of 92.47% and FPS of 4.69. The compre-
hensive comparison results are shown in Table 5.

According to the comparison results, AOD-YOLO out-
performs YOLOv4, which introduces the CBAM attention
mechanism and MobileNetV2 lightweight feature extraction
network, with a 1.3% improvement in detection accu-
racy, a 65.54 improvement in FPS, and a detection speed
that is almost 2.5 times that of improved-YOLOvV4. Rela-
tive to RFF-PC, AOD-YOLO improves its detection accu-
racy by 0.5%. Compared to the improved Faster R-CNN,
AOD-YOLO is nearly 27 times ahead in terms of detection
speed, but its detection accuracy is slightly reduced by 2.17%.
This is due to the fact that improved Faster R-CNN is only
applicable to UAV images, which is a relatively simple task.

In summary, AOD-YOLO, a generalized rice ears detection
model constructed in this study, maintains satisfactory accu-
racy and efficient detection speed under bimodal demands.
The model is suitable for mobile hardware device deployment
and can accomplish real-time detection tasks in complex field
environments. The following study will focus on expanding
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TABLE 5. Comparing with the methods proposed in other rice ears
recognition studies.

Model mAP@0.5 (%) FPS
improved-YOLOv4 89.0 44.46
RFF-PC 89.8 NA
improved Faster R-CNN 92.47 4.69
AOD-YOLO 90.3 110

the size and diversity of the dataset to improve the detection
accuracy and generalization ability of the AOD-YOLO model
in complex environments. For the misdetection and omission
problems of the generalized model, it is planned to introduce
multi-task learning to share the underlying features, cross-
modal learning to mitigate the inter-instrument variations,
as well as weakly-supervised learning and active learning
strategies to improve the accuracy and generalization of the
model.

V. CONCLUSION

This study proposes a universal rice ears detection model
named AOD-YOLO. The model integrates the AIFI mod-
ule, SimOTA method, and CWD distillation technology to
optimize the backbone network and training strategy of
YOLOVS5s. This approach addresses the challenge of dif-
ficult detection of rice ears under complex environmental
conditions and multi-scale scenarios, caused by dense object
distribution, significant variations in object sizes, and severe
occlusions. AOD-YOLO achieved a mAP of 90.3% in the
experiment for rice ears recognition. In the datasets of both
handphones and drones during the heading and maturity
stages, the R? fit between the predicted and actual values of
the AOD-YOLO model was 0.91, 0.90, 0.90, and 0.88 respec-
tively. This study conducted comparative tests between
AOD-YOLO and various advanced YOLO series detection
models, demonstrating the superior detection accuracy of
AOD-YOLO. Moreover, this model possesses sufficient ver-
satility and can be easily deployed across different platforms
to accomplish real-time rice ears recognition tasks in actual
agricultural field environments.

REFERENCES

[1]1 Q. Zhang, “Strategies for developing green super rice,” Proc. Nat. Acad.
Sci. USA, vol. 104, no. 42, pp. 16402-16409, Oct. 2007.

[2] A. Ferrante, J. Cartelle, R. Savin, and G. A. Slafer, “Yield determination,
interplay between major components and yield stability in a traditional and
a contemporary wheat across a wide range of environments,” Field Crops
Res., vol. 203, pp. 114-127, Mar. 2017.

[3] G. A. Slafer, R. Savin, and V. O. Sadras, “Coarse and fine regulation of
wheat yield components in response to genotype and environment,” Field
Crops Res., vol. 157, pp. 71-83, Feb. 2014.

[4] J.Ma,Y.Li, K. Du, F. Zheng, L. Zhang, Z. Gong, and W. Jiao, “‘Segmenting
ears of winter wheat at flowering stage using digital images and deep learn-
ing,” Comput. Electron. Agricult., vol. 168, Jan. 2020, Art. no. 105159.

68646

[5]

[6]

[71

[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

X. Xiong, L. Duan, L. Liu, H. Tu, P. Yang, D. Wu, G. Chen, L. Xiong,
W. Yang, and Q. Liu, “Panicle-SEG: A robust image segmentation method
for rice panicles in the field based on deep learning and superpixel opti-
mization,” Plant Methods, vol. 13, no. 1, pp. 1-15, Dec. 2017.

Y. Yuan, L. Chen, H. Wu, and L. Li, ““Advanced agricultural disease image
recognition technologies: A review,” Inf. Process. Agricult., vol. 9, no. 1,
pp. 48-59, Mar. 2022.

M. N. Reza, I. S. Na, S. W. Baek, and K.-H. Lee, “Rice yield estimation
based on K-means clustering with graph-cut segmentation using low-
altitude UAV images,” Biosyst. Eng., vol. 177, pp. 109-121, Jan. 2019.
M. A. Hayat, J. Wu, and Y. Cao, “‘Unsupervised Bayesian learning for rice
panicle segmentation with UAV images,” Plant Methods, vol. 16, no. 1,
pp. 1-13, Dec. 2020.

H. Shao, R. Tang, Y. Lei, J. Mu, Y. Guan, and Y. Xiang, “‘Rice ear counting
based on image segmentation and establishment of a dataset,” Plants,
vol. 10, no. 8, p. 1625, Aug. 2021.

1. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and M. Schmidt,
“Where are the blobs: Counting by localization with point supervision,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 547-562.

A. Kornilov and I. Safonov, “An overview of watershed algorithm imple-
mentations in open source libraries,” J. Imag., vol. 4, no. 10, p. 123,
Oct. 2018.

M. Zhang, H. Lin, G. Wang, H. Sun, and J. Fu, “Mapping paddy rice
using a convolutional neural network (CNN) with Landsat 8 datasets in
the Dongting lake area, China,” Remote Sens., vol. 10, no. 11, p. 1840,
Nov. 2018.

A. Kamilaris and F. X. Prenafeta-Boldd, “Deep learning in agriculture:
A survey,” Comput. Electron. Agricult., vol. 147, pp. 70-90, Apr. 2018.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of YOLO
algorithm developments,” Proc. Comput. Sci., vol. 199, pp. 1066-1073,
Jan. 2022.

C. Ning, H. Zhou, Y. Song, and J. Tang, “Inception single shot MultiBox
detector for object detection,” in Proc. IEEE Int. Conf. Multimedia Expo
Workshops (ICMEW), Jul. 2017, pp. 549-554.

J. Xu, H. Ren, S. Cai, and X. Zhang, “An improved faster R-CNN
algorithm for assisted detection of lung nodules,” Comput. Biol. Med.,
vol. 153, Feb. 2023, Art. no. 106470.

P. Bharati and A. Pramanik, “Deep learning techniques-R-CNN to mask
R-CNN: A survey,” in Proc. CIPR, 2019, pp. 657-668.

Y. Zhang, D. Xiao, H. Chen, and Y. Liu, “Rice panicle detection method
based on improved faster R-CNN,” Trans. Chin. Soc. Agricult. Mach.,
vol. 52, pp. 231-240, Jan. 2021.

C. Xu, H. Jiang, P. Yuen, K. Zaki Ahmad, and Y. Chen, “MHW-PD:
A robust rice panicles counting algorithm based on deep learning
and multi-scale hybrid window,” Comput. Electron. Agricult., vol. 173,
Jun. 2020, Art. no. 105375.

C. Zhou, H. Ye, J. Hu, X. Shi, S. Hua, J. Yue, Z. Xu, and G. Yang,
“Automated counting of rice panicle by applying deep learning model to
images from unmanned aerial vehicle platform,” Sensors, vol. 19, no. 14,
p. 3106, Jul. 2019.

A. Vedaldi and A. Zisserman, “VGG convolutional neural networks prac-
tical,” Dept. Eng. Sci., Univ. Oxford, 2016, vol. 66.

B. Sun, W. Zhou, S. Zhu, S. Huang, X. Yu, Z. Wu, X. Lei, D. Yin, H. Xia,
Y. Chen, F. Deng, Y. Tao, H. Cheng, X. Jin, and W. Ren, “Universal
detection of curved rice panicles in complex environments using aerial
images and improved YOLOv4 model,” Frontiers Plant Sci., vol. 13,
Nov. 2022, Art. no. 1021398.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

X. Wang, W. Yang, Q. Lv, C. Huang, X. Liang, G. Chen, L. Xiong,
and L. Duan, “Field rice panicle detection and counting based on deep
learning,” Frontiers Plant Sci., vol. 13, Aug. 2022, Art. no. 966495.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021, 2021, arXiv:2107.08430.

Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and
J. Chen, “DETRs beat YOLOs on real-time object detection,” 2023,
arXiv:2304.08069.

C. Shu, Y. Liu, J. Gao, Z. Yan, and C. Shen, “Channel-wise knowledge
distillation for dense prediction,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 5291-5300.

VOLUME 12, 2024



F. Qiu et al.: Rice Ears Detection Method Based on Image Recognition and Attention Mechanism

IEEE Access

[28] Y. Chen, R. Xin, H. Jiang, Y. Liu, X. Zhang, and J. Yu, “Refined
feature fusion for in-field high-density and multi-scale rice panicle count-
ing in UAV images,” Comput. Electron. Agricult., vol. 211, Aug. 2023,
Art. no. 108032.

[29] Y. Zhang, D. Xiao, Y. Liu, and H. Wu, “An algorithm for automatic identi-
fication of multiple developmental stages of rice spikes based on improved
faster R-CNN,” Crop J., vol. 10, no. 5, pp. 1323-1333, Oct. 2022.

FEN QIU received the bachelor’s degree from
Zhejiang A&F University. Currently, she is with
Huzhou Academy of Agricultural Sciences. Her
research interests include plastic film mulching
cultivation of rice, acquisition of rice growth infor-
mation, and monitoring of rice quality.

XIAOJUN SHEN received the bachelor’s degree
from Guizhou Institute of Technology. He is
currently pursuing the degree with the School
of Information Engineering, Huzhou University,
with a focus on smart agriculture and agricultural
machine vision.

CHENG ZHOU received the Ph.D. degree from
Northeast Agricultural University. He is cur-
rently with the School of Information Engineering,
Huzhou University, with a focus on variable rate
fertilization and precision seeding equipment.

VOLUME 12, 2024

WUMING HE received the master’s degree from
Guangxi Normal University. Currently, he is
with the School of Information Engineering,
Huzhou University. His research interests include
intelligent information processing and embedded
systems.

LILI YAO received the Ph.D. degree from Nanjing
Agricultural University. He is currently with the
School of Information Engineering, Huzhou Uni-
versity. His research interests include the Internet
of Things, field sensors, and agricultural machine
vision.

68647



