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ABSTRACT Accurate segmentation of organs and lesions from medical images holds paramount impor-
tance in aiding physicians with diagnosis and monitor diseases. At present, the widespread application of
deep-learning in medical image segmentation is primarily attributed to its exceptional feature extraction
capability. Nonetheless, due to blurred target boundary, wide range of changes and chaotic background, the
segmentation of medical images is still faced with great challenges. To address these issues, we present a
multi-level feature integration network (MFI-Net) with SE-Res2Conv encoder for jaw cyst segmentation.
Specifically, we replace the original convolution operation with SE-Res2Conv to better maintain model’s
capacity for extracting features across multiple scales. Then, a novel context extractor module including
multi-scale pooling block (MPB) and position attention module (PAM), which aims to generate more
discriminative features. Finally, a multi-level feature integration block (MFIB) is implemented within
the decoder to efficiently integrate low-level detail features with high-level semantic features. Numerous
experiments were conducted on both the original and augmented datasets of jaw cyst to demonstrate the
advantages of MFI-Net, with results consistently superior to all competitors. The Dice, IoU and Jaccard
values of our method reached 93.06%, 93.47%, 87.06% in the original database and 91.25%, 91.94%, 84.06%
in the augmented database. Furthermore, the computational efficiency of MFI-Net is impressive, with a speed
of 106.21 FPS and 110.28 FPS at the input size of 3 x 256256 on a NVIDIA RTX6000 graphics card.

INDEX TERMS Image segmentation, jaw cyst, deep learning, SE-Res2Conv, multi-level feature integration.

I. INTRODUCTION

As a diverse benign pathological entity, jaw cyst can be man-
ifested in various forms, including rhizoid cyst, dental cyst
and odontogenic keratocyst, each of which has its own unique
morphological and clinical characteristics. In addition, jaw
cysts are often a precursor to complications that can lead to
tooth impaction, bone resorption, and the potential to worsen
a patient’s condition if left unaddressed. In the ever-evolving
field of health, medical imaging has become a cornerstone for
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clinicians and diagnostics to unravel the mysteries hidden in
the human body. Within this vast expanse, diagnostic radiol-
ogy emerged as a key discipline, harnessing the alchemical
power of high-resolution images to reveal complex details
of anatomy and pathology. Traditionally, the responsibility
for identifying and delineating these cystic structures has
rested solely on the oral and maxillofacial surgeon. Relying
on their professional experience and clinical acumen, these
practitioners have meticulously traced the boundaries of jaw
cysts through manual segmentation. However, this approach
comes with inherent limitations, and it requires a significant
investment of time and effort, resources that may be scarce
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FIGURE 1. Network architecture of our MFI-Net.

in a fast-paced clinical setting. Moreover, the possibility
of inter-observer variability and diagnostic inconsistencies
are introduced. To address these multifaceted challenges,
researchers can take advantage of the latest technologies
in the field of medical image analysis, especially machine
learning and deep learning. By harnessing the computational
power of these technologies, a large part of the diagnostic
workload can be reduced and the efficiency and accuracy of
jaw cyst diagnosis can be significantly improved.

Early image segmentation techniques, such as statistical
shape [1], [2], level set [3], [4], fuzzy clustering [5], [6].
Each approach has its own unique set of parameters that can
be fine-tuned to meet the specific needs of different medical
image scenarios. Although they play an important role in the
field of medical images, these algorithms still have certain
limitations when dealing with complex data sets. In addi-
tion, the segmentation performance can also be significantly
affected by external factors, including image acquisition qual-
ity, uneven lighting, and complex organized backgrounds.
In response to the above problems, various methods based
on deep learning [7], [8], [9], [10], [11], [12], [13] have
become the mainstream in the field of medical image seg-
mentation due to their powerful feature learning, end-to-end
training, adaptability and generalization. At present, many
researchers focus on fully convolutional networks (FCN) [14]
and U-shaped structures [15], [16], [17], [18], [19], which
usually employ encoder-decoder frameworks and thus per-
form well in simulating local features of images. However,
due to the limited receptive field of convolution operations,
these methods are often difficult to capture the global depen-
dence of features, which is particularly important in semantic
segmentation.

Recently, more variant networks have been proposed,
mainly including recurrent neural networks [20], [21],
multi-scale features [22], [23], residual connections [24],
[25], attention mechanisms [26], [27]. Among them,
Zhang et al. [28] introduced an encoder-decoder architecture
integrating multi-scale contextual information. Initially, the
encoder layer incorporates iterative input of the probabilistic
mapping derived from the preceding classifier, facilitating the
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fusion of high-order shape context and low-order appearance
features across multiple scales. Subsequently, dense connec-
tivity was employed to aggregate feature maps from encoders
and decoders operating at various scales. Li et al. [29]
presented an innovative approach to ophthalmic OCT seg-
mentation by integrating recursive residual networks with
attention mechanisms. Firstly, the recursive residual convolu-
tional network was introduced to address issues such as image
drilling and rapid degradation. Moreover, the attention mech-
anism was incorporated to enhance the utilization of global
image information. Mubashar et al. [30] proposed R2U~++-,
a novel method for medical image segmentation. Depart-
ing from conventional methods, this architecture substitutes
the standard convolutional backbone with a deeper recur-
sive residual convolutional block, which is more effective
extraction of key features for segmentation. Additionally,
the integration of a dense jump path serves to mitigate the
semantic gap between the encoder and decoder modules.
Xiong et al. [31] utilized compression-excitation and atten-
tion modules to construct a helically closed pathway, and
presented a novel U-Net (SEA-Net) for precise small target
segmentation.

Inspired by the above methods, this study presents a
multi-level feature integration network with SE-Res2Conv
encoder for jaw cyst segmentation. The experiment results
on both the original and augmented datasets of jaw cyst
show that the proposed MFI-Net network achieves significant
segmentation performance. Our major contributions can be
drawn as: 1) SE-Res2Conv was introduced as the encoder,
which can better maintain model’s capacity in extracting
features across various scales effectively. 2) Both the MPB
and PAM were incorporated into the context extractor module
to generate more discriminative features. 3) A multi-level
feature integration block was designed to integrate intricate
low-level detail features with broader high-level semantic
features.

Il. METHODS
In this section, a multi-level feature integration approach

is proposed for the precise segmentation of jaw cysts. Our
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FIGURE 2. Structure of SE-Res2Conv block.
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FIGURE 3. Structure of SE block.

method consists of three pivotal parts: encoder module, con-
text extractor module and decoder module, as delineated in
Figure 1. Detailed introduction will be given in the following
subsequent chapters.

A. FRAMEWORK OF MFI-Net

To fully utilize the available data information while reducing
the substantial computational resources typically required,
we chose the encoder-decoder solution provided by U-Net
architecture. In our approach, we carefully build each com-
ponent to meet its corresponding challenges and optimize
performance. Specifically, for the encoder module, we apply
the SE-Res2Conv block as a replacement for the conventional
convolution operation. This substitution not only avoids the
common problems of disappearing gradients and exploding
gradients, but also ensures efficient feature extraction without
incurring additional computational overhead. In addition, the
squeeze-and-excitation (SE) [32], [33] block is introduced
to enable network to dynamically enhance the response of
useful feature channels. Next, moving to the context extractor,
we develop a newly module that consists of the MPB and
the PAM. With this combination, it performs well at learning
complex semantic contexts and can provide more nuanced
feature maps. Finally, in the decoder stage, a multi-level
feature integration block is designed to yield better fusion per-
formance of low-level detail features and high-level semantic
features. In the following subsections, we will provide a
comprehensive introduction to each of these components to
clarify their performance contributions.

B. SE-Res2Conv BLOCK
As depicted the architecture of SE-Res2Conv in Figure 2,
an input feature map is splits into four distinct groups
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represented as {Xj, X2, X3, X4} based on their channel
attributes after the initial 1 x 1 convolution. Within this
framework, the first subset x; is directly transmitted to the
corresponding output y; without any additional processing,
preserving essential features. The second subset x» is con-
volved by 1 x 1 kernel and further divided into two distinct
pathways, one continues its propagation towards the desig-
nated output y, while the other diverges to merge with the
subsequent segment x3, so that the third subset can obtain
contextual information from previous layer. Similarly, the
derivation of y3 and y4 is similar to that of y,, except that
the third and fourth subsets utilize 3 x 3 and 5 x 5 convolu-
tional kernel. This diverse convolutional kernel architecture
enables the extraction of features at multiple spatial scales,
enriching the model’s understanding of the input data’s intri-
cacies. Then, the subsets {y1, y2, y3, ya} are merged and a
1 x 1 convolution layer is applied to refine and consolidate
the extracted features. After that, we introduce SE block to
dynamically enhance the response of useful feature channels,
and its structure is shown in Figure 3. In addition, in order to
prevent over-fitting and ensure the robustness and generaliza-
tion of the model, residual connection is employed to mitigate
the risk of feature degradation during training. In summation,
the modules built in the SE-Res2Conv architecture produce
a fine output segmentation prediction image, characterized
by enhanced feature representation and context understand-
ing, thus emphasizing the effectiveness of the architecture in
complex data processing tasks.

C. MULTI-SCALE POOLING BLOCK

In the context of jaw cyst images, the challenge of lesion
size change is a major obstacle in the segmentation process.
To solve this challenge, we present a multi-scale pooling
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FIGURE 5. Structure of position attention module.

block that relies on multiple effective fields of view to detect
targets of different sizes, as shown in Figure 4. Specifically,
the MPB strategically routes the incoming input image fea-
tures and passes them along five distinct paths. Among these
paths, one remains unaltered, directly passing the feature
map without any operation. However, the other four paths
use maximum pooling operations to reduce the resolution
to 1/2, 1/4, 1/6, and 1/8 of the original, thereby acquiring
different receptive field sizes. Following this phase, a 1 x
1 convolutional layer is applied to each path to extract and
assimilate multi-scale contextual information while simulta-
neously mitigating computational overhead by reducing the
dimensionality of weights. Subsequently, the feature maps
from the convolutional layer are up-sampled using bilinear
interpolation to restore them to the original dimensions and
retain important spatial information. Finally, the features
obtained from all five paths are connected and passed through
the final 1 x 1 convolutional layer to generate the final output
features. In this study, the step size and the kernel dimensions
are set to 2, 4, 6, 8, MPB can obtain the best segmentation
effect.

D. POSITION ATTENTION MODULE

The role of the position attention module is to promote
accurate and context-aware attention mechanisms within the
network framework. For an input feature map I € R€*#*W
the variables C, H, W representing the channel, height, and
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width dimensions. As shown in Figure 5, the module has
multiple branches, each designed to extract and manipulate
essential information from the input. In the first and sec-
ond branches, the input / is passed through the convolution
operation to obtain two distinct feature mappings, namely K
and Q. Following their derivation, K and Q are subjected to
a multiplicative interaction, and then the softmax function
is performed on the resultant matrix to obtain the position
attention map SP € RH>W)xHxW).
P exp(K; - O))

Sh= —— (1)
T IV exp(K; - )

where Sf;. denotes the influence of the position ith on the
position jth.

Subsequently, the feature map / is processed with a convo-
lution layer in the third branch, resulting in V € RC*H*W),
Similar to the other branches, the transformed feature map
V is subjected to multiplication by a permuted version of
the position attention map S”. Furthermore, to augment the
significance of this integration, the output is scaled by a factor
o and adding it to /, then the final output O is formulated:

HxW
0j=a Z (SEVi+ 1) )
i=1

It is obvious from Equation (2) that the output map O
aggregates the features not only from its own position but also
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incorporates the contributions of other locations, so that it can
expertly identify and prioritize relevant location information.

E. MULTI-LEVEL FEATURE INTEGRATION BLOCK

In the U-shaped framework, the decoder is designed for
the process of up-sampling the feature map generated by
the encoder and gradually restores the resolution. In addi-
tion, it also undertakes a critical feature fusion operation.
In traditional deep learning architectures, it is difficult to
capture global information from encoders through operations
like deconvolution, de-pooling, and bilinear up-sampling.
Previous studies have shown that the lower-level features
have higher resolution and contain finer location and detail
information, while the higher-level features exhibit stronger
semantic attributes. To improve the effect of algorithm,
we combine the low-level detail features with high-level
semantic features, and propose a multi-level feature inte-
gration block within the decoder, as shown in Figure 6.
The multi-level feature integration block is composed of
two modules: channel attention module (CAM) and spa-
tial attention module (SAM). Firstly, in the initial stage, a
1 x 1 convolution is applied to both high-level and low-
level features. Subsequently, we use the CAM go through an
average-pooling, 1 x 1 convolution, and the sigmoid function
for the high-level features, and then multiplies it with the
low-level features. While in the SAM, the low-level features
are averaged and maximally process to yield two-channel
features. These components are then meticulously channeled
into a shared multilayer perceptron architecture, where the
sigmoid function calculates the spatial attention feature map,
subsequently multiplied by up-sampled high-level features.
Finally, the above two features undergo addition, followed by
a 1 x 1 convolution to produce the final feature map. By inte-
grating semantic concepts and spatial details, the multi-level
feature integration block can enable networks to extract subtle
differences from complex data with greater efficiency.

F. LOSS FUNCTION

Given the constraints of a small dataset, coupled with vari-
ations in lesion sizes and disparities in foreground and
background distributions, the likelihood of encountering
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class imbalance issues is substantially heightened. Unlike
Cross-entropy loss [34], Dice loss [35] is widely favored for
its ability to handle class imbalance and its effectiveness in
producing accurate segmentation results even with limited
annotated data. Therefore, Dice loss is adopted in this paper,
and its calculation formula is as follow:

N A
2> yi9i
i=1

N 5 N 9 (3)
§n+§w
= 1=

Lpice = 1 -

where N is the number of pixels, §; and y; represent the
predicted segmentation masks and actual label, respectively.

Ill. RESULTS

A. DATASET

In this section, we meticulously assess the performance of our
MFI-Net on both the original and augmented datasets of jaw
cyst. The details of these datasets are as follows.

Original Dataset: We cooperated with the stomatology
department of Quzhou People’s Hospital to collect a dataset
of jaw cystimages. The images were primarily obtained using
the oral-maxillofacial conical beam computed tomography
device, and the dataset itself contained a large collection of
1535 images, of which 922 images were allocated for train-
ing, 307 images were set aside for validation, and 306 images
were reserved for rigorous testing to assess the generaliz-
ability and performance of our algorithms. Recognizing the
importance of standardization in data preprocessing, each
image is subjected to a rigorous adjustment procedure with
a size of 256 x 256 pixels.

Augmented Dataset: Different from conventional image
datasets, the collection of medical images is more diffi-
cult, and the accuracy and reliability of the marks are
strictly required. However, insufficient training data is easy
to over-fitting in the training stage, which leads to the reduc-
tion of algorithm accuracy. To mitigate the risks associated
with insufficient training data and over-fitting, we employ
data augmentation strategy (including rotation, scaling shifts,
translation, clipping), which is designed to diversify the
training data while maintaining its semantic integrity. In the
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FIGURE 7. Some original and augmented sample images of jaw cyst (top) with their corresponding labels

(bottom).
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FIGURE 8. Accuracy and loss curve of the proposed MFI-Net on the original jaw cyst dataset.

TABLE 1. Optimizer selection experiment of the proposed MFI-Net.

Optimizer Dice (%) IoU (%) Jaccard (%)
Adamax 90.55 91.40 82.97
AdamW 92.80 93.25 86.61
NAdam 92.71 93.18 86.47
RMSPro 92.35 92.90 85.92

Rprop 92.18 92.72 85.58
SGD 91.45 92.13 84.41
Adam 93.06 93.47 87.06

augmented dataset, we enhanced the training dataset and val-
idation dataset to obtain 2765 for training, 920 for validation,
and 917 for testing. Owing to limited space, Figure 7 only
provides some original and augmented sample images of jaw
cyst.

B. MFI-Net TRAINING AND VERIFICATION

The proposed network is implemented on windows 64-bit
system using the robust capabilities of PyTorch 1.8.0 library
and an NVIDIA Quadro RTX 6000 graphic card, boasting an
expansive 24 GB memory capacity. Subsequently, to optimize
the model weights more reasonably, we adopt the Adam as
optimizer. In addition, some additional hyper-parameters are
set: the batch size is 16, the number of iterations is 200, and
the initial learning rate is 0.001. To mitigate the detrimental
effects of model over-fitting, we employ a sophisticated strat-
egy known as early stopping. When the performance on the
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validation set is no longer increasing, we will stop the training
process to prevent the model from going deep into the over-
fitting region. Figure 8 is the accuracy and loss curve of the
proposed MFI-Net on the original jaw cyst dataset, where the
blue represents the training curve and the orange represents
the validation curve. It can be observed from the graphical
data that the MFI-Net achieves superior results in both the
performance metrics and the convergence rates throughout
the training and validation phases, without any over-fitting
or underfitting.

C. EVALUATION METRICS

In this paper, three vital indicators, including Dice [36], [37],
Intersection over union (IoU) [38], [39] and Jaccard [40],
[41], are employed to assess the performance of various
models, the details of which are calculated as:

. 2TP
Dice = ————— @
2TP + FN + FP
TP
IoU = ——— ©)
TP + FN + FP
TP
Jaccard = ———— (6)
TP + FN + FP

where TP and FP refer to true positive and false positive,
TN and FN stand for true negative and false negative.
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TABLE 2. Comparison experiment on the original jaw cyst dataset.

Method Dice (%) ToU (%) Jaccard (%) Params(M) FPS
U-Net [15] 90.62 91.49 83.13 1.94 252.18
DABNet [42] 91.55 92.20 84.54 0.75 108.20
EDANet [43] 90.59 91.53 83.20 0.68 15.32
BEMNet [44] 91.20 92.05 84.24 13.41 73.97
META-Unet [45] 90.73 91.63 83.42 21.70 88.07
AMFU-net [46] 91.85 92.45 85.04 0.47 62.72
OAU-net [47] 91.69 92.38 84.91 26.14 82.51
LFU-Net [48] 90.66 91.47 83.10 0.19 107.03
GCHA-Net [49] 92.37 92.91 85.94 441 165.92
MFI-Net 93.06 93.47 87.06 0.99 106.21

D. OPTIMIZER SELECTION

The selection of optimizer is critical as it influences how
quickly and accurately the model can converge to a solution,
especially in tasks requiring precise optimization. As shown
in Table 1, it is the experimental results for the different
optimizers (including Adamax, AdamW, NAdam, RMSPro,
Rprop, SGD and Adam) of the proposed MFI-Net method on
the original jaw cyst dataset. The results showed that Adamax
has the lowest performance among the tested optimizers with
90.55% Dice, 91.40% IoU, and 82.97% Jaccard. The main
reason is that the lack of adaptive learning rate limits the
effectiveness of the optimizer in complex tasks. In terms
of performance, the NAdam is very close to the AdamW,
with both slightly underperforming the Adam. But Adam per-
formed best overall, with Dice scores of 93.06%, IoU scores
0f 93.47% and Jaccard scores of 87.06%. Its adaptive learning
rate mechanism, efficiency in handling sparse gradients, and
ease of use make it the optimal choice for the MFI-Net model
in our framework.

E. COMPARISON WITH OTHER METHODS

1) EXPERIMENTAL ON ORIGINAL DATASET

To underscore the superiority of our method, we utilize the
original jaw cyst dataset to make meticulous comparisons
with a number of architectures such as U-Net, DABNet,
EDANet, BEMNet, META-Unet, AMFU-net, OAU-net,
LFU-Net, and GCHA-Net. These models represent the van-
guard of segmentation technology and have been carefully
evaluated, with their performance intricately detailed in
Tables 2. It’s noteworthy that U-Net, EDANet, META-Unet,
and LFU-Net exhibited relatively poor performance, indi-
cating they were unable to process the complexity of jaw
cyst images. Conversely, GCHA-Net’s ingenious integration
of both global and local attention mechanisms that allow it
to recognize overall structural features and complex details.
Compared with these nine networks with superior perfor-
mance, MFI-Net emerges as a standout performer, boasting
Dice, IoU, and Jaccard scores of 93.06%, 93.47%, and
87.06%, respectively. These metrics represent a significant
improvement over U-Net, with margins of 2.44%, 1.98%,
and 3.93%. The experimental results show that the proposed
SE-Res2Conv, MPB, PAM, and MFIB are effective, they can
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enhance the ability of the network to obtain feature informa-
tion and improve the segmentation accuracy.

To provide an intuitive comparison of segmentation perfor-
mance, the visualization results of our approach and various
typical methods are shown in Figure 9. As can be seen from
the figure, U-Net exhibits notable inaccuracies in segmenting
small jaw cysts, leading to discontinuous segmentation (the
third row of Figure 9). Inspiration from dilated convolu-
tion and dense connectivity, EDANet and LFU-Net achieve
performance comparable to U-Net (the fifth and tenth rows
of Figure 9). However, it is still fall short due to limita-
tions in receptive field and multi-scale feature extraction.
Addressing these challenges, DABNet regarded as a variant
of U-Net, is developed by depthwise asymmetric bottleneck,
to enhance the receptive field and exploit contextual infor-
mation effectively, as demonstrated in the fourth row of
Figure 9. More recently, BEMNet has further guided network
segmentation by introducing a new boundary enhancement
encoder-decoder into U-Net (the sixth row of Figure 9).
To further refine jaw cyst segmentation, AMFU-net and
OAU-net integrate residual attention blocks to expand the
receptive field. However, see the eighth and ninth rows of
Figure 9, there is discontinuity and false segmentation in
the segmentation results of AMFU-net and OAU-net, which
is caused by insufficient semantic and global context infor-
mation during the up-sampling process. In eleventh row of
Figure 9, GCHA-Net achieved the second-best results by
leveraging global and local attention mechanisms. In con-
trast, our approach is able to explicitly extend the receptive
field and utilize multi-scale feature maps, which are largely
thanks to our proposed SE-Res2Conv, MPB, and PAM.
This allows the comprehensive use of semantic informa-
tion at different scales and facilitates the fusion of different
scales through feature mapping weighting. Additionally, the
multi-level feature integration block efficiently combines
intricate low-level details with broader high-level seman-
tic features, culminating in superior segmentation results
compared to other methods, as shown in the last row of
Figure 9.

2) EXPERIMENTAL ON AUGMENTED DATASET
Furthermore, we further validated the performance of
our proposed MFI-Net method by conducting extensive
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FIGURE 9. Visual segmentation results of different methods on the original jaw cyst dataset. The first and second rows: original images
and their corresponding ground truth. The third to last rows are the results of U-Net, DABNet, EDANet, BEMNet, META-Unet, AMFU-net,

OAU-net, LFU-Net, GCHA-Net and MFI-Net.

experiments on the augmented jaw cyst dataset. Qualitative
visualizations are depicted in Figure 10 and segmentation
outcomes are thoroughly presented in Table 3. It could
be easily seen that the expansion of the dataset intro-
duces unique challenges to image segmentation, leading
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to instances of mis-segmentation and missing segmenta-
tion across all models to varying degrees. Consequently,
there is a noticeable reduction in their respective Dice, IoU,
and Jaccard values. Despite these challenges, our proposed
method outperforms all competing approaches across all
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FIGURE 10. Visual segmentation results of different methods on the augmented jaw cyst dataset. The first and second rows: original images
and their corresponding ground truth. The third to last rows are the results of U-Net, DABNet, EDANet, BEMNet, META-Unet, AMFU-net,
OAU-net, LFU-Net, GCHA-Net and MFI-Net.

evaluation metrics, boasting an impressive Dice coefficient efficiently handling the complexity of augmented datasets.
of 91.25%, IoU score of 91.94%, and Jaccard index of Thus, it demonstrates its superiority in accurately delineat-
84.06%. This superior performance underscores the robust- ing the boundaries of jaw cysts amidst the augmented data
ness of the MFI-Net method and highlights its accuracy in variability.
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TABLE 3. Comparison experiment on the augmented jaw cyst dataset.

Method Dice (%) ToU (%) Jaccard (%) Params(M) FPS
U-Net [15] 89.58 90.58 81.37 1.94 254.54
DABNet [42] 90.50 91.29 82.79 0.75 115.14
EDANet [43] 89.26 90.29 80.81 0.68 14.58
BEMNet [44] 90.61 91.43 83.05 13.41 73.63
META-Unet [45] 90.35 91.19 82.58 21.70 92.24
AMFU-net [46] 90.12 90.97 82.16 0.47 61.01
OAU-net [47] 91.14 91.84 83.85 26.18 72.79
LFU-Net [48] 88.13 89.36 78.97 0.19 105.96
GCHA-Net [49] 91.00 91.71 83.61 441 162.96
MFI-Net 91.25 91.94 84.06 0.99 110.28

3) COMPLEXITY AND OPERATIONAL EFFICIENCY

In addition, we utilize two key metrics: parameters (Params)
and frame per second (FPS) to evaluate the efficiency of
the above methods. These metrics are key for evaluating the
effectiveness and practical applicability of different neural
network architectures, while also taking into account the
complexity of the model and the speed of computation in
the inference process. As listed in Table 2 and 3, As shown
in Tables 2 and 3, our MFI-Net shows a significant balance
between model complexity and inference speed. By using
relatively few parameters, our model achieved high FPS rates
of 106.21 and 110.28 on both the original jaw cyst dataset
and the augmented dataset. Although slightly slower than
models like U-Net, DABNet, and GCHA-Net, our MFI-Net
offers significant performance improvements. Considering
the substantial advances in segmentation accuracy and overall
model robustness, it is considered acceptable.

F. ABLATION STUDIES

To delve more profoundly into the understanding of the
SE-Res2Conv, MPB+PAM, and the multi-level feature inte-
gration block, we use ablation experiments to dissect the
individual contributions of these modules. Initially, establish
the original U-Net architecture as our baseline. Subsequently,
we integrate the aforementioned components one by one.
Finally, the Dice, IoU and Jaccard are employed for per-
formance evaluation. Both quantitative and visual results
on the original jaw cyst dataset are presented in Table 4
and Figure 11, providing a comprehensive overview of our
findings.

1) EFFICACY OF SE-Res2Conv

Firstly, the proposed SE-Res2Conv is integrated into the
Baseline, with a comprehensive visualization showcased in
the third and fourth rows of Figure 11. This addition notably
enhances the segmentation accuracy of the Baseline, as evi-
denced by its ability to capture a more extensive array of
vessel pixels. From Table 4, we can confirm that after adding
SE-Res2Conv to the Baseline (Baseline + SE-Res2Conv),
all evaluation metrics have improved to a certain extent.
Notably, when compared to the Baseline, the Dice, IoU,
and Jaccard scores improve from 90.62%, 91.49%, 83.13 to
91.60%, 92.38%, and 84.89%, increasing by 0.98%, 0.89%,
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and 1.76%, respectively. The main reason is attributed to
the introduction of SE-Res2Conv as an encoder, which can
better maintain model’s capacity in extracting features across
various scales effectively.

2) EFFICACY OF MPB+PAM

In the second stage, we incorporate the MPB and PAM
into the context extractor module to replace the traditional
convolutional layers. As shown in Table 4, there has been
a significant improvement in segmentation performance.
In addition, a more detailed evaluation of the segmentation
results is provided through visual representations in the fifth
row of Figure 11. It is worth noting that the Baseline model
enhanced by MPB+PAM shows significant proficiency in
segmenting large and small objects, especially in depicting
cysts characterized by large-scale changes in low contrast
areas. Overall, the combination of the Baseline model with
the (MPB+PAM) configuration has been proven to be very
effective in our framework.

3) EFFICACY OF MFIB

Third, we introduce the MFIB into Baseline architecture,
denoted as (Baseline + MFIB), with the aim of evaluating
its effectiveness. Since the Baseline network lies in its uti-
lization of simple jump connections at each layer to depict
local information, the semantic information cannot be fully
explored. As illustrated in the sixth row of Figure 11 and a
comprehensive analysis presented in Table 4, by seamlessly
integrating semantic concepts and spatial details, our MFIB
can enable networks to extract subtle differences from com-
plex data with greater efficiency.

4) EFFICACY OF FUSION MODULE

Finally, to effectively convey contextual information,
we design a fusion module (Baseline + SE-Res2Conv +
(MPB+PAM) 4+ MFIB) by combining SE-RES2CONY,
MPB+PAM and MFIB. As seen from the last row of
Figure 11, compared with the Baseline network, our approach
is able to capture relatively complete topology and refined
segmentation results. As shown in Table 4, our approach
shows tremendous improvement in the Dice, IoU, and Jaccard
scores, which is 2.46%, 1.98% and 3.93%, respectively,
compared to the Baseline network. As can be seen from the
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FIGURE 11. Visualization results of ablation studies. The first and second rows: original images and their corresponding ground truth. The
third to last rows are the results of Baseline, Baseline + SE-Res2Conv, Baseline + (MPB+PAM), Baseline + MFIB, Baseline + SE-Res2Conv
+ (MPB+PAM), Baseline + SE-Res2Conv + MFIB, Baseline + (MPB+PAM) + MFIB, and Baseline + SE-Res2Conv + (MIPB+PAM) + MFIB.

TABLE 4. Ablation experiment on the original jaw cyst dataset.

Model Dice (%) IoU (%) Jaccard (%)

Baseline 90.62 91.49 83.13

Baseline + SE-Res2Conv 91.60 92.38 84.89

Baseline + (MPB+PAM) 92.06 92.67 85.46

Baseline + MFIB 91.68 92.36 84.86

Baseline + SE-Res2Conv + (MPB+PAM) 92.48 92.99 86.12

Baseline + SE-Res2Conv + MFIB 91.97 92.54 85.21

Baseline + (MPB+PAM) + MFIB 92.59 93.08 86.28

Baseline + SE-Res2Conv + (MPB+PAM) + MFIB 93.06 93.47 87.06
visual and statistical results, each component in our model is by combining these components together. Therefore, the

effective, and the best segmentation results can be obtained proposed approach is well suited for jaw cyst segmentation.
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IV. CONCLUSION

To address the complex difficulties related to insufficient
contextual information and the loss of details pertaining to
jaw cyst, a new multi-level feature integration network is
developed. Our framework consists of three primary compo-
nents: encoder module, context extractor module and decoder
module. In particular, by employing the SE-Res2Conv struc-
ture, the capacity to capture information across various scale
receptive fields has been significantly improved. Further-
more, integrating MPB with PAM resulted in the generation
of features with greater distinctiveness. Lastly, a multi-level
feature integration block has been devised to efficiently
integrate low-level detail features with high-level semantic
features. The effectiveness of MFI-Net has been confirmed
through evaluation on newly constructed original and aug-
mented jaw cyst datasets, where it demonstrated superior
performance over other contemporary state-of-the-art seg-
mentation techniques.
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