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ABSTRACT This paper proposes a novel relay algorithm to optimize the communication throughput of
unmanned aerial vehicle (UAV) mobile relay formations while considering the challenges posed by obstacle
avoidance, channel complexity, high dynamics of UAVs, and real-time mission requirements. To tackle
the non-convex nature of this problem, we develop the unscented Kalman filter and hybrid particle swarm
optimization (UKF-HPSO) algorithm. Initially, real-time prediction of the source and destination of UAV
positions is accomplished using the UKF. Subsequently, these predicted coordinates serve as inputs for
achieving the optimal deployment of relay UAVs under the constraints imposed by HPSO. The superiority of
the UKF-HPSO algorithm compared to baseline approaches is demonstrated through extensive simulations.
System throughput is effectively optimized while maintaining real-time performance by our proposed
algorithm, which addresses the unique challenges of UAV communication in dynamic environments.

INDEX TERMS Unmanned aerial vehicle (UAV), relay communication, real-time optimization.

I. INTRODUCTION
Recently, with the advancement of unmanned aerial vehicle
(UAV) and the miniaturization of communication equipment,
UAVs equipped with communication devices have received
increasing attention due to their rapid deployment and
flexible operation [1], [2], [3]. To adapt to the burstiness
of traffic demand and the uneven distribution of traffic
in time and space, using UAVs as communication relay
nodes for on-demand deployment has gradually become a
research hotspot for beyond fifth-generation (B5G) and sixth-
generation (6G) wireless networks [4], [5].

A. UAV RELAY MECHANISM
The UAV relay mechanism refers to the process of estab-
lishing a relay link with UAV as the intermediate node and
transmitting data between two distant nodes. Its main purpose
is to achieve data transmission between UAV and ground
terminal or UAV and UAV. From the perspective of the
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channel, it can be divided into two aspects: Air-to-Ground
(A2G) and Air-to-Air (A2A).

Zhan et al. [6] proposed a communication system that uses
UAVs as relays between ground terminals and network base
stations. To quantify the link performance, they defined the
Ergodic Normalized Transmission Rate (ENTR) of the link
between the ground node and the relay. The results verified
the feasibility and excellent performance of using UAVs as
relays. This study has led the trend in research on UAV
relay communication, especially in the A2G direction, over
the past decade. Zhou et al. [7] introduced an A2G and
A2A cooperative vehicular networking architecture, where
multiple UAVs are utilized as relays to assist the ground
vehicular sub-network, forming an aerial sub-network. This
two-layer cooperative networking scheme can be applied
in various scenarios such as disaster rescue and pollution
area investigation. This study explored the A2A direction of
UAV relaying early on, providing insights for extending its
applications.

In [8], Zeng et al. used UAVs as mobile relays to study
maximizing throughput in a mobile relay system, with
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practical mobility constraints. The results show significant
throughput gains by optimizing the relay’s trajectory and
power allocation, a method referenced in many later studies.
For example, Zhang et al. [9] developed a solution for joint
optimization of trajectory and power control, minimizing
relay network interruption probability. The proposed scheme
outperforms fixed power relays and circular trajectory
schemes. Moreover, [10] optimized UAV trajectories and
scheduling in post-disaster scenarios to provide wireless
services for the ground equipment of surviving Base Stations
(BSs), enabling information exchange between the disaster
area and the outside world.

Researchers have consideredmore factors in the UAV relay
mechanism, such as forwarding methods, channel models,
and multiplexing techniques. In [11], reliability metrics were
used to explore relay forwarding methods, showing that
Decoding and Forwarding is more reliable than Amplify and
Forward. Reference [12] conducted a study on the channel
model, considering Path Loss exponents and Small-Scale
Fading, and constructed a practical wireless network analysis
model. Reference [13] studied a UAV-based mobile cloud
computing system using Non-Orthogonal Multiple Access
(NOMA) and Frequency Division Duplex (FDD), achieving
lower energy consumption than local mobile execution
methods.

Recently, the UAV relay mechanism has been combined
with cutting-edge communication technologies, such as
Mobile Edge Computing (MEC), Intelligent Reflecting
Surfaces (IRS), and Integrated Satellite-Unmanned Aerial
Vehicle-Terrestrial Networks (IS-UAV-TNs). In [14], UAVs
and MEC servers provided services to multiple IoT termi-
nals, optimizing bit allocation, time slot scheduling, and
power allocation to minimize total energy consumption.
Reference [15] proposed a framework for an integrated
relay system with UAVs and IRS, improving communication
between ground nodes and optimizing system parameters.
In [16], NOMA technology was combined with Cognitive
Radio technology in the IS-UAV-TN framework to improve
spectrum utilization. The paper also derived expressions
for primary and secondary network traversal capacities,
validating the mathematical derivation through simulation
results and analyzing the impact of system parameters on
transmission performance.

Overall, [6], [7] laid the foundation for relay research in
both A2G and A2A directions, while [8], [9], [10], [11],
and [13] enriched the relay mechanism in terms of through-
put, forwarding methods, and multiplexing technologies.
However, they employed relatively simplified approaches
to channel modeling in communication scenarios, typically
considering only line-of-sight (LOS) links. Reference [12]
introduced a path loss index correlated with height and
considered small-scale fading, but did not construct a separate
channel model for application scenarios. References [14],
[15], and [16] combined UAV relay communication with
cutting-edge technologies, taking channel conditions only

FIGURE 1. Mainstream UAV path planning algorithms.

as the foundation and focusing more on optimization at the
application layer.

There is limited research on channel models in this field,
particularly for high-rise dense urban scenarios. The channel
parameters are not closely aligned with the real environment.
Most studies adopt simplified channel models, with relatively
few analyses of scenarios that simultaneously consider both
LOS and non-line-of-sight (NLOS) links.

B. UAV PATH PLANNING
The main purpose of UAV path planning is to determine
the most efficient and effective path for the UAV to reach
its designated destination while fulfilling the necessary relay
services. In order to achieve this goal, the path planning
algorithm must take into account various factors such as the
location and distribution of obstacles, the UAV’s speed and
altitude capabilities, the communication range of the relay
network, and the overall mission objectives.

The mobile relay method proposed by Zeng et al. [8] has
introduced research in the direction of path planning for UAV
communication.

In the past decade, the development of path planning algo-
rithms focused on two-dimensional (2D) environments has
grown exponentially. However, due to physical, geometric,
and time-related factors, these algorithms cannot help UAVs
navigate in three-dimensional (3D) environments [17].

Starting with the path selection algorithm for UAVs,
Wang et al. [18] studied the optimization of search path
planning in multi-UAV relay scenarios. By optimizing the
decision of choosing the information propagation path, the
issues of interruption and distortion in UAV communication
were improved. Wu et al. [19] designed an iterative algorithm
based on the block coordinate descent method and Successive
Convex Optimization (SCO) method, combined with UAV
power control and path planning to optimize the commu-
nication scheduling of multiple users, and maximize the
throughput of a multi-UAV assisted communication system.
Zhao et al. [20] introduced Computational Intelligence (CI)
methods into the UAV system and proposed an efficient path
planning algorithm based on modeling and learning, which
improves the performance of the communication network.

With the development of 5G communication in recent
years, Al-Turjman [21] focused on network security issues,
proposing a more comprehensive and detailed concept,
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TABLE 1. Summary of research on optimization of UAV communication.

including security behaviors such as network identifica-
tion, authorization, deployment control, confidentiality, and
availability.

In general, the mainstream UAV planning algorithms can
be classified into different categories based on underlying
principles and methods [22], as illustrated in Figure 1.

Despite the introduction of various intelligent algorithms
in [17] and [19], current research in this field mostly involves
non-real-time simulations of the entire flight trajectory of
UAVs. These methods can meet overall functional require-
ments, and can be combined with other metrics for joint
optimization [18], or incorporate cutting-edge thinking in
the field [20]. However, planning the entire trajectory of
UAVs directly from the source point to the endpoint without
performing real-time calculations of UAV states at each point
in time does not align with actual engineering application
scenarios, indicating insufficient real-time performance.

C. UAV COMMUNICATION OPTIMIZATION
The optimization ofUAVcommunication is a critical research
area that aims to enhance the efficiency and reliability of com-
munication in UAV networks by adjusting various parameters
such as UAV position, speed, communication protocols, and
routing algorithms. To evaluate the performance of UAV
communication, researchers often use communication rate,
throughput, interruption probability, and other indicators.

In the context of UAV relay communication, it is essential
to deploy UAVs in three-dimensional space to ensure optimal
resource allocation and meet the communication require-
ments of users. However, this approach presents numerous
challenges, including power consumption, interference, and
limited coverage range. Over the years, many studies have
proposed innovative solutions to overcome these challenges,
and Table 1 summarizes some of the key research in this field.

The genetic algorithm utilized in [23] may encounter local
optima problems, where the population gets stuck and fails

to escape because selection and crossover operations rely
on the optimal solution of the current population. Similarly,
the particle swarm optimization algorithm in [24] may also
face the same issue, as some particles can get trapped in
local optima and fail to escape due to the restricted updating
mechanism. Although the spiral algorithm introduced in [27]
is a relatively new optimization algorithm that can search
for solutions in high-dimensional space, it is also susceptible
to the problem of getting stuck in local optima. This
issue of local optima is a common challenge faced by
traditional optimization algorithms, especially when dealing
with complex optimization problems.

In [25] and [26], the simulation scenarios were simplified
and did not consider practical constraints such as UAV
flight speed. The scenario considered in [28] is more
comprehensive, but the algorithm has strong limitations and
is only suitable for solving specific problems. In [29], the 3D
deployment of UAVs is related to the amplification factor,
and a combination of Gradient Descent (GD) and convex
optimization algorithm is used, but the presence of obstacles
in the flight scenario is not taken into account. Currently,
many algorithms are designed for a single scenario and lack
scalability, with little consideration given to practical issues
such as flight speed and obstacle avoidance.

In previous works, various optimization methods have
been proposed to maximize throughput in multi-UAV
communication systems [14], [30], [31], [32], [33]. For
example, a block coordinate descent and successive convex
optimization (SCO) algorithm was utilized in [19] to
optimize communication scheduling, power control, and path
planning. Cache-enabled UAVs were studied in [34], where
enumeration search and caching optimization techniques
were employed for optimal deployment. Another study [35]
focused on throughput optimization in a non-orthogonal
multiple access (NOMA)-based cognitive radio (CR) sys-
tem with multi-UAV trunking, using a hybrid search
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method combining particle swarm optimization (PSO) and
continuous genetic algorithm (CGA). However, these studies
have overlooked important factors such as NLOS links and
obstacle avoidance in complex flight scenarios. Additionally,
they often assume static or slow-motion relays, which may
not accurately reflect real-world UAV operations.

In addition, a number of reinforcement learning methods
are currently being applied in this area [36], [37], [38],
[39], [40]. In [41], a novel multi-agent deep reinforcement
learning based algorithm called MAQMIX was developed
for dual-hop UAV to minimize data transmission time
and improve network throughput. In [42], the problem
of maximizing the communication rate under guaranteed
secure transmission constraints was considered, and the
optimization of trajectory and transmit power was achieved
using a proximal policy optimization (PPO)-based approach.
However, these reinforcement learning methods rely on
pre-training and also require high computational power in
their derivation, which is not suitable for the easy deployment
and high real-time performance required by algorithms for
large-scale UAV application scenarios.

In this paper, we propose a novel approach that combines
the unscented Kalman filter (UKF) algorithm with the hybrid
particle swarm optimization (HPSO) algorithm to maximize
the throughput in complex channels. The major innovations
include

1) Amore realistic simulation environment is constructed,
i.e., relay nodes are considered to be moving at high
speeds in three dimensions and the channel model
contains NLOS and LOS factors.

2) A real-time high-precision 3D trajectory prediction
algorithm is developed to fit the non-linear motion
characteristics of UAVs.

3) Combining Simulated Annealing (SA), Adaptive
Inertia Weights (AIW) and Penalty Function (PF),
an HPSO-based optimisation algorithm is proposed
to solve the non-convex problem of throughput
optimization.

The remainder of this paper is organized as follows.
Section II presents the channel model and the throughput
model. Section III demonstrates the proposed optimization
mechanisms, including an algorithm for real-time prediction
of UAV 3D trajectories and an algorithm for optimizing UAV
formation throughput. Section IV provides simulation results
to validate that the proposed technique has better performance
compared to baseline scheme. Finally, Section V concludes
the paper.

II. SYSTEM MODEL
Fig. 1 shows a temporal discretization of the multi-UAV
relay process, where the total duration is T , divided into N
time points. Suppose that the source UAV (SUAV) and the
destination UAV (DUAV) are required to perform different
missions with uncorrelated trajectories and are therefore
likely to leave their respective communication areas. Coupled

FIGURE 2. Illustration of the multi-UAV relay communication model.

with the presence of clutter channel fading and obstacles, it is
necessary to deploy a relay UAV (RUAV) to help re-establish
the communication link between the SUAV and the DUAV.
In our model, mobile relaying is performed by decode and
forward (DF) to ensure the reliability of data transmission,
with each UAV having the same transmit power Pt and a
sufficiently large buffer.

A. CHANNEL MODEL
To investigate the problem of relay communication in UAV
formations, we establish an air-to-air channel model between
UAVs. Considering the blockage of buildings, the channel
transmission coefficient h is determined by the composite
fading model composed of a Friis equation and a fading
channel distribution with the height-dependent Rician factor.

Large-scale fading The large scale fading hL takes the
following form

hL =

(
λ

4πd

) ρ
2

10
RSS−Pt−Gt−Gr

10 (1)

where RSS(dB) stands for received signal strength with the
following form

RSS(dB) = Pt + Gt + Gr + 10 log10

(
c

4πdfc

)ρ

(2)

in which Pt is the transmit power, Gt is the transmit antenna
gain of the UAV, Gr is the receive antenna gain of the UAV,
fc is the communication frequency, c is the approximation of
the speed of light, d is the distance between the transmit and
receive antennas in meters, and ρ is the path loss exponent,
which is a constant corresponding to the flight environment.

Small-scale fading The probability density function of
small-scale fading f (x, h) can be written as

f (x, h) =
x

σ 2(1 + K (h))

× exp
(

−
x2 + K (h)x2

2σ 2(1 + K (h))

)
I0

(
x
√
2K (h)

σ 2(1 + K (h))

)
(3)

hS =

√
π/2σ (1 + K (h))√
E[x]2 + Var[x]

(4)
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where x is the amplitude of the signal, hS represents the
small-scale fading coefficient. K (h) is the Rician factor
dependent on UAV flight height, σ 2 is the power spectral
density of the noise, and I0 is the zero-order modified Bessel
function to account for the effect of random phase on the
signal amplitude, E[x] =

√
π
2 σ (1 + K (h)), Var[x] =

1
2 (1 −

2
π
)σ 2(1 + K (h)).
We set the channel composite fading coefficient h as the

product of hL and hS [43], which can be expressed as follows:

h =

(
λ

4πd

) ρ
2

10
RSS−Pt−Gt−Gr

10

√
π/2σ (1 + K (h))√
E[x]2 + Var[x]

(5)

B. THROUGHPUT MODEL
Combining the channel conditions, the communication rates
of the SUAV and RUAV are as follows:

Csr [n] = B log2

(
1 +

hsr [n]Ps
Pn

)
(6)

Crd [n] = B log2

(
1 +

hrd [n]Pr
Pn

)
(7)

where B represents the bandwidth of the channel, Ps and Pr
denote the transmission power of the S-UAV and R-UAV, and
Pn is the noise power at the receiving end. hsr [n] and hrd [n]
represent the transmission coefficients based on (5).

At time n, the SUAV, DUAV, and RUAV are positioned
respectively, at Xs[n](sx[n], sy[n], sz[n]), Xd[n](dx[n], dy[n], dz
[n]) and Xr[n](rx[n], ry[n], rz[n]). The Euclidean spatial
distance between the SUAV and RUAV is denoted as
dsr [n], while the distance between the RUAV and DUAV
is denoted as drd [n]. To ensure communication stability,
obstacle avoidance, and adherence to UAV flight speed
constraints, the formulated system throughput maximization
problem is as follows:

max
N∑
n=1

min(Csr [n],Crd [n])S

F
(

S
Csr [n]

+ Tint + Tdf
)

+ F
(

S
Crd [n]

+ Tint + Tdf
)

(8a)

s.t. Csr [n] ≥ Crd [n] (8b)

Dobs[n] ≥ Dmin[n] (8c)

|Xr [n+ 1] − Xr [n]| ≤ Vrmax (8d)

where F is the number of data packets transmitted, S is the
size of each data packet, Tint is the fixed inter-transmission
time, and Tdf is the relay processing time. The distances
from the obstacle and the minimum safe distance are denoted
as Dobs[n] and Dmin[n] respectively. Additionally, Vrmax
represents the maximum flight speed of the RUAV.

III. PROPOSED OPTIMIZATION MECHANISM
A. REAL-TIME PREDICTION OF UAV 3D TRAJECTORIES
State Equation Based on the motion characteristics of
the UAV, 9 parameters including coordinates, velocities,
and accelerations in 3D are selected to construct the state

Algorithm 1 UKF-Based UAV Trajectory Prediction
1: Input: Initial state X0, initial covariance matrix P0,

process noise covariance matrix Q, measurement noise
covariance matrix R, state transition function f , obser-
vation function h, number of sigma points n, scaling
parameters α, β, κ

2: Output: Predicted UAV position pk+1
3: for i = 0, . . . , 2n do
4: Calculate sigma-points X ik−1 and weightsW i

m, W
i
c

5: end for
6: for i = 0, . . . , 2n do
7: Propagate sigma-points X ik−1 through f to get X ik|k−1
8: end for
9: Compute predicted state Xk|k−1 and covariance Pk|k−1

using UT
10: for i = 0, . . . , 2n do
11: Transform propagated sigma-points X ik|k−1 through h

to get Z ik|k−1
12: end for
13: Compute predicted observation Zk|k−1 using UT
14: Compute Kalman gain Kk = PxzS

−1
k using Pxz and Sk

15: Compute innovation yk = Zk − Zk|k−1
16: Update state estimate Xk = Xk|k−1 + Kkyk
17: Update covariance matrix Pk = Pk|k−1 − KkSkKT

k
18: Apply state transition function f to predicted state

Xk|k−1
19: return predicted UAV position pk+1

equation:

Xk = AXk−1 + wk−1 (9)

where Xk represents the state vector at time k , A is the
state transition matrix and wk−1 is the process noise at time
k − 1.
Observation Equation Suppose the observation point

is located at (x0, y0, z0), the observation is based on the
Euclidean distance in space, and the observation equation can
be formulated as:

Zk =

√
(x − x0)2 + (y− y0)2 + (z− z0)2 + vk (10)

where Zk and vk represent the observation vector and the
observation noise at time k , respectively.
Kalman filter assumes Gaussian distributions for states

and observed variables, limiting its applicability to linear
systems. To handle the non-linear characteristics of UAV
flight, we incorporate the unscented transformation (UT)
into the Kalman filter framework. The UT preserves the
non-Gaussian distribution and enables efficient numerical
computation, as demonstrated in Algorithm 1.

B. UAV FORMATION THROUGHPUT OPTIMIZATION
1) PENALTY FUNCTION (PF)
The optimization problem formulated in (8a) has some
constraints, so we introduce the PF in the fitness function of
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Algorithm 2 HPSO-Based Throughput Optimization
1: Input: Coordinates of the SUAV Xs[n] and DUAV Xd[n],

UAV flight parameters, terrain and obstacle parameters,
penalty factors λ1, λ2 and λ3

2: Output: Maximum system throughput, optimal deploy
position of RUAV Xr[n]

3: Initialize: Initial temperature TSA, cooling rate λSA,
number of iterations max_iter , number of particles
pop_size, personal best position pbest , global best
position gbest , and channel transmission coefficients h

4: for t = 1 toM do
5: for i = 1 to N do
6: Update the particle position x t+1

i and velocity vt+1
i

7: Evaluate the fitness function f (x t+1
i )

8: Update the AIW ωt+1
i

9: end for
10: for i = 1 to N do
11: if x t+1

i violates constraints then
12: Apply the PF to x t+1

i
13: else
14: if f (x t+1

i ) ≥ f (pbest ti ) then
15: pbest t+1

i = x t+1
i

16: else
17: if TSA > 1 then
18: if rand() > e−|f (xt+1

i )−f (pbest ti )|/TSA then
19: pbest ti = x t+1

i
20: end if
21: TSA = TSA · λSA
22: end if
23: end if
24: end if
25: if f (x t+1

i ) ≥ f (gbest ti ) then
26: gbest t+1

i = x t+1
i

27: else
28: gbest t+1

i = gbest ti
29: end if
30: end for
31: end for

PSO to characterize these conditions as shown in (11).

˜max
N∑
n=1

Crd [n]S

F
(

S
Csr [n]

+
S

Crd [n]
+ 2Tint + 2Tdf

)
+ λ1min(0,Csr [n] − Crd [n])

+ λ2min(0,Dobs[n] − Dmin[n])

+ λ3min(0,Vrmax − |Xr [n+ 1] − Xr [n]|) (11)

where λ1, λ2 and λ3 are penalty factors that control the effect
of the constraints on the fitness function, which can penalize
the particles that do not satisfy the constraints to prevent them
from entering the infeasible region and gradually approaching
the feasible region during the search.

FIGURE 3. UKF-HPSO algorithm.

Simulated Annealing (SA) Multi-UAV mobile relay
optimization involves non-convex optimization under com-
plex conditions. However, PSO is prone to local optima
due to random initialization, limited global search and
local information exchange, especially when solving such
complex problems. To overcome this limitation, we propose
incorporating the SA algorithm, a global optimization
method based on random jumping, into the search strategy
of the PSO algorithm. The SA algorithm simulates the
crystallization process of metals, randomly exploring the
solution space and accepting non-superior solutions with a
certain probability [44]. This increases the chances of finding
the global optimum and the probability can be expressed
mathematically as:

p = exp
(

−
1f
TSA

)
(12)

where p is the probability of accepting a sampled solution,
TSA is the current temperature, and 1f gives the difference
in the fitness function for two generations of solutions.
Adaptive Inertia Weight (AIW) The inertia weight is a
crucial parameter in the PSO algorithm that balances global
and local optimization during the search process [45]. Its
classical form is expressed as:

ωt = ωmax −
t(ωmax − ωmin)

tmax
(13)

where ωmax and ωmin represent the predetermined maximum
and minimum values of the inertia weight, and tmax denotes
the maximum number of iterations. In practical engineering
scenarios, UAVs demand high maneuverability and real-time
optimization performance. To address the unique solution
situation of each particle, we introduce AIW as in Eq. (14),
aiming to expedite algorithm convergence.

ωt
i

=


ωmin +

(
ωavg − ωmin

) (
f tmax − f

(
x ti

))(
f tmax − f tavg

) , f
(
x ti

)
≥ f tavg

ωmax −
(
ωmax − ωavg

) (
f
(
x ti

)
− f tmin

)(
f tavg − f tmin

) , f
(
x ti

)
< f tavg

(14)
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FIGURE 4. Simulation results of the proposed UKF-HPSO mechanism and the baseline mechanisms. (a)-(c) Split Comparison, (d)-(e) Overall
assessment.

where ωmin and ωmax represent the predetermined minimum
and maximum inertia coefficients, and ωavg =

ωmin+ωmax
2 .

f tavg, f
t
max, and f tmin denote the average, maximum, and

minimum fitness value of particles at the t-th iteration,
respectively.

After incorporating PF, SA and AIW into PSO, the
algorithm to optimize the throughput of multi-UAV mobile
relaying is presented in Algorithm 2.

C. UKF-HPSO ALGORITHM
In a practical real-time engineering scenario, it is necessary
to combine the proposed Algorithm 1 and Algorithm 2 to
form an optimal multi-UAV mobile relay communication
mechanism UKF-HPSO. The specific process is shown
in Fig. 2. At each point in time, the R-UAV initially
predicts the real-time trajectories of both the S-UAV and
the D-UAV. Then it calculates the optimal relay deployment
position, taking into account channel conditions and obstacle
avoidance requirements. Ultimately, the R-UAV navigates to
the position determined by the algorithm and re-establishes
the communication link between the S-UAV and the D-UAV.

IV. SIMULATION RESULTS
In this section, we present numerical results evaluating
the performance of the proposed UKF-HPSO algorithm
in comparison to other baseline schemes. The simulation
parameters are outlined in Table 2 and the computational
platform is a laptop equipped with an AMDRyzen 9 5900HX
CPU and 32 GB RAM. In addition, since the PSO algorithm
does not contain constraints to execute (8b), (8c) and (8d)
during the flight, we add PF to PSO as the baseline.

We first evaluate the performance of the proposed UKF
algorithm and HPSO algorithm individually. Fig. 4(a)

TABLE 2. Simulation parameters.

illustrates the superior real-time prediction results of the UKF
algorithm for UAV 3D trajectories compared to the baseline
KF. This difference is further quantified in Fig. 4(b) using the
mean squared error (MSE). Additionally, Fig. 4(c) presents
a comparison between HPSO and the baseline algorithm
PSO+PF at the 7th time point. PSO converges to 21.04 Mbps
after 127 iterations and becomes trapped in a local optimum.
In contrast, HPSO achieves convergence to 24.34 Mbps by
the 96th iteration, demonstrating significant improvement in
convergence speed and overcoming the issue of premature
convergence compared to PSO.

For the overall evaluation of the UKF-HPSO mechanism,
Fig. 4(d) compares it with KF-(PSO+PF) for experiments.
The simulation results show that UKF-HPSO achieves better
optimisation results at each relay node, with an overall
throughput improvement of about 28%. The contribution of
SA and AIW is illustrated by the ablation of the individual
components in the HPSO in Fig. 4(e). Fig. 4(f) shows the
difference between UKF-HPSO and KF-(PSO+PF) in terms
of running time for optimizing this problem. The solution
of UKF-HPSO is faster in some of the complex nodes, i.e.,
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FIGURE 5. Demonstration of the complete flight trajectories optimized
based on KF-(PSO+PF) / UKF-HPSO.

nodes with low throughput due to building obstructions,
but KF-(PSO+PF) is superior in the simpler optimization
points. In general, the UKF-HPSO mechanism with the
role of UT, SA and AIW achieves better results in the
multi-UAV mobile relay throughput optimization problem
without increasing the computational complexity compared
to the baseline mechanisms. The flight trajectories of the
multi-UAV mobile relay formation are shown in Fig. 5.

V. CONCLUSION
In this paper, we integrate concepts from automatic con-
trol into non-convex optimization and enhance the PSO
algorithm, resulting in the development of the UKF-HPSO
algorithm. Our results demonstrate the ability to over-
come local optima and accelerate algorithm convergence
without significantly increasing computational complexity,
highlighting its superiority over the baseline approach.
Compared to reinforcement learning methods used in this
study, the UKF-HPSO algorithm offers advantages such as
eliminating the need for pre-training, reducing computing
power requirements, and enabling deployment on UAV
platforms. This characteristic makes it highly suitable for
large-scale UAV applications in complex and dynamic
environments like post-disaster relief, military warfare, and
resource exploration. By utilizing the UKF-HPSO algorithm,
UAVs can autonomously navigate, make decisions, and
ensure efficient and effective operations in challenging and
dynamic circumstances.
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