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ABSTRACT Traffic accidents frequently lead to fatal injuries, claiming millions of lives every year.
To mitigate driving hazards and ensure personal safety, it is crucial to assist vehicles in anticipating the
objects in the traffic scene (treated here as important objects) which may pose a threat during the driving
task. Previous research on important object detection primarily assessed the importance of individual
participants, treating them as independent entities and frequently neglecting the interconnections among
these participants. Unfortunately, this approach has proven less effective in detecting important objects
in complex scenarios. In this work, we introduce Driving scene Relationship Understanding transformer
(DRUformer), designed to enhance the important object detection task. The DRUformer is a transformer-
based multi-modal important object detection model that takes into account the relationships between all the
participants in the driving scenario. Recognizing that driving intention also significantly affects the detection
of important objects during driving, we have incorporated a module for embedding driving intention.
To assess the performance of our approach, we conducted comparative experiments on the DRAMA
dataset, comparing our model against other state-of-the-art (SOTA) models. The results demonstrated a
noteworthy 16.2% improvement in mIoU and a substantial 12.3% boost in ACC compared to SOTAmethods.
Furthermore, we conducted a qualitative analysis of our model’s ability to detect important objects across
different road scenarios and classes, highlighting its effectiveness in diverse contexts. Finally, we conducted
various ablation studies to assess the efficiency of the proposed modules in our DRUformer model. Through
extensive experimentation, it has been demonstrated that our model performs exceptionally well in the
task of driving scene important object localization. The code is publicly available on the following link:
https://github.com/oniu-uin0/DRUformer

INDEX TERMS Important object detection, multi-modal, driving scene relationship understanding, driving
intention.

I. INTRODUCTION
Recent years have seen notable advancements in the evolu-
tion of Advanced Driver Assistance Systems (ADAS) and
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approving it for publication was Shunfeng Cheng.

Autonomous Vehicles (AVs). The overarching goal of this
research is to establish a service system that prioritizes safety
and comfort for humanity [1]. However, there remains room
for enhancement in ensuring driving safety. From 2014 to
September 20, 2023, the DMV received 655 Autonomous
Vehicle Collision Reports [2]. According to theWorld Health
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FIGURE 1. Overview of our work. As shown in the (a), which is easily
understandable for human drivers, the significance of the first pedestrian
outweighs that of the second, as humans recognize that pedestrian 1 is
walking within the driving lane, whereas pedestrian 2 is not. Human
drivers grasp an inherent relationship between pedestrians and line
markings. As depicted in (b), even within the same intersection, the
significance of objects can vary based on fluctuations in the driver’s
intention: if the driver intends to turn left, pedestrian 3 becomes the most
important, whereas if the intention is to go straight, pedestrian 4 takes
precedence.

Organization (WHO), the annual global death toll due to road
accidents stands at a staggering 1.3 million. More than half
of all road traffic deaths and injuries involve vulnerable road
users, such as pedestrians, cyclists, motorcyclists, and their
passengers [3], [4]. Therefore, developing a system to predict
important objects in driving scenarios is crucial to advance
ADAS and AV technology [5].

Driving scene Important Object localization (IOL) [6]
involves assessing all participants in a driving scenario
to predict objects that could significantly influence future
control decisions. The potential applications of IOL are
wide-ranging. It can be seamlessly integrated into ADAS
to help drivers identify hazardous objects and mitigate
potential dangers. Additionally, IOL systems can support
AVs in detecting potential hazards, streamlining subsequent
tasks like trajectory prediction, decision-making, and motion
planning.

Currently, a considerable body of research [7], [8], [9],
[10], [11], [12], [13] simplifies IOL as amere object detection
task. This approach treats all participants as independent
entities and directly predicts the importance of each object
to the ego-vehicle. They frequently neglect the intricate
relationships among all participants, whereas human drivers
instinctively consider these interrelations when predicting
the importance of objects. This kind of methods fails to
distinguish the importance difference illustrated in Fig. 1.
As shown in fig. 1(a), which is easily understandable
for human drivers, the significance of the first pedestrian
outweighs that of the second, as humans recognize that
pedestrian 1 is walking within the driving lane, whereas
pedestrian 2 is not. Human drivers grasp an inherent
relationship between pedestrians and line markings. In actual
driving situations, human drivers take into account not only
the influence of individual objects on the ego-vehicle but also
the interactions between these objects.

Consequently, comprehending the interactions among
participants in driving scenes holds paramount importance for
IOL. There are existing methods [13], [14], [15], [16], [17],
[18], [19] designed to instruct models about relationships
within scenes. However, a common limitation among these

FIGURE 2. Overview of our pipeline. Our DRUformer model takes both
the ‘‘driving scene’’ and the driving ‘‘intention’’ as input, to ascertain the
most ‘‘important object’’ within the scene while considering the
relationships among all the participants.

methods is their reliance on manually annotated relationship
labels to guidemachine learningmodels. Unfortunately, man-
ual annotation falls short in capturing all object relationships.
Some methods focus solely on annotating spatial relation-
ships within a single scene, while others concentrate on the
relationships of specific participants, neglecting many crucial
participants. Moreover, manually defined relationships are
crafted for human comprehension but may not necessarily be
optimal for machine understanding. Hence, the introduction
of a ‘‘driving scene relationship understanding’’ module
becomes crucial for enabling the model to autonomously
learn interrelationships among all objects.

While previous research has primarily focused on enhanc-
ing the extraction of visual information from driving scenes to
improve IOL accuracy, it’s important to acknowledge that the
significance of key objects can shift in real driving situations,
influenced by the driver’s intentions. As depicted in Fig. 1(b),
even within the same intersection, the significance of objects
can vary based on fluctuations in the driver’s intention.
If the driver intends to turn left, pedestrian 3 becomes the
most important, whereas if the intention is to go straight,
pedestrian 4 takes precedence. Hence, predicting important
objects should consider not only the driving scene but also
the driver’s intention.

Another critical concern is that current IOL models
heavily depend on CNN architectures. However, for AV
tasks, Hu et al. [20] have illustrated that varying different
modal information across tasks may result in low information
exchange efficiency during CNN feature extraction. Hence,
it is essential to propose a IOLmodel based on an architecture
that distinguishes itself from CNNs. Within this architecture,
the IOL model should adeptly blend information from
both the driving scene and driving intention. Moreover,
it must seamlessly transmit this combined information to the
subsequent module for relationship understanding without
any data loss.

To address the aforementioned issues, we introduce a
model named Driving scene Relationship Understanding
transformer (DRUformer) for the IOL task, as depicted in
Fig. 2. Our model is designed to simultaneously integrate
both the driving scene (driving frame) and driving intention
(textual intention command) while taking into account the
relationships between participants, ultimately enabling the
prediction of important objects within the driving scene.
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Our model primarily comprises three modules: the Partic-
ipants Extractor Module (PE), which extracts information
about all participants in the driving scene; the Intention
Extractor Module (IE), responsible for extracting driving
commands related to the driver’s intention; and the Driving
scene Relationship Understanding Module (DRU), which
focuses on learning the interrelations between all objects
without the mannual relationship definition. Transformer-
based algorithms have been extensively proven as the
most suitable framework for multi-modal tasks in recent
studies [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30]. Therefore the entire approach is constructed upon the
Transformer framework, facilitating information exchange
optimization between all modules and enhancing downstream
tasks. To evaluate the effectiveness of our proposed model,
we conducted comprehensive qualitative and quantitative
analyses on the largest existing important object detection
dataset, the DRAMA [6] dataset.
In summary, our contributions are as follows:

• We propose a novel model that predicts important
objects by taking into account the relationships between
all driving participants as well as the driver’s driving
intention.

• We introduce a driving scene relationship understand-
ing module to learning the relationships between the
participants without the need for manual relationship
definition.

• We conducted extensive quantitative and qualitative
analyses on the DRAMA dataset, and our model
significantly outperforms the baseline, resulting in
substantial improvements in the IOL task.

• To facilitate reproducibility and further research,
we contribute our code to the community.

The subsequent chapters will be organized as follows:
In section II, we will provide an overview of current
developments related to the IOL task and research related
to relationship understanding. Section III will outline our
DRUformer model and the construction of its individual
modules. In section IV, we will detail the datasets employed
in our experiments, the experimental design, and the results
achieved. In section V, we will discuss the limitations and
future directions for our work. Section VI will offer a
summary of the contributions made throughout our paper.

II. RELATED WORK
A. RISK OBJECT DETECTION
The task of risk object detection can primarily be categorized
into two approaches: direct detection and indirect detection.

Direct detection aims to use the powerful regression
capabilities of neural networks to mimic human-annotated
datasets of important objects based on supervised tasks.
In essence, these methods classify all objects into two cate-
gories: important and non-important. Several studies [7], [8],
[9], [10], [31] focus on utilizing human gaze (attention) infor-
mation from experienced drivers as the supervised training

labels. This label information is used to predict pixel-level
attention regions through neural networks. However, this
approach encounters two significant challenges. Firstly,
human drivers may become distracted during driving, leading
to their gaze fixating on objects unrelated to the driving
task, such as interesting billboards. Secondly, the pixel-level
information may not always effectively clustered around
objects. Therefore, Zhang et al. [13], Karim et al. [12], and
Malla et al. [6], [11] have adopted the use of object-level
bounding box information as the learning target. This shift
in focus enhances the prediction of risk objects, ensuring that
it primarily concentrates on objects relevant to driving.

Indirect detection methods predict risk objects or risk
regions through proxy tasks such as brake prediction
and steering wheel angle prediction. Zhang et al. [13],
Wang et al. [32] and Li et al. [33] involves pre-training a
model for driving behavior prediction and subsequently iden-
tifying hazardous objects by removing extraneous objects
from the scene. The truly risky object is believed to have
a significant impact on driving outputs. Kim et al. [34],
[35] focus on training an end-to-end model for image-to-
steering angle prediction and conducts causality analysis
using attention maps to forecast hazardous pixel areas within
the CNN model. It’s worth noting that indirect prediction
methods are primarily intended for offline use and are
particularly well-suited for explainability AI but not optimal
for online IOL tasks.

While the previously mentioned methods have undeniably
advanced the field of IOL, they still grapple with the
following issues:

• They often overlook the intricate relationships among all
participants, whereas human drivers instinctively con-
sider these interrelationswhen predicting the importance
of objects.

• These methods do not take into account the importance
of human driving intentions, especially in advanced
autonomous vehicles.

• Most of their models rely on CNN architectures, which
may not be ideal for conducting multi-modal research
and facilitating information exchange for downstream
tasks.

To address these challenges, we propose a transformer-
based multi-modal model that takes into account both the
interrelationships between the participants as well as the
driver’s driving intention.

B. RELATIONSHIP UNDERSTANDING
The Relationship Understanding (RU) task involves com-
prehending the relationships between objects within a scene
through various methodologies. Currently, RU plays a pivotal
role in tasks such as Human-Object Interaction (HOI) and
Scene-Graph Generation (SG) [13], [14], [15], [16], [17],
[18], [19], [36], [37], [38], [39], [40]. RU can be broadly
classified into two approaches: two-stage (sequential) and
one-stage (parallel) methodologies.
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Two-stage methods typically encompass entity detection
and relationship classification as two sequential steps.
In the initial stage, an off-the-shelf object detector is
employed to identify all objects, while in the subse-
quent stage, the detected objects are paired, and relation-
ships between these paired objects are predicted. These
frameworks aim to optimize object detection separately,
either to enhance object detection accuracy or to improve
HOI tasks through interaction classification optimization.
Nonetheless, the primary challenge with this pipeline lies
in the fact that the two stages cannot be concurrently fine-
tuned, often resulting in decreased detection accuracy and
efficiency.

Conversely, one-stage methods treat HOI as a Set Predic-
tion problem, simultaneously predicting object pairs boxes
and relationships between objects. This approach offers a
more direct and efficient methodology with reduced time
complexity [41]. However, one-stage methods frequently
require intricate post-processing steps.

In the realm of autonomous driving, Yu et al. [16] have
employed a two-stage SG method to define spatial location
relationships in highway driving situations, transforming the
driving scene into a driving scene-graph. This approach
is limited to specific scenarios and only addresses spatial
location relationships (e.g., left, front, right). Another study
by Tian et al. [15] also employs a two-stage SG method
for the driving SG task, encompassing a broader range of
scenarios, including pedestrians, bicycles, and more agents.
However, this method still falls short in accounting for the
intricate relationships between the driving vehicle, traffic
signals, and driving direction.

Despite the significant advancements brought about by the
aforementioned methods in the DRU task, they still confront
the following challenges:

• The relationships defined within their scenes often rely
on manual definitions, which prove insufficient for the
complexity of the driving environment, where not all
relationships can be predefined.

• The definitions of relationships between objects pre-
dominantly focus on spatial relationships, whereas
relationships can be more multifaceted. For instance,
the connection between a pedestrian and a traffic signal
exists even if they are spatially distant.

• Existing driving RU methods primarily adhere to a
two-stage approach, resulting in relationships that are
often constrained by the outcomes of object detection.
Simultaneously optimizing relationship generation and
object detection remains a challenge in this context.

To tackle these challenges, we introduce a DRU mod-
ule that empowers our DRUformer to learn relationships
between all participants without relying on human-defined
labels. To concurrently enhance participant detection and
relationship comprehension, we treat each participant as a
transformer token, allowing for direct integration into the
DRU module.

III. METHOD
To leverage the success of the transformer-based multimodal
approach, we present a transformer-based multimodal model
designed for the detection of critical objects in driving scenes,
which we have named DRUformer. The model’s architecture
is depicted in Fig. 3. The DRUformer model comprises three
key modules:

• The Participants Extractor module (PE) is tasked with
capturing both the positional and semantic information
of objects that are relevant to the act of driving.

• The Intention Extractor module (IE) is specially
designed to collect the driving intention from the driver
intention command.

• The Driving relationship understanding module (DRU)
is dedicated to comprehending the interactions that
transpire among all participants within the driving scene
without the need for manual definition.

A. PARTICIPANTS EXTRACTOR MODULE
Before constructing relationships between all objects, it is
necessary to first detect all participants present in the
scene. This module is specifically designed to extract the
participants in the driving scene.

The PE module is designed based on the powerful
transformer-based object detection model called DETR [42].
PE comprises a standard CNN backbone referred to as fc,
a standard transformer encoder denoted as fe, a standard
transformer decoder designated as fd , and a simple feed
forward network (FFN) to make the participant bounding box
prediction. We should note that the FFN part is only utilized
in the pre-training step and does not participate in the main
training step.

For the driving scene I with size H × W × 3, we utilize
fc to extract a lower-resolution feature map z ∈ RHS×WS×DS

encompassing the entire scene, HS × WS represents the
size of the feature map and DS represents the dimension.
In this phase, I is downsampled into global spatial features
with dimensions HS × WS , typical HS ,WS =

H
32

W
32 . The

encoder fe expects a sequence as input, hence we flatten
and embedding the spatial feature z into one dimension
featuresF =

{
fi | fi ∈ RDd

}HS×WS
i=1 ,Dd represents the channel

dimension of the features, Dd is often much smaller than
DS . These features in F are then passed through fe for global
feature extraction.

In the fe module, each fe layer consists of a multi-head self-
attention (MHSA) module and a FFN. Since the transformer
architecture is permutation-invariant, we integrate positional
information from F by inputting the positional encoding
p ∈ RHS×WS×DS into the fe module. This results in global
features S =

{
mi |mi ∈ RDd

}HS×WS
i=1 that include position

information. These features are then used in subsequent
decoder stages.

In the case of fd , each fd layer includes a self-attention
module, a cross-attention module, and an FFN. We initialize
N queries denoted as Q =

{
qi|qi ∈ RDd

}N
i=1, to extract
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FIGURE 3. Architecture of the DRUformer. This is the pipeline of our DRUformer model. We feed the driving scene I and the driving intention T into our
DRUformer and obtain the important object b. In this context, the ‘‘PE’’ module signifies the participants extractor, the ‘‘IE’’ module signifies the driving
intention extractor, and the ‘‘DRU’’ module represents the driving relationship understanding module.

object information from the global features S. Since the
decoder is also permutation-invariant, to incorporate posi-
tional information into theseQ features, we include positional
encoding pp ∈ RHS×WS×DS . After processing through the fd
module, we obtain N scene participants tokens, denoted as
O =

{
oi|oi ∈ RDd

}N
i=1, which includes both the positional

and semantic information of N participants in the scene.
The N scene participants tokens O are then independently
decoded into box coordinates and class labels by a FFN,
resulting N predictions. As mentioned earlier, we aim to
simultaneously optimize relationship generation and object
detection. Therefore, we exclusively employ the FFN only
during the pre-training phase. In the model training stage,
we rely solely on scene participants tokens O for information
propagation, omitting the use of FFN-generated boxes and
class information.

The PE is calculated as follows:

F = flatten(fc(I)), (1)

S = fe(F+ p), (2)

O = fd (Q+ pp,S). (3)

where flatten represents the flatten operation.

B. INTENTION EXTRACTOR MODULE
As mentioned earlier, driving direction is also crucial for the
task of important object detection. This module is designed
to extract the driver’s driving intention command.

In our research, the ‘‘Intention Extractor’’ (IE) module,
denoted as fi, is constructed based on a text embeddingmodel.
The driver’s text intention command, labeled in the DRAMA
dataset and represented as T , is tokenized by the IE module
into an intention command token, denoted as C ∈ RDd . It’s
important to note that, for the convenience of subsequent
relationship understanding part, C and oi should have the
same dimensionality. The calculation formula is as follows:

C = fi(T ). (4)

FIGURE 4. Architecture of our DRU module. M represents all the entities,
Y represents all the entities with understanding the interrelationships.
MHSA represents the multi-head self-attention module, and FFN
represents the feed-forward network.

C. DRIVING RELATIONSHIP UNDERSTANDING MODULE
To model dense interrelationships between the ego-vehicle
and other participants, we employ a self-attention module to
learn the mutual relationships between all objects.

Initially, we randomly initialize a learnable token to
represent the ego-vehicle token, denoted as e ∈ RDd , which
serves as a carrier for the intention token C, making it easier
to learn. Since we aim to learn the relationships among all
objects in the scene, we then combine C and e together and
concatenate them with the participants O to get all entities
M ∈ Rk×Dd , where k = N + 1. This concatenation is
expressed as:

M = norm (C + e) ⊕ O. (5)

where norm (·) represents the layer normalization.
Subsequently, we feed all the entities in M into our DRU

module to learn their relationships with each other. Our DRU
module consists of L layers of DRU layers. Figure 4 visually
illustrates the architecture of our DRU module. Each DRU
layer comprises MHSA and a FFN, with H heads in the
MHSA. Each relationship head deals with the subspace m ∈

Rk×Dh , where Dh =
Dd
H . The understanding mechanism is
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calculated as follows:

Ah = softmax

(
fq (m) fk (m)T

√
Dh

)
, (6)

uh = Ah · fv(m). (7)

where fq, fk , and fv represent the linear transformation layers,
and Ah ∈ Rk×k is the entity relationship map for each heads.
It should be noted that in our research, the strength of the
relationship between two objects is represented as the cosine
similarity between the two objects, with a higher similarity
indicating a stronger relationship. Each head’s output uh ∈

Rk×Dh is already understanding the relationship.
Finally, the output of each relationship head needs to be

concatenated together and passed through an FFN to obtain
the output of the DRU layer, denoted as Y ∈ Rk×Dd , at which
point Y has comprehended the relationships between all
objects.

At this stage, the bounding boxes of the important objects
b ∈ Rk×4 in the scene can be predicted using a predictor FFN
φbbox(·), as shown in the following formula:

b = φbbox (Y ) . (8)

D. TRAINING
Following the set-based training process of DETR, we first
match each ground truth important object bounding box
with its best-matching prediction by the bipartite matching
with the Hungarian matching algorithm [42]. Then the
loss is produced between the matched predictions and the
corresponding ground truths for the final back-propagation.

Similar to DETR, the loss of DRUformer is composed of
3 parts: the box regression loss Lb, the intersection-over-
union loss LGIoU [43], and the object important class loss Lc.
Loss function is shown as follows:

L = λbLb + λGIoULGIoU + λcLc. (9)

where λb, λGIoU and λc are the hyper-parameters for
adjusting the weights of each loss.

IV. EXPERIMENT
The code of our paper and more detection results is available
here: https://github.com/oniu-uin0/DRUformer.

A. EXPERIMENT SETTING
1) DATASET
To accurately evaluate the capabilities of our proposed
model, we chose to conduct tests on the largest existing
important object evaluation dataset, DRAMA. This dataset
was collected by HONDA Corporation in the Tokyo region
of Japan and comprises a total of 17,785 scenarios, encom-
passing various road environments such as wider roads,
intersections, and narrow streets. This diversity allows us
to evaluate our model under different road conditions. The
majority of scenarios are labeled with the driving direction
of the ego-vehicle in that scenario and the bounding box

information of important object. The driving direction serves
as the driving intention of our model. The important objects
in the dataset include vehicles, pedestrians or cyclists, and
infrastructure, offering a diverse range of object sizes for
testing.

To ensure a robust evaluation, we shuffled the dataset and
then divided it into training, validation, and test sets in a
70:15:15 ratio for training and testing purposes.

2) EVALUATION METRICS
In our study, we employed three standard evaluation metrics,
Frames Per Second (FPS), Accuracy (ACC) and mean
Intersection over Union (mIoU), to better evaluate the overlap
between the predicted bounding boxes of important object
and the manually annotated important object by experts.

mIoU assesses the mean overlap between the predicted
bounding boxes, denoted as ypred , and the ground truth
bounding boxes, represented as ylabel . A higher mIoU value
means more precise predictions of the bounding boxes. The
calculation formula for mIoU is as follows:

mIoU =
1
N

N∑
i=1

I (ypred , ylabel)
U (ypred , ylabel)

(10)

whereN represents the number of samples, and I (ypred , ylabel)
and U (ypred , ylabel) represents the Intersection and Union
between ypred and ylabel for each sample, respectively.

ACC evaluates whether our model correctly identifies the
presence of important objects in the scene and accurately
deter mines their locations within the image. A higher ACC
indicates a more effective ability to predice the presence of
important objects. The calculation formula for ACC is as
follows:

ACC =
1
N

N∑
i=1

[ypred = ylabel], (11)

where N represents the number of samples, and [ypred =

ylabel] equals 1 if the I (ypred ,ylabel )
U (ypred ,ylabel )

> 0.5.
FPS indicates the inference speed at which the model can

process and analyze driving scene frames. Higher FPS values
generally denote superior real-time performance and faster
processing capabilities.

3) IMPLEMENTATION DETAILS
All of our experiments were conducted on a server with 8
NVIDIA RTX A6000 GPUs. We believe that aligning with
the settings of the DETRmodel provides a strong foundation,
as it is a well-established and widely adopted framework
in the field of object detection. During the experiment
process, the hyperparameters were set as follows: for the
CNN part, we utilized the standard ResNet50 architecture
and a 6-layer standard Transformer encoder to extract global
features. In the decoder part, we used a 6-layer architecture to
extract participants in driving scenes. In the DRU module’s
relationship attention section, we employed an MHSA with
8 heads for relationship understanding. The initial learning
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FIGURE 5. Qualitative analysis of our DRUformer. These are our model’s important object detection results for various scenes and different types of
objects. WR represents the Wider Road scene, NR represents the Narrow Road scene, and IS represents the intersection scene. The blue boxes
represent the detection results from our model, while the red boxes represent the labels in the dataset.

rate was set to 0.0001, and the weight decaying rate was 10−4

per 200 epochs. We applied scale augmentation similar to
DETR, resizing the input images such that the shortest side
was at least 480 pixels and at most 800 pixels, while the
longest side was at most 1333 pixels. The size of L was set
to 3 layers. During the training phase, the batch size for each
epoch was set to 8, and we trained for 400 epochs to obtain
our experimental weights.

B. QUANTITATIVE ANALYSIS
Table 1 presents the localization results of our method and
other SOTA baselines on the DRAMA dataset for important
object detection. In this table, ICL represents Independent
Captioning and Localization, LCP represents Localization
with Captioning Prior, OF represents the Optical Flow for
the corresponding frames. It is evident that our method, when
provided with only the driving frames as input, exhibits a
substantial improvement of 12.3% in ACC and 16.2% in
mIoU compared to LCP with optical flow. Notably, LCP
not only incorporates optical flow but also leverages scene
captions for detection assistance, yet it still falls significantly
behind our DRU-equipped approach.

In comparison to LCP without optical flow assistance, our
method achieves a 14% increase in ACC and a 17.9% boost
in mIoU. We also compared our method to SOTA approaches
for general object detection tasks such as DINO [44],
CO-DETR [45] and DETR [42], and our method exhibited
significant improvements over both of these methods. Addi-
tionally, we compared the inference speed of our model with
these methods. Although our algorithm’s inference speed
may not be outstanding, it is comparable to these SOTA

TABLE 1. IOL performances comparing with the SOTA methods on the
DRAMA dataset.

methods. However, it is important to note that at present, our
algorithm is not yet capable of achieving real-time detection.
Therefore, further optimization in terms of speed will be
necessary in the future. This convincingly demonstrates that
our DRUformer delivers outstanding performance in the IOL
task on the DRAMA dataset, even without optical flow,
showcasing its superior capabilities.

C. QUALITATIVE ANALYSIS
Figure 5 presents the position results of our algorithm in
various road scenarios, including Wide Road (WR), Narrow
Road (NR), and Intersection (IS), with important objects
such as vehicles, pedestrians, cyclists, and infrastructure.
This visualization allows us to intuitively observe that our
method, when predicting important objects, considers not
only positional relationships but also the interactions between
objects. For example, in the NR scenario pedestrian column,
there are two pedestrians walking side by side on the right
side. Despite they close to each other, our model understands
that only the pedestrian inside the blue box is within the
lane (considering the relationship between the pedestrian
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FIGURE 6. Visual ablation results for driving intention. IN represents the
intention. The first column shows the IOL results of our method when
excluding the driving intention module, while the second column displays
the detection results of our model including the driving intention.

TABLE 2. Ablation results for the impact of the driving intention.

and the lane). Therefore, the pedestrian inside the blue box
is deemed the most important object, rather than both of
the pedestrians. Furthermore, our method exhibits excellent
detection performance for objects of different sizes. For
instance, in the IS scenario, vehicles are larger objects, while
infrastructure objects like traffic signals are smaller. Figure 5
also illustrates that ourmethod can predict not only dangerous
dynamic objects but also static traffic signals. It is evident that
our approach performs well in different driving scenarios and
different important objects, providing robust object detection
results.

D. ABLATION STUDIES
We conducted three ablation experiments to validate the
effectiveness of the proposed modules.

1) WITH INTENTION VS. WITHOUT INTENTION
Table 2 presents the localization results of our DRUformer
in two scenarios: with the driving Intention (IN) and without
IN. It is clear that when considering IN, our model shows
a significant improvement in the IOL task, with a 3.4%
increase inACC and a 3.6% increase inmIoU compared to the
scenario without IN. Even without IN, our method exhibits a
9.8% increase in mIoU and an 8.7% increase in ACC over
the SOTA methods. This demonstrates the effectiveness of
the Driving Intention.

Figure 6 provides a more intuitive demonstration of the
impact of driving intention on our model. It can be observed
that without the IN, our model may predict important objects
in different directions. For example, in the scenario depicted
in Image 3 (a), the model without IN predicts that the two
individuals directly in front of the vehicle are important
objects, while the actual label indicates the person in the
red box on the left is important. However, in this case,
it doesn’t necessarily imply that the model’s prediction is
incorrect. If our vehicle needs to move directly forward, then

TABLE 3. Ablation results for the impact of the DRU.

TABLE 4. DRUformer performance with different DRU layers.

the objects directly in front are indeed the most important.
After providing the IN for a left turn, the model can correctly
predict the important objects. It is evident that IN is helpful
for detecting important objects in scenarios where there is
direction ambiguity.

2) WITH DRU MODULE VS. WITHOUT DRU MODULE
Table 3 presents the localization results of our DRUformer
model in two scenarios: with the DRUmodule and without it.
It is evident that when considering inter-object relationships,
our model demonstrates a significant improvement in the
IOL task compared to the scenario without the DRU module.
Specifically, there is a 12.5% increase in ACC and an
11.7% increase in mIoU, providing clear evidence of the
effectiveness of our DRU module for the IOL task. Even
without DRU, our method achieves slightly higher mIoU and
similar ACC when compared to the best in SOTA.

Figure 7 visually illustrates the differences between
the relationship network learned by our DRU module
and other relationship networks based solely on manually
defined relationships. We selected ten objects from all the
objects detected by the PE module and combined them
with the ego-vehicle to create the dense relationship map
from our DRU module. Additionally, we generated location
relationship networks and semantic relationship networks
based on the bounding box information and class information
of the detected objects. For instance, in the scenario depicted
in Fig. 7 (b), let’s consider the relationship of the object
labeled as 6. Semantically, this object is identified as a ‘‘car.’’
Therefore, from the semantic relationships map, we can
observe that the object 6 is connected with objects labeled
as 3 and 4, both assigned a value of 1, as they also
represent ‘‘cars’’. However, the semantic relationships map
alone cannot distinguish the relationship differencewith other
objects. In our DRU relationships map, the object labeled as
6 exhibits strong connections with the ego-vehicle labeled
as 0 and the people labeled as 10, and it also shows weak
connections with other objects. It is observable that the
relationship network provided by our DRU module is more
comprehensive and contains richer information. However,
as mentioned earlier, manually defined relationships are
convenient for human understanding but may not necessarily
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FIGURE 7. Visual ablation results for the DRU module. The first column display the results derived from the PE module after retaining
the top 10 participants in the driving image. The object with the red rectangle is the most important object. The three columns on the
right display the relationship networks acquired through our DRU module, the location relationship network based exclusively on
bounding box information, and the semantic relationship network computed solely from object category information. In the three
relationship heatmaps on the right, ‘‘0’’ corresponds to the ego-vehicle, while ‘‘1-10’’ represent the 10 objects detected from the scene.
The complete heatmap illustrates the bidirectional relationship network among these 11 objects.

be suitable for machine learning. Our method, which allows
the model to autonomously learn relationships and capture
more nuanced relationship networks.

3) PERFORMANCE WITH DIFFERENT DRU LAYERS
Table 4 showcases the influence of varying the number of
DRU layers in our DRUformer on the IOL task. We assessed
the model’s performance with 1 to 6 layers of DRU and
monitored changes in ACC and mIoU. Notably, the optimal
performance is attained with three layers. However, as the
number of layers increases, the detection performance starts
to deteriorate.

V. DISCUSSION
Although our DRUformer model achieved excellent results in
the IOL task, we did not conduct the following experiments
due to limitations in computing hardware. In our experiments,
the driving scene section only selected images from the last
key frame of the driving video as the scene. However, in this
scenario with a single image, we did not consider temporal
information, focusing solely on spatial information. Even
for a single image, our model already occupies 45GB of
memory, while the A6000 graphics card has only 48GB of
memory. However, the computational cost of this approach
is slightly high for practical deployment scenarios. In the
future, we plan to consider replacing the scene section with
the entire video scene to enhance the temporal information
of the PE module. Simultaneously, we intend to explore
the addition of Optical Flow corresponding to the scene to
enhance scene information. In addition, we consider also

using more efficient Transformer implementations, such as
EfficientFormerV2 [46] or similar alternatives.
The code of our paper and more detection results is

available here: https://github.com/oniu-uin0/DRUformer.

VI. CONCLUSION
To the best of our knowledge, DRUfomer model stands out
as the first multi-modal model for important object detection
in driving scenes based on the transformer architecture. This
innovative approach considers both the driving scene and the
driver’s intention. Additionally, we introduce a driving scene
relationship understanding module, specifically designed for
machine comprehension, to enhance important object detec-
tion. This module eliminates the need for manually defining
interactive relationships between objects. We conducted a
comprehensive evaluation by comparing our method with
other SOTA models on the largest important object detection
dataset, DRAMA. The results of this comparison affirm
the effectiveness of our model. Furthermore, we designed
numerous ablation experiments to confirm the efficacy of
our proposed intention extractor module and relationship
understanding module.

While our research has successfully extracted driving
intention commands from the driver, it currently encounters
limitations in human-AV interaction. Effectively communi-
cating with passengers or drivers is a critical area that needs
improvement. In the next phase, our goal is to broaden our
focus beyond the driver’s intention commands to include
more complex interactive commands. In scenarios where the
driver lacks a specific driving intention, we acknowledge the
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importance of driving intention and plan to adopt the path
planning route as a representative driving intention in our
research.
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