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ABSTRACT 3D local descriptors are essential for many computer vision-related tasks: point cloud
registration, object recognition, etc. The first descriptors appeared decades ago, but new methods are
still emerging today. To solve the above mentioned problems efficiently, we need robust and distinctive
descriptors that are invariant to translation, rotation and normal orientation. In this paper, we revisit and
analyze the well-known hand-crafted Fast Point Feature Histogram (FPFH) and the three geometric features
underlying the FPFH. Modifications to the geometric features are proposed to increase the descriptiveness
and improve robustness against inconsistent normal orientation. Thus, normal orientation methods with high
computational complexity can be omitted and the performance of the descriptor is nearly doubled. We also
propose a novel approach to representing descriptors: using cumulative distribution functions (CDF) instead
of histograms. We mathematically analyze the point-pair features and their CDFs, focusing on a special case
where two planes intersect. We use this knowledge to approximate functions on real point cloud data sets
in the general case. CDFs can be represented by fitted parameters. By storing these parameters, which can
be understood as a form of compression, the storage requirements can be reduced while maintaining the
descriptiveness.

INDEX TERMS 3D point cloud, feature descriptor, distribution function, curve fitting, normal orientation.

I. INTRODUCTION
In recent decades, sensors that can collect depth data
have become cheaper and more widespread. In the past
Microsoft Kinect and Intel RealSense sensors were popular,
but nowadays, such sensors are also present in many mobile
devices used by ordinary users. The data collected by these
sensors are widely represented as 3D point clouds.

With the spread of 3D point clouds, many problems have
emerged: object recognition [1], pose estimation [2], [3],
pairwise registration [4] object classification [5] etc. To solve
these problems, local feature descriptors representing a local
geometry around a base point have been proposed. The
feature descriptors produce feature vectors, which are usually
multidimensional vectors containing real values [4], [6],
but there are also binary feature vectors [7], [8]. Feature
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descriptors are designed so that the distance between feature
vectors of similar surfaces is small, while the feature vectors
of different surfaces are far apart. Feature vectors are used
to generate point correspondences based on nearest neighbor
searches, which are necessary to solve the above mentioned
tasks.

Over the last three decades, many local feature descriptor
methods have appeared. In recent years, learning-based
methods [9], [10], [11], [12], [13], [14], [15] have gained
popularity alongside traditional hand-crafted methods. One
of the most influential and widely known methods is
the Fast Point Feature Histogram (FPFH) [4]. The reason
behind its popularity is that the FPFH is computationally
efficient, has good descriptive performance, and has an easily
accessible open-source implementation in the Point Cloud
Library (PCL).

Over the years, several review papers were published
(e.g. [16], [17]), as also performance evaluations on different
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datasets [18], [19], [20]. However, only a few studies have
been published that have analyzed the geometric features
not only empirically but also mathematically. For example,
Jutzi and Gross [21] used the eigenvalues of a covariance
matrix calculated for the local neighborhood of a point to
classify points. To do this, they mathematically determined
the eigenvalues associated with certain geometric primitives
(line, plane, half-plane, etc.).

In our work, we investigate the point-pair features pro-
posed by Wahl et al. [22] and used in FPFH and several
subsequent works. On the one hand, we are interested in
whether there is a way to get rid of the costly normal
orientation step that the original FPFH needs to avoid having
an artifact that distinguishes between points on the same or
similar surface just because their estimated normal vectors
are in opposite directions. On the other hand, we would also
like to explore the question of whether there could be a more
concise representation than the histogram for FPFH features
computed around a point. Our contribution is as follows:

• We propose a modification to the point-pair features that
form the basis of the FPFH feature descriptor. By using
the new features, the descriptiveness of the original
FPFH is nearly doubled.

• We evaluate the FPFH descriptor with different his-
togram resolution (number of bins) with both the
original and modified point-pair features.

• Instead of representing the local environment with
a histogram, we recommend using the cumulative
distribution function (CDF). With the parameters asso-
ciated with the CDF representation, (almost) the same
information can be stored in less space, which can be
seen as a form of compression.

• The use of CDFs is supported by detailed theoretical
considerations, which are presented in the appendices.
In our work, we only consider the FPFH features, but
the methodology can be applied to other features.

The rest of this paper is structured as follows. Section II
reviews the related works, focusing on earlier local feature
descriptors. Section III-A presents a brief introduction to
the FPFH feature descriptor. Section III-B gives a detailed
explanation of point-pair feature modifications, while III-C
introduces the CDF representation of the features. Section IV
explains the methodology of the evaluation, and Section V
presents the results of our evaluation. The conclusions and
our plans for the future are in Section VI. In Appendix A,
we prove that the modified features are invariant to normal
orientation. Appendix B presents a detailed explanation of
CDFs, including mathematical theorems and proofs related
to them. Appendix C shows the deduction of the Hellinger
distance to quantify the similarity between two fitted CDFs
of FPFH features.

II. RELATED WORK
The first local feature descriptors for 3D objects appeared
more than three decades ago. One of the first popular works is
that of Stein and Medioni [23] (TOSS), who called the local

environment of a point a ‘‘splash’’ and used the normal vector
of neighbor points to characterize the local environment. The
work of Chua and Jarvis [24] computes a feature vector based
on the distance between the points in the local environment
and the plane defined by the base point. This approach is
similar to the later published local feature descriptor methods.
In their work, Hetzel et al. [25] used distance, normal vectors
and principal curvature to calculate local feature histograms,
and performed object recognition by matching histograms,
very similar to later methods.

In 1999, the feature descriptor known as Spin Images (SI)
[26] was proposed. It creates a histogram by rotating a plane.
In the paper, they evaluated the effect of varying the size of
the local environment and the importance of the bin size of
the histogram. Their process for object recognition is very
similar to the feature-based registration processes that later
became popular [27]. The importance of SI is indicated by
the fact that it is almost always mentioned in review papers
summarizing the descriptors [18], [19].

Over the years, a number of well-known feature descriptors
appeared. In 2004, Frome et al. [28] introduced a method
called 3D Shape Context (3DSC), which was an extension
of a two-dimensional method. The space around the base
point is partitioned along azimuth, radial, and elevation
directions, and the resulting bins contribute to the elements
of the descriptor vector. The method was improved by
Tombari et al. [6], by introducing a Local Reference Frame
(LRF), making the descriptor invariant to rotation. They
called the resulting new descriptor Unique Shape Context
(USC). In their work, Salti et al. [29] proposed the Signature
of Histograms of OrienTations (SHOT) descriptor, which
partitions the space around the base point into bins similar
to USC. They put a strong emphasis on the definition of
the Local Reference Frame (LRF). Unlike USC, the SHOT
descriptor creates a histogram based on the normal vectors of
the points in each bin. The final feature vector is constructed
by appending these histograms. In the same work, they
classify local descriptors into two groups: histogram and
signature-based. Another well-known descriptor is Rota-
tional Projection Statistics (RoPS) [30], which projects 3D
points onto two-dimensional planes. By dividing the planes
into bins, matrices are obtained. The feature vectors are
constructed from the matrices based on Shannon entropy and
moment theory. Most of the above methods are implemented
in the Point Cloud Library (PCL) [31].
In 2008, Rusu et al. [32] proposed a new descriptor

called Point Feature Histogram (PFH). The descriptor makes
point pairs using the points in the neighborhood of the
base point. For each point pair, four features are computed,
which are used to generate histograms. The concatenated
histogram values give the final feature vector. The point-pair
features used in this paper are based on previous work by
Wahl et al. [22]. These features are calculated using the point
coordinates and their normal vectors. Later, Rusu et al. [4]
improved their method. They omitted one feature which
represents the distance between points and created fewer
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point-pairs per base point. Thus the computational complex-
ity became linear instead of quadratic. The new descriptor
is called Fast Point Feature Histogram (FPFH). Over the
years, many works appeared comparing the performance
of local feature descriptors using different data sets for
different use cases [18], [19], [20]. In general, FPFH achieved
the best results in most cases. That is one of the reasons
why this method has become widely known and used.
The authors implemented the PFH and FPFH descriptors
in PCL.

A few years later, feature binarization methods and binary
feature descriptors appeared. A binarization method replaces
a real-valued element with one or more binary values
in a feature vector [33], [34]. In contrast, binary feature
descriptors produce feature vectors that contain binary values
by default [7], [8]. New local feature descriptors have also
appeared in recent years.

The KDD descriptor [35] differs from the previous ones
in that it does not use a spherical neighborhood around the
base point but a cubic. In their work, Prakhya et al. [36]
propose a new descriptor, 3DHoPD, which consists of two
parts. The first three elements of the descriptor represent
the coordinates of the base point in a transformed three-
dimensional space, and the following 15 elements describe
the local geometry. Thus, a two-phase matching can be
performed: first, the feature vectors are filtered based on the
first three elements, and only the second phase uses the other
elements.

Many other local feature descriptors use very similar
features as FPFH [1], [37]. Drost et al. [2] proposed a different
approach but also used similar features to characterize point
pairs. Their method is called Point Pair Feature (PPF), and
they construct a global model descriptor from point pairs of
an object. The basic ideawas further developed in later works,
but the point-pair features remained the same throughout [3],
[38]. From the above works, it is clear that the features
used by the FPFH [4] method describe well the geometric
relationships of the points.

The works mentioned above are so-called hand-crafted
descriptors. The hand-crafted descriptors published in recent
years do not receive as much attention because of the newly
developed learning-based local descriptors. One of the first
learned local descriptors was 3DMatch [39] in 2016. In the
following years, several works were published [9], [10],
[11], [12], [13], [14], [15]. Many comprehensive reviews of
hand-crafted and learning-based methods has been published
since then [16], [17]. Learning-based methods achieve better
results than hand-crafted methods, however, a learning
process is necessary, and theyworkwell when used on similar
data like was used for training.

The relevance of the FPFH method is illustrated by the
fact that it is still compared with recent learning-based
methods. The point-pair features it uses are also used in
many subsequent works [1], [37]. Our aim was to study
the point-pair features used by the FPFH method not only
empirically but also theoretically.

III. METHOD
In Section II, we tried to highlight the importance of FPFH.
This section contains, on the one hand, a presentation of
the main components that are relevant to it and, in some
respects, a further development of the original approach.
On the other hand, we investigate how to determine the
CDFs of features and estimate their associated parameters
instead of aggregating a pair of features from a point and its
neighborhood into a histogram. The storage of the estimated
parameters can be seen as a kind of information compression
with respect to the original histogram.

A. FPFH WITH ORIGINAL FEATURES
As indicated in the introduction, the FPFH point-pair
features [4] presented here are essentially adapted from
Wahl et al. [22]. For this reason, both works serve as a
basis for the following description, where · denotes the dot
product, × the cross product and ∥ • ∥ the Euclidean
norm.

Suppose that we want to capture the properties of the local
structure of the point cloud in radius R around point p1 which
we call the base point. Let p2 denote a neighbor point for
which 0 < ∥p2 − p1∥ ≤ R. Let the estimated surface normal
vectors be calculated for each point, denoted by n1 and n2.
Define a Darboux frame [40] for the pair of points p1, p2 as
follows, where point p1 is the origin if the following is true
(otherwise point p2 is chosen):

|n1 · (p2 − p1)| ≤ |n2 · (p2 − p1)| (1)

and the orthonormal basis will be (provided that p1 is the
origin)

u = n1, (2)

v =
(p2 − p1) × u

∥(p2 − p1) × u∥
, (3)

w = u× v. (4)

The point-pair features will be as follows, keeping the
notation of the original FPFH paper [4]:

θ = arctan(w · n2, u · n2),

α = v · n2,

φ =
u · (p2 − p1)
∥p2 − p1∥

.

In order to imagine the features easily, they are illustrated
in Figure 1, where the translation of the normal vector n2 to
the origin is denoted by n′

2, and vector nuw2 is the projection
of n′

2 onto the uw-plane.
The FPFH descriptor produces a feature vector by the

following steps. What we have seen so far are only the
FPFH features computed for a given point p1 and its
neighbor point p2. This computation is performed with all the
R-neighborhood points p1: {p2, . . . , pN+1} (N is the number
of neighbors) and the resulting values θ , α and φ are recorded.
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FIGURE 1. An illustration of the FPFH features for the pair of
points p1, p2. See text for an explanation of the symbols.

Then, per feature, the ranges

θ ∈ [−π, π],

α ∈ [−1, 1],

φ ∈ [−1, 1] (5)

are divided into BIN non-overlapping intervals, in other
words, bins, and the number of feature values that fall into
each bin is counted. The resulting numbers are referred
to below as bin weights. We will see later in Section V
that the choice of BIN plays an important role in terms of
descriptiveness.

We obtain the so-called Simplified Point Feature His-
togram of point p1, denoted by SPFH(p1), by concatenating
the histograms obtained per feature in the previous step
into a vector. In order to obtain the final FPFH(p1) feature
vector, the SPFH(pi) values for the pi neighbor points
(i = 2, . . . ,N + 1) should also be computed and the bin
weights should be divided by the distance of pi from p1. The
following formula is obtained

FPFH(p1) = SPFH(p1) +
1
N

N+1∑
i=2

SPFH(pi)
∥pi − p1∥

. (6)

Note that the FPFH implementation of the PCL library [31]
mentioned above and the Open3D library [41], also widely
used, includes a normalization part per feature histogram,
the output of which is a transformation of the bin weights
(divided by distance) so that their sum is 100 and the
original ratios are preserved. In the PCL implementation,
the term SPFH(p1) is missing from the above formula.
However, it is included in the Open3D implementation and
its bin weights are normalized in a similar way. To sum-
marize, FPFH(p1) will be a vector of dimension 3 · BIN,

where for θ

BIN−1∑
d=0

FPFH(p1)[d] = 100 (PCL) or 200 (Open3D),

for α

2BIN−1∑
d=BIN

FPFH(p1)[d] = 100 (PCL) or 200 (Open3D),

and for φ

3BIN−1∑
d=2BIN

FPFH(p1)[d] = 100 (PCL) or 200 (Open3D)

where FPFH(p1)[d] denotes the d th coordinate of the feature
vector.

B. MODIFIED FEATURES
The FPFH features are highly dependent on the accuracy
of the normal vector estimation. Several solutions to this
problem have been proposed, for a comparison of these
methods we refer the reader to [42]. We note that more
recently deep learning normal estimation methods are also
starting to be used (see e.g. [43], [44]). Besides the accuracy
of the normal vectors, it is also important that the methods
pay attention to the fact that the normal vectors belonging
to points close to each other are preferably in the same
direction, i.e., that their orientation is consistent. A popular
method for this task is the work of Hoppe et al. [45].
In the past few years many learning-based [46], [47] and
other novel methods [48] have appeared to solve this task.
It is important to note that achieving globally consistent
normal orientation is time-consuming task. In the method of
Hoppe et al. [45], the algorithmic complexity of constructing
aMinimal Spanning Tree isO(n log n). The high computation
time is also a problem for new methods. The algorithm
proposed by Xu et al. [48] achieves better results than
previous works, but the algorithm scales non-linearly and can
run for several minutes for point clouds of a few thousand
points (on a single CPU machine).

However, even in the case of consistently oriented normal
vectors, anomalies can occur in FPFH vectors, which are
discussed below. Consider Figures 2 and 3 to illustrate the
problem. Figure 2 shows simulated point clouds where two
planes are at the same angle to each other. The normal vectors
corresponding to the points are shown by black arrows.
Except for the point cloud shown in Figure 2c, all point clouds
have been oriented. Furthermore, a point p is marked on
the figures, for which the vector FPFH(p) is computed (it is
located in almost the same position for each point cloud). For
each point cloud there is a color code in the upper right corner,
which can be used to identify the weights of the associated
FPFH(p) bins in Figure 3. It can be seen that for the bins
belonging to features θ and φ (i.e., at the two edges), the bin
weights do not match for either of the two point clouds. It can
therefore be seen that, even though normal orientation has
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been applied, it does not help that points at the same position
have the same feature vector in point clouds containing planes
with the same angle. It is important to note that, although
it is a good idea to orient the normal vectors towards one
viewpoint, there are two cases where this is true but the FPFH
vectors do not match (for example, because we are looking
at the surface from the other side). This in turn can make
it difficult to find true correspondences between two point
clouds.

The original FPFH feature definitions should therefore be
reviewed to see if they could be improved with modifications.
One important question is whether it is really necessary to
swap roles between p1 and p2 if condition (1) is not satisfied.
To the best of our knowledge, we attempt to reconsider this for
the first time. Condition (1) is already stated in the paper [22]
on which the FPFHmethod is based. Already in that paper the
authors argue for it, but a slightly more extended explanation
can be found inWahl’s dissertation [49]. This shows that they
wanted to avoid the case where (p2 − p1)× u is a zero vector
in equation (3), because then v would be undefined. This is
helped by checking condition (1) in that if |n1 · (p2 − p1)| is
(almost) equal to 1 (i.e. n1 is (almost) collinear with (p2−p1)
and hence (p2 − p1) × n1 is (almost) a zero vector), but |n2 ·

(p2 − p1)| is smaller than this, then it is better to choose p2 as
the origin and n2 as u.

It is certainly true that the extreme case above could indeed
cause problems in principle. However, there is a side effect of
this: there will be a swap of roles even when |n1 · (p2 −p1)| is
relatively far from 1 and only slightly larger than |n2 · (p2 −

p1)|. Our tests have shown that this swap impairs descriptive
ability (as we will come back to in Section V). If we omit the
swap, the feature vectors become more similar, see Figure 4.
In this figure, the improvement can already be seen in the bins
22-32 for featureφ. For the point cloudsmarkedwith blue and
red, and orange and purple color codes, respectively, the bin
weights are now visibly close to each other. In the light of the
foregoing, it would be better to first check whether |n1 · (p2 −

p1)| is close to 1 and whether |n2 · (p2 − p1)| is significantly
smaller than it (by choosing some thresholds). The detailed
elaboration of this is out of scope for the present work, but
can be addressed as future work. It is important to note that
the possible swap of roles between points p1 and p2 based
on checking condition (1) will be omitted in the remainder of
this paper.

Now the situation looks a little bit better. However, on the
one hand, the feature vectors computed for the (blue, red)
point cloud pair and the (orange, purple) point cloud pair
still do not match on the bins 22-32 (although it can
be seen the point clouds can be rotated into each other).
On the other hand, no significant improvement has been
made for bins 0-10 of the feature θ . However, reflection
symmetries can be detected in Figure 4. In the case of the
part of the figure relating to the feature θ , we see that if
reflection was to occur where the axis of reflection was
bin 5, the red and purple and the orange and blue weights,
respectively, would roughly overlap. The situation is similar

for feature φ, where the axis of reflection is obviously
bin 27.

A more careful consideration of the above, it can be
deduced, see Appendix A, that the orientation of the normal
vectors will no longer be of interest after the following extra
steps have been taken. If φ ≤ 0, then φ′

= φ and θ ′
= θ (no

changes), otherwise

φ′
= −φ, (7)

θ ′
= arctan(−w · n2, u · n2) (8)

and after both cases above,

θ ′
=

{
θ ′

+ π if θ ′ < −π/2,
θ ′

− π if θ ′ > π/2
(9)

and looking at α, if u · n2 ≥ 0, then α′
= α (no change),

otherwise

α′
= −α, (10)

where θ ′, α′ and φ′ denote the modified features. In the
following we will work with modified features, so it is
not necessary to distinguish between them and the original
features, so we will use the notation θ , α and φ for the
modified features. Note that after the modification, the ranges
per feature will be as follows

θ ∈ [−π/2, π/2],

α ∈ [−1, 1],

φ ∈ [−1, 0], (11)

cf. ranges (5).
If we create the FPFH feature vectors with this modifi-

cation, Figure 5 shows that they are practically identical.
(Minimal differences are due to the fact that the feature
vectors were computed for different simulated point clouds,
where there are small random variations between the point
clouds.) Looking at the figure, it can also be seen that even if
the normal vectors are not oriented at all, the feature vector is
still the same as the others, see the green colored bins. There
is therefore no need for the costly orientation computation.

It is important to note that a similar problem arises for other
local feature descriptors that need a unique and unambiguous
local reference frame (LRF) [6], [29]. In general, these
methods use the eigenvectors of the neighborhood covari-
ance matrix around the base point obtained by eigenvalue
decomposition (EVD) to give a unique LRF. As we can see
in the case of the method proposed by Frome et al. [28],
this is not enough to obtain a unique and repeatable LRF.
To make the LRF repeatable the sign of the eigenvectors must
be oriented. Tombari et al. [6] in their work orient the axes of
the LRF in the directionwhere themajority of the points in the
neighborhood are. To do this, they consider the dot product
between the vector from the base point to the neighbor point
and the axis (eigenvector).
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FIGURE 2. Different orientations of the normal vectors of two intersecting planes. The color codes in the upper left corner of the
sub-figures help to interpret Figures 3, 4 and 5.

FIGURE 3. The values of the original FPFH feature vectors for p points of the different color-coded point clouds in Figure 2. (The colors of the bars
follow the colors assigned to the point clouds.).

C. CDF REPRESENTATIONS OF FEATURES
Feature descriptors can be based on different foundations, but
the most typical are histogram-based solutions, as underlined
by Guo et al. [19] in their paper. FPFH is also a histogram-
based descriptor. In this method, we saw that histograms
approximate the distribution of features θ , α, φ. How accurate
this can be also depends on how large the BIN is chosen to
be, i.e. what the histogram resolutions will be. (As indicated
earlier, we will come back to this in Section V.)

In this session we will propose a new representation
that tries to capture these distributions in a different form.
We want to attempt to examine the CDFs of the underlying
FPFH features and store the parameters of these functions
instead of the histogram bin weights as FPFH feature vectors.
To the best of our knowledge, this is the first attempt
to represent features in this way. We believe that several
ideas behind our approach could be applied to other feature
descriptors.
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FIGURE 4. The values of the no-role-swapped FPFH feature vectors for p points of the different color-coded point clouds in Figure 2. (The colors of
the bars follow the colors assigned to the point clouds.)

In this way, we can in principle provide the same infor-
mation by storing fewer values. This is therefore somewhat
related to the issue of information compression in feature
vectors, for which several approaches have been developed:
dimensional reduction methods (e.g. [50], [51], [52], [53]),
binarization (see Section II) and binary test selection (see e.g.
[54] and the references given there). The results of methods
using dimensional reduction techniques suggest that one can
capture nearly the same information by storing fewer values.
This has also motivated the present work.

The other important motivation was that these methods
typically work on the basis of different experiments, empir-
ical inferences and have been tested on more or less data
sets. Usually, there is no indication of the theory behind
them. On the other hand, the more precisely we try to
model the world, the more factors we try to include in the
model, the more complex and time-consuming the theoretical
considerations and derivations become. In our work, we have
tried tomake our conclusions as independent as possible from
the specific data sets used in a particular use case, but the
theoretically supported results are still only valid for specific
cases. Nevertheless, we could use them in some form for
the general case by fitting some appropriate functions, where
the ‘‘proof’’ was only empirical. We therefore also say that
we have a mathematical conjecture for the general case. The
details follow.

In the following, we will examine the FPFH features
according to the modifications described in Section III-B.
Denote the CDFs of features θ , α, and φ with Fθ , Fα , and
Fφ , respectively.
CDFs are easiest to define when all points in a neighbor-

hood lie in a perfect plane. Then vectors u and n2 will be
parallel (or anti-parallel), so on the one hand u · n2 equals 1

(or −1), and on the other hand v · n2 and w · n2 equal zero (by
equations (3) and (4), since vectors v and w are perpendicular
to vector u). So θ = α = 0 (if u · n2 = −1 was the case,
it is because we used the modification given in equation (9)).
Also, since vector p2 − p1 lies in the plane, vectors u and
p2 − p1 are perpendicular to each other, so φ = 0. In this
case, the probability distributions of the features are therefore
discrete and it is true that

Fθ (t) = Fα(t) = Fφ(t) =

{
0 for t < 0
1 for t ≥ 0.

(12)

For any other type of neighborhood of a base point, it is
much more complicated to define CDFs. If the radius is not
chosen to be very large, then the neighborhood of a base
point can be realistically approximated as the intersection of
two or more planes with some accuracy. Suppose that we
can somehow define CDFs for the intersection of two planes.
Since the features are always computed per pair of points and
we can group the neighbor points according to which plane
they belong to, the mixture distribution from the CDFs per
plane gives the final definition of the functions Fθ , Fα and Fφ

(the mixture weights are given by the proportions of points in
the different planes). Thus, it can be traced back to the case
of the intersection of two planes.

Two intersecting planes also has several subcases based on
the dihedral angles of the planes. We have examined only one
of these types, which occurs frequently in reality, where the
dihedral angle is π/2 − γ , 0 ≤ γ < π/2, in more detail, see
Appendix B. In addition, we did not model the effect of noise
(we assumed perfect planes). Nevertheless, as we will see,
we can still use the results obtained there in the general case.
We repeat themain result of Appendix B (equation (60)): with
the right parameters, the following functions approximate the
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FIGURE 5. The values of the modified FPFH feature vectors for p points of the different color-coded point clouds in Figure 2. (The colors of the bars
follow the colors assigned to the point clouds.)

CDFs of the features very well:

Bθ (t) = I arcsin(tan(t) tan(γ ))−arcsin(ℓ/R)
π/2−arcsin(ℓ/R)

(a, b)

Bα(t) = I
arccos(−t/ cos(γ ))−arccos

(√
1−ℓ2/R2

)
arccos

(
−

√
1−ℓ2/R2

)
−arccos

(√
1−ℓ2/R2

)
(a, b)

Bφ(t) = 1 − I arcsin(t/φ0)
π/2

(a, b) (13)

where I•(a, b) denotes the regularized incomplete beta
function with parameters a, b, R denotes the radius of the
neighborhood, the base point is located at a distance ℓ from
the intersection of the planes and φ0 denotes the minimum
value of φ (see equation (30)). This was verified by fitting
the functions Bθ ,Bα,Bφ to the empirical CDFs F̂θ , F̂α, F̂φ ,
which were obtained from the values θ, α, φ of synthetic
data sets. (Note that the FPFH is computed using the SPFH
values of the neighbor points, see equation (6), something
similar to which we did not take into account in Appendix B.
Regardless, the resulting formulas work more generally,
as will be shown in Section V.)
In the general case, it would be convenient to detect planes

in the point cloud and use the formulas for the planes in
the vicinity of a base point separately. This would be a time
consuming task, but fortunately there is a simpler solution.
The idea is that the mixture components can be expected
to be somewhat detectable in the mixture CDF curve. The
points of the curve where there is a spectacular change in
the slope of the function would be good candidates for this,
since the values of the CDFs associated with each component
will be between 0 and 1 over intervals of different lengths.
(As can be seen from Corollary 1 in Appendix B, the actual
ranges of feature values depend on the dihedral angle of the
two intersecting planes and the distance of the base point

from the intersection of the two planes, which are expected
to be different from component to component.) How could
spectacular changes in the slope of the function be detected?
Obviously there is no change in slope at all between two
points where the mixture CDF curve is a straight line. Using
this fact, we would like to find a point on the curve over an
interval that is farthest from the straight line connecting the
curve points above the two endpoints of the interval. We call
this a knee point if it is farther away from a predetermined
distance threshold, otherwise we consider it as if the curve
is approximately a straight line for the given interval. Such
knee points can be detected recursively on the full mixture
CDF curve. First, we take the interval where the mixture
CDF takes values between 0 and 1 and determine the knee
point, if it exists. Then, we divide our initial interval into two
parts along the detected knee point and recursively proceed
to detect additional knee points on the resulting two intervals.
Note that points where some interesting change occurs in the
curve of the function could also be detected by examining
the derivatives of the mixture CDFs. (For example, inflection
points can be interesting, where the function changes from
concave to convex, or conversely.)

A synthetic point cloud is used to illustrate the above, see
Figure 6. (This is a very simple example, we have not dealt
with, for example, noise or occlusion.) As you can see, the
blue plane of the base point p is intersected by two other
planes. The dihedral angle of the blue plane and the green
(cyan) plane is π/2 − γ1 (π/2 − γ2). We take the R-radius
neighborhood of base point p, marked in red in the figure.
The base point p is located at distance ℓ from the intersection
of the planes. Figure 7 shows the empirical CDF F̂α where
the knee points obtained by the previous recursive method
are marked in red (the distance threshold was 0.02). The first
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FIGURE 6. The case where the plane of base point p meets two other
planes. See text for an explanation of the symbols.

FIGURE 7. The empirical CDF F̂α with knee points where the plane of
base point meets two other planes. The dotted red lines represent the
recursively defined lines from which the farthest points, i.e. the knee

points, were sought. s1 corresponds to −

√
1 − ℓ2/R2 cos(γ1), e1 to√

1 − ℓ2/R2 cos(γ2), s2 to −

√
1 − ℓ2/R2 cos(γ2) and e2 to√

1 − ℓ2/R2 cos(γ2), cf. Corollary 1 in Appendix B.

and the last knee points coincide with the two endpoints of
the range of α for the cyan plane (s2 and e2 in the figure).
This particular synthetic case thus provides some support for
the validity of the previous line of reasoning.

Once the knee points (or other interesting points) have

been determined, the empirical CDFs F̂θ , F̂α, F̂φ must be
divided into smaller parts along these points and fitted
separately with some modification of the functions given
in equation (13). One of the main questions is what to
choose instead of the parameters γ, ℓ, φ0 without making
complicated investigations on the location of the base point
with respect to the planes. What we should definitely pay
attention to is that the domain of the arcsin and arccos
functions is [−1, 1]. So this can be exploited to make the fit
meaningful at all. Let ts, te denote the start and end of the
interval to which we want to fit the functions.

Let us first examine the function F̂θ . Here we have to
choose γ such that | tan(t) tan(γ )| ≤ 1 is true. Suppose

we want to choose γ as positive. Since the function F̂θ is
a monotone increasing function, if we choose γ such that
max(| tan(ts) tan(γ )|, | tan(te) tan(γ )|) ≤ 1 holds, then for
all t | tan(t) tan(γ )| ≤ 1 will hold. If ts < te < 0, then
max(| tan(ts) tan(γ )|, | tan(te) tan(γ )|) = | tan(ts) tan(γ )| and

tan(ts) tan(γ ) ≥ −1 are required. For simplicity, let us choose
γ for which tan(ts) tan(γ ) = −1, i.e.

tan(ts) tan(γ ) = −1

tan(γ ) = −
1

tan(ts)
γ = arctan(− cot(ts))

γ = arctan(tan(ts + π/2))

γ = ts + π/2.

If 0 < ts < te, then, as before, the following choice will be
good

tan(te) tan(γ ) = 1

tan(γ ) =
1

tan(te)
γ = arctan(cot(te))

γ = arctan(tan(3π/2 − te))

γ = arctan(tan(π − (te − π/2)))

γ = arctan(− tan(te − π/2))

γ = − arctan(tan(te − π/2))

γ = π/2 − te.

If ts < 0 < te, choose the former or the latter depending on
whether te < |ts| or vice versa. If γ = 0 (this occurs for the
first or the last interval, cf. ranges (11)), then instead of ts or
te, we compute γ with a t for which t = ts + ε or t = te − ε

where ε > 0 is a very small number. After defining γ , in order
to use the function I properly for the fit, its argument must be
transformed such that the values used for the fit fall within
[0, 1] (because this is the domain of the function I ). So, with
the choice of γ above, fit the following function

B[ts,te]θ (t)=I arcsin(tan(t) tan(γ ))−arcsin(tan(ts) tan(γ ))
arcsin(tan(te) tan(γ ))−arcsin(tan(ts) tan(γ ))

(a, b)

(14)

to the part of the function F̂θ on the interval [ts, te].
Specifically, before fitting, the value of the function F̂θ at
ts is subtracted and then the resulting function is divided
by the value of the function F̂θ at te, denoted by h. (This
transformation is necessary so that the dependent data to
which the fitting is done goes from zero to one, because
it makes fitting easier.) If the function F̂θ were possibly
constant over the interval, then no fit would be made, but
(a, b) = (0, 0) would be used to indicate this (since it would
not normally result). In addition to the parameters (a, b),
we also store the value of h, so that we can reproduce the
approximation of the function F̂θ over the interval [ts, te] by
storing these. More precisely, the value h is not stored at the
last interval, because the approximation of the function F̂θ

must always arrive at 1.
For the function F̂α , we need to proceed in a very similar

way to the previous one. Here we have to choose γ such that
it is true that | − t/ cos(γ )| ≤ 1. Assume again that we want
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to choose γ to be positive. If ts < te < 0, then, for simplicity,
let us choose γ for which −ts/ cos(γ ) = −1, i.e.

−ts/ cos(γ ) = −1

cos(γ ) = ts
γ = arccos(ts).

(−ts/ cos(γ ) = 1 would result in γ = π − arccos(ts) <

arccos(ts), since ts < 0.) If 0 < ts < te, then the following
choice is a good one, as before

−te/ cos(γ ) = 1

cos(γ ) = −te
γ = arccos(−te)

γ = π − arccos(te).

If ts < 0 < te, choose the former or the latter depending on
whether te < |ts| or vice versa. After defining γ , similarly to
the previous case, i.e. fit the following function

B[ts,te]α (t)= Iarccos(−t/ cos(γ ))−arccos(−ts/ cos(γ ))
arccos(−te/ cos(γ ))−arccos(−ts/ cos(γ ))

(a, b)

(15)

to the part of the function F̂α on the interval [ts, te] and the
corresponding continuation is very similar to the previous
case.

Finally, consider the function F̂φ . Here, the parameter
φ0 must be chosen in a similar way as γ in the previous ones,
i.e. |t/φ0| ≤ 1, φ0 must be negative, cf. ranges (11). For the
present feature, ts < te ≤ 0 always holds. Because of the
foregoing, φ0 = ts will be a good choice, since it will satisfy
t/φ0 ≤ 1 for all t . Fit the following function

B[ts,te]φ (t) = 1 − I arcsin(t/φ0) − arcsin(te/φ0)
arcsin(ts/φ0) − arcsin(te/φ0)

(a, b) (16)

to the part of the function F̂φ on the interval [ts, te] and the
corresponding continuation is very similar to the previous
cases.

So, for each feature, we get three values per interval after
the fitting: the parameters a and b of the beta distribution
and the ‘‘height’’ h of the given part, which does not
need to be stored for the last interval, as mentioned above.
Figure 8 illustrates that, as the knee points are increased, the
fitted function Bα at different intervals becomes increasingly
close to the empirical CDF F̂α . The previous illustration
is presented for base point p of a real point cloud (of the
7-Scenes RGB-D redkitchen data set from Section IV-A), see
Figure 9.

IV. EVALUATION
A. DATASETS
To evaluate our contribution, we used the 7-Scenes RGB-D
redkitchen, [55] and Redwood livingroom [56] datasets. The
data sets consist of 60 and 57 clouds. During preprocessing,
voxelgrid sampling was used with a voxel size of 0.01 to

ensure a consistent density of clouds. After sampling, the
average size of a cloud is 100 000 points, but there are
smaller and larger clouds. From the point clouds, we select
the 45 most overlapping pairs for both data sets. In this case,
the overlap of two clouds is always greater than 60% of the
total size of the clouds. The radius of FPFH is set to 0.06.
This is six times the voxel size, and its ratio compared to the
size of the objects is similar to that used in other works. The
same radius was used for all measurements. We use the FPFH
implementation of the PCL library.

B. DESCRIPTIVENESS
When comparing feature descriptors, we consider how many
correct correspondences a method can find between the
points of point cloud pairs. To evaluate the performance
of a descriptor, we measure descriptiveness, following
Guo et al. [19]. It shows the performance of methods with
a precision-recall curve (PRC).

To obtain the PRC, we calculate the precision and recall
values for each point cloud pair and aggregate them. For
a point cloud pair, the process is as follows. We select
points on both point clouds and look for correspondences
between them. For each cloud, we select 10% of the points.
The feature vectors are calculated for the selected points.
After that, we create correspondences using nearest neighbor
searches based on the feature vectors of the points in the
two point clouds. To filter the correspondences, we use
the nearest-neighbor distance ratio (NNDR) based on the
work of Lowe et al. [57]. Based on the NNDR method,
a correspondence is accepted if the ratio of the distances to
the nearest and second nearest neighbors of a point does not
exceed a τ threshold.
Let FPFH(p) be the feature vector of a point p from the

left cloud of the cloud pair, and FPFH(p1) and FPFH(p2) be
first and second nearest neighbors of FPFH(p), which are
feature vectors of points p1 and p2 from the right cloud.
A correspondence is kept if

∥FPFH(p) − FPFH(p1)∥
∥FPFH(p) − FPFH(p2)∥

> τ.

The precision is the ratio of correct correspondences to
the total number of correspondences generated. A cor-
respondence is considered correct if, using the ground
truth transformation, the distance between two points of
the correspondence is less than a specified limit (in the
evaluation, we used 0.04, which is less than the radius of the
feature descriptor and four times the voxel size).

precision =
No. correct correspondences
No. all correspondences

The recall represents the ratio of correct correspondences
to all possible correct correspondences.

recall =
No. correct correspondences

No. all possible correct correspondences

By varying the value of τ (between 0.7 and 1.0, with
0.1 steps), we obtain different precision and recall values,
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FIGURE 8. Differences between the function F̂α and the fitted function Bα for different numbers of knee points. The base point p and its
neighborhood, for which the empirical CDF was computed, are shown in Figure 9.

FIGURE 9. A real point cloud of the 7-Scenes RGB-D redkitchen data set
(see Section IV-A). The base point p and its neighborhood are marked for
which empirical CDF F̂α and the fitted function Bα were computed, and
these are shown in Figure 9.

which are averaged to obtain the final PCR. The area under
the curve (AUC) value is used as a concise representation of
the PCR plot, thus providing only one number to denote the
descriptiveness of a feature descriptor.

C. FEATURE MATCHING RECALL
The Feature Matching Recall (FMR) is a widely used
evaluation metric for 3D point cloud descriptors [9], [11],
[13], [15], [58]. The main idea behind this evaluation is
that the recall is much more important than the precision.
The reason for this is that the precision can be improved
by improved correspondence rejection methods. Let Q =

{q1, q2, . . . , qn} and P = {p1, p2, . . . , pn} be two 3D point
clouds and � be the set of correspondences between the
points, generated by nearest neighbor (NN) searches in the
features space. The average FMR can be calculated for a
dataset of matching 3D point cloud pairs as follows:

1
G

G∑
g=1

1

 1
|�|

∑
(pi,qj)∈�

1
(
||pi − qjT || < τ1

) > τ2


where G is the number of overlapping fragments in the
dataset, at least with 30% of overlapping area. (pi, qj) ∈ �

is a point-correspondence, pi ∈ P, pj ∈ Q, T is the
ground truth transformation that aligns Q to P, || · || is the
Euclidean distance and 1 is the indicator function. The two
important parameters of the metric are the τ1 and τ2, which
denote the inlier distance threshold and inlier ratio threshold
respectively. During the evaluation we set τ1 = 0.1 and
τ2 = 0.05. That means we accept a correspondence as
correct if the Euclidean distance between the two points of
the correspondence is less than 10cm after aligning using the
ground truth transformation and we consider a pair of point
clouds alignable if 5% of our correspondences are correct.
As with the previous methods, we used a 3DMatch [39]
dataset (redkitchen) with 5000 key points for every point
cloud, selected by the authors.

D. MANAGING THE FITTED PARAMETERS
The method described in Section IV-B can work with
arbitrary metric. The Euclidean distance is used for the
traditional FPFH feature vectors. However, in order to
determine the descriptiveness of the CDF representation of
the features (see Section III-C), it would be nice to use a
more sophisticated metric that can work directly with the
parameters a, b and h recorded per interval. The Hellinger
distance is used to determine the similarity between the CDFs
of FPFH features belonging to two points, and the result of
Appendix C is that this metric can fulfil the goal of working
directly with the fitted parameters. From here on, we denote
by PARAMS the descriptor that stores information about the
fitted parameters in some form using the Hellinger distance
to measure similarity.

It is important to note that the empirical CDFs F̂θ , F̂α, F̂φ

are in fact a cumulative histogram, where the bin number
was 27 (since, as we will see in Section V, for the
7-Scenes RGB-D redkitchen dataset, this bin number was
used to achieve the strongest descriptiveness). In addition,
the distributions of the point-pair features computed for the
neighbor points are taken into account here in a similar way
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as the SPFH values of the neighbor points were taken into
account in the calculation of the FPFH. These are the basis for
the fits of the functions Bθ , Bα , Bφ (so, for example, the knee
points or other interesting points always fall on the endpoints
of the bins). The BOBYQA Algorithm [59] from NLopt
library [60] is applied to solve the associated least square
problem in the case where the parameter space is bounded
(for function fitting, the bounds 0.001 ≤ a, b ≤ 50.0 were
used in all cases).

It is also important to emphasise that the accuracy of fits
depends not only on the bin number chosen, but also on the
number of knee points or other interesting points chosen.
By adjusting the distance threshold, we can get more or less
knee points on the same curve. As we have seen, the more
points we take for a particular basis point, the more accurately
we can estimate, but the larger the space requirement of the
resulting CDF representation. In addition, if knee points are
in different locations for each base point, those locations
must also be stored. Instead, we examined where the most
typical interesting points are in one to two point clouds and
selected one such point per feature. For features θ and α,
a notable point, 0, was chosen based on several criteria. For
φ, the choice was made by experimentation and roughly
−1/4 seemed to be appropriate for the fits. As future work,
we note that it would be worthwhile to investigate this on
manymore data sets, and to observemore carefully howmuch
we gain in accuracy improvement and how much we lose
in storage space requirements by choosing additional knee
points per feature.

V. RESULTS
In this section, the results of the evaluation described in
Section IV will be presented and discussed. As mentioned
in Section III-A, the choice of BIN plays an important
role in the descriptiveness of FPFH. Many people use
FPFH implementations of PCL and Open3D libraries, where
the default setting is currently BIN = 11.1 In our
previous work [53], we investigated what happens to the
descriptiveness when a smaller number is used. However,
to the best of our knowledge, there is no publication that has
investigated the same for BIN > 11, so we fill this gap in
this section. Another important study is to compare the use
of modified features with the original ones.

A. DESCRIPTIVENESS
Figure 10 shows the precision-recall curves for different
hand-crafted 3D point descriptors on the 7-Scenes RGB-
D redkitchen dataset. As mentioned before, we generated
the curves by varying the value of τ , between 0.7 and 1.0,
with 0.1 steps. For comparison, we selected well-known
hand-crafted descriptors (SHOT [29], Spin Images [26],
3DHopD [36]), and we used the same neighborhood radius
(0.06) for all methods for fair comparison. Based on our
evaluation, the performance of the Spin Images and 3DHopD

1See PCL 1.13.1 and Open3D 0.17 versions.

FIGURE 10. Precision-recall curves of different point descriptors.

methods is significantly lower than SHOT and FPFH. The
precision of the SHOT descriptor is higher than the precision
of FPFH. The opposite is true for recall. The figure also
shows the difference between the original and the modified
FPFH. It is clear that the modified FPFH is better than the
other methods in both precision and recall.

The Area Under Curve (AUC) values of the corresponding
precision-recall curves for the redkitchen dataset are shown
in Figure 11. It can be seen that the descriptiveness of
the original FPFH with the blue color is inferior to that
of the versions using modified features. Furthermore, for
this dataset, we have also investigated the effect of the
swap of roles between base point and neighbor point
mentioned in Section III-B. The orange columns represent
the role-swapped version and the green columns represent
the no-role-swapped version. It can be concluded that the
swap of roles is not justified under the original condition,
and in fact worsens the descriptiveness. It can also be seen
from the green colored bars that the strongest descriptiveness
is at BIN = 27 and starts to deteriorate after that. (This
may be because, as is generally true, histograms become
undersmoothed above a bin number.) The dashed lines show
the descriptors of the PARAMS representations (red for the
role-swapped version, cyan for the no-role-swapped version),
where we chose one point per feature, which split the
empirical CDFs into two intervals. The number of parameters
to be stored is 5 per feature in this case, i.e. a total of
15 numbers to be stored. This shows better descriptiveness
than in the case BIN = 11, where a total of 33 numbers
need to be stored. See Figure 12 for the results (AUC values)
of the evaluation on the Redwood livingroom dataset. Here
again, we see that the descriptiveness of the original FPFH in
blue is inferior to that of the no-role-swapped version using
modified features in green. The strongest descriptiveness for
this dataset is at BIN = 31 (for the green colored ones)
and after that a stagnation is observed (undersmoothing of
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FIGURE 11. AUC of original FPFH, FPFH with modified features and PFDENS with and without swap on the ‘‘redkitchen’’ dataset.

FIGURE 12. AUC of original FPFH, FPFH with modified features and PFDENS without swap on the ‘‘livingroom’’ dataset.

histograms would only occur for even higher BIN numbers).
Thus, the maximum is at roughly similar locations for the two
data sets. The dashed line here also shows the descriptiveness
of the PARAMS representation, where one point per feature
was chosen as for the other dataset. This now shows even
better descriptiveness than the BIN = 31 case. This can occur
because in this case the fitted functions can smooth out the
noises in the FPFH histograms, which shows the strength of
the method. It should be noted that for this dataset, typically
lower descriptiveness were obtained. The likely reason for
this phenomenon is that there are only a few interesting

objects at these ‘‘livingroom’’ scenes, which makes it more
difficult to distinguish between surfaces.

To summarize, it can be seen that using the modified
features roughly doubles the descriptiveness for both data
sets. Furthermore, it is worth choosing a higher BIN number
compared to the default. Although, a related question is
whether the increase in storage requirements is acceptable
and worth it for the given use case. Finally, it can be
concluded that the CDF representation of features can be
an interesting trade-off between descriptiveness and storage
requirements.
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FIGURE 13. Average feature matching recall on the redkitchen dataset
under different inlier ratio threshold τ2.

B. FEATURE MATCHING RECALL
Based on the PPFNet paper [58], the hand-crafted based
methods achieved the following results: Spin Images [26]
- 0.27, SHOT [29] - 0.21, USC [6] - 0.52, FPFH - 0.36.
The parameters of the methods are very important, especially
the radius used for querying the neighborhood. Following
the authors, we choose the radius parameter for FPFH to be
0.3 also. Using the same evaluationmethod, the average recall
of the modified FPFH is 0.76. It is much better than any other
hand-crafted method.

The authors also evaluated learning-based methods: Point-
Net [61] - 0.76, CGF [11] - 0.72, 3DMatch [39] - 0.85,
PPFNet [58] - 0.9. These methods use different radius
parameters. Increasing the radius to 0.52, the modified FPFH
can achieve 0.83 average recall. This is below the results of
the latest learning-based methods, but considering that FPFH
does not need learning, we consider it a good result.

We also compared the original FPFH without normal
orientation (FPFH NON-OR 0.3) and the modified FPFH
(FPFH NEW 0.3), using 0.3 as the neighborhood radius in
both cases. Figure 13 shows the average feature matching
recall for the two methods under different inlier ratios τ2.
One can see that the modified version has a higher average
recall throughout the whole interval. With a slightly stricter
threshold, the average recall can go above 80% and could
reach even 95%.

C. COMPUTATIONAL COMPLEXITY
The FPFH computation time grows with increasing bin
numbers and radius. The parameter fits were performed
after the FPFH histograms were defined, for which we
therefore chose the cumulative histogram representation
of the empirical CDFs where the bin number is 27 (see
Section IV-D). The time of parameter fits to an empirical
CDF is more influenced by the number of intervals chosen

(based on knee points or other points of interest) than by the
bin numbers or the radius size. If this method is thought of as
a form of compression, the information loss can be controlled
by the choice of the number of intervals. We also note
that one could make this method independent of the FPFH
histogram computation and directly determine parameter fits
to empirical CDFs based on the point-pair features, which
would yield faster run times. It is beyond the scope of this
work to think through and implement the details. Hence,
the presentation of the following elapsed times can only be
considered as a preliminary result.

Experiments are performed with a single processor core on
a virtual machine (Intel Core Processor i5-1135G7 2.4 GHz
with 9.12GB RAM) running Ubuntu 22.04.3 LTS operating
system. For simplicity, the redkitchen point cloud pair with
indices 10 and 11 is selected for the measurements, as their
AUC values were always around the mean in the precision-
recall evaluations. The neighborhood radius for the point-pair
features is now chosen to be 0.3. For these point clouds, the
FPFH computtion takes an average of 45.7854 milliseconds
per point, followed by the parameter fitting, which takes
an average of 39.474 milliseconds per point. The AUC
value with FPFH is 0.0123, with parameter fit 0.0098,
so 79.58% of the descriptiveness is preserved for this radius,
but the storage requirement is reduced to 18.52% (or the
compression ratio is 5.4). Thus, in this case, with a significant
reduction in storage requirement, there is an acceptable level
of information loss with roughly twice the total elapsed time.

VI. CONCLUSION
In this work, we revisited the Fast Point Feature Histogram
local feature descriptor. FPFH creates a histogram based
on point-pair features calculated for the neighborhood of
a base point. We presented three main contributions. First,
we modified the point-pair features used by FPFH. As a
result, the descriptiveness of the FFPH nearly doubled and
became invariant to the inconsistent normal orientation. Sec-
ond, we evaluated FFPH with different histogram resolution.
According to the results, the descriptiveness of the FPFH
increases up to 27 bins per feature with both the old and
new point-pair features. Finally, we present a method to
approximate the CDFs of the three point-pair features. Thus,
in some cases, we can reduce the storage space requirement of
the feature vectors while maintaining the descriptive ability.
For this, we analyzed a special case mathematically (an edge
formed by two planes), which we later used in a general case
on real point cloud datasets.

As mentioned in Section III-B, the swap of roles between
base point and neighbor point should not be done by testing
whether condition (1) is satisfied, but by inspecting whether
|n1 · (p2 −p1)| is close to 1 and |n2 · (p2 −p1)| is significantly
smaller than it. The correct choice of the relevant thresholds
should be investigated in future work.

In Section III-C, a realistic, practical generalization of the
derivation of CDFs for the meeting of multiple planes is
presented, relying on formulas defined for a special case of
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two intersecting planes. The generalization is supported by
empirical evidence, but future work could explore theoreti-
cally what might be behind it (at the moment we only have a
mathematical conjecture for the general case). Furthermore,
the endpoints of the intervals could be defined in a more
sophisticated way, and the increase in descriptiveness and
storage requirements when more intervals are chosen could
be investigated in more detail.

Finally, it should be mentioned that this work is mainly
positioned for theoretical explanations and investigations,
thus, for example, it omits the very interesting run-time
analysis from a practical point of view, and we could only
show preliminary results on this. This would have required
a clever implementation that could make the function fitting
process as fast as possible. We would like to address this
carefully in a future work.

APPENDIX A
FPFH FEATURES WITHOUT ORIENTATION OF NORMAL
VECTORS
In this section we will investigate why it will be true that we
do not need to perform the costly orientation on the normal
vectors, using the modifications that we make to the FPFH
features in Section III-B.

Suppose that features are computed for a base point
p1 and its neighbor point p2, where u and n2 denote
the corresponding normal vectors, as before. We will not
orientate the normal vectors before or during the computation
of the features, but we will consider one of the orientations
relative to the angle subtended by u and n2 and to the angle
subtended by u and the vector p2 − p1 as the standard.
We will examine the features φ, θ and α computed for
other orientations of the normal vectors with respect to the
standard. For the standard orientation, we denote the normal
vectors by uA and nA2 , respectively, and for the opposite
orientation, by uB and nB2 , respectively, where u

B
= −uA

and nB2 = −nA2 . Also denote vA and wA (vB and wB) by the
additional vectors of the Darboux frame associated with uA

(uB). The following are true:

vB =
(p2 − p1) × (−uA)

∥(p2 − p1) × (−uA)∥

= −
(p2 − p1) × uA

∥(p2 − p1) × uA∥
= −vA (17)

wB = (−uA) × (−vA)

= uA × vA

= wA (18)

For the standard orientation, let the following be true:

u · n2 > 0, (19)
u · (p2 − p1)
∥p2 − p1∥

≤ 0. (20)

The case u · n2 = 0 requires separate analysis, this is left to
the reader.

Referring back to Figure 2, this will be the case of the blue
color-coded point cloud, if we take the base point p assigned
there as p1. This is because the inequality (19) is equivalent
to the case where the angle subtended by u and n2 falls in
the interval [0, π/2) or (3π/2, 2π ] (for the normal vectors
of the blue color-coded point cloud, the angle is clearly in
the interval [0, π/2), so it holds). On the other hand, the
inequality (20) is equivalent to the case where the angle
subtended by u with the vector p2 − p1 falls in the interval
[π/2, 3π/2] (which also holds in the blue case).

There are four types of orientation cases:

Case I: uA and nA2 ,

Case II: uB and nB2 ,

Case III: uA and nB2 ,

Case IV: uB and nA2 .

Let the values φ, θ and α computed for Case I be denoted by
φA,A, θA,A and αA,A, which are thus computed for the standard
orientation, i.e. uA · nA2 > 0 and

φA,A
=
uA · (p2 − p1)

∥p2 − p1∥
≤ 0.

Consider Case II, where the corresponding feature values
are denoted by φB,B and θB,B. On the one hand, it is true that

φB,B
=
uB · (p2 − p1)

∥p2 − p1∥
=

−uA · (p2 − p1)
∥p2 − p1∥

= −φA,A (21)

and hence φB,B
≥ 0. On the other hand, due to

uB · nB2 = (−uA) · (−nA2 ) = uA · nA2 > 0

and wB · nB2 = −wA · nA2 (using equation (18)), it is true that

θB,B
= arctan(wB · nB2 , uB · nB2 )

= arctan

(
wB · nB2
uB · nB2

)

= arctan

(
wA · (−nA2 )

uA · nA2

)
= −θA,A. (22)

Furthermore, it is true that

αB,B
= vB · nB2 = (−vA) · (−nA2 ) = αA,A.

Before going on to examine the remaining two cases, let us
assume that w ·nA2 > 0 is satisfied (the case w ·nA2 ≤ 0 should
be seen in a similar way). Because of this and uA · nA2 > 0,
it is true that

0 < θA,A < π/2. (23)

Consider Case III, where the corresponding feature values
are denoted by φA,B and θA,B. It is easy to see that
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φA,B
= φA,A

≤ 0. Furthermore, due to uA · nB2 = −uA ·

nA2 < 0 and wA · nB2 = −wA · nA2 < 0, it is true that

θA,B
= arctan(wA · nB2 , uA · nB2 )

= arctan(−wA · nA2 , −uA · nA2 )

= arctan

(
−wA · nA2
−uA · nA2

)
− π

= θA,A
− π.

Furthermore, it is true that

αA,B
= vA · nB2 = vA · (−nA2 ) = −αA,A.

Finally, consider Case IV, where the corresponding feature
values are denoted by φB,A and θB,A. As in equation (21), it is
true that φA,B

= −φA,A
≥ 0. Furthermore, due to uB · nA2 =

−uA ·nA2 < 0 andwB ·nA2 = wA ·nA2 > 0 (using equation (18)),
the following is true

θB,A
= arctan(wB · nA2 , uB · nA2 )

= arctan(wA · nA2 , −uA · nA2 )

= arctan

(
wA · nA2
−uA · nA2

)
+ π

= −θA,A
+ π. (24)

Furthermore, it is true that

αB,A
= vB · nA2 = (−vA) · nA2 = −αA,A.

Keeping the assumptions made so far, we summarize our
results in Table 1. In each case, we take the following extra
steps from Section III-B, recalling equations (7), (8), (9)
and (10). In Case II and Case IV, the sign of φ is changed
according to equation (7) (i.e. it becomes φA,A), and in
Case III its value is not changed (i.e. it remains φA,A). So in
each case we get the same for φ as for Case I. For Case II,
based on equation (8), what changes in equation (22) is that
we get θA,A at the end. For Case III, the inequality (23) gives
θA,B < −π/2. Using this and equation (9), we get θA,A. For
Case IV, based on equation (8), what changes in equation (24)
is that we get θA,A

− π at the end, from now on the same as
for Case III. So in each case we get the same for θ as for
Case I. Since u · n2 changes sign in exactly the same way as
v ·n2 for different cases, in Case III and Case IV, the sign of α

is changed according to equation (10) (i.e. it becomes αA,A),
and in Case II its value is not changed (i.e. it remains αA,A).
This allow us to see that with the extra steps in Section III-B,
the orientation of the normal vectors becomes uninteresting.

TABLE 1. The φ, θ and α values for the four types of orientation cases.

APPENDIX B
CDFs OF FPFH FEATURES ON THE SLOPE
In the remainder of this section, we assume that there are two
intersecting planes whose dihedral angle is π/2 − γ where
0 ≤ γ < π/2 (so these two planes form a slope). See
Figure 14. The point p1 is located at a distance ℓ from the
intersection of the planes. We take the neighborhood of point
p1, marked in red in the figure. For simplicity, the radius R
of the neighborhood is chosen so that it does not hang off
the slope in either direction. Furthermore, we assume that
the point cloud elements are perfectly aligned on the planes,
so there is no noise, and the points are evenly distributed on
each part of the planes. (At first glance, these seem to be
strong assumptions, but empirically the main findings here
will be more or less valid in a more general case.) Without
loss of generality, we can choose the axes as shown in the
figure, it will be useful, as will be shown later. It is important
to note that the features in this section will be examined by
taking the neighbor points not from the plane of point p1,
but from the other plane (marked in green in the figure).
In the figures, the neighbor point is p2 and ρ = ∥p2 − p1∥
is the distance between p1 and p2. ω (β) denotes the angle
subtended by p2 − p1 (w) and the x-axis. It is easy to see
based on the previous comment that arcsin(ℓ/R) ≤ ω, β ≤

π − arcsin(ℓ/R). The translation of the normal vector n2 to
the origin is denoted by n′

2. The line segment of length cos(γ )
(sin(γ )) is the (scalar) projection of the normal vector n′

2 onto
the y-axis (z-axis).

Theorem 1 shows the relationships between FPFH features
and different angles, the significance of which will be clear
below, but briefly it is meant to help us in defining or
estimating the distribution functions of FPFH features in the
slope case.
Theorem 1: The following are true:

θ = arctan(cos(γ ) sin(β), sin(γ )) (25)

=

{
arctan(sin(β)/ tan(γ )) if 0 < γ < π/2, π/2 if γ =0

α = − cos(γ ) cos(β) (26)

φ = cos(γ )

ℓ sin(γ )
ρ

−

√
sin2(ω) −

ℓ2 cos2(γ )
ρ2

 . (27)

Proof: Throughout the proof, we will refer to the notations
on the auxiliary figures. It is definitely worth keeping in
mind Figure 14, where one can get an overview of the most
important vectors and angles.

From now on we make the assumptions: ω, β ≤ π/2 and
γ > 0 (this case is shown in the auxiliary figures), the other
cases are left to the reader, as it is very similar (using cos(β −

π/2) = cos(π/2 − β), sin(π − ω) = sin(ω) and if γ = 0,
then n2 is parallel to the y-axis).
Let us first prove equation (25) for the case β < π/2 and

later return to the case β = π/2. To see this, consider the
triangle in the left panel of Figure 15. Using the Law of
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FIGURE 14. The most important vectors, edges and angles needed to prove Theorem 1 and Theorem 3. Further explanation is given in the
text.

Cosines, we can express e1 in the figure:

e1 =

√
cos2(γ ) + ∥w∥

2
− 2 ∥w∥ cos(γ ) cos(π/2 − β)

=

√
cos2(γ ) + 1 − 2 cos(γ ) sin(β).

Next, we express e2 in the middle panel of Figure 15 based
on the Pythagorean theorem:

e2 =

√
sin2(γ ) + cos2(γ ) + 1 − 2 cos(γ ) sin(β)

=
√
2 − 2 cos(γ ) sin(β).

Then applying the Law of Cosines again for the right panel
of Figure 15, we get cos(η), which is the cosine of the angle
subtended by w and n′

2:

cos(η) =

∥∥n′

2

∥∥2 + ∥w∥
2
− 2 + 2 cos(γ ) sin(β)

2
∥∥n′

2

∥∥ ∥w∥

= cos(γ ) sin(β).

It is easy to see that in the case β = π/2, η = γ (since the
vector w is then on the y-axis), so the result for cos(η) is still
true. Therefore, the dot product of w and n2 is cos(γ ) sin(β).
Based on Figure 14d,

u · n2 = ∥u∥ ∥n2∥ cos(π/2 − γ ) = sin(γ ).

It follows that equation (25) holds.

FIGURE 15. The triangles needed for the derivation of equation (25).
Further explanation is given in the text.

In the same manner, we can prove, as we saw for the scalar
product of w and n2, that equation (26) holds. To do this,

FIGURE 16. The triangles needed for the derivation of equation (26).
Further explanation is given in the text.

consider Figure 16, which shows that

v · n2 = ∥v∥ ∥n2∥ cos(ξ ) = − cos(γ ) cos(β)

using the Law of Cosines and the Pythagorean theorem. (For
this part, no distinction is made between β = π/2 and
β < π/2.)

Finally, we show that equation (27) also holds. To do
this, we first consider the triangle in Figure 17a for the case
ω < π/2, where e5 = sin(ω)ρ, and in the special case of
ω = π/2, e5 equals ρ (because the ρ is on the yz-plane).
We have created another auxiliary figure, Figure 14c, which
is particularly useful for the proof of (27), as it clearly shows
the relationships between the most important edges (the
figure shows that the coordinates of point p2 are (e9, e8, e7)).
In Figure 17b, there are several triangles connected to each
other. Take the one with sides e5, e6, ℓ and use the Law of
Cosines:

sin2(ω)ρ2
= e26 + ℓ2 − 2e6ℓ cos

(π

2
+ γ

)
then express the two possible solutions for e6 using the
quadratic formula:

e6 = ℓ cos
(π

2
+γ

)
±

√
sin2(ω)ρ2 + ℓ2 cos2

(π

2
+γ

)
−ℓ2.

(28)

Now consider a triangle with sides e5, e7 and e8, where e5 is
the hypotenuse, so it is true that e8 < e5. On the other hand,
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ℓ ≤ e8, which implies that ℓ < sin(ω)ρ holds. Using this, the
following can be derived:

ℓ2 < sin2(ω)ρ2

ℓ2 cos2
(π

2
+ γ

)
< sin2(ω)ρ2

+ ℓ2 cos2
(π

2
+ γ

)
− ℓ2

ℓ cos
(π

2
+ γ

)
<

√
sin2(ω)ρ2 + ℓ2 cos2

(π

2
+ γ

)
− ℓ2.

Using this, and since e6 must be positive, we get that in (28)
the plus-minus symbol (±) can actually be replaced by ‘‘+’’:

e6 = ℓ cos
(π

2
+γ

)
+

√
sin2(ω)ρ2 + ℓ2 cos2

(π

2
+γ

)
− ℓ2

= ℓ cos
(π

2
+ γ

)
+

√
sin2(ω)ρ2 − ℓ2 sin2

(π

2
+ γ

)
= −ℓ sin(γ ) +

√
sin2(ω)ρ2 − ℓ2 cos2(γ ). (29)

Examining the right triangle with the γ angle, we get e7 =

cos(γ )e6. Finally, consider the triangle in Figure 17c, which
shows: cos(π − λ) = e7/ρ =

cos(γ )e6
ρ

. We get cos(λ) =

−
cos(γ )e6

ρ
, which is the cosine of the angle subtended by u

and p2 − p1. We have now deduced equation (27) and the
proof is complete. □
Let us now state the corollary of Theorem 1, which is

easy to see using the fact that arcsin(ℓ/R) ≤ ω, β ≤ π −

arcsin(ℓ/R). From now on, φ0 denotes the minimum value of
φ that is equal to

φ0 = cos(γ )

ℓ sin(γ )
R

−

√
1 −

ℓ2 sin2(γ )
R2

 (30)

(φ takes its minimum at ω = π/2 and ρ = R).
Corollary 1: The following are true:

arctan(cot(γ )ℓ/R) ≤ θ ≤ arctan(cot(γ )) (if γ > 0)

−

√
1 −

ℓ2

R2
cos(γ ) ≤ α ≤

√
1 −

ℓ2

R2
cos(γ )

φ0 ≤ φ ≤ 0.

The following proposition establishes a relationship
between the CDF of β, denoted by Fβ , and the CDFs of the
features θ (Fθ ) and α (Fα).
Proposition 1: For the CDF of θ , it is true that

Fθ (t) =

{
0 for t < π/2
1 for t ≥ π/2

(31)

if γ = 0, otherwise

Fθ (t) =
0 for t < arctan(cot(γ )ℓ/R)
2 · Fβ (arcsin(tan(t) tan(γ )))

for arctan(cot(γ )ℓ/R) ≤ t ≤ arctan(cot(γ ))
1 for t > arctan(cot(γ ))

(32)

For the CDF of α, it is true that

Fα(t)

=



0 for t < −

√
1 −

ℓ2

R2
cos(γ )

Fβ (arccos(−t/ cos(γ )))

for −

√
1 −

ℓ2

R2
cos(γ ) ≤ t ≤

√
1 −

ℓ2

R2
cos(γ )

1 for t >

√
1 −

ℓ2

R2
cos(γ )

(33)

Proof: To prove this, we will use equations (25) and (26)
in Theorem 1 and Corollary 1. Equation (31) is easy to
check. To prove equation (32), use the fact that if sin(β) ≤

tan(t) tan(γ ), then sin(π − β) ≤ tan(t) tan(γ ) and vice versa.
This is why the multiplication by 2 appears in the derivation
below:

Fθ (t) = P(θ ≤ t) = P(arctan(sin(β)/ tan(γ )) ≤ t)

= P(sin(β) ≤ tan(t) tan(γ ))

= 2 · P(β ≤ arcsin(tan(t) tan(γ )))

= 2 · Fβ (arcsin(tan(t) tan(γ )))

where arctan(cot(γ )ℓ/R) ≤ t ≤ arctan(cot(γ )) (the other
cases are straightforward). We show that equation (33) holds:

Fα(t) = P(α ≤ t) = P(− cos(γ ) cos(β) ≤ t)

= P(cos(β) ≥ −t/ cos(γ ))

= P(β ≤ arccos(−t/ cos(γ )))

= Fβ (arccos(−t/ cos(γ )))

where −

√
1 −

ℓ2

R2
cos(γ ) ≤ t ≤

√
1 −

ℓ2

R2
cos(γ ) (the other

cases are straightforward). □
The function Fβ plays a central role in determining the

functions Fθ and Fα according to Proposition 1. We will
not give an explicit formula for this function Fβ , but the
following proposition gives a lower and an upper estimates
of the function using the CDF of ω, denoted by Fω.
Proposition 2: For the CDF of β, it is true:

Fβ (t) ≤


Fω(arctan(tan(t)/ sin(γ )))

for arcsin(ℓ/R) ≤ t < π/2
Fω(t) for π/2 < t ≤ π − arcsin(ℓ/R)

(34)

Fβ (t) ≥


Fω(t) for arcsin(ℓ/R) ≤ t < π/2
Fω(π + arctan(tan(t)/ sin(γ )))

for π/2 < t ≤ π − arcsin(ℓ/R)

(35)

Fβ (π/2) = 1/2 = Fω(π/2) (36)

Proof: Equation (36) is easy to see (in a simi-
lar way to equation (51)). Now, let us assume that
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FIGURE 17. The triangles needed to prove Theorem 1, Theorem 2,
Proposition 2 and Theorem 3. Further explanation is given in the text.

arcsin(ℓ/R) ≤ t < π/2 and consider the triangle in
Figure 17a, which shows the following relationships:

e5 = ρ sin(ω) (37)

cos(ω) = e9/ρ. (38)

Figure 17d shows that

tan(β) = e8/e9. (39)

From Figure 17b, take the triangle with sides e5, e7, e8 where
it is true that

e28 = e25 − e27 (40)

thus e8 < e5, and using equations (37), (38) and (39):

e8 < e5
e8 < ρ sin(ω)

e8/e9 < ρ sin(ω)/e9
tan(β) < tan(ω)

β < ω. (41)

Examining the right triangle with the angle γ in Figure 17b,
we obtain that

sin(γ ) = (e8 − ℓ)/e6 (42)

e26 = e27 + (e8 − ℓ)2. (43)

Using equations (37), (38), (39), (40), (42) and (43) and the
fact that e5 > e6,

e28e
2
6 =

(
e25 − e27

) (
e27 + (e8 − ℓ)2

)
e28e

2
6 = e25(e8 − ℓ)2 + e27

(
e25 −

(
(e8 − ℓ)2 + e27

))
e28e

2
6 = e25(e8 − ℓ)2 + e27(e

2
5 − e26)

e28e
2
6 > e25(e8 − ℓ)2

e8e6 > ρ sin(ω)(e8 − ℓ)
e8
e9

>
ρ sin(ω)(e8 − ℓ)

e9e6
=

ρ sin(ω)
e9

·
e8 − ℓ

e6
tan(β) > tan(ω) sin(γ ). (44)

For arcsin(ℓ/R) ≤ t < π/2, if tan(β) ≤ tan(t), then
tan(ω) sin(γ ) ≤ tan(t) also holds based on equation (44),
so the event tan(ω) sin(γ ) ≤ tan(t) is at least as frequent as
tan(β) ≤ tan(t), therefore

Fβ (t) = P(β ≤ t) = P(tan(β) ≤ tan(t))

Fβ (t) ≤ P(tan(ω) sin(γ ) ≤ tan(t))

Fβ (t) ≤ P(ω ≤ arctan(tan(t)/ sin(γ )))

Fβ (t) ≤ Fω(arctan(tan(t)/ sin(γ ))).

If ω ≤ t , then β ≤ t also holds based on equation (41),
as before, we get the following:

Fβ (t) = P(β ≤ t) ≥ P(ω ≤ t) = Fω(t).

The proof for π/2 < t ≤ π − arcsin(ℓ/R) is similar and the
details are left to the reader. □

The following theorem gives an upper estimate of the CDF
of feature φ (Fφ), using the function Fω.
Theorem 2: For the CDF of φ, it is true that

Fφ(t) ≤ 1 − Fω(arcsin(t/φ0)) (45)

where φ0 ≤ t ≤ 0.
Proof: Let us first consider (again) the triangle in

Figure 17a for the case ω < π/2, where cos2(ω) = e29/ρ
2.

Based on the right panel of the same figure, it is true that
sin2(π − λ) = sin2(λ) = e210/ρ

2. Now, consider the triangle
in Figure 17d, where e210 = e28 + e29. Combining the above,
it follows that

sin2(λ) =
e210
ρ2 =

e28
ρ2 +

e29
ρ2 =

e28
ρ2 + cos2(ω)

1 − cos2(λ) =
e28
ρ2 + 1 − sin2(ω)

φ = cos(λ) = ±

√
sin2(ω) −

e28
ρ2 = −

√
sin2(ω) −

e28
ρ2 (46)

where the plus-minus symbol (±) can actually be replaced by
‘‘−’’ in the last equality because of φ ≤ 0. In the special case
ω = π/2, e10 equals e8 (because the e10 is on the yz-plane),
from now on, e10 is denoted by e0 for this special case. Similar
reasoning applies to this case, and for ρ = R, we can see that

φ0 = −

√
1 −

e20
R2

. (47)

For fixed γ and ℓ, the larger e5, the smaller µ will
be, as shown in Figure 17e. To see this correctly, consider
Figure 17f and assume e5 < e′5:

cos(γ + π/2 − µ) = e11/e5
cos(γ + π/2 − µ′) = e11/e′5.
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Using this and the fact that

0 ≤ γ + π/2 − µ, γ + π/2 − µ′
≤ π/2

because γ ≤ µ, µ′ holds (based on tan(γ ) = (e8 − ℓ)/e7 ≤

e8/e7 = tan(µ)), we get

cos(γ + π/2 − µ) = (e′5/e5) · cos(γ + π/2 − µ′)

cos(γ + π/2 − µ) > cos(γ + π/2 − µ′)

γ + π/2 − µ < γ + π/2 − µ′

µ′ < µ.

For ω = π/2 and ρ = R, e5 is the largest and then e5 =

R (because e5 = ρ sin(ω) ≤ R sin(ω) ≤ R). The angle µ

associated with this case will be the smallest, denoted by µ0.
Furthermore, it is easy to see that

sin(µ) =
e8

ρ sin(ω)
(48)

(based on Figure 17b) and

sin(µ0) =
e0
R

. (49)

From equations (46), (47), (48) and (49), we conclude that

sin(µ0) ≤ sin(µ)
e0
R

≤
e8

ρ sin(ω)
e20
R2

≤
e28

ρ2 sin2(ω)
e20
R2

sin2(ω) ≤
e28
ρ2

−
e28
ρ2 ≤ −

e20
R2

sin2(ω)

sin2(ω) −
e28
ρ2 ≤ sin2(ω)

(
1 −

e20
R2

)
√
sin2(ω) −

e28
ρ2 ≤ sin(ω)

√
1 −

e20
R2

−

√
sin2(ω) −

e28
ρ2 ≥ sin(ω)

−

√
1 −

e20
R2


φ ≥ φ0 sin(ω). (50)

For φ0 ≤ t ≤ 0, if φ ≤ t , then φ0 sin(ω) ≤ t also holds
based on equation (50), so the event φ0 sin(ω) ≤ t is at least
as frequent as φ ≤ t , therefore

Fφ(t) = P(φ ≤ t) ≤ P(φ0 sin(ω) ≤ t) =

= P(sin(ω) ≥ t/φ0) = P(ω ≥ arcsin(t/φ0)) =

= 1 − Fω(arcsin(t/φ0))

which proves the theorem. □
Two questions can be raised about the former result:
• Is there any way to give a lower bound on the function
Fφ using the function Fω? Unfortunately, we have not
been able to find one so far.

• Could we use the upper estimate to obtain some formula
that approximates the function Fφ even better? This
question will be explored below.

It can be seen from the resulting upper estimate that for
φ0 ≤ t ≤ 0:

1/2 ≤ 1 − Fω(arcsin(t/φ0)) ≤ 1,

since 0 ≤ arcsin(t/φ0) ≤ π/2 and

Fω(π/2) = 1/2, (51)

where the latter is shown by the fact that if we take ω to
the y-axis (i.e. to ω = π/2), then it will be exactly half of
the total area of the neighborhood on the slope. (A detailed
analysis of function Fω will be included below.) To obtain an
estimate that takes values over the entire interval [0, 1], the
argument of the function Fω should be transformed to take
values over the interval [arcsin(ℓ/R), π − arcsin(ℓ/R)]. The
following heuristic will serve this purpose. So we look for the
argument transformation in the following form:

C1 arcsin(t/φ0) + C2 (52)

where wewantC1 andC2 to be chosen such that theminimum
and maximum values of t are the two endpoints of the interval
[arcsin(ℓ/R), π − arcsin(ℓ/R)]. Since for t = 0 the argument
function in (52) will be C2, choose C2 as arcsin(ℓ/R). And
for t = φ0 the argument function at (52) will be C1 · (π/2)+
arcsin(ℓ/R) (using the previous choiceC2), so chooseC1 such
that:

C1 · (π/2) + arcsin(ℓ/R) = π − arcsin(ℓ/R)

C1 =
π − 2 arcsin(ℓ/R)

π/2

C1 = 2
(
1 −

2 arcsin(ℓ/R)
π

)
.

To summarise, we obtain the following estimate (denoted
by Gφ):

Fφ(t) ≈ Gφ = 1 − Fω(C1 arcsin(t/φ0) + C2) (53)

where C1 = 2(1 − 2 arcsin(ℓ/R)/π) and C2 = arcsin(ℓ/R).
So far, our method has only been evaluated by visual
inspection, but the results are encouraging, see Figure 22.
It can also be seen from the figure that Fφ(t) ≤ Gφ(t) for
φ0 ≤ t ≤ 0. (We will return to the other components of the
figure later.)

Based on the results obtained so far, it has been possible
to use the estimates to derive the CDFs of the FPFH
features back to the task of determining the function Fω.
A demonstrative figure has been prepared for this, see
Figure 18. This illustrates that if the angle ω goes from the
intersection of the planes to t , how much of the resulting
area, denoted by St , will be part of the area of the complete
neighborhood on the slope, whichwill beP(ω ≤ t) (assuming
no noise and the plane is sampled uniformly). The complete
neighborhood on the slope is denoted by S. So the task will
be to determine the area of the neighborhood on the slope as
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FIGURE 18. Areas defined by the points on the slope: 1) if the angle ω

goes from the intersection of the planes to t (surface marked in red,
denoted by St ), 2) if ω goes through the complete neighborhood
belonging to the slope (surface marked in orange, denoted by S).

a function of ω, for which Theorem 3 is stated. (Note that
for ℓ ̸= 0, this will not simply be the area of a circular
sector.)
Theorem 3: For the CDF of ω, it is true that

Fω(t) =

0 for t < arcsin(ℓ/R)
area(St )/ area(S)

for arcsin(ℓ/R) ≤ t < π/2
1/2 for t = π/2
1 − Fω(π − t)

for π/2 < t ≤ π − arcsin(ℓ/R)
1 for t > π − arcsin(ℓ/R)

where the area of St (S) is denoted by area(St ) (area(S)). For
the case γ = 0,

area(S) = (R2 − ℓ2)(π/2)

and

area(St ) =
1
2

·

(
(R2 − ℓ2)(π/2) − R2 arcsin

(
cos(t)R

√
R2 − ℓ2

)

−

ℓ2 ln
(√

R2 sin2(t)/ℓ2 − 1 + sin(t)R/ℓ

)
tan(t)

+ℓ2 arctan

(
cos(t)R√

R2 sin2(t) − ℓ2

))
.

For the case γ > 0,

area(S) =

(R2 − ℓ2) arcsin

 1√
1 +

ℓ2 sin2(γ )
R2−ℓ2



+ℓ2 sin2(γ ) arctan

(√
R2 − ℓ2

ℓ sin(γ )

)

−ℓ sin(γ )
√
R2 − ℓ2

 . (54)

The area(St ) is the sum of two terms,

area(St ) = Int1 + Int2

where

Int1 =
1
2

·

(R2 − ℓ2) arcsin

 1√
1 +

ℓ2 sin2(γ )
R2−ℓ2


+ℓ2 sin2(γ ) arctan

(√
R2 − ℓ2

ℓ sin(γ )

)

−ℓ sin(γ )
√
R2 − ℓ2

−
ℓ2 sin(γ )
tan2(t)

arcsin

 1√
1 + tan2(t) sin2(γ )


−ℓ2 sin2(γ ) arctan

(
1

tan(t) sin(γ )

)

+
ℓ2 sin(γ )
tan(t)

 , (55)

Int2 = −
1
2

·

(
R2 arcsin

(
cos(t)R√

R2 − ℓ2 cos2(γ )

)

−ℓ2 arcsin

 cos(t)√
1 − cos2(γ ) sin2(t)


+

ℓ2 cos2(γ )
tan(t)

ln

(√
Et,ℓ,γ,R + sin(t)R

ℓ(1 + sin(γ ))

)

−ℓ2 cos2(γ ) arctan

(
cos(t)R√
Et,ℓ,γ,R

)

+ℓ2 cos2(γ ) arctan
(

1
√
tan(t) sin(γ )

))
(56)

using the notation Et,ℓ,γ,ρ , which abbreviates

ρ2 sin2(t) − ℓ2 cos2(γ ).

Proof: First we deal with the case arcsin(ℓ/R) ≤ t <

π/2 and γ > 0. Our proof starts with observations
already alluded to in the proofs of Theorem 1 and Propo-
sition 2. The neighbor point p2 of point p1, which is
on the slope, has coordinates (e9, e8, e7), see Figure 14c.
For better understanding, from now on, the notations
e9, e8, e7 will be replaced by X ,Y ,Z , respectively. Based on
equation (38),

X = ρ cos(ω). (57)
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Examining the right triangle with the γ angle in Figure 17b
and using equation (29), we get

Y − ℓ = sin(γ )e6
Y = sin(γ )e6 + ℓ

= −ℓ sin2(γ ) + ℓ + sin(γ )
√
sin2(ω)ρ2 − ℓ2 cos2(γ )

= ℓ cos2(γ ) + sin(γ )
√
sin2(ω)ρ2 − ℓ2 cos2(γ ) (58)

and

Z =
Y − ℓ

tan(γ )
. (59)

The area of St (area(St )) can be defined by a surface
integral, where Z is a function of Y and the derivative of Z
with respect to Y is 1/ tan(γ ) based on equation (59):

area(St ) =

¨
St

√(
∂Z
∂X

)2

+

(
∂Z
∂Y

)2

+ 1 dX dY

=

¨
St

√
0 +

1
tan2(γ )

+
sin2(γ )

sin2(γ )
dX dY

=

¨
St

√
cos2(γ ) + sin2(γ )

sin2(γ )
dX dY

=

¨
St

1
sin(γ )

dX dY

Since we should get the result of the integral as a function of
ω, wemake transformation fromCartesian coordinates (X ,Y )
to polar coordinates (ρ, ω) using equations (58) and (59). The
Jacobian matrix of the transformation is[

−ρ cos(ω) cos(ω)
sin(γ )ρ2 cos(ω) sin(ω)

√
sin2(ω)ρ2−ℓ2 cos2(γ )

sin(γ )ρ sin2(ω)
√

sin2(ω)ρ2−ℓ2 cos2(γ )

]

and the absolute value of the Jacobian determinant is

ρ2 sin(γ ) sin(ω)√
sin2(ω)ρ2 − ℓ2 cos2(γ )

.

To continue integration, we need to apply the boundary
conditions. It is easy to see that the lower limit of ω is
arcsin(ℓ/ρ) and the upper limit is t . For this reason, it must
also be true that arcsin(ℓ/ρ) ≤ t and therefore ℓ/ sin(t) ≤ ρ.
Clearly, the upper limit of ρ is R. Since sin(γ ) is eliminated
after simplification, the integral is

ˆ R

ℓ/ sin(t)

ˆ t

arcsin(ℓ/ρ)

ρ2 sin(ω)√
sin2(ω)ρ2 − ℓ2 cos2(γ )

dω dρ

=

ˆ R

ℓ/ sin(t)
ρ2

−

arcsin
(

ρ cos(ω)
√

ρ2−ℓ2 cos2(γ )

)
ρ


t

arcsin(ℓ/ρ)

dρ

The above integral naturally splits into two parts, e.g.
area(St ) = Int1 + Int2, which will be evaluated separately:

Int1 =

ˆ R

ℓ/ sin(t)
ρ arcsin

 1√
1 +

ℓ2 sin2(γ )
ρ2−ℓ2

 dρ

Int2 = −

ˆ R

ℓ/ sin(t)
ρ arcsin

 cos(t)√
1 +

ℓ2 cos2(γ )
ρ2

 dρ

where we used cos(arcsin(ℓ/ρ)) =

√
1 − ℓ2/ρ2 and

−ℓ2 cos2(γ ) = −ℓ2 + ℓ2 sin2(γ ). Let us first compute Int1,

Int1 =
1
2

·

(ρ2
− ℓ2) arcsin

 1√
1 +

ℓ2 sin2(γ )
ρ2−ℓ2


+ℓ2 sin2(γ ) arctan

(√
ρ2 − ℓ2

ℓ sin(γ )

)

−ℓ sin(γ )
√

ρ2 − ℓ2


R

ℓ/ sin(t)

,

evaluating the antiderivative at the endpoints, we get equa-
tion (55) where for ρ = ℓ/ sin(t), using

ρ2
− ℓ2 =

(
ℓ

sin(t)

)2

− ℓ2

= ℓ2

(
sin2(t) + cos2(t)

sin2(t)
−

sin2(t)

sin2(t)

)

=
ℓ2

tan2(t)
.

We now turn to Int2. Et,ℓ,γ,ρ = ρ2 sin2(t) − ℓ2 cos2(γ ) ≥

0 is true because ℓ/ sin(t) ≤ ρ and cos(γ ) ≤ 1, we get

Int2 = −
1
2

·

ρ2 arcsin

 cos(t)√
1 −

ℓ2 cos2(γ )
ρ2


+

ℓ2 cos2(γ )
tan(t)

ln
(
sin(t)

√
Et,ℓ,γ,ρ + ρ sin2(t)

)
−ℓ2 cos2(γ ) arctan

(
cos(t)ρ√
Et,ℓ,γ,ρ

)]R
ℓ/ sin(t)

,

and after evaluation, equation (56) is obtained.
For the case π/2 ≤ t ≤ π − arcsin(ℓ/R), it is true, due

to symmetry, that area(St ) = area(S) − area(Sπ−t ) where
area(S) can be computed in a similar way as area(St ) for
arcsin(ℓ/R) ≤ t < π/2, but note that the integration is over
the interval [arcsin(ℓ/ρ), π − arcsin(ℓ/ρ)] with respect to ω,
and [ℓ,R] with respect to ρ, respectively. Given the above,
we leave it to the reader to verify equation (54).
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FIGURE 19. Differences between the functions Fω , F̂ω and the fitted function It (a, b). The first row is for γ = π/8, the second row is for γ = π/4 and the
third row is for γ = 3π/8. The first column is for ℓ/R = 0.2, the second column is for ℓ/R = 0.5 and third column is for ℓ/R = 0.8. Below we report the
parameters (a, b) obtained in the fitting and the (approximate) area rate A(F̂ω, Fω) (A(F̂ω, It (a, b))) between the F̂ω and Fω (It (a, b)) functions.
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For the case γ = 0, simply substituting 0 for γ in
equations (54), (55) and (56) does not always work, since
there is a division by zero. Therefore, in those cases, the
values of the functions should be defined as limits where γ

approaches zero from the right (because γ ≥ 0). For example,
to determine the formula for area(S), use

lim
γ→0+

ℓ2 sin2(γ ) · arctan

(√
R2 − ℓ2

ℓ sin(γ )

)
= 0 · (π/2) = 0.

The details are left to the reader. □
Theorem 3 gave a rather complicated formula for the

function Fω. Further simplifications could probably be made,
but the main problem would still be that it has three
parameters (R, ℓ, γ ) and would be difficult to fit a function
to it. Thus, using this formula, we would not be able to
store the CDFs of the features in a concise form. However,
the formula includes, among many other things, the function
arcsin, whichmay remind us of the arcsine distribution and its
CDF. This is a special case of the beta distribution, so the idea
is to try to approximate the function Fω by the CDF It (a, b)
of the beta distribution, where It (a, b) denotes the regularized
incomplete beta function with only parameters a, b.
By generating a point cloud that satisfies the case described

at the beginning of this section (i.e., no noise and the plane
is uniformly sampled), we can test how well the former
idea works. Figure 19 illustrates the differences between
the function Fω obtained from the formula in Theorem 3,
the empirical CDF F̂ω obtained from the ω data, and the
function obtained by fitting the regularized incomplete beta
function It (a, b) to the function F̂ω. In order to quantify the
differences and to compare the results obtained with different
choices γ and ℓ/R, we take the area under the absolute value
of the differences between the functions, and divide it by
π − 2 arcsin(ℓ/R) (i.e. the length of the interval where the
values of the functions are between 0 and 1). We call this
the area rate and denote it by A. (We will use the same
notation in the following. Understandably, the interval will
always vary, the length of which will be used to divide the
area.) There are only small differences between the functions,
as shown in this figure. It is also observed that for higher
ℓ/R values the fitted function It (a, b) is closer to the function
F̂ω than the function Fω. This is probably because the
functions sin, tan, arcsin, arctan etc. in the formula obtained
by Theorem 3 are somewhat numerically imprecise and
because there are many of them, these imprecisions are
amplified. To summarize, we find that the function It (a, b)
approximates the function F̂ω in a roughly similar way to
the function obtained from Theorem 3. This result, in turn,
encourages us to try to use the function It (a, b) to approximate
the CDFs of FPFH features.

Importantly, the beta distribution is a notable family of
probability distributions, not to be confused with function Fβ

we defined earlier, for which a formula could be derived in
a similar way as we did for the function Fω above. We do
not consider this necessary because in fact the function Fβ

can also be approximated by the CDF of the beta distribution,
which is not surprising based on Proposition 2. We will not
show this separately, but will only show, using Proposition 1,
how the functions Fθ and Fα can be approximated by the
function It (a, b).We also consider the functionFφ in the same
way, using Theorem 2. Let us use the following notations (the
definition of the function Gφ is given in equation (53)):

Gθ (t) = 2 · F∗
β (arcsin(tan(t) tan(γ )))

Bθ (t) = I arcsin(tan(t) tan(γ ))−arcsin(ℓ/R)
π/2−arcsin(ℓ/R)

(a, b)

Gα(t) = F∗
β (arccos(−t cos(γ )))

Bα(t) = I
arccos(−t/ cos(γ ))−arccos

(√
1−ℓ2/R2

)
arccos

(
−

√
1−ℓ2/R2

)
−arccos

(√
1−ℓ2/R2

)
(a, b)

Bφ(t) = 1 − I arcsin(t/φ0)
π/2

(a, b) (60)

where the intervals for t are the same as in Proposition 1 and
Theorem 2 (not copied here for brevity), parameters (a, b) are
derived from curve fitting for specific cases. It is important
to note that because of the domain of the function I , it is
necessary to transform the values for the fit so that they
fall within the interval [0, 1]. For this reason, subtractions
and divisions are included in the formulas of functions B•

(for example, arcsin(tan(t) tan(γ )) in Bθ becomes arcsin(ℓ/R)
for t = arctan(cot(γ )ℓ/R) and arcsin(1) = π/2 for t =

arctan(cot(γ ))). The notation F∗
β used in the above formulas

represents the average of the lower and upper estimates of Fβ

(obtained in Proposition 2):

F∗
β (t) =



1
2
(Fω(t) + Fω(arctan(tan(t)/ sin(γ ))))

for arcsin(ℓ/R) ≤ t < π/2
1/2 for t = π/2
1
2
(Fω(t) + Fω(π + arctan(tan(t)/ sin(γ ))))

for π/2 < t ≤ π − arcsin(ℓ/R)

We use the same synthetic point clouds that we used
for ω above, and examine how the functions G• and B•

approximate the CDFs of the features. Based on Figure 20,
we can conclude that the smaller the ratio ℓ/R and the larger
the γ , the better the approximation of the function Gθ to the
function F̂θ . (The more significant differences for smaller t
are because the term of the upper estimate of function Fβ for
smaller t greatly ‘‘moves’’ the estimate.) In almost all cases,
the function Bθ is a better approximation of the function F̂θ .
Here it is true that function Bθ approximates more accurately
for larger ratio ℓ/R and larger γ . From Figure 21, we can
draw the conclusion that the situation is similar to θ , so that
the smaller the ratio ℓ/R and the larger the γ , the better the
approximation of the function Gα to the function F̂α . Again,
the function Bα is a better approximation than the function
Gα for larger ratio ℓ/R and larger γ . Figure 22 shows that
function Gφ will always be an upper estimate of function
F̂φ and is spectacularly further away from it than function
Bφ (hence the column A(F̂φ,Gφ) is missing from the table).
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FIGURE 20. Differences between the functions F̂θ , Gθ and the fitted function Bθ . The first row is for γ = π/8, the second row is for γ = π/4 and the third
row is for γ = 3π/8. The first column is for ℓ/R = 0.2, the second column is for ℓ/R = 0.5 and third column is for ℓ/R = 0.8. Below we report the
parameters (a, b) obtained in the fitting and the (approximate) area rate A(F̂θ , Gθ ) (A(F̂θ , Bθ ) between the F̂θ and Gθ (Bθ ) functions.
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FIGURE 21. Differences between the functions F̂α , Gα and the fitted function Bα . The first row is for γ = π/8, the second row is for γ = π/4 and the third
row is for γ = 3π/8. The first column is for ℓ/R = 0.2, the second column is for ℓ/R = 0.5 and third column is for ℓ/R = 0.8. Below we report the
parameters (a, b) obtained in the fitting and the (approximate) area rate A(F̂α, Gα) (A(F̂α, Bα) between the F̂α and Gα (Bα) functions.
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FIGURE 22. Differences between the functions F̂φ , Gφ and the fitted function Bφ . The first row is for γ = π/8, the
second row is for γ = π/4 and the third row is for γ = 3π/8. The first column is for ℓ/R = 0.2, the second column is
for ℓ/R = 0.5 and third column is for ℓ/R = 0.8. Below we report the parameters (a, b) obtained in the fitting and the
(approximate) area rate A(F̂φ, Bφ ) between the F̂φ and Bφ functions.
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Function Bφ , unlike before, approximates best for γ = π/4,
and if γ decreases or increases in relation to this, it gives
worse results. Furthermore, the larger the ratio ℓ/R, the better
the estimate (similar to what was seen for the other two
features). In summary, the functions B• seem to approximate
the CDFs of the features quite well.

APPENDIX C
HELLINGER DISTANCE COMPUTATION FOR FITTED CDFs
OF FPFH FEATURES
In this section, the deduction of the Hellinger distance [62]
for quantifying the similarity between two fitted CDFs of
FPFH features is presented. Let us denote by χ one of the
FPFH features (θ , α or φ). Let H2

χ (p1, p2) be the squared
Hellinger distance of the (estimated) probability distributions
of the feature χ computed around points p1 and p2.
We will denote by PAχ,p (PBχ,p) the array of parameters a

(b) associated with the function B[ts,te]χ fitted to the different
intervals [ts, te] of the function F̂χ computed around the point
p (recall equations (14), (15), (16)). We write PHχ,p for the
array of F̂χ (te)− F̂χ (ts) values computed at different intervals
[ts, te] which thus contains the ‘‘height’’ parameters h of the
empirical function at different intervals. So the full fitted CDF
Bχ for the point p will be the following using the notation:

Bχ,p(t) =

0 for t < ts0
B
[ts0 ,te0 ]
χ (t) · PHχ,p[0] for t ∈ [ts0 , te0 ]

B
[ts1 ,te1 ]
χ (t) · PHχ,p[1] + PHχ,p[0]
for t ∈ [ts1 , te1 ]

. . .

B
[tsL−1 ,teL−1 ]
χ (t) · PHχ,p[L − 1] +

L−2∑
k=0

PHχ,p[k]

for t ∈ [tsL−1 , teL−1]
1 for t > teL−1

(61)

where [ts0 , te0 ], [ts1 , te1 ], . . . , [tsL−1 , teL−1 ] intervals are
disjoint and their union yields the full domain. Let us denote
by B′

χ,p(t) the derivative of the function Bχ,p(t). Denote
by fk (t) one of the functions used in the argument of the
regularized incomplete beta function associated with the
different FPFH features (recall equation (13)) and fitted
to the interval [tsk , tek ] (fk

(
tsk
)

= 0 and fk
(
tek
)

= 1,
see equations (14), (15), (16)). We will write f ′

k (t) for the
derivative of the function fk (t). It is easy to deduce for the
point p that (62), as shown at the bottom of the page, where
B(•, •) denotes the beta function (using the usual notation).
Proposition 3: For the feature χ computed around points

p1 and p2, it is true:

H2
χ (p1, p2)

= 1−

L−1∑
k=0

√
PCχ,p1,p2 [k] · B

(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
where

PCχ,p1,p2 [k]

=
PHχ,p1 [k] · PHχ,p2 [k]

B
(
PAχ,p1 [k],PBχ,p1 [k]

)
· B
(
PAχ,p2 [k],PBχ,p2 [k]

)
and

PAχ,p1,p2 [k] =
PAχ,p1 [k] + PAχ,p2 [k]

2
,

PBχ,p1,p2 [k] =
PBχ,p1 [k] + PBχ,p2 [k]

2
.

Proof: By the definition of Hellinger distance and from
equation (62), we conclude that

H2
χ (p1, p2) = 1 −

ˆ
∞

−∞

√
B′

χ,p1 (t) · B′
χ,p2 (t) dt

= 1 −

L−1∑
k=0

ˆ
[tsk ,tek ]

√
PCχ,p1,p2 [k]

· fk (t)PAχ,p1,p2 [k]−1

B′
χ,p(t) =

0 for t < ts0
PHχ,p[0]f0(t)PAχ,p[0]−1(1 − f0(t))PBχ,p[0]−1f ′

0(t)

B
(
PAχ,p[0],PBχ,p[0]

)
for t ∈ [ts0 , te0 ]

PHχ,p[1]f1(t)PAχ,p[1]−1(1 − f1(t))PBχ,p[1]−1f ′

1(t)

B
(
PAχ,p[1],PBχ,p[1]

)
for t ∈ [ts1 , te1 ]

. . .

PHχ,p[L − 1]fL−1(t)PAχ,p[L−1]−1(1 − fL−1(t))PBχ,p[L−1]−1f ′

L−1(t)

B
(
PAχ,p[L − 1],PBχ,p[L − 1]

)
for t ∈ [tsL−1 , teL−1 ]

0 for t > teL−1

(62)
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· (1 − fk (t))PBχ,p1,p2 [k]−1
· f ′
k (t) dt

= 1 −

L−1∑
k=0

√
PCχ,p1,p2 [k]

· B
(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
·

(
Ifk
(
tek
) (PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
−Ifk

(
tsk
) (PAχ,p1,p2 [k],PBχ,p1,p2 [k]

))
= 1 −

L−1∑
k=0

√
PCχ,p1,p2 [k]

· B
(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
·
(
I1
(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
−I0

(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

))
= 1 −

L−1∑
k=0

√
PCχ,p1,p2 [k]

· B
(
PAχ,p1,p2 [k],PBχ,p1,p2 [k]

)
.

□
The result of Proposition 3 is that the Hellinger distance

between two fitted CDFs of feature χ for the points p1 and
p2 can be computed directly from the parameter arrays
PAχ,p1 , PBχ,p1 , PHχ,p1 , PAχ,p2 , PBχ,p2 , PHχ,p2 .
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