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ABSTRACT Dual-hand gesture recognition is crucial for intuitive 3D interactions in virtual reality (VR),
allowing the user to interact with virtual objects naturally through gestures using both handheld controllers.
While deep learning and sensor-based technology have proven effective in recognizing single-hand gestures
for 3D interactions, research on dual-hand gesture recognition for VR interactions is still underexplored.
In this work, we introduce CWT-CNN-TCN, a novel deep learning model that combines a 2D Convolution
Neural Network (CNN) with Continuous Wavelet Transformation (CWT) and a Temporal Convolution
Network (TCN). This model can simultaneously extract features from the time-frequency domain and
capture long-term dependencies using 3D position and orientation data from handheld controllers for gesture
classification. To evaluate the performance of the proposed model, we designed 13 dual-hand gestures
representing fundamental 3D interaction tasks: translation, rotation, scaling, and selection, and then collected
data from 26 participants using a VR system. The model’s performance was rigorously tested under various
hand-tracking scenarios, including dual-hand versus single-hand inputs and complete versus partial motion
features. Benchmarking against four state-of-the-art neural networks revealed that CWT-CNN-TCN reliably
detects dual-hand gestures with limited tracking data and outperforms the benchmarks. This result paves the
way for a dual-hand gesture-based interface that enriches intuitive 3D interactions in VR.

INDEX TERMS Deep learning, dual-hand gestures, hand gesture recognition, natural interface, three-
dimensional interactions, virtual reality.

I. INTRODUCTION
In virtual reality (VR), 3D interactions, such as rotating
or scaling virtual objects, are facilitated through various

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Sabarimalai Manikandan .

user interfaces. Traditional buttons or keys on a handheld
controller offer straightforward control but can be less
efficient for 3D interactions in VR. Graphical user interfaces
(GUI) that are displayed within VR environments provide
a visual guide for interactions, but they can clutter the VR
space and detract from the immersive experience [1]. Hand
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motion gestures offer a more natural and intuitive alternative,
allowing users to interact with virtual content similarly to
real-world actions [2]. For instance, users can intuitively
scale objects in VR by simply moving their hands apart
or together [3] rather than navigating through cumbersome
graphical menus. Previous approaches for recognizing hand
gestures in 3D interactions often rely on specialized hardware
like data gloves [4], computer vision systems like Leap
Motion [5] for hand skeleton tracking [6], mobile devices
for hand movement detection [7], [8], or wearable sensors
for wrist or arm motion tracking [9]. However, affordable
VR systems such as Meta Quest 2 [10] and HTC Vive [11]
now come with two handheld controllers equipped with
optical and inertial sensors, providing accurate head and
hand movement tracking in 3D. Therefore, developing
gesture-based interaction techniques that work directly with
handheld controllers would be more appealing to VR
end-users and enlarge accessibility [2], [3].

While gesture-based interfaces with handheld controllers
have been implemented in specific VR games [2], [12],
[13] and other 3D applications [14], these gestures are
often tailored for specific tasks like tennis swing and
may lack generalizability. Most importantly, these interfaces
typically only involve single-hand gestures. However, biman-
ual interactions hold significant promise in numerous VR
applications [3], especially for tasks demanding coordinated
use of both hands, like in virtual surgery systems [15], [16].
A recent study [3] highlighted various motion patterns in
dual-hand interactions, varying from two hands performing
simultaneous movements to asymmetric roles where one
hand acts predominantly and the other provides a reference
point. This underscores the need for advanced hand gesture
recognition methods to discern these varied motion patterns
and accurately classify dual-hand gestures for comprehensive
3D interactions.

Deep learning models, particularly Recurrent Neural
Networks (RNN) [17], [18] and Convolutional Neural
Networks (CNN) [19], [20], have been extensively utilized
in sensor-based human activity recognition (HAR) [21].
Temporal Convolutional Networks (TCN) [22], [23] that
use a hierarchy of temporal convolutions have outperformed
other temporal models like Long-Short Term Memory
(LSTM) and RNN [24] due to their efficiency in handling
long-range temporal dependencies. 2D CNNs are recognized
for their strong spatial data processing and accuracy in
HAR [25], and the recent integration of Continuous Wavelet
Transformation (CWT) with CNN has further boosted
classification accuracy by capturing features across both
frequency and time domains [26], [27], [28]. While some
studies have investigated 1D CNN for single-hand VR
gestures [2], [14], research into deep learning approaches for
dual-hand gesture recognition in VR is still underexplored.

To address the research gap, we proposed CWT-CNN-
TCN, a novel neural network designed to recognize dual-hand
gestures in VR. CWT-CNN-TCN is a unified structure
of two neural networks, CWT-CNN and TCN, and can

simultaneously extract features from the time-frequency
domain and capture long-term dependencies for gesture
classification using the 3D position and orientation data from
both handheld controllers. To evaluate the proposed model,
we designed 13 dual-hand motion gestures selected from
four fundamental forms of 3D interactions [3]: translation,
rotation, scaling, and selection. These gestures encompass
various motion patterns, including symmetric vs. asymmetric
movements and circular vs. linear motions [3]. We then
collected VR gesture data from 26 participants using a VR
system from our prior study [29] and assessed CWT-CNN-
TCN’s performance in recognizing dual-hand gestures with
various tracking inputs. This involved comparisons between
dual-hand and single-hand inputs and between complete (3D
position and 3D orientation) versus partial (3D position or
3D orientation) motion features. Additionally, the network’s
performance was benchmarked against four state-of-the-art
neural networks.

Our goal in this work is to devise a neural network that can
effectively recognize dual-hand gestures, even with limited
hand-tracking input. This work presents the first step toward
a dual-hand gesture-based interface that facilitates intuitive
3D interactions in VR. The main contributions of this paper
are as follows:

1) We introduce CWT-CNN-TCN, a novel deep-learning
neural network capable of accurately recognizing
13 dual-hand gestures using VR controllers, even with
limited hand-tracking inputs.

2) We assess the performance of the state-of-the-art neural
networks in recognizing dual-hand motion gestures
captured by VR, an area previously unexplored in the
literature.

II. RELATED WORK
This section explores literature relevant to this paper in
two key areas: 1) 3D interactions in VR, discussing various
user interface methods supporting these interactions, and
2) human motion gesture recognition, where we discuss the
state-of-the-art machine learning and deep learning methods,
especially for recognizing hand gestures, underscoring the
novelty of our proposed method.

A. 3D INTERACTIONS IN VR
To support effective hand gesture interactions in VR, various
hand-tracking devices for 3D user interfaces (UI) have been
studied [1]. These devices are crucial for capturing the
user’s hand position and orientation in 3D space. Generally,
hand-input devices fall into three categories: data gloves,
vision-based systems, and motion sensor-based systems [1].
Data gloves offer precise hand gesture representation, facil-
itating direct manipulation of 3D VR objects [4]. However,
their high cost and the fragility of glove sensors often
impede their widespread adoption and durability [2]. Vision-
based tracking systems, such as Leap Motion, have been
investigated to support device-free, bare-hand 3D interactions
in both VR [6] and augmented reality (AR) [30] settings.
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Despite their potential, these vision-based systemsmay suffer
from a limited field of view and noticeable latency issues.
Inaccuracies can arise if the user’s hands move too rapidly
or beyond the system’s tracking area, potentially restricting
the usability of these devices in diverse VR experiences [2],
[31]. On the other hand, wearable sensors provide a robust
and cost-effective manner for tracking hand motions [21].
Given their relevance to this work, our review focuses on
sensor-based hand input devices.

With the advent of the Internet of Things (IoT) and mobile
computing, inertial sensors (accelerometers, magnetometers,
gyroscopes) in wearable or mobile devices have become
increasingly popular [21]. These devices, offering derivative
measurements of hand position and orientation, such as
linear acceleration, are being utilized as input mechanisms
for virtual object interaction [7], [8], [9]. In these works,
users interact with VR either by holding a mobile phone
or by wearing a wearable device on the wrist. Katzakis
and Hori [7] designed a mobile user interface that allows
users to rotate a 3D object in virtual space, leveraging
accelerometer data from a mobile phone. Liang et al. [8]
developed a mobile phone-based input device tailored for
single-hand navigation in VR, enabling users to turn left
and right within the VR space by tilting their phones.
Fugini et al. [9] introduced a wearable control device capable
of interpreting hand gesture commands for actions like
moving forward or drawing a circle in VR. Other studies [12],
[13], [32], [33] have investigated single-hand gesture-based
3D gaming input (e.g., swing), utilizing game motion
controllers (e.g., NintendoWiiRemote) equippedwith inertial
sensors.

Modern VR systems like Meta Quest 2 and HTC Vive
integrate both optical and inertial sensors to accurately
track the position and orientation of the user’s head and
hand movements in 3D, enabling a wide range of tasks
to be performed using either one hand or both hands.
Han et al. [2] detected the user’s game actions based
on motion gestures presented by the 3D acceleration and
orientation of the VR controller in the dominant hand.
Fennedy et al. [14] developed a 3D mid-air gesture interface
that aids users in executing intended gestures based on 3D
position and orientation data provided by a VR controller.
A recent study [3] explored user-elicited designs for dual-
hand gestures for 3D interactions with VR controllers.
However, there still remains a gap in research exploring
effective hand gesture recognition methods to facilitate dual-
hand gesture-based interactions using these controllers within
VR environments.

B. HUMAN MOTION GESTURE RECOGNITION
Human activity recognition (HAR) through motion-tracking
data captured from computer vision systems or on-body
sensors varies in approach. Sensor-based HAR involves
identifying activities (e.g., walking, writing) by analyzing
physical movement data fromwearables or handheld sensors.

We focus on machine learning techniques for recognizing
human activities through sensors, including hand motion
gestures, due to the relevance of this work.We refer the reader
to [21] for a more comprehensive review.

Nowadays, hand gesture recognition employs traditional
methods like linear classifiers [12], [32], Hidden Markov
Models (HMM) [13], [34], and Dynamic Time Warping
(DTW) [9], [35]. Linear classifiers [12], [32], [33] analyze
gesture feature vectors but may struggle with complex
gesture patterns with subtle differences [36]. HMMs process
sequential gesture data as a series of observable events tied
to hidden states but can be computationally intensive and
less effective with spatial complex gestures [2]. DTW aligns
data sequences temporally to identify matches [9] but faces
scalability challenges with increasing activity classes [21].

Neural networks have gained popularity in HAR for
their automatic feature extraction [21]. Recurrent Neural
Networks (RNN), including Long Short-Term Memory
(LSTM) variants, are well-suited for sequential HAR data.
Rivera et al. [17] and Kim et al. [18] employed LSTM
and Gated Recurrent Unit (GRU) networks, respectively, for
HAR tasks using wrist-worn sensors. However, RNNs can
be computationally demanding and may not fully capture
long-range sequential dependencies [21], [24]. Recently,
Temporal Convolutional Networks (TCN) [22], [23] that
use a hierarchy of temporal convolutions offer efficient
long-range dependency handling without information leak-
age from the future to the past. Nair et al. [24] explored the
use of TCNs in HAR to detect daily activities like sitting and
walking and obtained better performance over other temporal
models such as LSTM and RNN.

Convolutional Neural Networks (CNN)models are popular
in HAR due to their high classification accuracy [2], [28].
They treat each data dimension (e.g., x-axis position) as an
image channel, merging convolutional outputs to identify
activities. Ignatov [20] utilized a shallow 1D CNN with
statistical features obtained from accelerometer data for
real-time activity recognition. Ronao and Cho [19] enhanced
the performance by augmenting accelerometer and gyroscope
data with frequency domain information for HAR using
CNNs. In VR applications, 1D CNNs have been employed
for gesture detection, with Han et al. [2] recognizing
single-hand VR gestures for game input and Zhao et al. [37]
proposing a two-stream 1D CNN for recognizing body
actions and head gestures in VR interactions. While 1D
CNNs have yielded satisfactory results, 2D CNNs are
often preferred for their enhanced ability to classify spatial
data [25]. Wavelet transforms, particularly effective for
analyzing non-stationary data [26], [27], are commonly used
to convert 1D signal data into 2D images. Particularly,
Continuous Wavelet Transform (CWT) excels at localizing
signal features in both time and frequency domains, enabling
2DCNNs to classify activities based on these features. Recent
studies [26], [27], [28] that leveraged CWT in conjunction
with 2D CNNs significantly enhanced activity recognition
accuracy.
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While deep learning has obtained remarkable results
in sensor-based HAR, its application to hand motion
gestures for 3D VR interactions remains underexplored.
Although previous work [2], [14] employed neural networks
for single-hand gesture recognition for VR game input,
no research has been done to investigate effective methods
for dual-hand gesture recognition for more general 3D
interactions. In response, this work proposes the CWT-CNN-
TCN model, specifically designed for dual-hand gesture
recognition in VR interactions. We also assess the perfor-
mance of the state-of-the-art neural networks in HAR on
dual-hand gesture recognition, comparing their effectiveness
to our model using varied hand data inputs.

III. METHODOLOGY
This section begins with a presentation of our design for
dual-hand gestures tailored for 3D interactions in VR using
two handheld controllers, detailed in Section A. Section B
describes the VR system utilized for collecting dual-hand
gesture data, along with the procedure for data collection.
In Section C, we outline the data pre-processing steps
required to prepare the training and testing datasets for
machine learning. Finally, Section D explains the specific
design considerations of the proposed CWT-CNN-TCN
neural network.

A. DEFINITION OF DUAL-HAND VR GESTURES
As illustrated in Fig.1, we defined 13 dual-hand motion
gestures selected from four fundamental forms of interactions
when manipulating virtual objects in 3D [3]: translation,
rotation, scaling, and selection, including 1) Translate-Left
(T-L), 2) Translate-Right (T-R), 3) Translate-Up (T-U), 4)
Translate-Down (T-D), 5) Rotate-X-Forward (R-X-F), 6)
Rotate-X-Backward (R-X-B), 7) Rotate-Y-Clockwise (R-Y-
C), 8) Rotate-Y-Counterclockwise (R-Y-CC), 9) Rotate-Z-
Left (R-Z-L), 10) Rotate-Z-Right (R-Z-R), 11) Scale-Up
(S-U), 12) Scale-Down (S-D), and 13) Selection. Note that
all the moving directions (e.g., left, right) are relative to the
user’s first-person view, i.e., the head coordinate system (see
Fig.2), to ensure the consistent orientation of gestures in
3D space. For example, when performing the Translation-
Right gesture, the user’s hand always moves horizontally
to the right, regardless of their facing direction in the 3D
environment. It can be seen that all the rotation and scaling
interactions are performed by both hands rotating along
the X, Y, and Z-axis symmetrically, while the rest of the
interactions (translations and selection) are performed by
assigning the two hands asymmetric roles. The goal of
this design is to capture different motion patterns (see
below) that may occur during bimanual interactions [3],
including:

• Symmetric vs. Asymmetric: two hands move simul-
taneously, performing similar actions (e.g., R-X-F)
or being assigned asymmetric roles with one hand
moving to the designated direction and the other

FIGURE 1. Definition of dual-hand motion gestures for 3D interactions in
VR, including four fundamental forms of interactions: translation: (a-d),
rotation: (e-j), scaling: (k-l), and selection (m). The controllers in motion
are highlighted in the shade.

hand staying stationary, acting as a reference point
(e.g., T-R).

• Circular vs. Linear: hands move in a circular motion
(e.g., R-Y-C) or in linear motion (e.g., S-U).

B. DATA COLLECTION STUDY AND VR SYSTEM
1) HARDWARE & SOFTWARE OF VR DATA COLLECTION
SYSTEM
To gather dual-hand VR gesture data for 13 interactions,
we developed a VR program using the Unity game engine.
This program features visual prompts to guide participants:
two virtual hand controllers demonstrate each interaction’s
gesture and a virtual cube displays the interaction outcome
(e.g., enlarging a cube for Scale-Up) through animations,
as described in previous work [29]. Our study utilized
Meta Quest 2, working with our system for data collec-
tion, comprising a head-mounted display (HMD) and two
handheld controllers. These devices offer six degrees of
freedom (DOF), allowing the tracking of the participant’s
head and hand movements in all directions within the virtual
environment, as illustrated in Fig.2. We recorded the HMD
and controller tracking data, including position (px , py, pz)
and orientation in quaternion format (qx , qy, qz, qw), at a
sampling frequency of 90 Hz. This data can be accessed
via the XR plugin in Unity. Initially, each tracking device’s
position and orientation data were measured in the world
coordinate system.

2) DATA COLLECTION
26 participants (Age:19-42, Female:8/Male:17/Other:1,
Handedness: Right:24/Left:2) participated voluntarily in the
Institutional Review Board (IRB) approved study. Each
participant performed all 13 interaction gestures sequentially,
and they were given the freedom to stand in any position
and face any direction in the 3D world space. During
each interaction session, an animated visual prompt guided
participants, repeating as necessary until they understood
the gesture. Participants then executed each gesture 5 times
at their preferred pace. Following the completion of each
gesture, researchers progressed to the next interaction.
Throughout the data collection, visual prompts (similar to

VOLUME 12, 2024 67441



T. D. Qi et al.: Toward Intuitive 3D Interactions in VR

FIGURE 2. A participant was performing a dual-hand interaction gesture -
Scale-Up using Meta Quest 2; the VR system for data collection showed
the participant each interaction gesture using an animated visual prompt.

those in Fig.1) were displayed to both participants in VR and
researchers in a display, see Fig.2. To distinguish gestures
from other hand movements, we instructed participants
to pull the hand controllers’ triggers while performing
each gesture and release them when the gesture was
completed. This trigger action was recorded along with
the motion-tracking data from the headset and both hand
controllers. The data, captured frame by frame, was saved
locally on the laptop running the VR gesture collection
program.

C. DATA PROCESSING
We began by segmenting the data sequences based on trigger
action, then processed each resulting gesture data sequence
(referred to as a gesture sample) through three steps for
neural network training: 1) orientation vector construction,
2) conversion to egocentric coordinates, and 3) normalization.
Our dataset comprised a total of 2,367 gesture samples. The
initial average length of these samples, denoting the number
of points per gesture (with each point encompassing position
and orientation data for both hands), was 58, with a minimum
of 26 and a maximum of 151 points per sample. Table 1
details the number of gesture samples and their initial average
length.

1) ORIENTATION VECTOR CONSTRUCTION
The orientation of the VR devices was originally captured
as a quaternion with four components. Although quaternions
are effective in representing 3D rotations and orientations,
they can be less intuitive and demand more computational
resources compared to 3D directional vectors [38]. To make
data processing more efficient and reduce dimensionality,
we transformed the quaternion representation into a 3D
directional vector for both the headset and controllers. This
vector clearly shows the direction the headset or controller
is pointing, offering an easy-to-understand and geometrically
intuitive orientation representation. For each quaternion,Q =

(qx , qy, qz, qw), in a gesture sample, we first converted it to a

3×3 rotationmatrixR, [38].We thenmultiplied thematrix by
a unit vector along the z-axis (0, 0, 1) — the initial pointing
direction of the VR headset and hand controller in the world
space — to derive a 3D direction vector, d = (dx , dy, dz),
as shown in (1) – (2).

R =

1 − 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1 − 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1 − 2q2x − 2q2y

 (1)

dxdy
dz

 = R ·

0
0
1

 =

2qxqz + 2qyqw
2qyqz − 2qxqw
1 − 2q2x − 2q2y

 (2)

Therefore, each point in a gesture sample can be rep-
resented by a 3D vector for position and a 3D vector for
orientation for each tracking device (i.e., one HMD and two
controllers). The rationale behind using a 3D directional
vector over a quaternion is further elaborated in the discussion
section.

2) EGOCENTRIC COORDINATE CONVERSION
Initially, the motion tracking data of the user’s hand
controllers are measured in the world coordinate system.
To account for users performing the same gestures while
standing and facing different directions, we converted the
3D position and orientation data from the world coordinate
system to an egocentric coordinate system, or head space,
which is a left-handed Cartesian coordinate system centered
at the user’s HMD, with the coordinate axes’ basis vectors
X pointing right, Y pointing up, and Z pointing forward
(refer to Fig.2). Each gesture sample comprises motion
sequences from three VR tracking devices (1 HMD and
2 hand controllers). In the world space, each point P in
these sequences is represented by a 3D position (px , py, pz)
and orientation (dx , dy, dz). To establish the head coordinate
system for each gesture sample, we first calculate the average
position phworld = (phx , p

h
y, p

h
z ) and orientation dhworld =

(dhx , d
h
y , d

h
z ) of the head in the world space by averaging all

the head positions and orientation vectors across the entire
sequence. We then use cross products based on dhworld and
any vector t, e.g., t = (0, 1, 0), that is not collinear with it
to derive the head space’s basis vectors Z, X , and Y using
(3) – (5).

Z =
dhworld

∥dhworld∥
(3)

X =
t × Z

∥t × Z∥
(4)

Y = Z× X (5)

Next, We transform each point in a controller’s sequence
in world space, including 3D position pcworld = (pcx , p

c
y, p

c
z)

and orientation dcworld = (dcx , d
c
y , d

c
z ), to the head space

using (6) – (9), yielding position pchead = (pcX , pcY , pcZ ) and
orientation dchead = (dcX , dcY , dcZ ) in the head space, where
tcworld is the relative position of each point in a controller’s
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TABLE 1. Statistics of gesture samples for each interaction for training
and testing sets (8:2). The initial average length for each gesture is
denoted in parentheses.

sequence to the head position in the world space, and Rw→h
is the transformation matrix from world space to head space.
We refer the reader to the chapter about coordinate system
transformation in [39] for more information.

tcworld = pcworld − phworld (6)

Rw→h =
[
X Y Z

]T (7)

pchead = Rw→h · tcworld (8)

dchead = Rw→h · dcworld (9)

This transformation from world space to the user’s
egocentric head coordinate system eliminates the need to
include head tracking data in model training, reducing the
input data dimensionality from 18 (6 each for HMD and hand
controllers) to 12 (6 for each controller). This standardizes
inputs to the neural network, ensuring more invariant
and robust gesture recognition without compromising user
experience in the VR environment.

3) NORMALIZATION
Each gesture sample in our dataset, representing simultane-
ous 3D positions and orientations for both hands, comprises
12 signals. We applied min-max normalization to each signal
across the entire gesture dataset to standardize the data
range. To ensure consistency in input size for the machine
learning model, we interpolated each gesture sample to a
uniform length of T = 128 time steps. This length was
selected to balance the uniformity of input size with the
retention of crucial information, preventing the potential loss
of detail in longer gesture sequences. The interpolation used
B-Spline with cubic interpolation, facilitated by the Scipy
library [40].

Following normalization and interpolation, we partitioned
the complete VR gesture dataset into training and testing sets,
maintaining an 8:2 ratio. Table 1 displays the distribution of
all interactions across these two sets, ensuring a balanced
representation of gestures in both the training and testing
phases.

FIGURE 3. CWT-CNN-TCN architecture combines a CWT-CNN (top) -
Continuous Wavelet Transform (CWT) in conjunction with a 2D CNN with
a 1D Temporal Convolutional Network (TCN) consisting of 6 residual TCN
blocks of dilated causal 1D convolution layers with dilation factors,
d = 1, 2, 4, 8, 16, 32 respectively (bottom). The model takes 3D position
and orientation data for both hands as input, and the outputs from these
two networks are merged and passed into a fully connected layer with a
size of 13 for dual-hand gesture classification.

D. CWT-CNN-TCN MODEL FOR DUAL-HAND MOTION
GESTURE RECOGNITION
In this paper, we propose the design of a deep learning
model named CWT-CNN-TCN for recognizing dual-hand
VR motion gestures. As illustrated in Fig3, the CWT-CNN-
TCN model combines a 2D Convolutional Neural Network
(CNN), which takes the Continuous Wavelet Transform
(CWT) of the hand motion data, with a 1D Temporal
Convolutional Network (TCN) that receives the hand motion
data directly. Through this structure, the proposed model
can simultaneously extract meaningful features from the
time-frequency domain through CWT-CNN and capture
long-term dependencies in the input VRmotion tracking data
via TCN. Specifically, this model processes 3D position and
orientation data for both hands as input, and the outputs
from these networks are merged and passed into a fully
connected layer with a size of 13, corresponding to the
number of interaction gestures to be classified. The model
identifies the final dual-hand gesture by choosing the gesture
with the highest softmax-activated prediction. For this multi-
class classification, we applied cross-entropy as the loss
function and used the Adam optimizer. We discuss the
design considerations for each of the models in the following
section.

1) CWT-CNN
We use Continuous Wavelet Transform (CWT) to convert
handmotion tracking signals into the time-frequency domain,
represented by 2D images suitable for processing by a
2D CNN [28]. Each of the 12 signals in a sample is
transformed into a scalogram using Morlet mother wavelets,
with scale values from 12 to 75 - identified as optimal in
our experiments. This results in 12 scalograms of size 64 ×

128, stacked to form a 12-channel image (64, 128, 12). Fig.4
illustrates CWT images for gestures including Selection,
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FIGURE 4. Continuous Wavelet Transform (CWT) images of three selected
hand-tracking signals for three distinct interaction gestures: Selection
(left column), Rotate-Y-Clockwise (R-Y-C, middle column), and Scale-Up
(S-U, right column). The top row illustrates the right hand’s position along
the y-axis (R : Posy ), the middle row depicts the right hand’s orientation
along the z-axis (R : Oriz ), and the bottom row shows the left hand’s
orientation along the z-axis (L : Oriz ).

Rotate-Y-Clockwise (R-Y-C), and Scale-Up (S-U), highlight-
ing that orientation data typically produces more distinct
scalograms than position data from the right hand. For
improved computational efficiency and memory manage-
ment, we downsample the scalograms by a factor of 2 along
the time axis, yielding images of shape (64, 64, 12). These
processed CWT images are input into a 2D CNN for feature
extraction.

Considering the images have small dimensions and low
complexity, we employed a simple 2D CNN architecture.
As depicted at the top of Fig. 3, it comprises 2 convolutional
layers – the first with 32 filters of size 3×3 and a 2×2 max-
pooling layer, and the second with 64 filters of size 3×3 and a
4×4 max-pooling layer. Each max-pooling layer is followed
by batch normalization. A flattening layer precedes two fully
connected layers with 128 and 54 units, respectively, both
using rectified linear unit (ReLU) activation. The output
from the CWT-CNN is a 1D array of length 54, ready to
be combined with the output from the 1D-TCN, detailed
subsequently.

2) TCN
A TCN excels in processing sequential data by utilizing two
techniques: causal convolution, which ensures predictions are
based solely on past information, and dilated convolution,
allowing the network to learn from a more distant past.
In this work, we employ a dilated TCN consisting of 1D
dilated causal convolution layers, where filters skip over
inputs at increasing intervals, allowing the network to cover
a larger range of input with fewer layers. We further add
residual connections to the causal dilated convolution layers
to preserve the information from the initial layers and
improve the performance of TCN, as informed by [23].
As illustrated at the bottom of Fig.3, our 1D TCN

consists of 6 residual blocks with dilation factors

FIGURE 5. (a) The b-th TCN residual block (f , k, d ) consists of two 1D
convolution layers of the filter size f , kernel size k , and dilation factor d ,
followed by weight normalization, ReLU activation, and a dropout layer. A
11 convolution is added to handle input and output of different lengths.
(b) The first residual block (f = 128, k = 3, d = 1), where the dilated
causal convolution operations are indicated in black lines, while residual
connections are shown in blue lines.

d = 1, 2, 4, 8, 16, 32, respectively. Each residual block
(denoted as b, where b = 1, 2, . . . , 6) contains two layers
of 1D dilated causal convolution (filter size f = 128 and
kernel size k = 3), followed by weight normalization,
ReLU activation, and a dropout layer, as shown in Fig.5(a).
The input of the b − th residual block, z(b−1)

=

[z(b−1)
0 , . . . , z(b−1)

T−1 ], is combined with the output of the two
dilated causal convolutional layers to form the input for
the next residual block. When the lengths of the residual
input and output differ, a 1 × 1 convolution adjusts this
discrepancy. Fig.5(b) shows the first residual block (f = 128,
k = 3, d = 1), demonstrating how the input sequence
of length T = 128, x = [x0, x1, . . . , xT−1], is processed.
The diagram highlights the interactions of dilated causal
convolution operations (black lines) and residual connections
(blue lines) influencing the last step in the output, z(1)T−1.
As the dilation factor increases in successive residual blocks,
the longer input history of the motion is taken into account.
The final output of the 1D TCN, a 1D array of length 128,
is obtained from the last time step of the last residual block
and is then concatenated with the output from the CWT-CNN
before proceeding to the final output layer.

IV. EXPERIMENTS AND RESULTS
The proposed CWT-CNN-TCN model was implemented
using TensorFlow 2.13 GPU version with Python 3.8. In our
experiment, we evaluate the performance of the CWT-CNN-
TCNmodel in recognizing dual-hand gestures using a testing
set comprising 474 gesture samples evenly distributed across
all the 13 interaction gesture categories, as described in
Section III-C. To assess the model’s effectiveness across
various input conditions and understand its performance
with limited motion tracking information, we investigated
four input hand conditions: 1) Dual hands with complete
motion features (i.e., both 3D position and 3D orientation
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TABLE 2. Summary of the overall dual-hand gesture recognition
performance (accuracy, %) of the proposed CWT-CNN-TCN (Ours) and four
benchmark models: CWT-CNN, TCN, 1D-CNN, and LSTM, averaged across
all 13 interaction gestures. Each neural network is evaluated under
9 input configurations. The highest classification accuracy are shown in
bold.

data), 2) Dual hands with partial motion features (i.e.,
either 3D position or 3D orientation data); 3) Single hand
(left or right) with complete motion features; 4) Single
hand (left or right) with partial motion features. These
conditions create 9 input configurations (see the first two
columns of Table 2) that were used to evaluate our model.
To clearly understand the CWT-CNN-TCN’s performance in
recognizing individual interaction gestures under different
input configurations, we further compare the results obtained
from those 9 input configurations in three evaluation
scenarios:

1) Dual-Hand: Complete vs. Partial Motion Features
2) Dual-hand vs. Single-hand, both with Complete

Motion Features
3) Single-hand: Complete vs. Partial Motion Features

Additionally, we selected four deep learning models
commonly used in human activity recognition to benchmark
our study. The evaluation of the CWT-CNN-TCN model’s
performance in dual-hand gesture recognition across different
hand input configurations is presented in Section IV-A.
Subsequently, in Section IV-B, we introduce the benchmark
deep learning neural networks and compare their perfor-
mance with our model under the same input configurations.
In both sections, we focus on analyzing the results for the
three evaluation scenarios mentioned earlier to understand
how our model and the benchmarks perform with limited
hand motion input and their effectiveness in recognizing
specific interaction gestures of different motion patterns
across various input setups.

A. CWT-CNN-TCN EVALUATION RESULTS
We trained the CWT-CNN-TCN network using a batch size
of 128, a learning rate of 0.001, and a training epoch of 60.
This training was conducted under 9 input configurations
concerning hands and motion features, and each trained
model was evaluated using the testing set corresponding to
the respective configuration. Table 2 presents our model’s
average classification accuracy (third column) for each input
configuration (first and second columns). It can be observed

FIGURE 6. Confusion matrix for the CWT-CNN-TCN model’s classification
results on the testing set. This matrix reflects the performance of the
network when trained with both position and orientation data from dual
hands.

that when the model is trained with both position and
orientation data from dual hands, it archives the highest
overall classification accuracy of 98.73%. The confusion
matrix in Fig.6 indicates that the model reached 100%
accuracy for interaction gestures involving linear motions,
such as selection, scaling (up and down), and translations; the
only exception was Translate-Down, which had an accuracy
of 95.35%. For rotation gestures involving circular motions,
R-Y-C, R-X-F, and R-Z-L each achieved 100% accuracy,
R-Z-R reached 94.87%, while the remaining gestures reached
an accuracy of 97.14%. Moreover, our model obtained 100%
accuracy for all the asymmetric gestures (one hand moves
and the other hand stays stationary), except for Translation-
Down (95.35%). For symmetric gestures where both hands
move at the same time, the model reached 100% accuracy on
scalings (linear motion) and an average accuracy of 98.24%
on rotations. We further discuss the results in three evaluation
scenarios as follows.

1) EVALUATION SCENARIO 1: DUAL-HAND: COMPLETE VS.
PARTIAL MOTION FEATURES
We compared the CWT-CNN-TCN model’s performance in
recognizing dual-hand gestures using complete and partial
motion features from both hands. The overall recognition
accuracy using position only (96.41%) and orientation only
(96.20%) were slightly lower than both presented (98.73%),
as shown in Fig.7. Upon analyzing individual interaction
gestures, the network demonstrated similar performance for
most gestures, whether using position or orientation data
alone. For instance, the recognition accuracy for gestures
T-R, S-U, and S-D remained at 100%, regardless of motion
features being used, indicating the network’s ability to
identify gestures accurately with either position or orientation
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FIGURE 7. CWT-CNN-TCN performance results in (a) Evaluation Scenario 1: Dual-hand: Complete vs. Partial Motion
Features, (b) Evaluation Scenario 2: Dual-hand vs. Single-hand, with complete motion features, (c) Evaluation Scenario 3:
Right-hand: Complete vs. Partial Motion Features, and (d) Evaluation Scenario 3: Left-hand: Complete vs. Partial Motion
Features, for all 13 interaction gestures.

information from both hands. However, performance var-
ied between position (‘‘P’’) and orientation (‘‘O’’) data
for certain gestures. Specifically, the model trained with
position data was more effective in gestures involving
two hands moving symmetrically in circular movements.
For example, in R-X-F (P: 94.74% vs. O: 86.84%) and
R-X-B (P: 90.00% vs. O: 87.50%) - gestures that involve
rotating along the x-axis - the model performed better
with position data since these gestures typically have both
handheld controllers oriented in nearly the same direction.
On the other hand, the model trained with orientation
excelled in dual-hand gestures primarily involving linear
hand movements. For example, in gestures like T-L (O:
100% vs. P: 95.65%) and T-D (O: 100% vs. P: 93.02%),
the orientation-based model outperformed the position-based
one.

2) EVALUATION SCENARIO 2: DUAL-HAND VS.
SINGLE-HAND
To evaluate the CWT-CNN-TCNmodel’s ability to recognize
dual-hand gestures using data from a single hand, we trained
two separate models, one with right-hand data (‘‘R’’) and

the other with left-hand data (‘‘L’’), both incorporating
complete motion features. Fig.7(b) illustrates that our model
performed better with dual-hand data (98.73%) than with
single-hand data for all gestures. Moreover, the model trained
using right-hand data achieved a higher overall accuracy
(95.57%) compared to the left-hand data model (80.80%).
Notably, the right-hand data model exhibited consistently
high performance across various gestures and was com-
parable to both hands presented. Specifically, it achieved
100% accuracy in recognizing L-R, S-U, S-D, and Selection
gestures. Conversely, the left-hand data model showed a
more varied performance across different gestures. It matched
comparable performance for most gestures, particularly
those involving symmetric hand motions, such as rotation
and scaling gestures. Interestingly, for gestures involving
significant left-hand movements, such as T-L (L: 97.83%
vs. R: 93.48%) and R-X-F (L: 97.37% vs. R: 86.84%),
the left-hand data model outperformed the right-hand data
model; however, it underperformed in asymmetric gestures
where the right hand actively moved, such as T-R, T-U, and
T-D. This outcome is understandable, as the model trained
with left-hand data may struggle to extract relevant features
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from stationary left-hand movements to distinguish these
gestures.

3) EVALUATION SCENARIO 3: SINGLE-HAND: COMPLETE VS.
PARTIAL MOTION FEATURES
To further investigate the CWT-CNN-TCN network’s ability
to estimate dual-hand gestures using partial motion features
from a single hand, we trained the network on both
complete and partial motion inputs derived from either the
right or left hand, examining each hand’s contributions
individually. Fig.7 (c) shows that training with right-hand
data, regardless of the motion feature type, yielded similar
outcomes, with a slight advantage for combining position and
orientation (95.57%) over using only position (91.77%) or
only orientation (93.04%). Specifically, the network showed
superior performance with the orientation data from the
right hand compared to the position data. When trained
with the right hand’s orientation data, the model excelled
in recognizing translations with an accuracy of over 95%.
This aligns with our observations fromEvaluation Scenario 1,
where the model demonstrated better performance in differ-
entiating gestures involving linear motions when trained with
orientation data.

Conversely, for models trained with left-hand data, those
utilizing complete motion features (80.80%) outperformed
those trained on partial features, with position-only data
(78.90%) doing slightly better than orientation-only data
(70.46%). It was observed from Fig.7 (d) that for gestures
requiring active left-hand movement (e.g., T-L) or both
hands moving symmetrically, like in rotation and scaling,
both position-only and orientation-only data provided similar
results, matching closely with the combined position and
orientation performance. However, in cases where the left
hand was stationary and the right hand was active, such as
T-U, T-D, and Selection gestures, the model more effectively
utilized the left hand’s position data. This suggests that
position data more clearly captures the stationary status of
the hand compared to orientation data.

B. BENCHMARK EVALUATION AND COMPARISON WITH
CWT-CNN-TCN
1) BENCHMARK DEEP LEARNING MODELS
Human activity recognition through motion sensors typi-
cally involves classifying spatial-temporal data. Common
approaches include using 1D-CNN [20] or LSTM [17], and
more recent techniques like CWT-CNN [28] and TCN [24].
However, none of these networks have been applied for
recognizing motion gestures made by two hands, and their
performance using collected VR tracking data remains
unclear. To address this, we developed benchmark models
based on 1D-CNN and LSTM, respectively, specifically
tailored for dual-hand gesture recognition under various input
configurations. Additionally, we implemented CWT-CNN
and TCNmodels separately to assess their individual efficacy
in this task. All benchmarks, including their hyperparameters,

were optimized for the best performance to facilitate a fair
comparison with our model. The 1D-CNN comprises two
convolutional layers (32 and 128 filters, respectively, both
with a kernel size of 3), each followed by a max-pooling layer
(pool size of 2) and a dropout layer (rate of 0.2) to mitigate
overfitting. It also includes two fully connected layers (128
and 54 neurons). The LSTM consists of two hidden layers
(50 neurons each) with a dropout rate of 0.3 and two fully
connected layers (128 and 54 neurons). The configurations
for the CWT-CNN and TCN models are identical to those in
the CWT-CNN-TCN network. All four models conclude with
a 13-neuron output layer using softmax activation for gesture
prediction. We implemented and tested these benchmark
models in the same computational environment as our
model.

Table 2 presents the overall accuracy of each bench-
mark model for every input configuration. It can be seen
that the CWT-CNN-TCN network generally outperformed
all benchmark networks in recognizing dual-hand motion
gestures. Among benchmarks, CWT-CNN exhibited the best
performance, closely followed by TCN. 1D-CNN showed
comparable performance to TCN when using data from both
hands. For instance, with position data from both hands,
1D-CNN and TCN both achieved a gesture recognition
accuracy of 95.36%. However, TCN performed better than
1D-CNN with single-hand data; see the comparison for the
right hand with position only in Table 2, where TCN achieved
86.08% and 1D-CNN 81.22%. LSTM’s performance was not
on par with other networks, particularly with single-hand data
using partial motion features (position or orientation).

CWT-CNN-TCN is built by combining CWT-CNN and
TCN, both of which outperformed 1D-CNN and LSTM in
most input configurations. Therefore, we focus on bench-
marking with CWT-CNN and TCN in those three evaluation
scenarios mentioned earlier. Moreover, to simplify the
comparison between different models on various interaction
gestures, we assign individual gestures with similar motion
patterns (see details in Section III-A) into three Gesture
Groups:

• Translations + Selection: All translation gestures (left,
right, up, and down) are grouped with selection, as they
both involve one hand moving linearly while the other
hand remains stationary (asymmetric, linear motion);

• Rotations: All rotation gestures involving both hands
moving simultaneously in circular motion are grouped
(symmetric, circular motion);

• Scalings: Scaling up and scaling down, which involve
linear motion of both hands, are grouped. (symmetric,
linear motion).

2) EVALUATION SCENARIO 1: DUAL-HAND: COMPLETE VS.
PARTIAL MOTION FEATURES
As shown in Table 3, CWT-CNN-TCN demonstrated higher
overall performance with complete motion features (98.73%)
and with orientation data only (96.20%) from both hands
across all gestures; CWT-CNN (97.26%) performed slightly
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TABLE 3. Comparison result between our model CWT-CNN-TCN (Ours) and benchmarks in Evaluation Scenario 1: Dual-hand: Complete vs. Partial Motion
Features. The row ‘‘Overall’’ indicates each model’s classification accuracy (%) under different input configurations across all interaction gestures. The
following rows indicate the average accuracy (%) for each gesture group.

TABLE 4. Comparison result between our model CWT-CNN-TCN and benchmarks in Evaluation Scenario 2: Dual-hand vs. Single-hand, with complete
motion features. The row ‘‘Overall’’ indicates each model’s classification accuracy (%) under different input configurations across all interaction gestures.
The following rows indicate the average accuracy (%) for each gesture group.

better than ours (96.41%) with position data only. All
models demonstrated enhanced accuracy when complete
motion features versus partial ones. Specifically, for scaling
gestures involving symmetric linear motions of both hands,
each model reached 100% accuracy, regardless of the
motion features utilized. Performance varied across the
other gesture groups based on the motion features used.
In the Translation + Selection group, characterized by
asymmetric linear movements, our model excelled with
complete motion features at 99.07%, while CWT-CNN led
with position data at 98.15%, and TCN slightly outdid our
model with orientation data at 98.93%versus our 98.91%. For
rotations - gestures involving symmetric circular movements,
CWT-CNN consistently outperformed other models with
both position (96.05%) and orientation (96.01%) data,
although our model still led with complete motion features
at 98.24%. TCN slightly underperformed on rotations,
particularly with orientation data alone. This outcome was
interesting since TCN showed remarkable performance with
orientation data in linear motion scenarios. Overall, CWT-
CNN and TCN demonstrated performances comparable to
CWT-CNN-TCN when using dual-hand data.

3) EVALUATION SCENARIO 2: DUAL-HAND VS.
SINGLE-HAND
As illustrated in Table 4, CWT-CNN-TCN consistently
outperformed CWT-CNN and TCN, demonstrating higher
accuracy with dual-hand (98.73%) and single-hand inputs
(right: 95.57%, left: 80.80%) across all gesture groups. All
the models achieved improved results with dual-hand inputs
over single-hand inputs for each gesture group, underscoring
the advantage of using both hand inputs for dual-hand gesture
recognition. Particularly when analyzing right-hand data, the

CWT-CNN-TCN model maintained the best performance,
excelling in Translation + Selection (97.28%) and Scal-
ings (100%), while CWT-CNN marginally outperformed
our model in Rotations (93.45% compared to 93.17%).
A significant performance decrease was observed across
all models when only left-hand data was used, especially
for Translation + Selection, due to the lack of sufficient
information from the stationary left hand, which occurred
for most gestures within that group. Despite the challenges,
CWT-CNN-TCN demonstrated superior overall performance
(80.80%) in recognizing dual-hand gestures compared to
CWT-CNN (77.43%) and TCN (74.05%) using left-hand
data alone, leading in Translation + Selection (67.40%)
and Rotations (89.09%), with CWT-CNN performing better
in Scalings (96.83%). Overall, CWT-CNN-TCN proved
more effective than the benchmarks in dual-hand gesture
recognition with single-hand data.

4) EVALUATION SCENARIO 3: SINGLE-HAND: COMPLETE VS.
PARTIAL MOTION FEATURES
Overall, the CWT-CNN-TCN model demonstrated superior
performance in recognizing dual-hand gestures with either
right or left-hand data over CWT-CNN and TCN. The results
are detailed for each hand below. Table 5 indicates that
with right-hand data, CWT-CNN-TCN had higher accuracy
in recognizing dual-hand gestures, especially with partial
motion features such as position only (91.77%) or orientation
only (93.04%). It matched CWT-CNN’s accuracy (95.57%)
when utilizing complete motion features. Furthermore,
models trained with complete motion features consistently
outperformed those trained with only position or orientation,
with orientation data generally leading to higher accuracy
across all gesture groups. Specifically, in the Translation
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TABLE 5. Comparison result between our model CWT-CNN-TCN and benchmarks in Evaluation Scenario 3: Right-hand: Complete vs. Partial Motion
Features. The row ‘‘Overall’’ indicates each model’s classification accuracy (%) under different input configurations across all interaction gestures. The
following rows indicate the average accuracy (%) for each gesture group.

TABLE 6. Comparison result between our model CWT-CNN-TCN and benchmarks in Evaluation Scenario 3: Left-hand: Complete vs. Partial Motion
Features. The row ‘‘Overall’’ indicates each model’s classification accuracy (%) under different input configurations across all interaction gestures. The
following rows indicate the average accuracy (%) for each gesture group.

+ Selection group, CWT-CNN-TCN achieved the highest
performance (97.28%) with both position and orientation.
CWT-CNN was most effective with position only (95.72%),
and TCN with orientation only (98.12%). In the Rotations,
CWT-CNN-TCN showed the best results with either position
(88.25%) or orientation (89.43%), although CWT-CNN
marginally surpassed our model (93.45% vs. 93.17%) when
combining position and orientation. For Scalings, CWT-
CNN-TCN excelled with both position and orientation
(100%) and with position only (96.83%), while all networks
achieved similar accuracy (95.44%) with orientation only.

As shown in Table 6, when analyzing left-hand data,
CWT-CNN-TCN significantly surpassed benchmark models
in overall performance, whether using complete motion fea-
tures (80.80%), position only (78.90%), or orientation only
(70.46%). All models trained with complete motion features
consistently showed higher accuracy than those trained with
only position or orientation. Interestingly, with left-hand data,
position data led to higher accuracy than orientation data
across all gesture groups, contrasting with the right-hand
data outcomes. Furthermore, we noted that gestures involving
symmetric hand movements, such as Rotations and Scalings,
achieved higher accuracy across all models compared to
Translation + Selection, which involves asymmetric hand
movements. Specifically, in the Translation + Selection cat-
egory, CWT-CNN-TCN achieved the highest accuracy with
both complete and partial motion features. For Rotations, our
model showed strong performance with both position and
orientation (89.09%), position only (88.27%), and orientation
only (80.22%). In Scalings, CWT-CNN-TCN excelled with
position only (96.83%), closely matched by CWT-CNN with
both position and orientation (96.83%), and followed by TCN
with orientation only (95.84%).

V. DISCUSSION AND FUTURE WORK
Dual-hand interactions have become increasingly prevalent
in VR systems, with two handheld controllers now widely
accessible [3]. Accurately recognizing dual-hand gestures
using VR controllers is essential, yet this area has received
limited attention in previous research, which mainly focused
on single-hand gestures [2], [14]. Addressing this gap,
this paper introduces the CWT-CNN-TCN neural network,
designed for recognizing dual-hand gestures with VR con-
trollers. Since our goal is to create a hand gesture-based
user interface for intuitive 3D VR interactions, the network
is expected to recognize bimanual hand motion gestures
representing various motion patterns. We thus designed
13 dual-hand interaction gestures based on four fundamental
forms of 3D interactions [3], including moving both hands
in a symmetric fashion (rotation and scaling gestures) or
moving two hands asymmetrically, with one hand actively
moving and the other remaining stationary (translation and
selection gestures). We collected 13 types of dual-hand
interaction gestures from participants and evaluated the
CWT-CNN-TCN’s ability to classify these gestures. The
performance was assessed using both dual-hand and single-
hand data, incorporating complete or partial motion features.
Additionally, we compared the effectiveness of various
state-of-the-art neural networks often used for human activ-
ity recognition (1D-CNN, LSTM, CWT-CNN, and TCN)
in recognizing dual-hand gestures under different input
conditions.

The results show that CWT-CNN-TCN can accurately
recognize dual-hand gestures, utilizing either position,
orientation, or both types of motion features from the
hands. Its proficiency in extracting features from both the
time-frequency domain and long-term dependencies in VR
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motion tracking data enables it to outperform benchmark
models, especially with single-hand data. Notably, the
model’s accuracy with right-hand data is comparable to
that of dual-hand data inputs, demonstrating its capability
to discern essential features from limited motion-tracking
information. This finding could potentially facilitate the
development of hand gesture-based user interfaces compat-
ible with various motion-tracking devices, accommodating
scenarios where users may use only one VR controller or
have access to only certain types of motion features (e.g.,
orientations only) from the motion trackers. Next, we will
discuss the limitations of the current work and explore
future directions to enhance the CWT-CNN-TCN network,
aiming to advance hand gesture-based user interfaces for VR
interactions.

1) DUAL-HAND MOTION GESTURE DESIGN
The performance of our proposed network was notably robust
for rotation and scaling gestures, irrespective of whether the
model was trained with data from the left or right hand.
This can be attributed to both hands moving symmetrically
in these gestures. However, the network was less effective
in recognizing asymmetric gestures (such as Translate-Right,
Translate-Up, Translate-Down, and Selection) when trained
solely with left-hand data. These gestures are typically
performed with active right-hand movement and a stationary
left hand, leading to a lack of informative left-hand data
for accurate prediction. This limitation seems more related
to our gesture design rather than the network’s capability.
To address this issue and be more inclusive for the users
who prefer using their left hand more, our future work
will explore diverse methods for performing the same
gestures. For instance, to perform Translate-Up, a left-
handed user could use their left hand, while a right-handed
user would use their right hand, as per the current design.
This approach, however, might introduce more complex
gestures with greater similarities between different classes.
We are keen to assess how the CWT-CNN-TCN network
performs under these conditions and explore ways to
enhance its ability to recognize such complex dual-hand
gestures.

2) HAND ORIENTATION REPRESENTATION
In this study, we chose to represent the orientation of VR
headsets and hand controllers using 3D directional vectors for
dual-hand gesture recognition instead of the original quater-
nion representation. This decision was driven by the need
to reduce feature dimensionality, given our small training
dataset. Although quaternions provide more comprehensive
information about 3D rotations [38], our gestures did not
involve complex rotational movements like rolling. We thus
considered 3D vectors adequate for this context, offering
computational efficiency and simpler data interpretation.
As we plan to include more complex hand movements in
VR gesture recognition and expand our data collection, our
future work will focus on refining the neural network. This

will involve optimizing it to effectively recognize intricate
gestures while maintaining computational efficiency and
real-time performance, potentially by incorporating more
detailed tracking information, such as quaternion-based
orientation data.

3) REAL-TIME DUAL-HAND GESTURE RECOGNITION IN VR
This paper presents a neural network designed to recognize
dual-hand motion gestures with two VR controllers trained
using various hand-tracking inputs. The current network was
trained with complete gesture sequences for classification.
However, real-time applications often require continuous ges-
ture recognition during performance. In future work, we aim
to train the model using a sliding window technique, applying
a shorter window that moves along each gesture sequence.
This approach will enable more frequent gesture predictions.
Additionally, we plan to implement a CWT-CNN-TCN-based
dual-hand gesture recognition model within a virtual reality
environment to assess its real-time recognition accuracy and
speed, particularly in relation to the user’s gesture perfor-
mance speed. Another key aspect of our future work involves
the model’s adaptability to different input configurations.
Currently, separate CWT-CNN-TCN models are trained and
evaluated for each input configuration. Moving forward,
we aim to refine the network to automatically accommodate
various input types, enabling it to make predictions about
whether the input comes from a single hand or both hands,
with either complete or partial motion features.

VI. CONCLUSION
In this paper, we presented a new neural network,
CWT-CNN-TCN, for recognizing dual-hand gestures made
with VR handheld controllers. We demonstrated its effec-
tiveness in detecting dual-hand gestures using various
experiments and compared it with the state-of-the-art deep-
learning neural networks that are often used in human
activity recognition. Results showed that CWT-CNN-TCN
can accurately predict dual-hand gestures even with limited
hand tracking information (e.g., feeding only a single hand
data or partial motion features) and outperformed all the
benchmarkmodels. To achieve our ultimate goal of devising a
dual-hand gesture-based user interface for 3D interactions in
VR, the next step is to integrate the CWT-CNN-TCN-based
dual-hand gesture recognition model into a VR environment
and evaluate gesture recognition accuracy and speed in a real-
time setting.
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R. Maskeliūnas, and M. Woźniak, ‘‘Recognition of American sign
language gestures in a virtual reality using leap motion,’’ Appl. Sci., vol. 9,
no. 3, p. 445, Jan. 2019.

[7] N. Katzakis and M. Hori, ‘‘Mobile phones as 3-DOF controllers: A
comparative study,’’ in Proc. 8th IEEE Int. Conf. Dependable, Autonomic
Secur. Comput., Dec. 2009, pp. 345–349.

[8] H.-N. Liang, Y. Shi, F. Lu, J. Yang, and K. Papangelis, ‘‘VRMController:
An input device for navigation activities in virtual reality environments,’’
in Proc. 15th ACM SIGGRAPH Conf. Virtual-Reality Continuum Its Appl.
Ind., Dec. 2016, pp. 455–460.

[9] M. Fugini, J. Finocchi, and G. Trasa, ‘‘Gesture recognition using
dynamic time warping,’’ in Proc. IEEE 29th Int. Conf. Enabling Technol.,
Infrastruct. Collaborative Enterprises (WETICE), Sep. 2020, pp. 279–282.

[10] (2024). Meta Quest 2: Immersive All-in-one Vr Headset.
Accessed: May 9, 2024. [Online]. Available: https://www.
meta.com/quest/products/quest-2/

[11] (2024). HTC VIVE—VR, AR, and MR Headsets, Glasses, Experiences.
Accessed: May 9, 2024. [Online]. Available: https://www.vive.com/us/

[12] M. Hoffman, P. Varcholik, and J. J. LaViola, ‘‘Breaking the status
quo: Improving 3D gesture recognition with spatially convenient input
devices,’’ in Proc. IEEE Virtual Reality Conf. (VR), Mar. 2010,
pp. 59–66.

[13] L. Kratz, M. Smith, and F. J. Lee, ‘‘Wiizards: 3D gesture recognition
for game play input,’’ in Proc. Conf. Future Play Future Play, 2007,
p. 209.

[14] K. Fennedy, J. Hartmann, Q. Roy, S. T. Perrault, and D. Vogel, ‘‘OctoPocus
in VR: Using a dynamic guide for 3D mid-air gestures in virtual reality,’’
IEEE Trans. Vis. Comput. Graphics, vol. 27, no. 12, pp. 4425–4438,
Dec. 2021.

[15] D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana, and B. Benes, ‘‘A
review of simulators with haptic devices for medical training,’’ J. Med.
Syst., vol. 40, no. 4, p. 104, Apr. 2016, doi: 10.1007/s10916-016-0459-8.

[16] D. Qi, K. Panneerselvam, W. Ahn, V. Arikatla, A. Enquobahrie, and
S. De, ‘‘Virtual interactive suturing for the fundamentals of laparoscopic
surgery (FLS),’’ J. Biomed. Informat., vol. 75, pp. 48–62, Nov. 2017, doi:
10.1016/j.jbi.2017.09.010.

[17] P. Rivera, E. Valarezo, M.-T. Choi, and T.-S. Kim, ‘‘Recognition of
human hand activities based on a single wrist IMU using recurrent neural
networks,’’ Int. J. Pharma Med. Biol. Sci., vol. 6, no. 4, pp. 114–118,
2017.

[18] J.-H. Kim, G.-S. Hong, B.-G. Kim, and D. P. Dogra, ‘‘DeepGesture:
Deep learning-based gesture recognition scheme using motion sensors,’’
Displays, vol. 55, pp. 38–45, Dec. 2018.

[19] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition with smartphone
sensors using deep learning neural networks,’’ Expert Syst. Appl., vol. 59,
pp. 235–244, Oct. 2016.

[20] A. Ignatov, ‘‘Real-time human activity recognition from accelerometer
data using convolutional neural networks,’’ Appl. Soft Comput., vol. 62,
pp. 915–922, Jan. 2018.

[21] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, and
H. Moon, ‘‘Sensor-based and vision-based human activity recognition:
A comprehensive survey,’’ Pattern Recognit., vol. 108, Dec. 2020,
Art. no. 107561.

[22] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, ‘‘Temporal
convolutional networks for action segmentation and detection,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 1003–1012.

[23] S. Bai, J. Z. Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ 2018,
arXiv:1803.012710.

[24] N. Nair, C. Thomas, and D. B. Jayagopi, ‘‘Human activity recognition
using temporal convolutional network,’’ in Proc. 5th Int. Workshop Sensor-
Based Activity Recognit. Interact., Sep. 2018, pp. 1–8.

[25] O. Pavliuk and M. Mishchuk, ‘‘A novel deep-learning model for human
activity recognition based on continuous wavelet transform,’’ in Proc.
IDDM, 2022, p. 236.

[26] G. Q. Ali and H. Al-Libawy, ‘‘Time-series deep-learning classifier for
human activity recognition based on smartphone built-in sensors,’’ J. Phys.
Conf. Ser., vol. 1973, no. 1, Aug. 2021, Art. no. 012127.

[27] A. Nedorubova, A. Kadyrova, and A. Khlyupin, ‘‘Human activity
recognition using continuous wavelet transform and convolutional neural
networks,’’ 2021, arXiv:2106.12666.

[28] I. Trabelsi, J. Francoise, and Y. Bellik, ‘‘Sensor-based activity recognition
using deep learning: A comparative study,’’ in Proc. 8th Int. Conf.
Movement Comput., Jun. 2022, pp. 1–8.

[29] M. Raswan, T. Kay, H. M. Camarillo-Abad, F. L. Cibrian, and T. D. Qi,
‘‘Guess the gesture: Uncovering an intuitive gesture-based user interface
for 3D content interaction in virtual reality,’’ in Creativity Cognition.
New York, NY, USA: ACM, Jun. 2023, pp. 361–364.

[30] J. Jia, G. Tu, X. Deng, C. Zhao, and W. Yi, ‘‘Real-time hand gestures
system based on leap motion,’’ Concurrency Comput., Pract. Exper.,
vol. 31, no. 10, pp. 1–14, May 2019.

[31] N. Breslauer, I. Galic, M. Kukec, and I. Samardic, ‘‘Leap motion
sensor for natural user interface,’’ Teh. vjesn., vol. 26, no. 2, pp. 1–11,
Apr. 2019.

[32] M. Chen, G. AlRegib, and B.-H. Juang, ‘‘A new 6D motion gesture
database and the benchmark results of feature-based statistical recogni-
tion,’’ in Proc. IEEE Int. Conf. Emerg. Signal Process. Appl., Jan. 2012,
pp. 131–134.

[33] S. Cheema, M. Hoffman, and J. J. LaViola, ‘‘3D gesture classification with
linear acceleration and angular velocity sensing devices for video games,’’
Entertainment Comput., vol. 4, no. 1, pp. 11–24, Feb. 2013.

[34] D. Arsenault and A. D. Whitehead, ‘‘Gesture recognition using Markov
systems and wearable wireless inertial sensors,’’ IEEE Trans. Consum.
Electron., vol. 61, no. 4, pp. 429–437, Nov. 2015.

[35] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta, and K. Sharma,
‘‘A continuous hand gestures recognition technique for human-machine
interaction using accelerometer and gyroscope sensors,’’ IEEE Sensors J.,
vol. 16, no. 16, pp. 6425–6432, Aug. 2016.

[36] G. Bastas, K. Kritsis, and V. Katsouros, ‘‘Air-writing recognition using
deep convolutional and recurrent neural network architectures,’’ in Proc.
17th Int. Conf. Frontiers Handwriting Recognit. (ICFHR), Sep. 2020,
pp. 7–12.

[37] J. Zhao, M. Shao, Y. Wang, and R. Xu, ‘‘Real-time recognition of in-
place body actions and head gestures using only a head-mounted display,’’
in Proc. IEEE Conf. Virtual Reality 3D User Interface (VR), Mar. 2023,
pp. 105–114.

[38] J. Diebel. (2006). Representing Attitude: Euler Angles Unit Quater-
nions and Rotation Vectors Semantic Scholar. [Online]. Available:
https://api.semanticscholar.org/

[39] P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of Computer
Graphics. Boca Raton, FL, USA: CRC Press, Jul. 2005.

[40] (2024). Scipy: Foundamental Algorithms for Scientific Computing in
Python. Accessed: May 9, 2024. [Online]. Available: https://scipy.org/

TRUDI DI QI (Member, IEEE) received the Ph.D.
degree from HKUST, with a focus on complex 3D
modeling for computer-aided design systems. She
was a Postdoctoral Researcher with the Rensselaer
Polytechnic Institute, where she served as a
Senior Researcher and led technical innovations
for multiple National Institute of Health-funded
projects of VR surgery systems. She is currently
an Assistant Professor of electrical engineering
and computer science with the Fowler School of

Engineering, Chapman University. Her research interests include computer
graphics, virtual reality (VR), and artificial intelligence (AI). She is
particularly interested in integrating AI with visual computing technologies
and connecting her research to human-centered endeavors, such as education
and healthcare.

VOLUME 12, 2024 67451

http://dx.doi.org/10.1007/s10916-016-0459-8
http://dx.doi.org/10.1016/j.jbi.2017.09.010


T. D. Qi et al.: Toward Intuitive 3D Interactions in VR

FRANCELI L. CIBRIAN received the master’s
and Ph.D. degrees in computer science from the
CICESE Research Center, Ensenada, Mexico. She
completed her postdoctoral training at UCI. She is
currently an Assistant Professor with the Fowler
School of Engineering, Chapman University. Her
research interests include designing, developing,
and evaluating digital health intervention and
assessment to support people facing barriers in
achieving healthcare, education, and well-being

outcomes. She is a fellow of the Joan Ganz Cooney Center’s Well-Being
by Design Fellowship by Sesame Workshop. She belongs to the National
System of Researchers in Mexico, given by CONAHCYT-Mexico.

MEGHNA RASWAN received the B.S. degree
in computer science from Chapman University,
in 2023, with a focus on game development and
visual effects. Her passion lies in game devel-
opment and leveraging visualization techniques
as problem-solving tools. Her research interests
include data analysis and machine learning, par-
ticularly in the realm of multidimensional visual
analytics and human-centered data interaction.

TYLER KAY received the B.S. degree in com-
puter science from Chapman University, in 2023.
Throughout his time at Chapman University,
he has explored and gained an interest in virtual
reality (VR), software development, and data sci-
ence. He was the Vice President of the Chapman’s
Data Analytics Association, leading discussions
about some of the latest machine-learning discov-
eries and papers. His research interests include
VR, machine learning, and human–computer
interaction.

HECTOR M. CAMARILLO-ABAD received the
B.S. degree in electrical engineering, the M.S.
degree in computer science, and the Ph.D. degree
in intelligent systems from Universidad de las
Américas Puebla (UDLAP), in 2012, 2014, and
2020, respectively. In 2022, he was a Postdoctoral
Researcher with the Schmid College of Science
and Technology, Chapman University, where he is
currently joining the Grand Challenges Initiative
Program. His research interests include analyzing

movements through technology, intersecting human–computer interaction,
signal processing, and intelligent systems.

YUXIN WEN (Member, IEEE) received the
B.S. degree in medical informatics and engineer-
ing from Sichuan University, Chengdu, China,
in 2011, the M.S. degree in biomedical engineer-
ing from Zhejiang University, Hangzhou, China,
in 2014, and the Ph.D. degree in electrical and
computer engineering from The University of
Texas at El Paso (UTEP), in 2020. She is currently
an Assistant Professor with the Fowler School of
Engineering, Chapman University. Her research

interests include statistical modeling, health monitoring and prognostics, and
reliability analysis.

67452 VOLUME 12, 2024


