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ABSTRACT Underwater images typically present poor visibility, color distortion, and noise, which limit
the application in several high-level tasks of image analysis. To address these corruptions, a novel method
is proposed to reconstruct high-quality underwater images, which is designed by integrating imaging
model with noise and variational framework. Specifically, an improved underwater imaging model is first
introduced by separating noise from real underwater scene. Subsequently, the hazy curves of degraded colors
are decomposed to estimate transmission map, and a color loss prior is employed to correct the transmission
map. Moreover, a first-order gradient guided filter is proposed to refine the transmission map. An evaluation
formula is designed by combining illumination, contrast, and color deviation priors to accurately search for
the background region. Finally, a variational model is established to restore underwater images and suppress
noise based on the improved imaging model and image priors. Experimental results validate that the proposed
method surpasses several outstanding approaches, demonstrating its well effectiveness in improving contrast,

correcting color, and suppressing noise.

INDEX TERMS Underwater image restoration, variational framework, imaging model with noise.

I. INTRODUCTION

Underwater images are generally characterized by unfavor-
able appearance, such as low visibility, color distortion,
and noise, which are caused by absorption and scattering
effect [1], [2], [3], [4], [5], [6]. As shown in Fig. 1, the
scattering effect results in the degradation of visibility, e.g.,
poor contrast and veiled details [7], [8], [9], [10], [11].
The absorption effect refers to a phenomenon of selective
attenuation of light, which generates color distortion in
underwater images [12], [13], [14], [15]. Moreover, marine
snow and particles introduce noise in underwater images.
These corruptions usually deviate underwater images from
the natural distribution and limit several subsequent high-
level applications, e.g., image recognition, target detection,
and object segmentation [16], [17], [18]. Accordingly, the
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restoration of degradation in underwater images remains a
valuable field of study that has received great attention.
However, due to the complex formation of underwater
images, the restoration of underwater images poses more
enormous challenges than other tasks of image processing.

To address the degradation in underwater images,
a restoration-based method is proposed by combining
variational framework and imaging model with noise to
reconstruct underwater images with high quality (RVFN).
The proposed method aims to formulate an underwater
imaging model with noise and a variational framework
to restore underwater images and suppress noise. Fig. 2
presents several examples restored by the proposed RVFN.
The contributions of this study are summarized as follows.

(1) A new underwater imaging model is formulated by
separating noise from real underwater scene, contributing
to a well performance in removing noise while restoring
underwater images.
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FIGURE 1. Underwater image formation model, containing direct attenuation, forward scattering, and backward scattering components.

(2) A variational framework is designed to restore under-
water images, which fully considers the degraded visibility,
intensive noise, and color deviation.

(3) An evaluation formula with illumination, contrast, and
color deviation factors is formulated to accurately locate the
background region. Moreover, a first-order gradient guided
filter is designed to refine the transmission map.

The remainder of this manuscript is arranged as follows. In
section II, a recap of preexisting studies is provided.
In section III, the proposed method is presented in detail.
In section IV, extensive series of experiments are carried out
to evaluate the proposed approach. In section V, concluding
remarks are presented, and potential orientations for future
research are discussed.

Il. RELATED WORK

Over the years, various approaches have been introduced to
improve the visibility and clarity of underwater images. These
approaches can be categorized into three groups, restoration-
based, enhancement-based, and CNN-based methods.

A. RESTORATION-BASED METHOD

These methods are rooted in underwater imaging model and
leverage prior information to estimate physical properties,
thereby inversing the imaging model to generate high-
quality images. Inspired by dark channel prior [19], several
prior-based approaches were proposed for underwater image
restoration.

According to the unequal absorption on light with different
wavelengths, Chiang and Chen [20] restored underwater
images by compensating the attenuated wavelength. Consid-
ering the massive absorption on red light, Drews et al. [21]
excluded the red channel to estimate the depth of scene,
i.e., underwater dark channel prior. Galdran et al. [22]
inverted red channel and proposed saturation prior to correct
the depth of scene to avoid overexposure. Li et al. [23]
minimized the loss of color information in restored images
to calculate the physical properties for restoring underwater
images. Peng et al. [24], [25] proposed the prior involving
in light absorption and image ambiguity to estimate the
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FIGURE 2. Restored results of the proposed method on various scenes.

transmission map and generalized DCP to restore underwater
images (GDCP). Berman et al. [2] generated haze lines from
degraded underwater images to restore the wavelength-based
degradation in underwater images. Moreover, other prior
information was proposed to accurately estimate the scene
depth. Liu et al. [5] explored the rank-one prior of underwater
images and applied the prior to estimate the depth of
underwater scene (ROPU). Dai et al. [14] decomposed curves
of degraded color into RGB axes to estimate transmission
maps (DCAC). Zhou et al. [3] proposed channel intensity
prior to estimate the depth map and employed adaptive dark
pixels to eliminate back scattering.

Restoration-based methods heavily depend on the proper-
ties of physical imaging model and are sensitive to designed
prior information. Accordingly, robust imaging model and
prior assumptions are pivotal for restoring the corruptions of
underwater images.

B. ENHANCEMENT-BASED METHOD

Enhancement-based methods directly adjust gray values
to generate visually appealing images without relying on
underwater imaging models. In this community, preva-
lent approaches include histogram-based, fusion-based, and
Retinex-based methods. Hitam et al. [26] suggested a
comprehensive method to adjust histograms of underwater
images, which performs contrast-limited adaptive histogram
equalization in various color spaces. A Rayleigh distribution
guided method was proposed to automatically reshape
histograms of underwater images to generate desirable
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distributions [27]. Zhang et al. [28] corrected color casts
and fused images with high contrast and vivid colors to
achieve enhanced underwater images (ACDP). Ancuti and
Ancuti [29] introduced a multiscale fusion strategy based on
Gaussian and Laplacian pyramids which fuses two corrected
versions of underwater images, generating favorable results
for various underwater images (CBUF). Dai et al. [30]
separated underwater image into reflectance and illumination
using the Retinex model, and enhanced high-frequency
components of the reflectance. Wang et al. [31] introduced
an adaptive framework for low-light image enhancement,
which was inspired by the fusion of multi-exposure images.
Li et al. [7], [32] proposed adaptive color and contrast
enhancement approach and hybrid framework (HFUE) to
enhance underwater images. Zhuang et al. [6] designed a vari-
ational framework to estimate illumination and reflectance by
exploring prior information of underwater images in terms
of multi-order gradient. Moreover, several variational frame-
works have also been applied to hazy image enhancement,
owing to the excellent performance [33], [34], [35], [36], [37].

Enhancement-based methods neglect the optical properties
and mechanism of underwater imaging. Consequently, these
methods can not accurately compensate for the lost colors
according to the attenuation, which are prone to overexposure
and underexposure in local regions.

C. CNN-BASED METHOD

The trend of convolutional neural network (CNN) in the tasks
of image enhancement has appeared owing to the excellent
performance of feature learning, such as haze removal [38],
[39], noise suppression [40], [41], and low-light image
enhancement [42], [43].

For the task of underwater image enhancement, Wang et al.
[44] introduced a novel domain adaptation network to
improve the visibility of underwater images, which can mini-
mize intra-domain and inter-domain gaps. Zhang et al. [45]
considered physical model and proposed an enhancement
CNN based on transfer learning to reconstruct images with
well visibility. Moreover, multi-color space encoder was
designed to improve the poor visibility and degraded color
(MCSE) [46]. Song et al. [47] combined improved imaging
network and visual perception model to map underwater
images with degradation to high-quality images.

Collecting paired training data is challenging due to
the absence of reference images for underwater scenes.
Accordingly, Li et al. [1] created a benchmark dataset (UIED)
and proposed a gated fusion network for underwater image
enhancement (WNET). Hou et al. [48] and Liu et al. [49]
also created databases for CNN training or image evaluation.
Moreover, other techniques, e.g., unsupervised and weakly-
supervised methods, were introduced to training CNN
without reference images. An unsupervised Water-GAN was
proposed to enhance underwater images by combining gen-
erative adversarial network and underwater imaging model,
which generates training data with depth information [50].
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Liu et al. [51] designed a bilateral constrained closed-loop
adversarial module to enhance underwater images, which
employs an unsupervised strategy without paired training
data. Yan et al. [52] employed unpaired underwater and
outdoor images to drive CNN with physical model to
restore underwater images. Li et al. [53] proposed a
weakly-supervised method to train CNN using unpaired
training data. A comparative learning network was designed
for underwater image enhancement, which is compatible with
weakly-supervised learning mode [54].

CNN-based methods usually rely on high quality training
data. However, collecting high quality training data is
strenuous in real underwater environment. Synthetic training
data may deviate from the distribution of real underwater
images, resulting in unnatural appearance for unprecedented
scenes.

lll. METHODOLOGY

A. UNDERWATER IMAGING MODEL WITH NOISE
According to Jaffe-McGlamery model, the energy captured
by camera is a linear superposition of three components:
direct attenuation, forward scattering, and backward scat-
tering components [55], [56], [57], as shown in Fig. 1.
To avoid the ill-posed problem, the forward scattering with
little effect is removed. In conclusion, the simplified version
of Jaffe-McGlamery model is given by [58] and [59]:

H(x) = K, (0)t°(0) + AT — 1001 ce{r,g, b}, (D)

where H¢(x) is a degraded underwater image. A€ represents
background light. #°(x) is an attenuation coefficient which
is involved in the depth of scene and wavelength, named
transmission map. ¢ € {r, g, b} represents RGB color
channels. x represents the pixel coordinate. The detail
expression of the transmission map #(x) is given by:

1°(x) = exp[—d (x)p°], @

where p¢ represents total attenuation factor, containing
absorption and scattering coefficients. d(x) is the depth of
scene. According to Eq. (2), transmission maps of various
channels present the following correlation:
150 =1 ()" 3)

b

Py = 1" ()P
In Eq. (1), K;(x) represents the real underwater scene or
restored image. Due to marine snow or particles, intensive
noise usually exists in the real underwater scene Kf(x).
To suppress noise in restored image, a noise term n¢(x) is
separated from the real underwater scene K (x), expressed

as:

HE(x) = [K(x) + n ()] () + A (L = (0] (4)

where K€(x) represents the real underwater scene without
noise. By replacing n(x)t“(x) with N¢(x), the underwater
imaging model with noise is expressed as:

HE(x) = K°0)t(x) + A[1 = 1“1 + N°(x),  (5)
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FIGURE 3. The flowchart of the proposed method. The proposed method mainly consists of three parts: calculation of transmission map, calculation of
background light, and solution of variational framework. The calculated transmission map (TM) and background light are fed to the variational

framework to restore the underwater image.

FIGURE 4. The method of locating background region and corresponding results.

where N¢(x) = n“(x)t“(x) represents the added noise term,
used to carry noise of underwater images.

To acquire the restored image K¢(x), the first task is to
estimate A° and 7°(x). For the conventional imaging model
in Eq. (1), calculated A and t(x) can be fed into the
model to directly obtain the restored image. However, for the
proposed imaging model in Eq. (5), the added noise term
N€¢(x) introduces a new ill-posed problem. Consequently,
a variational framework is formulated to simultaneously
estimate the restored image and noise. The flowchart of the
proposed method is organized in Fig. 3.

B. BACKGROUND LIGHT ESTIMATION

Several existing studies usually pick the 0.1% brightest pixels
as background light. This strategy is ill-suited for several
scenes that foreground regions are brighter than ambient
light. In this study, an evaluation formula is proposed to
accurately select the background region, expressed as:

2 Z
Pv=3iz > ZHf‘x)‘glz D D ViegH )]

cefr,g,b} x=1 cefr,g,b} x=1

1 z
+ 5 D {HE(x) = HI (0] + [HE () — H{ )]}, (6)
x=1
where z represents the number of pixels in vth region. Vj,, is
the Laplace of Gaussian operator with size of 7 x 7, used to
calculate the contrast.
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As expressed in Eq. (6), the proposed evaluation formula
consists of three terms. The first term is the average gray of
three channels in vth region. Since the pixels in background
regions are generally located in bright regions, background
regions are characterized by high average gray. The second
term is the mean of gradient. Background regions present
the nature of smooth, resulting from the serious scattering
effect. Consequently, the gradient in background regions
is less than that in foreground regions. The third term
represents the color deviation. Owing to the absorption
effect, background regions present green or blue color
distortion.

Fig. 4 presents the proposed scheme of determining
the background region. The raw underwater image is
divided into numerous rectangular regions with size of
H/16 and W/16, where H and W represent the height
and width of image, respectively. Each region is given
a score by employing the proposed evaluation formula.
The region with the highest score is considered as the
background region. Finally, the average gray of each channel
in the selected region is calculated as the background
light A°.

C. TRANSMISSION MAP ESTIMATION

The approach of calculating transmission map is composed
of three steps: (a) calculating initial transmission map;
(b) constraining transmission map using prior information;
(c) refining transmission map.

VOLUME 12, 2024
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FIGURE 5. The method of estimating initial transmission map. (a) synthesized underwater image; (b) hazy curves generated from degraded pixels in (a);

(c) decomposing the curves to estimate the initial transmission map.

1) CALCULATING INITIAL TRANSMISSION MAP

The degraded color clusters generate hazy curves with
the nature of power function in RGB space, due to the
diverse absorptivity on light with different wavelengths [14].
As shown in Fig. 5 (a) and (b), the degraded colors form the
hazy curves. As shown in Fig. 5 (c), initial transmission map
t;,(x) can be derived by decomposing these curves onto RGB
axes, expressed as:

|H(x) — A
|K(x) — A<
where HC represents pixels in hazy curves. According to
Eq. (7), the prerequisite of calculating #{ (x) is to estimate
|K€(x) — A€|. Because all scenes in underwater images are
attenuated by water medium, the maximum value of |H¢(x) —
A€|in all haze curves is regarded as |K“(x) —A€|. In summary,
the initial transmission map #;, (x) can be derived by:

¢ |H(x) — A9
L (x) = ’
" maxyeq |[H(x) — A¢|

where 2 represents the set of all pixels in an raw underwater
image.

1 (x) = x € HC, @)

®

2) CONSTRAINING TRANSMISSION MAP

For several extreme scenes, the strategy of decomposing
hazy curves may cause inaccurate transmission maps. For
instance, pixels with gray values closed to the background
light in one of channels generally cause high values in
the initial transmission map, as shown in Fig. 6 (the
first line). To address this problem, transmission maps
from the other two channels are calculated to amend the
inaccurate transmission map. According to Eq. (3), the initial
transmission maps from the other two channels are expressed
as:

157 (x) = 1] ()PP
b_r 4T ol /p" (€
tm () = t;,(x) ,
L) = 1,00 7 (10)
1280y = 180?17,
110 = 1o an
50 ) = b eyl
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where 1] (x), tli‘; (x), and tl-l;l (x) are the initial transmission maps
of red, green, and blue channels, respectively. According to
previous study [60], p%/p" and p?/p" are given by:

p¢  A(0.00113¢¢ — 1.62517)
pr A8(0.00113¢" — 1.62517)
p”  AT(0.00113¢” — 1.62517)
pr AP(0.00113¢" — 1.62517)

(12)

(13)

where ¢”, ¢$, and ¢b are the wavelengths of red, green,
and blue light. According to [60], ¢”, ¢8, and ¢b are set to
620nm, 540nm, and 450nm, respectively. Note that p"/p8,
0%/ 08, p"/p?, and p&/p? in Eqs (10) and (11) can be derived
from Eqs. (12) and (13). As £, (x), z{n—b(x), 15 (x), til‘b(x),
tibn—r (x), tﬁfg (x) are achieved, the amended transmission maps
are given by:

i2,(0) = min[r],(x), 174 (x), 17" (0], (14)
t8,(x) = min[£ (x), 15 (x), tﬁl—b(x)], (15)
i (x) = min[e? (x), 22 (x), 125 (o)1 (16)

By feeding transmission map and background light into
Eq. (5), the restored image is rewritten as:

H(x) —A°[1 —1°(x)]  N°(x)

K@= 1¢(x) te(x)

7

It can be observed from Eq. (17) that the transmission
map t°(x) transforms H¢(x) to K°(x). Given an input image
H¢(x), t°(x) determines the valid dynamic range of K¢(x).
An improper transmission map projects the input image
H¢(x) to a dynamic range which lies outside [0, 1]. Gray
values outside the range of [0, 1] represent lost color
information. To reduce the lost information, a boundary of
optimal transmission map can be determined by the principle
of minimum information loss [23]. The lost color information
in a local region Q2p can be given by:

Liy = Y {[min(0, K*(x))]* + [max(0, K*(x) — DI*}.
XEQB

(18)
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(©

FIGURE 6. Calculated transmission maps. (a) raw image; (b)-(d) initial transmission maps of red, green, and blue channels; (e) background light;
(f)-(h) corrected and refined transmission maps of red, green, and blue channels.

Replacing K¢(x) with Eq. (17), Eq. (18) is rewritten as:
H¢(x)—A° N%)

o . c\12
Lin = x%{[mm(o, o i A
+ [max(0, H@-—A N + A= D). (19)

te(x) te(x)

Noise N€(x)/t¢(x) follows the Gaussian distribution, and thus
it is usually considered as O in a small local region. Hence,
Eq. (19) is simplified as:

o . Hc(x)_Ac c\12
Ly = ZQ: ([min(0, — 2= +4]
X€ENVB
+ [max(0, % +A°— D’ (0)

To minimize the lost information, Eq. (20) should follow the
constraint:

- H(x) — A
———— +AC 21
min©, — 5 +4920, 2D
H(x) — A°
0, ————+A°—1)=<0. 22
max( . )= 22

where min,eq,(.) and max,ecq,(.) represent minimum and
maximum filters with window of 5 x 5, respectively. Egs. (21)
and (22) are further reformulated as:

¢z min0, =~ 3
0 = max(0 T2 (24)

In conclusion, to minimize the loss of color information
in restored image to the greatest extent, the boundary of
transmission maps is given by:

c . Hx)— A€
tp,(x) > max{min ————
Y xeQp —A¢ xeQp

H¢(x) — A€ 75
,maxﬁ}. (25)
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Imposing the boundary on Egs. (14), (15), and (16),
corrected transmission maps can be expressed as:

7, (x) = max{min[z],(x), /-5 (x), /=" ()], (0}, (26)

n

t5,(x) = max{min[f (), 17 (), £ @)L 5 (0) @)
£ (x) = max{min[z?,(x), 12" (x), 174 (x)], (@} (28)

where #/,(x), tft(x), and tft(x) represent corrected transmis-
sion maps of red, green, and blue channels, respectively.
t],(x), tf,(x), and tcbt(x) can be rewritten as t,(x), where
celr, g, b}

3) REFINING TRANSMISSION MAP

The maximum and minimum filters in Eq. (25) interfere with
the accuracy of transmission map, resulting in blocking arti-
facts in restored images. Accordingly, a first-order gradient
guided filter based on variational framework is designed to
refine the corrected transmission map. The filter is modeled
as a competition between two regularization terms, which is
given by:

@, = arg min ||t, — 1|3 + ||V" ® 1y — V" @ H|[3,
bf

(29)

where two symbols, ¢ and x, have been removed for clarity.
a is set to 102, used to balance the contribution of two
regularization terms. ® denotes convolutional operation. V"
(m = 4) is a first-order gradient operator in four directions,
expressed as:

00 O 0 1 0 10 0 0 01
10 -1 0 0 O 00 O 0 00
00 O 0 —-10 00 —1 -100

In Eq. (29), ||ty — o] |% is a data fidelity term, designed to
minimize the error between ¢ and #;. |[|[V" @ t,y — V" ®
H| |% keeps the gradient of 7,y consistent with raw image H.
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FIGURE 7. Convergence curves versus K¢ (x) and N¢(x), where the error is
defined as: error_ X = mean|Xk—1 — xk|/mean|xX|. (a) image with the
size of 600 x 400; (b) image with the size of 1200 x 800.

Algorithm-1 The Specific Procedure of the Proposed
Approach
Input: raw underwater image H“(x).

Calculation: background light A€ via Eq. (6)
Calculation: transmission map 7% (x) via Eq. (32)
Calculation: image with corrected color HS (x) via Eq. (34)
Forc =r,g,b do:
Initialization: N° =0°=0,K° = H,
While not converged do:
updating Nk via Eq. (38)
updating  K¥ via Eq. (39)
updating 6% via Eq. (40)
correcting K* via Eq. (41)
updating k=k+1
End

End
Output: K¢(x) and N¢(x). N¢(x) is removed to suppress noise.

By optimizing the variational model, the refined transmission
map can be obtained. Owing to the competition of these two
terms, the gray values of refined transmission map #,r are
approximated to f.;, whereas edges and details of raw image
H can be preserved in #,¢. The solution of Eq. (29) starts from
the first-order derivative, expressed as:

(ty —ter) +a(VH @ (V" @1ty — V"R H) =0, (30)

where T represents transpose operation on V™. To avoid
large-scale matrix inversion, the Fourier transform is per-
formed on Eq. (30), expressed as:

F(tyf) — F(te + aF (V™) V™ IF (1)
—aF[(VIV™IF(H) =0, (31)

where F'(.) represents the two-dimensional Fourier transform.
The refined transmission map can be derived by:

F(te) + aF (V") V"F (H)

-
= T R ey T

L. (32)

where F~1(.) represents the inverse Fourier transform.

D. IMAGE RESTORATION VIA VARIATIONAL FRAMEWORK
The calculated transmission map and background light can
be fed to Eq. (1) to derive restored image K, (x) with noise.
To suppress noise, a noise term is added to the conventional
imaging model, as expressed in Eq. (5). The noise term leads
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to the ill-posed problem. Accordingly, an energy function
based on variational framework is formulated to calculate
the noise N°(x) and restored image without noise K “(x). The
energy function is formulated as:

k) =arg min|[Kt +A(1 — 1) + N — H|[3 + y[IN||3
K,N

+AD {IKic1jo1 — Kiprjn | + 1K1
ij
—Ki 1 j11l + |1Ki—1j — Kig1,jl + 1K j—1
— Kij1l} + BIIK—He |13
st.0<K <1, (33)

where x and ¢ have been removed to avoid symbol abuse.
i and j are the indexes of row and column in image
plane, respectively. 8, A, and y are non-negative constants,
employed to balance the weight of regularization terms.
Since normalized gray values fall within the range of [0, 1],
a condition 0 < K < 1 is imposed on K. H., denotes a
raw image with corrected color. An effective approach for
color correction based on Gaussian distribution is employed
to generate H.,, which is given by:

HE@) — g,

H¢ =0.5
ct (x) + (20-0)2

, (34)
where uf; and o ¢ are the mean and standard variance of H(x)
in corresponding channel, respectively.

Leveraging the gradient operator V" and convolutional
operation ®, Eq. (33) is simplified as:

dk ny = arg min [|Kr + A(1 — 1)+ N — H|3 + y|IN|[3
K,N

4
+AD V" @ K|l + BIIK—Hell3,  (35)

m=1

where ||.||1 and ||.||2 represent L1 and L2 norm, respectively.
In the energy equation, ||Kr +A(1 —¢)+N — H| |% represents
a data fidelity term, imposing the imaging model on K,
N, A, H, and t. ||[K — Hgl||3 limits the trend of K by
minimizing the error between K and Hy. ||V™" ® K||; is a
sparse regularization term, designed to smooth the noise in
K.||N| |% constrains noise to follow the Gaussian distribution
with a mean of zero. To accelerating the solution of K
and N, the alternating direction method of multipliers
(ADMM) [61] is applied to minimize Eq. (35). According
to ADMM algorithm, Eq. (35) can be decomposed into two
sub-problems:

N* = arg min [|K* "'t + A(l =) + N — H||2 + y|IN|3.
N

(36)
K* = arg min ||Kt + A(1 — ) + N* — H||3 4 BIIK —H |13
K

4
+AD IV QK. (37)

m=1
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(d)

FIGURE 8. The results of each step in the proposed method. (a) raw images; (b) background light; (c) transmission maps; (d) noise; (e) restored images.

7%1073 | 7%107 ||
1 1

1 0 0

4x10° 7%1073 7x1073

0 10 10 1

FIGURE 9. Restored image and corresponding histograms of RGB channels.

To calculate N, the first-order derivative of Eq. (36) with each step in the proposed method are exhibited in Fig. 8.

respect to N is set to zero. N at the kth iteration is derived: Furthermore, the histograms of restored image are provided
k—1 in Fig. 9. It can observed that the histograms of restored image
« H—-K"'t—A(l-1) . . C
N* = . (38) are distributed over the whole dynamic range, indicating the
I+y proposed method presents positive effect in terms of visibility
To calculate K, an auxiliary variable 6 and a time-step factor t improvement and color correction.

are introduced. According to [62], K and 6 at the kth iteration
can be updated using:

_ H—-A(—1)—N*+ BHy

IV. EXPERIMENT
In this section, the parameter configuration is discussed.

k k=1
K B+t +AVE"), (39 Ablation study is carried out to evaluate the proposed
o @1y 4 (t/A)(V" ® KF) strategies. Subsequently, the results of qualitative exper-
9" = (40)  iment, quantitative experiment, and application test are

k—1ym m Ky,
max{l, (65" + (r/M(V" @ KD} provided to evaluate the performance of the proposed
where T represents the fixed time-step factor, set to 0.249 to method. Two metrics, UIQM [63] and AMFD [64], are
accelerate the convergence [62]. Taking the constraint into  employed for the quantitative evaluation. Several state-of-
consideration, 0 < K < 1, a truncation operation is  the-art approaches are employed for comparisons, including
implemented in each of iterations: WNET [1], ROP [5], HFUE [7], DCAC [14], GDCP [24],
Kk = max{min{Kk, 1},0). (1) ACDP [2'8], CBUF [29], and MCSE [46]. A wiQely used
dataset with 890 real underwater images, UIED [1], is applied
By leveraging the ADMM algorithm [61], the restored for the experiments. Part of underwater images used for
image is calculated efficiently. Fig. 7 provides the conver- the experiments is presented in Fig. 10, which covers a
gence curves of K¢(x) and N¢(x). According to the curves, wide range of scenes, e.g., underwater images with various
the number of iterations is set to 3. The procedure of the levels of haze, color distortions, and illumination. WNET and
proposed method is outlined in Algorithm-1. The results of MCSE are performed in Pytorch on a PC with GTX 2080ti
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FIGURE 10. Part of underwater images used for experiments, marked as H1-H10.
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FIGURE 11. Parameter configuration. (a) AMFD metric versus +; (b) ); (c) 3; (d) all parameters.

FIGURE 12. The results of ablation study. (a) raw images; (b) Case-1; (c) Case-2; (d) Case-3; (e) Case-4; (f) Case-5; (g) Case-6.

GPU. The other methods are performed in Matlab2018a on a
PC with Intel i5-11400 CPU.

A. PARAMETER ANALYSIS

In this subsection, the effect of three parameters, i.e., y, A,
and B in Eq. (35), is investigated. AMFD metrics versus these
three parameters are depicted in Fig. 11. y is used to control
the weight of noise term ||N ||%. The AMFD value slowly
increases with the increase in y, as shown in Fig. 11 (a).
A is designed to adjust the weight of an:l IV ® K||-
The details of restored images are gradually smoothed as
the value of A increases. Accordingly, the average AMFD
score of restored images decreases with an increase in A,
as show in Fig. 11 (b). B is used to control the weight of
[|K—He| |§. A high g value contributes to the color correction
of restored images; hence, the tendency of AMFD increases
with B increasing from 10 to 160, as show in Fig. 11 (c).
Nevertheless, the increasing tendency gradually stabilizes,
because an excessively high 8 value is prone to resulting
in low contrast. In conclusion, according to the point of
intersection in Fig. 11 (d), y, A, and 8 are set to 10, 0.001, and
100 to balance the color correction, contrast enhancement,
and noise suppression, respectively.

B. ABLATION STUDY

Six different configurations are provided to demonstrate the
effectiveness of core components in the proposed method.
The results are presented in Fig. 12 and Table 1. Case-1,
Case-2, and Case-3 represent the removal of ||V ||§, [|1K —
Hc,||%, and Ziz:l [IV" ® K]|; in Eq. (35), respectively.
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TABLE 1. The results of ablation study.

Conditions AMFD | UIQM
Case-1: without ||N||3 0.725 | 3.697
Case-2: without ||K — Ho||3 0.684 | 3.356
Case-3: without >0, [|[V" ®K]||1 | 0.819 | 3.935
Case-4: red channel prior 0.682 3.743
Case-5: background light (0.1%) 0.714 3.846
Case-6: default configuration 0.896 4.478

Case-4 means replacing our transmission map with that
calculated using the red channel prior [22]. In Case-3,
background light is estimated using the conventional strategy,
i.e., 0.1% brightest pixels. UIQM [63] and AMFD [64] are
employed to objectively evaluate these six configurations on
UIED dataset [1].

As depicted in Fig. 12 (b), the haze caused by the scattering
effect is removed, and the contrast is improved successfully.
However, the absence of noise term leads to noise in local
regions of restored images. The term ||K — H;| |§ constrains
the error between K and H,;. H,, is the image with corrected
color. By optimizing Eq. (35), K is gradually closed to H.
Hence, the absence of this term results in color deviation
in the restored image, as shown in Fig. 12 (c). The term
an=1 [IV™" ® K]| is designed to suppress the intensity
of noise by employing sparse prior. Consequently, restored
images using Case-3 present intense noise, as shown in
Fig. 12 (d). In Case-4 and Case-5, inaccurate transmission
maps and background light result in the introduction of
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FIGURE 13. Visual comparisons on various underwater images. (a) raw images; (b) ACDP [28]; (c) CBUF [29]; (d)

(g) WNET [1]; (h) MCSE [46]; (i) ROPU [5]; (j) RVFN.

over-enhancement and color deviation. As shown in Fig. 12
(e), the results of Case-4 are characterized by gray appearance
and green distortion. For several challenging scenes, the
transmission map calculated by using red channel prior
presents inaccuracies of various extents, which is primary
reason of color deviation and illumination loss. Moreover,
the inaccurate background light of Case-5 results in slightly
color deviation, as shown in Fig. 12 (f). Contrarily, Case-6
provides a more accurate transmission map and background
light, and considers the noise while restoring underwater
images.

The results of objective ablation study on UIED dataset
are reported in Table 1. Case-1, Case-2, and Case-3 present
a relatively low mean of AMFD and UIQM values because
color deviation and amplified noise exist in restored images.
Two metrics of Case-4 and Case-5 experience various degrees
of decrease, attributed to the errors of background light
and depth estimation. In conclusion, the regularization terms
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HFUE [7]; (e) DCAC [14]; (f) GDCP [;4];

—~B

are validated to be crucial components in the proposed
method, and thus the default configuration is a superior
choice.

C. QUALITATIVE EVALUATION

The performance of all approaches is validated using various
underwater images, as shown in Figs. 13 and 14. ACDP [28]
effectively enhances the visibility of underwater images, but
is failed in restoring the color deviation. As shown in Fig. 13
(b), the outcomes generated by ACDP present gray tone,
caused by the excessive color compensation. As shown in
Fig. 13 (d), HFUE [7] can improve the contrast of low-
visibility images, but enhanced images present relatively
low brightness. In excessive scattering images, gray values
in various channels tend to be approximate, leading to
the variational framework in HFUE method not working
effectively. CBUF [29] performs well on low-light images
and improves low visibility effectively, but it introduces
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(h) MCSE [46]; (i) ROPU [5]; (j) RVFN.

slightly gray tone in enhanced images. As shown in Fig. 13 (e)
and (f), in instances where low illumination and excessively
green color distortion exist in underwater images, DCAC [14]
and GDCP [24] fall short of expectations, because near-zero
values in color channels cause the failure of prior assumption.
Fig. 13 (g) shows that WNET [1] corrects the color cast
and enhances the clarity. Nevertheless, the loss function
in WNET does not penalize low illumination, resulting in
inadequate improvement of illumination in local regions.
MCSE [46] effectively improves the visibility of underwater
images, but this method neglects the brightness enhancement,
causing slightly low brightness in enhanced images, as shown

VOLUME 12, 2024

FIGURE 14. Visual comparisons of local regions. (a) raw images; (b) ACDP [28]; (c) CBUF [29]; (d) HFUE [7]; (e) DCAC [14]; _(f) GDCP [24]; (g8) WNET [1];

P g

in Fig. 13 (h). ROPU [5] induces undesirable stripes and
excessively enhances the illumination, which result from
inaccurate transmission map calculated using rank-one prior.
In contrast, the proposed method effectively preserves
naturalness, improves illumination, and suppresses noise,
while restoring the corruptions in underwater images, and
thus surpasses these compared approaches in the qualitative
comparison.

Images with high quality are characterized by fine
textures, precise details, and smooth noise. To validate the
performance of various methods in preserving details and
removing noise, a comparison is conducted by localized
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TABLE 2. Quantitative evaluation on public dataset UIED.

Metric | Data | ACDP | CBUF | HFUE | DCAC | GDCP | WNET | MCSE | ROPU | RVFN
UIQM RUI | 4408 | 3.714 | 4.179 | 3.066 2.728 3.797 4.273 | 4337 | 4.478
CUI | 3.058 | 2.337 | 2.860 1.690 1.714 3.284 3.371 3.603 | 3.474

AMED RUI | 0463 | 0.539 | 0.788 | 0.642 | 0.738 0.526 0.828 | 0.884 | 0.896
CUI | 0318 | 0362 | 0.486 | 0.442 | 0.565 0.381 0.593 0.634 | 0.645

TABLE 3. UIQM and AMFD values on underwater images in Fig. 10.

Images | ACDP | CBUF | HFUE | DCAC | GDCP | WNET | MCSE | ROPU | RVFEN
H1 3948 | 1.842 | 3.519 1.939 | 3.121 2.198 4.447 | 3914 | 4.713
0.254 | 0.348 | 0.489 | 0.575 0.651 0.363 0.667 0.672 | 0.685

o 5.230 | 4.871 | 4.951 6.050 5.064 5.327 5.214 | 5425 | 5.586
0.730 | 0.738 | 1.056 | 0.823 | 0.784 0.584 0.925 | 0990 | 1.141

3 5.347 | 4.939 | 3.922 | 4.938 4.410 5.511 5.265 5.383 | 5.455
0.572 | 0.602 | 0.983 0.815 0.753 0.507 0.893 0.872 | 0.926

Ha 5.161 5.838 | 4.334 | 5.280 5.559 5471 5.242 | 5.628 | 5.400
0.548 | 0.627 | 0.838 | 0.713 0.630 0.486 0912 | 0.757 | 0.947

H5 5.313 | 5.376 | 5.330 | 4.650 5.247 5.214 5.196 | 5.385 | 5.487
0.577 | 0.726 | 0.763 0.692 0.589 0.475 0.754 | 0.857 | 0.783

H6 5.262 | 5.378 | 4.431 4.604 2.960 5.713 5.373 5.531 5.611
0.576 | 0.656 | 0.937 | 0.747 | 0.864 0.711 0.856 | 0.846 | 0.946

H7 5.523 | 5.550 | 4.292 | 5.490 2916 6.024 5.148 5.338 | 6.264
0.468 | 0.536 | 0.791 0.681 0.619 0.523 0.681 0.684 | 0.714

HS 5.366 | 5.517 | 4.091 3.645 1.346 6.085 5.191 5.134 | 5.257
0452 | 0475 | 0.762 | 0.613 0.608 0.524 0.753 0.739 | 0.846

HO 5.383 | 4.699 | 4.612 3.732 2.992 5.528 5.374 | 5.161 5.772
0.543 | 0.632 1.036 | 0.728 0.749 0.823 0.867 1.044 1.113

H10 4.920 | 5.291 | 3.707 | 4.971 4.966 6.424 5.345 | 5.695 | 5.797
0.850 | 0.888 1.274 1.021 1.275 0.821 0.974 1.070 1.032

Average 5.145 | 4986 | 4.319 | 4.530 3.858 5.350 5.183 5.259 | 5.532
0.557 | 0.623 | 0.893 | 0.741 0.752 0.582 0.828 | 0.851 | 0.913

zoom, as presented in Fig. 14. Most of these methods do
not consider noise suppression, resulting in intensive noise in
enhanced images. It can be observed that the proposed RVFN
effectively improves visibility and corrects color cast from
the global perspective. From the local perspective, RVFN also
successfully removes noise and preserves details.

D. QUANTITATIVE EVALUATION

To validate the previous subjective observation, quantitative
evaluation techniques are applied to conduct objective
assessment on the outcomes. Tables 2 and 3 present the
scores of two reference-free metrics for various methods,
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ie., UIQM [63] and AMFD [64]. A higher UIQM or
AMFD value represents better quality of image. The best
and second-best values have been marked using red and blue
fonts, respectively. UIED [1] is employed as the evaluation
dataset, which includes 890 real underwater images (RUI)
and 60 challenging underwater images (CUI).

The restoration-based methods, including ROPU [5],
DCAC [14], and GDCP [24], present low AMFD and
UIQM scores on UIED dataset. The root reason is that
these restoration-based methods employ prior information
and physical imaging models to restore underwater images.
However, the prior information is essentially statistical data,
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TABLE 4. Matched features on underwater images in Fig. 10.

Images | Raw | ACDP | CBUF | HFUE | DCAC | GDCP | WNET | MCSE | ROPU | RVEN
HI 31 25 35 78 50 42 76 67 46 81
H2 47 64 99 101 89 98 57 95 82 110
H3 29 44 40 65 53 31 61 63 55 71
H4 47 65 93 65 80 &9 85 84 74 85
HS5 67 98 125 98 133 107 96 121 83 135
H6 52 83 74 82 96 91 58 94 64 &9
H7 46 48 53 75 63 39 84 70 53 77
HS8 44 73 60 62 61 78 87 79 51 90
H9 55 105 116 93 143 116 86 106 78 134

HI10 66 83 85 87 97 78 93 112 69 125

Average | 48.4 68.8 78.0 80.6 86.5 76.9 78.3 89.1 65.5 99.7

oo
o5 :
(a) 32 features

—

(c) 3 5 features

features

2 d S > S
(g) 44 features (h) 24 features

FIGURE 15. The results of application test. (a) ACDP [28]; (b) CBUF [29]; (c) HFUE [7]; (d) DCAC [14]; (e) GDCP [24]; (f) WNET [1]; (g) MCSE [46];
(h) ROPU [5]; (i) RVFN.

TABLE 5. Comparison of running time (second).

Images ACDP | CBUF | HFUE | DCAC | GDCP | WNET | MCSE | ROPU | RVEN
300 x 400 0.324 1.478 4.867 0.219 0.457 0.019 0.034 | 0.522 | 0.313
600 x 800 1.314 | 4.245 | 13.787 | 0.442 | 0.589 0.035 0.047 1.599 | 0.817

1200 x 1600 | 5.296 | 17.923 | 62.751 | 1.725 0.796 0.121 0.141 6.961 | 3.215

which may fall short of accurately revealing the attenuation be inferior to restoration-based methods in terms of enhanc-

of underwater images. These methods generally necessitate
robust prior information to achieve well performance,
but the requirement often fails to satisfy in underwater
scenarios.

The enhancement-based methods, HFUE [7], ACDP [28],
and CBUF [29], perform well on UIED dataset. These three
methods exhibit higher UIQM and favorable AMFD scores.
The enhancement-based methods apply computer graphics
approaches to directly adjust gray values of underwater
images, which allow them to restore color deviation and
improve color vividness effectively. Nevertheless, they may
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ing contrast and sharpening details. For CNN-based method,
WNET [1] presents relatively high UIQM and AMFD scores.
The potent feature learning capability of WNET allows it
to improve the contrast and correct color cast effectively,
resulting in high UIQM and AMFD scores. However, WNET
neglects brightness factor in the loss function, and thus
it is not fully successful in enhancing low illumination.
MCSE [46] presents high UIQM and AMFD values because
sharpened details increase the contrast component of two
indexes. Owing to the low illumination in enhanced images,
it only achieves the third place in UIQM and AMFD scores.
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(a) (b) (©)
FIGURE 16. The results of noise removal. (a) Gaussian noise; (b) Poisson
noise; (c) Salt and pepper noise.

Raw images =
& B

FIGURE 17. Failure cases. Excessive enhancement exists in restored
images for underwater images with non-uniform illumination.

Owing to robust prior information and reasonable imaging
model, the proposed RVFN achieves the best or second-best
scores on UIED dataset. Moreover, we provide detailed
UIQM and AMFD scores on ten images from UIED dataset,
as shown in Table 3. The proposed method presents the
highest UIQM and AMFD scores on most of these images.
Furthermore, RVFN outperforms the compared methods
regarding average UIQM and AMFD scores. In conclusion,
the superiority of the proposed approach in improving
the quality of images is demonstrated by the quantitative
evaluation.

E. APPLICATION TEST

Surf feature matching is adopted to perform the application
test to further validate the performance of the proposed
RVEFN. Fig. 15 presents visible outcomes of Surf feature
matching. Table 4 provides the number of matched features
on ten images in Fig. 10.

For all methods, matched Surf features on enhanced
images are greater than those on raw images. The reason is
that all methods can improve the image quality and feature
representation to some extent. It can be observed that RVFN
achieves the highest average number of matched features
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owing to the favorable illumination and visibility of restored
images. Compared with raw images, matched features on the
outcomes of WNET [1], HFUE [7], DCAC [14], GDCP [24],
CBUF [29], and MCSE [46] increase obviously, beyond
76. Underwater images enhanced by ROPU [5] still exist
with unfavorable stripes and overexposure. ACDP [28]
excessively corrects the color deviation, resulting in a
gray appearance. These new defects in enhanced images
destroy feature representation; hence, ROPU and ACDP
achieve relatively low scores in terms of feature matching.
In contrast, the proposed RVEN effectively improves the
visibility, while eliminating the color distortion and rendering
the vibrant color. Accordingly, more extracted features exist
in the outcomes of RVFN, demonstrating the exceptional
performance of RVFN in improving the image quality and
feature representation.

F. EVALUATION OF NOISE REMOVAL

In the proposed imaging model, the noise term is designed
to carry the noise of underwater images, and the noise
is suppressed by directly removing the decomposed noise
component. Fig. 16 presents three examples to validate
the effectiveness of the proposed method on three types
of noise, i.e., Gaussian noise, Poisson noise, and Salt and
Pepper noise. It can be observed from Fig. 16 (a) that the
proposed method effectively suppresses Gaussian noise while
preserving the edges and details. The success stems from
that the noise term in the proposed objective function follows
Gaussian distribution. Fig. 16 (b) presents that Poisson noise
in underwater images is capable of being smoothed, but slight
noise still exists in the restored image. As shown in Fig. 16 (c),
the proposed method fails to remove Salt and Pepper noise,
because the distribution of Salt and Pepper noise presents
significant difference from Gaussian distribution.

G. COMPARISON OF RUNNING TIME

The running time on images with various resolutions is
provided in Table 5. The traditional methods are run on a PC
with Intel i5-11400 CPU, while WNET [1] and MCSE [46]
are executed on a PC with GTX 2080Ti GPU and Pytorch.
CNN-based methods generally perform faster than traditional
methods owing to the acceleration of GPU. The running time
of WNET and MCSE is less than 0.2s for images with various
sizes. Traditional methods, such as ROPU [5], HFUE [7],
ACDP [28], and CBUF [29] consume a lot of time to remove
the corruptions in underwater images. The proposed RVFN
surpasses these four approaches on images with different
sizes. RVEN only consumes 0.313s, 0.817s, and 3.215s to
enhance images with sizes of 300 x 400, 600 x 800, 1200 x
1600, respectively. It can be found that the running time of
RVFN linearly increases with the increase in image size,
indicating an acceptable algorithm complexity. Although the
proposed method does not outperform all methods in terms
of efficiency, it effectively addresses the problems of low
visibility, color bias, and noise.
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H. LIMITATIONS

In this subsection, the limitation of the proposed method
is discussed. As shown in Fig. 17, the proposed method
loses effectiveness for restoring underwater images with
non-uniform illumination, especially for images with
over-exposed local regions. Although the contrast of restored
images has been improved, local regions present excessive
brightness. The proposed method falls within the community
of blind restoration, which restores underwater images
without any physical properties of imaging model. For
the blind restoration, calculating transmission map and
background light from a single image is pivotal for the task
of image restoration. However, over-exposed local regions in
underwater images cause inaccurate transmission map and
background light. Consequently, the proposed method fails
to restore underwater images with non-uniform illumination.

V. CONCLUSION

In this manuscript, a method for underwater image restoration
and noise suppression is proposed by combining variational
framework and imaging model with noise. In this study,
the hazy curves of degraded colors and the prior of lost
color information are adopted to robustly calculate the
transmission map, and a first-order gradient guided filter
is designed to smooth the transmission map. To achieve
accurate background light, an evaluation formula containing
illumination, contrast, and color deviation is introduced to
determine the background region.

The qualitative evaluation validates the robust performance
of the proposed method on various underwater images.
Quantitative evaluation reports that the proposed method
surpasses several exceptional methods in terms of UIQM and
AMFD, evidencing its improvement in visibility enhance-
ment and color correction. The application test presents
the performance of the proposed RVEN in improving the
quality of underwater images and feature representation,
highlighting its potential in high-level tasks. Nevertheless,
the proposed method fails to restore underwater images with
over-exposed regions and requires more running time for
generating high-quality images than CNN-based methods,
which provide directions of advance for future work.
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