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ABSTRACT Equivalent electrical circuits (ECM) have proven to be effective in modeling the dynamic
behavior of proton exchange membrane (PEM) electrolyzer voltage response. They are a valuable tool
for studying the interactions between power electronics and PEM electrolyzers during dynamic operating
conditions. Generally, the ECM takes into consideration the activation over-voltage that is present at both
the anode and the cathode for the dynamic part of the model. Therefore, the monitoring of the ECM
activation over-voltage is an important issue for the correct modeling of the PEM electrolyzer voltage.
However, voltage sensors for this over-voltage are expensive and the reported observers of the PEM
electrolyzer activation over-voltage are scarce and have not been validated over a sufficiently long time.
This work aims at overcoming these drawbacks by proposing the use of a Luenberger observer to accurately
estimate the activation over-voltage using an ECM. Based on this proposal, it is possible to build a device
capable of emulating the electrolyzer voltage efficiently. Furthermore, a stability analysis of the observable
system is provided to ensure its performance throughout the experiment period. Statistical results, based on
experimental voltage data from a PEM electrolyzer QL–300, demonstrate the high accuracy and performance
of the Luenberger observer under continuous changes in input currents, which demonstrates its robustness.

INDEX TERMS Electronic circuit model, Luenberger observer, PEM electrolyzer, stability analysis, voltage
behavior.

I. INTRODUCTION
Electrolyzers have demonstrated their importance in the
production of green hydrogen from environmentally friendly
power sources, which is considered one of the main fuels
to meet the energy demand of the coming years [1], [2].
The basic operation of an electrolyzer is the production of
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approving it for publication was Fangfei Li .

highly pure hydrogen through the process of water electrol-
ysis [3]. Despite the different technologies developed and
reported in the literature for electrolyzers (i.e., solid oxide,
anion exchange membrane, alkaline and proton exchange
membrane (PEM)), only alkaline and PEM electrolyzers
have reached the commercial stage. Between these two
technologies, PEM electrolyzers have evidenced to have a
better response when coupled with renewable energies due
to their operational flexibility [4].
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Mathematical modeling of the PEM electrolyzer that
efficiently describes the behavior of its internal and external
processes, has largely contributed to the development of
the PEM electrolyzer technology. Furthermore, with these
mathematical models, it is possible to design controllers,
failure analysis, energy management, and optimization of the
PEM electrolyzer system [5], [6], [7], [8], [9]. Mathematical
models of PEM electrolyzers are classified as analytical,
empirical, and mechanistic. Commonly, analytical models
consider the performance of the electrolyzer to determine the
behavior of the main variables that influence it. Empirical
models use experimental data to determine system parame-
ters. However, a disadvantage of these models is that they are
limited to a specific PEM electrolyzer. Mechanistic models
are more complex compared to the other two types of
modeling since they use differential or algebraic equations
to perform highly reliable simulations of the phenomena that
occur in the electrolyzer. It is worth mentioning that the
time to perform the simulations of the mechanistic models
is considerable due to the extensive calculations [10].
Dynamic models, which belong to the class of mechanistic

models, are useful to describe systems in real-time, besides,
from these models, control theory can be applied [11]. The
equivalent electronic circuit model (ECM), which belongs to
the dynamic models, allows modeling the PEM electrolyzer
voltage response during dynamic operating conditions [12].
Usually, the ECM takes into account the over-voltages that
occur within the PEM electrolyzer [13], [14]. Furthermore,
these over-voltages can be classified as ohmic, activation,
and concentration [15]. In particular, the voltage responses
of the PEM electrolyzer take place in the activation over-
voltage [16]. Therefore, to efficiently reproduce the voltage
of a PEM electrolyzer (to build a voltage emulator based on
an ECM), it is important to be able to observe the dynamic
behavior of the activation over-voltage [17]. To carry out
this task, voltage sensors can be used, which are usually
expensive depending on the measurement accuracy. Also,
it is possible to replace the measurements of the voltage
sensors with the estimations of an observer, which only
depend on the input and output signals [18]. Different types of
observers have been applied to different research fields, such
as PEM fuel cells [19], [20], batteries [21], and underactuated
quadrotors [22], [23]. Table 1 shows examples of observers
recently applied to different research fields and their details.
However, observers for the PEM electrolyzer activation
over-voltage are scarce and have not been implemented
during a long enough time window [24]. For this reason, the
development of observers for PEM electrolyzers is important
for the study of responses to dynamic oscillations in the
voltage.

Due to the importance of observers for the PEM
electrolyzer voltage, this work aims at implementing the
Luenberger observer in an ECM since this observer has
proven to be practical and robust for linear observable
systems [32]. As mentioned in [33], for less complex linear
systems, the Luenberger observer is the best choice among

TABLE 1. Examples of observers applied to research fields.

other techniques such as Bayesian estimators or AI-based
observers, as it provides a valid estimate of the system state
without requiring complex computational methods that are
usually time-consuming or difficult to implement.

The main characteristics and contributions of the proposed
observer in this work are presented below.

• The observability and stability of the system were
demonstrated to ensure the effectiveness of the observer
throughout the experimental test (4000 s).

• A comparison of the observer with experimental data
under constant disturbances in the input current (square
wave function at different periods using dSPACE
controller board) from a PEM electrolyzer QL–300
of Shandong Saikesaisi Hydrogen Energy Co was
made. This comparison validated the performance and
robustness of the observer of the activation voltage (i.e.,
statistical tests were applied).

• It is possible to build a device that efficiently emu-
lates the PEM electrolyzer voltage by implementing
the proposed observer with the ECM design of this
work.
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FIGURE 1. PEM electrolyzer basic operation.

The rest of the work is structured as follows: after
discussing the state-of-the-art and motivations in the intro-
duction, Section II presents a detailed description of the
experimental platform. In Section III, the description of
an ECM for estimating the PEM electrolyzer voltage is
shown. Besides, in this section, the design of the Luenberger
observer and the stability analysis of the observable system
are provided. Subsequently, in Section IV, the simulations
of the estimations from the observer and the discussion of
this work are shown. Finally, in Section V, the conclusion is
presented.

II. EXPERIMENTAL TEST SET-UP
A. PEM ELECTROLYZER BASIC OPERATION
To carry out electrolysis, the PEM electrolyzer generally
operates with an anode, a cathode, a PEM (usually Nafion),
and a DC power source. Each part of the PEM electrolyzer
system serves a fundamental purpose: at the anode, oxygen,
electrons, and protons are produced; the produced protons
pass to the cathode through the PEM; the external circuit
connected to the DC power source flows the electrons from
the anode to the cathode; hydrogen is produced at the cathode
by combining protons with electrons [34], [35], see Figure 1.
The reactions in the PEM electrolyzer are presented in (1).

H2O → 2H+
+

1
2
O2 + 2e− (Anode reaction)

2H+
+ 2e− → H2 (Cathode reaction)

H2O → H2 +
1
2
O2 (General reaction) (1)

The PEM electrolyzer is a promising technology despite
being less efficient than the alkaline electrolyzer due to its
wide operating range, high current densities (2 A ·cm−2), fast
response time, and good performance when combined with
renewable energy sources. Therefore, the PEM electrolyzer

TABLE 2. PEM electrolyzer QL–300 specifications.

FIGURE 2. Equipment and experimental test set-up.

can cope with fluctuations from intermittent energy sources
due to its partial load [36], [37].

B. EXPERIMENTAL DATABASE COLLECTION
The different databases were obtained from the PEM
electrolyzer QL–300 of Shandong Saikesaisi Hydrogen
Energy Co., Ltd. (Jinan, China). The characteristics of this
electrolyzer are shown in Table 2.

To obtain reliable databases, the equipment and experimen-
tal test described below were proposed, see Figure 2.

(1) A computer with Matlab-Simulink ®.
(2) An oscilloscope MDO34–1000 of Tektronix Company.
(3) A PEM electrolyzer QL–300.
(4) An electrical current sensor.
(5) A DS1104 controller board from dSPACE Company.
(6) A voltage sensor.
(7) A signal converter from the dSPACE control to the DC

power supply.
(8) A DC power supply EL 9160–100 of Elektro Automat-

ick (EA) Company.

Seven databases were taken, each data collection had a
duration of 4000 seconds and the following mechanics were
carried out: A square wave current signal was programmed in
Matlab-Simulink ® for the dSPACE controller board (i.e.,
minimum and maximum current values, see Table 4); the
dSPACE controller sent this signal to the DC power source
using a signal converter; the PEM electrolyzer was supplied
by the DC power source using a square wave current signal;
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TABLE 3. ECM and Luenberger observer parameters.

the database of the voltage and current sensors was projected
and saved by the oscilloscope.

Figure 3 shows the experimental results obtained for
the PEM electrolyzer voltage databases and their respec-
tive square waveform input currents. The different square
waveform current inputs were generated through Matlab–
Simulinkő and dSPACE in a minimum step range of 0 to
10 A and a maximum step range of 7 to 20 A with
switching periods of 25 seconds (Figure 3.a), 50 seconds
(Figure 3.b), and 100 seconds (Figure 3.c). The different
voltage responses varied between 1.6 and 2.2 V for the
minimum current input steps and varied between 1.9 and 2.4
V for themaximum current input steps. It is worthmentioning
that the PEM electrolyzer voltage is usually variable due
to different factors that occur in the electrolyzer such as
pressure, temperature, and the power source (renewable
energy source). After obtaining the experimental databases,
the Luenberger observer was developed and implemented for
an ECM in Section III.

III. DESIGN OF THE LUENBERGER OBSERVER FOR THE
PEM ELECTROLYZER VOLTAGE
To start this section, the description of the parameters used in
the ECM and observer equations are shown in Table 3.

A. PEM ELECTROLYZER MATHEMATICAL MODEL
In this work, the ECM developed in [38] and [39] is used.
The PEM electrolyzer voltage ve is expressed in terms of the
reversible vrev, ohmic v�, activation vact, and concentration
vcon over-voltages as follows:

ve = vrev + v� + vact + vcon. (2)

The ECM for (2) is defined as follows:

FIGURE 3. PEM electrolyzer voltage behavior with different input square
waveform currents.

- A constant DC voltage source vini is used for modeling
vrev,

vrev = vini. (3)

- A constant resistance is used for modeling the elec-
trolyzer membrane Rmem, thus v� is expressed as:

v� = Rmemiel, (4)

where iel is the PEM electrolyzer current (A).
- Two resistor-capacitor branches are used for modeling
vact, one for the cathode vact,c and the other for the
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FIGURE 4. Equivalent electronic circuit diagram for PEM electrolyzer
voltage.

anode vact,a. Besides, it has been reported that the PEM
electrolyzer voltage dynamic occurs at this over-voltage.

vact = vact,c + vact,a, (5)

where the dynamic equations are defined as:

dvact,c
dt

=
1
Cc
iel −

1
τc
vact,c, (6)

dvact,a
dt

=
1
Ca
iel −

1
τa
vact,a, (7)

where Cc and Ca are the equivalent capacitors for the
cathode and the anode in (F), respectively. τc and τa are
the electrical time constants that depend strongly on the
operating conditions at the cathode and the anode in (s),
respectively. Rc and Ra are the resistors for the cathode
and the anode in (�), respectively. Besides, Rc and Ra
are calculated using τc and τa as follows:

τc = CcRc, (8)

τa = CaRa. (9)

- Finally, vcon is estimated as zero because this
over-voltage has been reported to be considerably
smaller than vact and v� [40], [41].

So, the ECM for the PEM electrolyzer voltage is expressed
as:

ve(t) = vini + Rmemiel(t) + vact(t). (10)

Figure 4 shows the equivalent electronic circuit diagram
for PEMelectrolyzer voltage using the electronic components
that make up the ECM (i.e., one DC voltage source, two
capacitors, and three resistors). Therefore, this diagram is
useful for constructing a real equivalent electronic circuit to
emulate the PEM electrolyzer voltage.

B. DEVELOPMENT OF THE LUENBERGER OBSERVER
In this subsection, the equations describing the PEM
electrolyzer voltage are defined as a control system, so that
it is easier to structure the Luenberger observer. So, let y be
defined as follows:

y := ve − vini, (11)

and

x1 : = vact,c,

x2 : = vact,a,

u : = iel. (12)

Substituting (11) and (12) in (6), (7), and (10), it is obtained:

ẋ1 =
1
Cc
u−

1
τc
x1, (13)

ẋ2 =
1
Ca
u−

1
τa
x2, (14)

y = Rmemu+ x1 + x2. (15)

where x = [x1, x2]T with initial condition x0 = [x1,0, x2,0]T .
Then, the system can be represented as:

ẋ = Ax + Bu, (16)

where

A =

(
A11 0
0 A22

)
=

(
−

1
τc

0
0 −

1
τa

)
(17)

and

B =

(
B1
B2

)
=

(
1
Cc
1
Ca

)
(18)

And let

y = Cx + Du (19)

where C = [1, 1] and D = Rmem.
To implement the Luenberger observer to the system

defined in (16)–(19), it is necessary to prove that this system
is observable. Therefore, the rank of the observability matrix
defined below was calculated for A11 ̸= A22 and ∀s ∈ C,

rank
[
sI − A
C

]
= rank

 s− A11 0
0 s− A22
1 1

 = 2. (20)

By applying the observability matrix criterion [42], one can
conclude that the system is observable.

Once the observability property of the system is demon-
strated, the Luenberger observer is constructed. This observer
is built with the original system including the estimation error
to compensate for the inaccuracies in A and B [43]. In this
way, the observer model is defined as:

˙̂x = Ax̂ + Bu+ L(y− Cx̂ − Du)

= (A− LC)x̂ + (B− LD)u+ Ly, (21)

where x̂ = [x̂1, x̂2]T is the estimated state and, therefore,
Cx̂ + Du is the estimated output. L = [l1, l2]T is
the Luenberger vector, which is a weighting vector that
continuously corrects the model output and improves the
observer’s behavior. The error vector e is defined as the
difference between x and x̂:

e := x − x̂. (22)
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Therefore, the dynamic of vector e is given by:

ė = ẋ − ˙̂x

= (A− LC)(x − x̂)

= (A− LC)e. (23)

Therefore, the eigenvalues of the matrix (A − LC) must
be negative to ensure that e converges to zero and that
x converges to x̂ exponentially. Thus, this work proposes
conditions on L for which the matrix (A − LC) has negative
eigenvalues. Consider the following expression to calculate
the eigenvalues λ:

det(λI − A+ LC) = 0. (24)

The following expression is obtained from (24):

λ2 + bλ + c = 0. (25)

where b = l1+ l2−A11−A22 and c = A11A22−A11l2−A22l1
Therefore, the eigenvalues of the matrix are given by:

λ =
−b±

√
b2 − 4c
2

, (26)

To find conditions for which the eigenvalues are negative,
note that the discriminant satisfies:

b2 − 4c = (A22 − A11)2 + 2(A22 − A11)(l1 − l2)

+ (l1 + l2)2

= [(A22 − A11) + (l1 − l2)]2 + (l1 + l2)2

− (l1 − l2)2

= [(A22 − A11) + (l1 − l2)]2 + 4l1l2.

Given the above developments, (b2 − 4c) is positive as long
as l1 and l2 have the same sign or if l1 + l2 > |l1 − l2|. Now,
suppose both values of L are greater or equal to zero l1, l2 ≥ 0
(the case when l1 = l2 = 0 is the original system (16), which

is nominally stable). Then, as the values of −A11 =
1
τc

and

−A22 =
1
τa

are greater than zero by hypothesis, it is obtained

that b > 0 and c > 0. Therefore,

λ1 =
−b−

√
b2 − 4c
2

< 0.

Besides, it holds that
√
b2 − 4c <

√
b2 = |b| = b. Thus,

−b+
√
b2 − 4c < 0 and hence

λ2 =
−b+

√
b2 − 4c
2

< 0.

Therefore, the system (23) is stable when l1, l2 ≥ 0. For the
cases when l1, l2 ≤ 0 and l1+l2 > |l1−l2| the restrictions that
guarantee negative eigenvalues for (23) are derived below.

FIGURE 5. Demonstrated stable region for the system (23) using
τc = 4.0835 and τa = 0.2040.

It is worth mentioning that case l1 + l2 > |l1 − l2| involves
the following two cases:

Case 1 Case 2

l1 + l2 > l1 − l2 l1 − l2 > −l1 − l2
l2 > −l2 l1 > −l1
2 · l2 > 0 2 · l1 > 0

l2 > 0 l1 > 0.

Now, to ensure that b > 0, let l1 + l2 > A11 + A22, so that,
for the cases when l1, l2 ≤ 0 and l1 + l2 > |l1 − l2|, b > 0.
Therefore, λ1 < 0. Furthermore, to guarantee that c > 0,

it is assumed that l1 and l2 satisfy
l1
A11

+
l2
A22

< 1. Thus,

it is obtained that A11l2 + A22l1 < A11A22. Consequently,
c > 0, and taking into consideration that b > 0, it holds that√
b2 − 4c <

√
b2 = |b| = b. Thus, λ2 < 0.

Therefore, for the cases when l1, l2 ≤ 0 and l1 + l2 >

|l1 − l2|, the system (23) is stable if l1 + l2 > A11 + A22,

and
l1
A11

+
l2
A22

< 1. Figure 5 illustrates the demonstrated

stable region of the system (23) for τc = 4.0835 and
τa = 0.2040 (these values were considered according
to [38]).

Once the observer was determined and its stability
region demonstrated, it was simulated. The simulation
results of the proposed observer are shown in the next
section.

IV. RESULTS AND DISCUSSION
In this section, the simulation results of the observer response
are presented in detail. Besides, a discussion of the outcomes
is presented.
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TABLE 4. Maximum and minimum input current iel and values τc and τa
for each database.

FIGURE 6. Observer error behavior with different values of L (stable
region) for database 1.

A. SIMULATION AND VALIDATION
To carry out the simulations, the Python programming lan-
guage was used (Python version: 3.8.10 for 64 bits, processor:
Intel CORE i7-7700 HQ CPU, 2.80 GHz, operating system:
Windows 10). The proposed observer was simulated using
the parameter values vini = 1.43 V , Rmem = 0.0155 �,
and Cc = Ca = 125 F . Furthermore, as mentioned in [39],
the parameters τc and τa are constants that depend on the
input current and other relevant parameters (gas pressure and
temperature that are not considered in this current work), for
this reason, different values for these parameters were used
depending on the database, see Table 4.
The behavior of the observer error under different values

of L (l1 and l2 at different points of the stability region)
was analyzed using Databases 1 and 2. For Database 1,
the Luenberger observer obtained better performance when
using l1, l2 > 0 with a relative error of 0.075%, while in
the other cases l1 < 0 and l2 > 0, l1 > 0 and l2 <

0, and l1, l2 < 0 obtained a relative errors of 3.3717%,
3.6469%, and 17.5394%, respectively. Figure 6 shows the
evolution of the observer error concerning time for Database
1 and different values of L. Similarly, for Database 2, the
Luenberger observer obtained a relative error of 0.0911%
when using l1, l2 > 0, which demonstrates the effectiveness
of convergence with positive values l1 and l2. For the other
different values of l1 < 0 and l2 > 0, l1 > 0 and l2 < 0, and
l1, l2 < 0 obtained a relative errors of 1.1219%, 3.0287%,
and 4.3968%, respectively. These relative errors obtained

FIGURE 7. Observer error behavior with different values of L (stable
region) for database 2.

FIGURE 8. Comparison of the observer and Database 1 with its respective
input current iel.

from Database 2 are lower compared to those obtained from
Database 1 due to the different behavior of the databases.
Figure 7 shows the evolution of the observer error concerning
time for Database 2 and different values of L. Due to the
fast convergence of the error to zero when l1, l2 > 0, the
simulations were developed by considering l1 = 35 and
l2 = 30. It is worth mentioning that the higher the values of
l1 and l2, the faster the convergence. However, computational
work is more demanding due to the small step size to achieve
solution iterations. For these values of L, the computational
operation time for all databases varied between 3.41 and
3.95 seconds. Figure 8 shows the result of the comparison of
the observer and Database 1 with its respective input current
iel (the dSPACE signal was programmed for an input current
of min = 10 A and max = 20 A).
Figure 9 shows the observed states vact,c and vact,a with

initial values vact,c,0 = 0.55 V and vact,a,0 = 0.03 V .
In this case, a different behavior can be seen during the
first 1000 seconds, which agrees with the voltage shown in
Figure 8.

Figure 10 shows the behavior of the observer for Database
2 with its respective input current iel (the dSPACE signal
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FIGURE 9. Observed states vact,c and vact,a for database 1.

FIGURE 10. Comparison of the observer and Database 2 with its
respective input current iel.

FIGURE 11. Observed states vact,c and vact,a for database 2.

was programmed for an input current of min = 1 A and
max = 20 A).

Figure 11 shows the observed states vact,c and vact,a with
initial values vact,c,0 = 0.25 V and vact,a,0 = 0.06 V .
In this case, a regular voltage behavior can be seen during
the experiment, which agrees with the voltage shown in
Figure 10.

FIGURE 12. Comparison of the observer and database 3 with its
respective input current iel.

FIGURE 13. Observed states vact,c and vact,a for database 3.

Figure 12 shows the input current iel (the dSPACE
signal was programmed for an input current of min =

5 A and max = 15 A) and the experimental voltage
from Database 3 with its respective estimation using the
Luenberger observer. Figure 13 shows the observed states
vact,c and vact,a with initial values vact,c,0 = 0.29 V and
vact,a,0 = 0.04 V . In addition to the high precision observed
in Figure 12 between the estimated voltage and the real
PEM electrolyzer voltage, the behavior of the observed states
agrees with the system output, which proves the effectiveness
of the proposed observer.

Figure 14 shows the result of the comparison of the
observer and Database 4 with its respective input current iel
(the dSPACE signal was programmed for an input current of
min = 6 A and max = 16 A).
Figure 15 shows the observed states vact,c and vact,a with

initial values vact,c,0 = 0.52 V and vact,a,0 = 0.08 V .
In this case, a different behavior is observed around the
first 1400 seconds, which agrees with the voltage shown in
Figure 14.
Figure 16 shows the behavior of the observer for Database

5 with its respective input current iel (the dSPACE signal was
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FIGURE 14. Comparison of the observer and Database 4 with its
respective input current iel.

FIGURE 15. Observed states vact,c and vact,a for database 4.

FIGURE 16. Comparison of the observer and database 5 with its
respective input current iel.

programmed for an input current of min = 8 A and max = 18
A).

Figure 17 shows the observed states vact,c and vact,a with
initial values vact,c,0 = 0.27 V and vact,a,0 = 0.05 V . The
effectiveness of the observer is demonstrated by the high
precision between the estimated voltage and the real voltage

FIGURE 17. Observed states vact,c and vact,a for database 5.

FIGURE 18. Comparison of the observer and Database 6 with its
respective input current iel.

of the PEM electrolyzer shown in Figure 16 and the behavior
of the observed states, which agrees with the output of the
system.

Figure 18 shows the input current iel (the dSPACE
signal was programmed for an input current of min =

9 A and max = 19 A) and the experimental voltage
from Database 6 with its respective estimation using the
Luenberger observer.

Figure 19 shows the observed states vact,c and vact,a with
initial values vact,c,0 = 0.52 V and vact,a,0 = 0.05 V .
This Database showed the most irregular behavior of all the
databases. However, as can be seen in Figures 18 and 19, the
high accuracy of the simulated voltage in estimating the real
voltage and the behavior of the observed states demonstrate
that the proposed observer is efficient and robust. Figure 20
shows the result of the comparison of the observer and
Database 7 with its respective input current iel (the dSPACE
signal was programmed for an input current of min = 2
A and max = 7 A). Figure 21 shows the observed states
vact,c and vact,a with initial values vact,c,0 = 0.22 V and
vact,a,0 = 0.03 V . In this case, a regular behavior can be seen
during the experiment, which agrees with the voltage shown
in Figure 21.
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FIGURE 19. Observed states vact,c and vact,a for Database 6.

FIGURE 20. Comparison of the observer and database 7 with its
respective input current iel.

Statistical tests were applied after observing the compar-
isons of the different databases with the Luenberger observer.
The results of these tests are shown in the next subsection.

B. DISCUSSION
Relative error Er, mean error Em, mean squared error MSE ,
and root mean squared error RMSE were applied to validate
the effectiveness of the observer. These statistical tests are
given by:

Er =

(
100
Nd

) Nd∑
k=1

∣∣∣∣vexp,k − vsim,k

vexp,k

∣∣∣∣ , (27)

Em =

(
1
Nd

) Nd∑
k=1

∣∣vexp,k − vsim,k
∣∣ , (28)

MSE =

(
1
Nd

) Nd∑
k=1

(
vexp,k − vsim,k

)2
, (29)

RMSE =
√
MSE, (30)

where Nd is the number of voltage data (i.e., Nd varied
between 9904 and 9970). vexp,k is the k-th voltage data

FIGURE 21. Observed states vact,c and vact,a for database 7.

TABLE 5. Statistical test results.

measurement and vsim,k is the k-th voltage data simulation.
The statistical test results are shown in Table 5.
As can be seen in Table 5, the statistical results demonstrate

the high accuracy of the Luenberger observer proposed
for different databases. Besides, the observer showed high
performance in estimating the electrolyzer voltage under
continuous changes in input currents, which demonstrates its
robustness. This high precision was achieved using values of
L in the calculated stability region, l1, l2 > 0. Therefore,
by using this observer it is possible to appreciate the dynamics
of the voltage states vact,c and vact,a that occur at the cathode
and the anode through an ECM. However, the assumption for
vini, Rmem, andCc = Ca (i.e., these parameters are considered
constant to facilitate the development of the Luenberger
observer) affects the accuracy of measurements for the
dynamic voltage vact presented in a real PEM electrolyzer.

V. CONCLUSION
In this work, the effectiveness and robustness of the
Luenberger observer were demonstrated for the dynamics
present in the PEM electrolyzer voltage when subjected to
continuous changes in input currents.

The effectiveness of the implementation of the Luenberger
observer to an ECM for PEM electrolyzer voltage opens
new research opportunities for different implementations
of observers and control. Furthermore, by using the ECM
parameters and implementing the Luenberger observer it is
possible to build an electronic circuit that emulates the real
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voltage response of a PEM electrolyzer in a reliable way and
that also allows for estimating dynamic behaviors.
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