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ABSTRACT Community detection is an important task in complex network analysis. A community is a
set of cohesive vertices that have more connections within the set than outside. In many real Complex
Networks (CNs), these communities naturally overlap, meaning an individual node can belong to more
than one community. This overlapping structure is crucial for many real applications, such as social
influence detection, cyberattack detection, and recommendation systems. Existing methods often struggle to
capture both network topology and node features, leading to suboptimal overlapping community detection.
In this paper, we propose an efficient method called GCNFCM, which utilizes Graph Convolutional
Networks (GCNs), Fuzzy C-means (FCM), and the modularity Q algorithm for overlapping community
detection. The key idea is to achieve robust feature learning for nodes and then identify the best structure
for overlapping community detection. GCNFCM extracts node embeddings from CNs, considering both
topology and attributes through a dual-decoder design (inner product and GCN), while FCM is employed for
optimal overlapping community detection. Furthermore, FCM is guided by the modularity Q algorithm for
accurate community identification without requiring prior knowledge of the community count. Experimental
results on ten real-world CNs of varying sizes demonstrate that our proposed method outperforms other
state-of-the-art overlapping community detection methods in terms of producing cohesive communities
and identifying ground-truth communities. Additionally, the results indicate that the developed method
effectively identifies good overlapping communities in real-world networks.

INDEX TERMS Graph convolutional networks, fuzzy c-means, complex networks, overlapping structure,
community detection.

I. INTRODUCTION
Nowadays, with the rapid expansion of information technol-
ogy, things in the real world are more connected than ever

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

because and usually represented as complex networks [1].
Complex Networks (CN) are distinguished by intricate inter-
connections, which serve as a powerful analytical tool for
understanding a variety of interconnected systems in the real
world. These systems encompass diverse domains such as the
internet, biological neural networks, transportation systems,
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and social networks [1], [2]. Complex networks like social
media, protein interactions, and city routes are difficult to
understand because they have complicated structures and
keep changing. In real-world networks, connected groups are
called ‘‘communities’’, which share common things. Identi-
fying these communities is crucial for understanding network
structures, and is valuable in different areas like biology,
sociology, and computer science. For example, in computer
science, finding communities helps in online marketing,
predicting user behaviour, and understanding complex sys-
tems [3].
Community detection was introduced by Girvan and New-

man in 2002, which involves discovering the structure of a
CN by identifying densely connected subgraphs (communi-
ties) with sparser inter-community links. It helps to identify
distinct communities or subgraphs within a network, which
can represent social groupings, functional groupings in bio-
logical networks, or other related topics on the web, among
other possibilities [4], [5]. By detecting and identifying these
communities, we can gain valuable insights into the organiza-
tion, function, dynamics, and evolution of CNs. Community
detection has become a hot topic in recent years, particularly
in the field of social networks analysis [6]. This technique
finds broad applications, which ranges from constructing
models for detecting cyber-attacks in social networks [7],
designing recommendation systems [8], to analyzing social
influence [9]. In neurobiology, community detection sheds
light on the functional dynamics of neuronal networks. Simi-
larly, data center networks leverage community detection for
the efficient placement of online service function chains [10].
Therefore, community detection has garnered massive atten-
tion in the research community in the first research work two
decades ago.

Various community detection methods have been pro-
posed from different perspectives [4], [10], [11], [12],
using various techniques such as autoencoder models [13],
[14], [15], nonnegative matrix factorization [16], point-
wise mutual information [17]. Learning low-dimensional
representations enhances member similarity and preserves
the network structure. Traditional methods like generative
models and spectral mapping, as well as local expansion
methods suffer from high complexity and local optima
issues [1], [18]. The rapid evolution of machine learning has
transformed community detection algorithms from statisti-
cal methods to machine learning-based approaches. Neural
network models, including Deep Neural Network (DNN),
Convolutional Neural Network (CNN), and Generative
Adversarial Network (GAN), have demonstrated remark-
able effectiveness in community detection [2], [19], [20].
Machine learning-based methods that leverage the potent
ability of neural networks to identify node relationships
within graphs outperform traditional approaches. In recent
years, Graph Convolutional Network (GCN) has emerged
as a robust tool for handling graph-structured data with
deep learning algorithms [21], [22]. GCNs has the ability to
reveal higher-order structural information through non-linear

feature aggregation and information propagation across the
network. This lead to find wide applications in various
network analysis tasks, such as link prediction, node classifi-
cation, and community detection [21], [22], [23].

The recognition that most real-world networks exhibit
overlapping communities underscores the nuanced nature of
social structures. In social networks, users commonly partic-
ipate in various communities dictated by diverse affiliations,
such as school, family, and friends [23], [24]. Discovering
the overlapping community structure within these networks
holds greater practical significance as it mirrors the mul-
tifaceted relationships individuals maintain across different
domains [11], [25]. Considering the vast scale and intricate
structures of networks, which often encompass thousands
to millions of user nodes, the exploration of overlapping
community detection has become a prevailing research focus.
This trend aligns with the imperative to develop sophisticated
methods capable of discerning intricate patterns of connectiv-
ity in complex networks.

Several community detection methods have been proposed
in the literatures [1], [3], and [19]; however, a prevail-
ing limitation lies in their emphasis on non-overlapping
community structures and neglect of the inherent overlap
between communities [24]. In real-world scenarios, com-
munities frequently exhibit membership overlap with nodes
belonging to multiple communities concurrently. However,
a few studies have introduced overlapping community detec-
tion methods [24], [26]. This methods often used only
topology information of CNs [26], [27], and contend with
limitations rooted in their fundamental principles, resulting in
suboptimal accuracy in detecting overlapping communities.
Moreover, these methods typically rely on prior informa-
tion about the underlying community network, such as the
number of communities, posing a constraint on their applica-
bility. For instance, in [11], a community detection method
based on Markov and GCN, requires prior knowledge of
the number of clusters and exhibits sensitivity to graph
structure. This introduces challenges in generalization, com-
putational complexity for large graphs, assumptions related
to Markov stability, and the need for the effective selection
of the optimal Markov time. In [25], researchers propose
an overlapping community detection method with GCN and
first-order similarity optimization. However, the complex
structures of community networks, often laden with noisy
edges and present a challenge in accurately assigning nodes
to their respective communities.

In this paper, we propose a new approach for CN nodes
feature extraction and overlapping community detection in
complex networks. GCNFCM comprises two key compo-
nents: (1) a Graph auto-encoder with GCN for learning robust
features and embedding nodes into a low-dimensional space,
and (2) a combined approach of Fuzzy C-means (FCM)
and the modularity Q algorithm for accurately identifying
overlapping communities. For effective feature learning, the
developed method employs a graph autoencoder architecture
based on a dual-decoder design for the decoding process.
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This design diverges from conventional graph autoencoders
by incorporating two decoders: The Inner Product Decoder
(IPD) reconstructs the CN adjacency matrix to effectively
capture the intricate relationships between nodes, and the
Graph Convolutional Decoder (GCD) reconstructs the node
feature matrix X to preserve the unique characteristics and
attributes of each node. If the CN lacks a node feature
matrix (X ), we generate the feature matrix using the simi-
larity of nodes based on shared relations and neighbor nodes.
For robust overlapping community detection, FCM algorithm
is incorporated with the modularity algorithm version that
works for overlapping, in which the quality index (Q) guides
FCM in identifying the optimal overlapping community
structure.

The main contributions of this paper can be summarized as
follows:

• Dual auto-encoder for feature learning. GCNFCM
approach uses a dual auto-encoder architecture for to
learn low dimensional embedding for CN nodes. This
addresses the challenges of CNs by capturing both
network topology information and node attribute infor-
mation (if available), leading to more robust feature
learning.

• FCM for overlapping community detection. GCNFCM
integrates the FCM algorithm for handling overlapping
communities, which allows for a more accurate and real-
istic representation of community structures compared
to traditional methods.

• Improved overlapping community detection with modu-
larity Q. We present a new integration of the modularity
Q algorithm with FCM. This combined approach lever-
ages the strengths of both techniques to enhance the
effectiveness of FCM in identifying overlapping com-
munities by optimizing the community structure based
on modularity Q.

• Automatic community number detection: GCNFCM
eliminates the need for prior knowledge about the num-
ber of communities. This is a significant contribution as
it automates a crucial step in community detection, mak-
ing the process more efficient and adaptable to various
network structures.

The rest of the paper proceeds as follows. Section II
reviews and discusses related works. Section III presents the
proposed method. It then presents the experimental results,
analysis, and discussion, which are then compared with state-
of-the-art methods. Finally, Section V concludes the research
work and lists future work.

II. RELATED WORK
Recently, community detection in CNs has secured high
attention from researchers, which results to develop diverse
community detectionmethods. Thesemethods can be broadly
categorized into two main groups: traditional and machine
learning-based techniques. In this section, we first provide
an overview of traditional overlapping community detection

methods and then delve into machine learning methods.
The key traditional methodologies include label propagation,
clique percolation, modularity optimization, edge between-
ness, and game theory.

The label propagation algorithm [28] stands out as one
of the common community detection methods. It is a
straightforward yet efficient approach with nearly linear time
complexity. The algorithm exhibits a drawback of producing
unstable results. To address this limitation for overlapping
community detection, researchers have extended label propa-
gation, which leads to develop several algorithms [29]. These
extensions introduce new label expressions that enable a node
to belong to more than one community. Another method, the
Clique Percolation Method (CPM) [30] has been proposed
for overlapping community detection. CPM posits that com-
munities are composed of overlapping complete subgraphs.
However, it is noted that CPM is most effective in networks
with densely connected subgroups, which presents limita-
tions in uncovering community structures within large-scale
social networks.

Modularity optimization (Q) is the most popular of
community detection in CNs, which was introduced by New-
man [4]. The method serves as a metric for evaluating the
quality of community structures. Shen et al. proposed an
extension ofmodularity for overlapping community detection
to leverage both extended modularity and maximal cliques.
This method initializes communities through maximal clique
identification and expands them by merging similar com-
munities to maximize extended modularity. On the other
side, edge betweenness-basedmethods rely on edge between-
ness centrality, which is defined as the number of shortest
paths passing through an edge in a network for community
detection. The GN method [10] proposes removing edges
with high betweenness to identify communities. Gregory [29]
extended this approach for overlapping community detection
by introducing the concept of split betweenness to refine the
identification of inter-community edges. Alayoub et al. [31]
utilized spectral mapping methods to extract latent infor-
mation and employed the FCM algorithm for overlapping
community detection. The authors improved FCM and uti-
lized parallel computing to handle large complex networks.

Another category of traditional community detection
method is based on the game theory. These methods serve as
powerful mathematical tools for analyzing situations where
the choices of one entity influence others in generating
communities. Game methods model the community detec-
tion process as a game, with each user represented as a
player aiming to maximize individual benefits through strate-
gic choices. Zhou et al. [32] proposed a method based
on coalition formation games that emphasized cooperation
of the player to enhance the overall score of the commu-
nity. Avrachenkov et al. [33] introduced two cooperative
game-theoretic frameworks for community detection.

The emergence of machine learning has led to the
exploration of various neural network methods for com-
munity detection, including GANs [34], CNNs [34],
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and GCNs [25], [35]. Additionally, deep learning approaches
that employ graph embedding methods have been leveraged
for mining community structures [14], [23].

Cai et al. [36] proposed an algorithm that converts
edges into images containing contextual information. The
Edge2Image method is based on the concept of transforming
community detection into an edge classification problem.
To implement this idea, the challenge lies in defining and
locating inter-community edges. A pre-trained CNN model
is then employed to classify these images, and effectively
identify community detection. Similarly, Jia et al. intro-
duced an approach for overlapping community detection
using graph representation learning-based, called GAN [34].
In this approach, a generator is designed to produce node sets
simulating cliques, while a discriminator aims to distinguish
between the generated and actual node sets. The output of
GAN and the graph embedding are served as the community
affiliation weight matrix representing the community parti-
tion. However, it is worth noting that GAN method relies
on supplementary methods for pretraining the embedding.
GAN also faces challenges in convergence once the graph
embedding is not adequately pre-trained.

Graph embedding algorithms play a crucial role in learn-
ing low-dimensional vectors for each node, a valuable
resource for various network analysis tasks, including com-
munity detection. Noteworthy among these algorithms is
DeepWalk [37], which uses the Skip-Gram model to learn
node embeddings through the generation of node sequences
via random walks. Differing from DeepWalk, Node2Vec
employs a biased random walk to generate node sequences.
Furthermore, the utilization of a deep autoencoder aids in
extracting latent features, followed by the application of
machine learning clustering algorithms to facilitate com-
munity detection [23]. Moreover, innovations extend to the
integration of stack autoencoders with metaheuristic algo-
rithms, such as Particle Swarm Optimization, improve the
capabilities for community detection [12], [14], [15]. These
advancements underscore the versatility of graph embedding
techniques in contributing to the broader landscape of CNs
analysis tasks.

The GCN stands out as the most popular DNN model for
graph and CN analysis. Tsitsulin et al. utilized a single-layer
GCN to generate the community affiliation weight matrix,
aligning the loss function with the reformulated modular-
ity [38]. It is crucial to recognize that optimizing modularity
leads to over- or under-partitioning, which results in a fail-
ure to capture the inherent network structure [39]. similarly,
a GCN-based community detection method is introduced
based on optimizing first-order similarity [25]. The com-
munity affiliation weight matrix is obtained through the
GCN to emphasize the optimization of first-order similarity.
However, relying solely on first-order similarity is inade-
quate for accurately extracting the community structure, as it
exhibits poor performance in networks with intricate struc-
tures involving numerous noisy edges connecting different
communities. Yuan et al. [11] developed an overlapping

community detection method based on GCN to maximize
the Markov stability of the community structure. However,
markov models face challenges with limited memory, static
assumptions, and an inability to capture long-term dependen-
cies or external influences in large complex networks.

III. METHODOLOGY
This section introduces a new approach for graph feature
extraction and overlapping community detection in complex
networks, called GCNFCM. GCNFCM consists of two key
components:

1. Graph Auto-encoder with GCN (Fig 1(a)):This part learns
robust features and embeds nodes into a low-dimensional
space. The feature learning process starts by receiving the
adjacency matrix (A) of the network and the node attribute
matrix (X) if available. Otherwise, a similarity matrix
(S) will be created as the attribute matrix for the given
network (CN). Then,A andX are sent to the GCN encoder
to generate embedding nodes as a low-dimensional latent
representation space (Z) that captures essential network
information. Z is then transposed (ZT ) is then created to
reconstruct the Âmatrix through an inner product decoder
between Z and ZT . Additionally, X̂ is reconstructed from
the GCN decoder.

2. Combined Approach of Fuzzy C-means and Modularity
Q (Fig 1(b)): This approach combines the strengths of
both FCM and Q algorithms. FCM partitions nodes into
fuzzy memberships across multiple communities, while
a modularity algorithm (Q̃) is adjusted to optimize the
overlapping community structure based on network con-
nectivity. The initial number of communities (c) is set
to 2, and the algorithm continues searching for the best
overlapping community structure between k communities
and the maximum number of communities (max_c).

Table 1 provides a concise list of the main symbols used
in the paper, along with their respective meanings, to help
readers understand the notation used in this work.

A. DEFINITION OF COMPLEX NETWORKS
A CN is represented and defined as a graph G(V ,E), where
V refres to nodes and E edges, which represent the relation-
ship between nodes, i.e. V = {v1, v2, v3, . . . , vn},where n is
number of nodes, E ∈ (V ,V )e,where e is number of edges.
The common network representations indicate the similarity
between networkmember is the adjacencymatrixA =

[
aij
]

∈

Rn×n. Each element in A denotes to the relationship between
two nodes, i.e., e(vi, vj) that represents as aij and can be
defined as aij = wij, if aij = 0 refers to a non−relation
between nodes and aij = 1 refers to a relation between i
and j. The degree matrix D is a diagonal matrix, where dii
is the degree of vertex i, Dii =

∑n
j=1 Aij. The normalized

Laplacian matrix of the graph is L = IN −D−1/2
− AD−1/2.

The CN can be defined in another form of graph, which
called attributed graph, which is defined as a G = (V ,E,X ),
where V and E are the nodes and the edges similar to
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FIGURE 1. Overview architecture of the proposed GCNFCM method.

the normal in addition to the node attribute matrix X =

[X1,X2,X ,X1 . . . ,Xn] ∈ Fn × d, where Xi ∈ Fn × d
represents the attributes of node vi with dimension of node
attributes.

In this work, we generate the feature matrix based on the
Eq. (1) if the CN lacks a node feature matrix (X ).

X = S =
2SN (vi, vj)

d (vi) + d
(
vj
) (1)

where SN (vi, vj) is a common node between adjacent two
nodes vi and vj, d (vi) is the degree of node i and d

(
vj
)
is the

degree of node j, and d (vi) + d
(
vj
)
is the sum of the degree

of both nodes.
Community detection is a process that aims to identify the

structure of a given CN/G by assigning nodes toK subgraphs,
i.e. communities, K ∈ {k1, k2, k3, . . . , kc} , where c is the
number of clusters. The outcome of community detection
can be represented as a community affiliation matrix H ∈

[0, 1]N×K , where Hvk indicates whether node v is affiliated
with community k or not. Consequently, community detec-
tion can be reduced to finding the community affiliation
matrix H. Some nodes can be affiliated with more than one
community.

B. NODE FEATURE EXTRACTION AND LEARNING
The GCN-Autoencoder (GCNAE) is used as an approach for
embedding CN structures and extractingmeaningful features.
Its objective is to embed the given CN [V, E, X], captur-
ing both CN structures, i.e. topology and node attributes,
and represent them in a low-dimensional space. It uses
dual auto-encoder for feature extraction. This addresses the
challenges of complex networks by capturing both net-
work topology information and node attribute information
(if available), leading to more robust feature learning. The
workflow of GCNAE depicted in Fig. 1, which comprises
two key components: an informative CN encoder and two
distinct CN decoders. To achieve this, GCNAE utilizes the
adjacency matrix (A) and the node feature matrix (X) to
learn a latent representation (Z) through a GCN encoder.
The subsequent step involves two separate decoders: one to
reconstruct node features and the other to reconstruct CN
structures. These decoders leverage the latent information Z,
ensuring a comprehensive utilization of the learned represen-
tation. The final outcome of GCNAE is a low-dimensional
representation Z, which serves as the embedding for the sub-
sequent task—overlapping community detection using the
FCM algorithm. This embedding captures essential aspects
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TABLE 1. List of symbols used in the paper.

of the original CN, facilitating more efficient community
detection in the reduced-dimensional space. The proposed
GCNAE thus offers a robust framework for embedding and
extracting features from complex network data, with applica-
tions extending to tasks like community detection.

1) GCN-ENCODER
The spectral convolution on a CN or a graph is a fundamental
operation that is defined as the product of a signal x ∈ Rn
(a scalar for each node) with a filter gθ = diag(θ ) parameter-
ized by θ ∈ R n in the Fourier domain:

gθ ∗ x = UgθUTx (2)

Here, gθ is a function of the eigenvalues of the CN Lapla-
cian matrix L = IN − D−1/2

−AD−1/2
= U ∧ UT , where

U is the eigenvector of L,and D is the diagonal matrix.
To approximate the spectral filter gθ , Rth order Chebyshev
polynomials [40] were employed. The resulting spectral con-
volution on the graph can be expressed as:

gθ ∗ x ≈ θ
(
In + D−

1
2 − AD−

1
2

)
x (3)

This equation can be normalized to:

In + D−
1
2 − AD−

1
2 → D̃−

1
2 − ÃD̃

−
1
2 , (4)

where In, A, D, are identity adjacency, and diagonal matrices,
respectively, and Ã = A + In and D̃ii =

∑
j Ãij. Ã = A + In

denotes to the identity matrix.

After that, the forward path of the graph convolutional
layer can be expressed as:

H (l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

)
(5)

where H l represents the features that extracted from lth layer,
the input node feature matrix X is received by l0 and repre-
sented byH0. a nonlinear activation function (e.g., ReLU(·) is
represented by σ (·).W l is a trainable parameters of the layer l,
which is called the layer weight matrix

The graph encoder used in this study comprises two convo-
lutional layers. Before that, a preprocessing step is conducted
to prepare the data for the convolution layers, the preprocess-
ing step implemented using this formulation Ā = D̃−

1
2 ÃD̃−

1
2 .

Then, the convolutional encoder model is performed using
Eq. (6):

Z = f (X ,A) = ĀReLU (ĀXW 0)W 1 (6)

where X is the attribute matrix, A is the adjacency matrix,
and (W 0 and W 1) are the trainable parameters of the con-
volutional encoder, and Ā = D̃−

1
2 ÃD̃−

1
2 . Nonlinear ReLU(·)

linear activation function is employed for the first layer,
while the linear activation function is used for the second
layer. The encoder of GCNAE model is constructed with
two convolutional layers, effectively embedding both the CN
topological structure A and the node feature X into the latent
representation Z.

2) DUAL-DECODER
To enhance the representation of both the CN structure and
node features, GCNAE employs a graph autoencoder archi-
tecture based on a dual-decoder design for the decoding
process. The GCNAE model diverges from conventional
graph autoencoders by incorporating two decoders: the IPD,
which reconstructs the CN adjacency matrix A to effectively
capture the intricate relationships between nodes; and the
GCD reconstructs the node feature matrix X to preserve the
unique characteristics and attributes of each node.

a: IPD DECODER
The inner product decoder is employed due to its adeptness
in reconstructing the CN/graph structure matrix A efficiency
and effectively. Its advantage lies in the simplicity of matrix
multiplication (ZZT ), making it computationally efficient,
especially for large CNs. Furthermore, the reliance on the
latent representation Z grants inherent flexibility in capturing
diverse CN structures whether sparse or dense without the
need for intricate model modifications. Eq. (7) is used to
capture this reconstruction process:

Â = σ (ZZT ) (7)

where Â is the reconstructed matrix, Z is the latent represen-
tation, ZT is the transpose matrix of Z and σ is the sigmoid
function ensuring edge probabilities reside within the [1, 0]
range.
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b: GCD DECODER
TheGCD decoder is employed to reconstruct the feature node
matrix of a given CN, denoted as X. The encoding process
utilizes A and X to generate the latent representation Z;
consequently, the decoder segment should create Â and X̂ .
Â is reconstructed using the IPD decoder, and then the GCD
utilizes the graph convolutional decoder to generate X̂ . This
process is expressed as:

X̂ = f (Z ,A) = ĀReLU (ĀXW 0)W 1 (8)

where Z is the latent representation extracted using the
encoder part of the GCNAEmodel,A is the adjacencymatrix,
Ā = D̃−

1
2 ÃD̃−

1
2 , W represents the trainable parameters of the

GCD decoder, and Relu is the nonlinear activation function.

3) LOSS FUNCTION OF GCNAE
The loss function (L) of the GCNAE model consists of two
parts: one (L1) for the original adjacency matrix A and the
reconstructed adjacency matrix Â, and the other (L2) for the
original node feature matrix X and the reconstructed node
feature matrix X̂ .
L1 loss function employs the posterior inference, which is

commonly known as an encoder. L1 can be defined as follows:

L1 = Eq(Z |(X ,A)) [logp (A |Z )] , p (A |Z )

=

n∏
i=1

n∏
j=1

p(Aij|zi, zj) with p(Aij = 1|zi, zj) = σ (zTi zj)

(9)

where q(Z|(X, A)) is posterior inference, Z is the extracted
latent representation, ZT is the transpose matrix of Z, A is
the adjacency matrix, and X is the attribute matrix. This
component can be parameterized by encoder neural networks,
which facilitates posterior inference across all data points in
the dataset. In this context, it can be conceptualized as the
CN/graph encoding process, wherein the graph convolutional
encoder integrates the graph structure A and attribute matrix
X to produce the embedding Z [41].

Regarding the reconstruction of the node feature matrix
using the GCD. Loss function L2 is defined as:

L2 =
1
2

∥∥∥X − X̂
∥∥∥2 , (10)

where X and X̂ are the attribute and the reconstructed
attribute matrices, respectively. The whole GCNAE model
optimized by L1 and L2 to minimize the loss function L that
is expressed as:

L = L1 + λL2 (11)

where L1, L2, λ are the first loss function, the second
loss function, and a non-negative regularization parameter,
respectively. The GCNAE can be updated with its stochastic
gradient by minimizing L in Eq. (11).

The GCNAE model steps are summarized in Algorithm 1,
where V denotes to nodes set, A is the adjacency matrix, and
X is the attribute matrix.

Algorithm 1 GCNAE
Input: V,A, and X.

Output: Latent representation, i.e. Z.
1: (a) Pre-processing:
2: Compute the degree matrix (D) of A, Dii =

∑n
j=1 Aij

3: Compute the normalized Laplacian (L) matrix of the CN,
4: L = IN − D−

1
2 − AD−

1
2

5: (b) GCN-Encoder:
6: Obtain the latent representation of CN nodes z using Eq, (6)
7: (c) Decoders:
8: 1)IPD decoder
9: Regenerate the adjacency matrixÂ using Eq. (7)
40: 2)GCD decoder:
11: Regenerate the attribute matrix X̂ of CN nodes using
12: Eq. (8)
13: (D) Compute loss function:
14: Update the trainable parameters (W) of the GCNAE model by
15: minimizing Eq. (11)
16: Return Latent representation of CN nodes Z.

C. FCMQ BASED ON OVERLAPPING COMMUNITY
DETECTION
FCMQ is an incorporation between FCM and Q modularity
algorithms. FCM for the overlapping community detection
and modularity algorithm for measuring the quality.

1) FCM
A data clustering technique that assigns data to clusters based
on a membership degree within the range of [1, 0]. This
indicates the extent to which it belongs to a specific cluster.
FCM leverages fuzzy sets to allow data points to have partial
memberships in multiple clusters. The technique achieves
robust partitioning through iterative optimization of the fol-
lowing objective function.

Jm =

n∑
i=1

C∑
j=1

Um
ij

∣∣Zi − Cj
∣∣2 (12)

where n is the number of nodes in a CN,C denotes the number
of clusters, Z is the latent representation of node i, m is the
fuzziness factor, and U ij is the membership degree of node i
in cluster j, calculated using Eq. (14).

Uij =
1∑C

k=1

[
|Zi−Cj|
|Zi−Ck |

] 2
m−1

(13)

After that, the cluster centers are initially generated randomly
and then updated using the following equation:

Cj =

∑n
i=1U

m
ij Zi∑n

i=1U
m
ij

(14)

FCM continues iterations until the specified condition is sat-
isfactorily met to ensure an optimal outcome in the clustering
process. {∣∣∣U t−1

ij − U t
ij

∣∣∣} < ε, where 0 < ε < 1, (15)

where ε is the termination threshold. Finally, the soft assign-
mentsUc, which correspond to n nodes and c clusters, are sent
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to the modularity computation for measuring the quality of
overlapping community detection.

2) MODULARITY COMPUTATION (Q̃)
The Modularity algorithm incorporates FCM to enhance
the quality of overlapping community detection and guar-
antee a significant number of relations within communi-
ties compared to the relations between nodes in different
communities, especially when there are no overlapping rela-
tions between nodes. The original modularity algorithm is
designed for crisp community detection, which evaluates the
quality of a specific network division. Zhang et al. [27]
modified the original Modularity algorithm proposed by
Newman [42] to adapt it to overlapping community detec-
tions (Q̃) and to integrate with the FCM algorithm [19].
The modularity computation Q̃ receives from the FCM

algorithm themembership values, i.e., soft assignment matrix
Uc = [u1, . . . , uc] , 0 ≤ uik ≤ 1, and

∑c
k=1 uic = 1.Q̃ is

computed as follows

Q̃ =

c∑
k=1

[
A (Vk ,Vk)
A (V ,V )

−

(
A (Vk ,V )

A (V ,V )

)2
]

,Vk

=
{
i | uik > λ , i ∈ V

}
,

A (Vk ,Vk) =

c∑
i,j∈Vk

(
Uki + Ukj

2

)
WE ij,

A (Vk ,V ) = A (Vk ,Vk)

+

∑
i∈Vk ,

j∈(V−Vk )

(
Uki +

(
1 − U kj

)
2

)
WE ij,

A (V ,V ) =

n∑
i,j=1

WE ij (16)

where V denotes to all nodes,WE is the weights of edges, Vk
represents nodes in cluster k , k = 1, . . . , c. λ is a threshold
that can be used to determine the final cluster assignment for
each node in a soft assignment matrix.

After obtaining the Q̃ results, the process will back to the
FCM to try another clustering with different c clusters, as the
main purpose of Q̃ to help FCM to find the best overlapping
community detection with the suitable number of clusters.

In summarizing the key steps of the FCMQ algorithm
combination, the process begins with the FCM initiating the
clustering procedure with c clusters set to 2, and subsequently
computing the soft assignment matrix Uc. This matrix Uc is
then transmitted to the modularity computation Q̃ to assess
the quality of overlapping community detection within com-
munities c. The results of the modularity computation are
sent back, and the subsequent step involves incrementing
the number of communities (c) by 1. The FCM then repeats
the clustering process with the updated number of commu-
nities (c), calculates the new soft assignment matrix Uc,
and transmits it once again to Q̃ for evaluating the quality
of overlapping community detection. This iterative process

continues until it reachesmax_c, at which point the algorithm
selects the best overlapping community detection based on
high Q̃ values. Algorithm 2 shows the FCMQ algorithm
process. The input data in Algorithm 1 is the CN latent
representation Z, adjacency matrix A, fuzziness parameterm,
the termination criterion ε, the threshold for identifying over-
lapping λ , W is the weight matrix the maximum number
of clusters max_c,Ubest is the final overlapping community
detection with the best modularity computation Q̃.

Algorithm 2 FCMQ
Input: Z,A,m, ε, λ ,max_c,WE .
Output: Overlapping community detection.

1: Set c = 2, i.e. initial number of communities
2: Repeat :

3: a)FCM
Initialize the community centers randomly

4: Repeat :

5: Update the soft assignment matrix Uc with Eq. (14)
6: Update the difference of soft assignment matrix

7: with
∣∣∣U t−1

ij − U t
ij

∣∣∣.
8: Update the community centre values with Eq. (15)
9: Until;{∣∣∣U t−1

ij − U t
ij

∣∣∣} < ε

10: b)Modularity Computation (Q̃):
11: Receive soft assignment matrix Uc
12: Calculate Q̃ with Eq. (17)
13: If (Q̃c−1 > Q̃c):
14: Ubest = Uc
15: Endif

Increase number of communities, i.e., c++.
16: Until;c > max_c
17: Return the best overlapping community detection Ubest .

IV. IMPLEMENTATION AND RESULTS
This section provides a comprehensive assessment of
GCNFCM for overlapping community detection. It begins by
introducing the experimental setups. Subsequently, we com-
pare the performance of the proposed method with other
comparison methods using datasets from real-world CNs.
Finally, we present and analyze the experimental results.

A. EXPERIMENTAL SETUP
1) DATASET DESCRIPTION
To assess the effectiveness of the proposed method
(GCNFCM), ten real datasets (CNs) have been employed.
These datasets are commonly utilized by researchers in the
field of community detection, which offers the diversity in
terms of size, sources, and content. This diversity ensures
a comprehensive evaluation and provides a fair comparison
between the developed method and other approaches through
a benchmark study. The datasets are classified into two
categories.

The first category comprises six datasets that represent
CNs with network topology only. These datasets include:
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1. Zachary’s Karate Club network, which consists of two
groups and 34 elements.

2. High School network, which consists of 68 pupils dis-
tributed across 6–7 communities (School6 and School7).

3. Dolphins network, which contains 62 elements in two
groups.

4. American Football network, which comprises 115 nodes
distributed in 12 clusters.

5. Polbooks network, which consists of featuring 105 mem-
bers across three groups.

6. Political blogs (Polblogs) network, which involves
1490 blogs assigned into two groups.

For this category, X is generated using Eq. (1).
The second category encompasses three datasets that

include node attributes. These datasets are:

1. Cora network, which involves 2,708 publications with a
feature dimension of 1433, categorized into seven clusters.

2. Citeseer dataset, which includes 3,312 scientific papers
with 3703 feature dimensions, assigned to six clusters.

3. Pubmed network, which composes of 19,717 diabetes-
related articles from the Pubmed database. Each article
is assigned to one of three classes, and the feature vec-
tors contain term frequency-inverse document frequency
(TF/IDF) scores for 500 words.

This comprehensive selection of datasets ensures a robust
evaluation of the proposed method for both network topology
and node attributes in various contexts.

2) PARAMETERS
The GCNFCM method consists of two phases; GCNAE
(feature learning) and FCMQ (overlapping community
detection).

During the feature learning phase, the GCN autoencoder
in GCNFCM is trained in a supervised manner to extract
latent representation of CN node i.e., Z. The model utilizes
five layers with small-sized CNs. These layers consist of two
graph convolutional layers acting as encoders, two acting
as decoders, and a middle layer for latent representation.
For instance, with the Polblogs dataset, the layer structure
and neurons are 1490-256-32-256-1490. For medium-sized
datasets, a 7-layer structure is employed. Three layers func-
tion as encoders, three as decoders, and one layer serves
as the middle layer. An example with the Cora dataset is
3327-256-128-32-128-256-3327. Other parameters such as a
learning rate is set to 0.001. The number of iterations is set
to 1000 for the Karate, Dolphins, School6, School7, Football,
and Polbooks datasets, 200 iterations for Polblogs, Cora, and
Citeseer, and 100 iterations for the PubMed dataset.

Following this phase, the latent representation (Z) is used
in the second phase FCMQ i.e., overlapping community
detection. This phase leverages the FCM and Modularity Q
algorithms in an unsupervised learning manner.

The GCNFCM method is implemented in Python and its
libraries such as NumPy and TensorFlow. The GCNFCM
method parameters are carefully selected through iterative

experimentation to optimize performance. We have refined
these parameters through multiple trials to ensure that GCN-
FCM delivers the most effective results. Additionally, some
of these parameters, such as the learning rate (e.g., 0.001),
have been extensively discussed in the literature and are
widely recognized as optimal choices.

3) EVALUATION METRICS
To assess the performance of overlapping community detec-
tion methods, we have chosen three community detec-
tion metrics: Overlapping Normalized Mutual Information
(ONMI) [43], the Omega Index �-Index (OMG) [44], and
the modularity measurement (Q).

ONMI is a widely utilized metric for evaluating com-
munity detection algorithms, particularly in the context of
identifying overlapping communities [43]. ONMI employs
criteria from information theory to compare the identified
communities with the ground truth communities. This metric
evaluates the similarity between two partitions, particularly
in the context of community detection.

The OMG is a another metric assesses the similarity
between two partitions, particularly in the context of com-
munity detection [44]. It is an overlapping version of the
Adjusted Rand Index, which is designed to handle situ-
ations where nodes may belong to multiple communities
simultaneously.

The Q̃ modularity is employed to assess the quality of
community detection and ensure denser relationships within
communities and sparser connections between communities.
Q̃ is an updated version of the original modularity algorithm,
which is suitable for overlapping communities, as described
in Eq(17) [27].

In addition to the above metrics, normalized mutual infor-
mation (NMI) and adjusted Rand index (ARI) are also used to
evaluate community detection regardless of the overlapping
process.

B. RESULTS ANALYSIS AND DISCUSSION
To evaluate the effectiveness of GCNFCM, we conduct
experiments on ten real-world CNs range from small to
medium-scale CNs, as well as includes network topol-
ogy and network features. ONMI and OMG are used to
assess the performance of GCNFCM as all networks have
ground-truth node communities and compare it to other base-
line methods. In addition, we further evaluate the overlapping
community detection usingmodularity Q̃ to ensure high qual-
ity.ENHANCED PERFORMANCE OF GCNFCM

GCNFCM is evaluated across various small and
medium-sized CN datasets using a range of evaluation met-
rics, as summarized in Tables 2 and 3. ONMI, OMG, and Q̃
evaluation metrics are employed for the overlapping com-
munity detection. GCNFCM enables also the community
detection without overlapping, basically enables the node to
belong to only one community, with the highest member-
ship values, so the evaluation of GCNFCM is extended to
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TABLE 2. Results of GCNFCM for all metrics on several small CN datasets.

TABLE 3. Results of GCNFCM for all metrics on several medium-sized CN datasets.

include NMI, ARI, and Q, where these metrics suitable with
non-overlapping community detection.

Table 2 shows the results of GCNFCM on the small-sized
CNs. In the Karate dataset, the proposed method demon-
strates excellent performance and achieves NMI score of 1.
This emphasizes the ability to accurately capture commu-
nity structures. Similarly, the Dolphins dataset exhibits a
high OMG of 0.9348, which indicates that the effectiveness
of GCNFCM in identifying cohesive subgroups. Notably,
in the School6 and School7 datasets, GCNFCM showcased
high quality of overlapping community detection and scored
0.6259 and 0.6251 in Q̃, respectively. This highlights the
method ability to maintain community structures even in
intricate network configurations. Furthermore, GCNFCM
excelled in the Football dataset and harvested an OMG of
0.9379, which signifies its aptitude for discerning intricate
patterns within the network. In the Polbooks dataset, GCN-
FCM demonstrated moderate performance, with an ONMI
of 0.6668 and an ARI of 0.8375, suggesting its proficiency
in identifying community structures in diverse network sce-
narios. Overall, the GCNFCM shows consistent high scores
across diverse metrics, demonstrating its effectiveness in
community detection within small CNs.

Table 3 presents the comprehensive evaluation results of
the GCNFCMmethod on various medium-sized CN datasets.
In the Polblogs dataset, GCNFCM demonstrated a com-
mendable performance across multiple metrics, achieving
an ONMI of 0.6821 and an OMG of 0.6915, indicating its
ability to capture community structures and overlap modu-
larity effectively. Similarly, in the Cora dataset, the method
exhibited notable results with a Q̃ of 0.6811, showcasing
its proficiency in maintaining community structures even
though some nodes belong to more than one community. The
Citeseer dataset further emphasized GCNFCM’s robustness,

with consistently high scores across all metrics, particularly
an Q̃ of 0.6679, ONMI of 0.5786, and ARI of 0.5586, sug-
gesting its effectiveness in identifying community structures
amidst complex citation networks. In the Pubmed dataset,
the method showcased its capability in discerning intricate
patterns, achieving a high OMG of 0.3946 and a Q of 0.4472.
These results collectively underline GCNFCM’s versatility
and effectiveness in community detection (overlapping and
nonoverlapping) across diverse medium-sized complex net-
work scenarios, providing valuable insights for its application
in real-world network analysis.

1) COMPARATIVE ANALYSIS: GCNFCM VS. BASELINE
METHODS
a: EVALUATION ON SMALL-SCALE CNS
In evaluating the performance of GCNFCM and other base-
line methods on networks with ground-truth community
memberships, we employ ONMI and OMG. Tables 4 and 5
present the comprehensive results of GCNFCM and various
baseline methods on these small CNs, measured in terms of
ONMI and OMG, respectively.

In Table 4, the ONMI scores illustrate the comparative
performance of GCNFCM against various baseline methods
across different datasets. GCNFCM consistently achieves
high scores, indicating its robustness and effectiveness in
capturing community structures. For example, with Karate
dataset, the ONMI score for GCNFCM in the Karate dataset
is 1.0, which means an exact match with ground-truth com-
munity memberships. GCNFCMoutperforms SNMF, NSED,
LCEN, CPM, Node2Vec, NOCD, and OCDG and showcases
unparalleled accuracy in detecting overlapping communi-
ties. Using Dolphins, GCNFCM maintains robust perfor-
mance with ONMI score of 0.8889 and surpasses several
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TABLE 4. ONMI score of GCNFCM and various methods on the small CN.

TABLE 5. OMG score of GCNFCM and various methods on the small CNs.

TABLE 6. NMI score of GCNFCM and various methods on the medium CNs.

baseline methods. This underscores the effectiveness of
GCNFCM in identifying overlapping community structures
within the Dolphins dataset. GCNFCM consistently achieves
competitiveONMI scores on School6, School7, Football, and
Polbooks datasets. Notably, in the Football dataset, GCN-
FCM outperforms several baseline methods, demonstrating
its versatility in handling different network structures.

In Table 5, the OMG scores also emphasize the supe-
rior performance of GCNFCM compared to various baseline
methods. Particularly noteworthy is its consistently high
OMG across diverse datasets, highlighting the ability of
GCNFCM to accurately identify community structures with
nodes overlapping.

GCNFCM achieves an OMG score of 1.0 with the Karate
dataset, denoting a perfect match with ground-truth com-
munity memberships. It also maintains a high OMG score
of 0.9348 with the Dolphins dataset. This demonstrates the
robustness in detecting overlapping communities. This score
positions GCNFCM as a superior method compared to sev-
eral baseline approaches.

Using School6, School7, Football, and Polbooks datasets,
GCNFCM consistently achieves competitive OMG scores.
In the Football dataset, GCNFCM outperforms multiple
baseline methods, illustrating its versatility and accuracy
in handling different network structures. This outstanding
performance establishes GCNFCM as a leader in accu-
rately identifying overlapping communities across these

datasets. GCNFCM surpasses other methods, including
SNMF, NSED, LCEN, UOCS, Node2Vec, NOCD, and
OCDG, and this also displays the effectiveness of GCNFCM
in capturing complex community structures with overlapping
memberships.

The results in Tables 4 and 5 suggest that GCNFCM
outperforms the baseline methods in capturing community
structures within small CNs, as evidenced by both ONMI and
OMGmetrics. The robustness and effectiveness of GCNFCM
make it a promising approach for overlapping community
detection in complex networks.

The superior performance of GCNFCM is due to its design,
specifically the use of GCN to generate node embeddings
based on both node topology and attributes. Additionally, the
method employs a two-step process: first, GCN extracts node
embeddings, and then a FCM algorithm is applied for over-
lapping community detection. Finally, the quality index (Q̃)
is used as a metric to guide FCM in identifying the optimal
overlapping community structure.

b: EVALUATION ON MEDIUM-SCALE CNS
Table 6 presents the NMI scores for GCNFCM in comparison
to various methods on medium-scale CNs. This evaluation
is essential for understanding how well GCNFCM performs
in capturing community structures in larger networks. The
discussion below provides insights into the results and their
implications.

VOLUME 12, 2024 70139



M. N. Al-Andoli et al.: Robust Overlapping Community Detection in CNs With GCNs and FCM

TABLE 7. ARI score of GCNFCM and various methods on the medium CNs.

FIGURE 2. Performance of GCNFCM Across Diverse Community Numbers using ONMI, OMG, and Q̃ metrics.

From Table 6, GCNFCM achieves an impressive NMI
score of 0.6748 on the Polblogs dataset and outperforms
various methods. This shows the effectiveness of GCNFCM
in identifying communities within this medium-scale net-
work. GCNFCM demonstrates a competitive NMI score of
0.5824 on the Cora dataset, positioning it as a reliable option

for community detection in larger CNs. While GASN and
GAEAS show comparable performance, GCNFCM remains
noteworthy. On the Citeseer dataset, GCNFCM exhibits pro-
ficiency with an NMI score of 0.5315 within medium-scale
networks. On the PubMed dataset, despite challenges posed
by medium-scale CNs, GCNFCM achieves an NMI score of
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FIGURE 3. Performance of GCNFCM across diverse community numbers using NMI, ARI, and Q metrics.

0.3937 on the PubMed dataset. This evidence highlights its
potential as a noteworthy option for community detection in
diverse network contexts.

Table 7 presents the ARI scores to evaluate the perfor-
mance of GCNFCM alongside various methods (e.g., Spec-
tral [49], DeepWalk [37], etc.) on medium-scale CNs.
GCNFCM demonstrates robustness across datasets and
harvests notable ARI scores, such as 0.6803 on Pol-
blogs, 0.5923 on Cora, 0.5586 on Citeseer, and 0.4063 on
PubMed. These findings showcase the effectiveness of

GCNFCM in identifying community structures within
larger CNs. This makes GCNFCM as a promising
method for community detection in diverse medium-scale
CN contexts.

NMI and ARI scores in Tables 6 and 7 affirm the effi-
cacy and reliability of GCNFCM in capturing community
structures. This competitive performance highlights its poten-
tial as a valuable tool for community detection in various
research fields such as recommendation systems, anomaly
detection, etc.
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FIGURE 4. Results of GCNFCM from the Nemenyi tests.

2) PERFORMANCE OF GCNFCM WITH DIFFERENT
COMMUNITIES
GCNFCM has the ability to identify community structures,
both overlapping and non-overlapping without relying on
prior knowledge about the number of communities. Q̃ and
Q modularity metrics guide GCNFCM to detect high-quality
communities that have denser intra-relations nodes and
sparser inter-relations nodes.

Figure 2 visually represents the performance of GCNFCM
across 8 CNs, employing metrics such as ONMI, OMG,
and Q̃. The evaluation encompasses a range of commu-
nity numbers 2 - 14 communities, revealing a compelling
correlation between Q̃ (unconstrained by real labels) and
ONMI/OMG (dependent on real labels and communities).
High Q̃ values signify a community structure aligning with
real-world principles, where intra-relations nodes are denser
and inter-relations nodes are sparser.

Examining specific datasets in Fig. 2 reinforces the
efficacy GCNFCM. For example, in Karate and Dol-
phins datasets, GCNFCM achieves high performance
(Q̃, ONMI, OMG) with 2 communities, which corre-
sponds the actual community structure. Similarly, across
School6, School7, Football, Polbooks, Cora, and Citeseer
datasets, GCNFCMattains optimal performancewith varying
community numbers. This emphasizes the adaptability to
diverse network contexts. In addition, the obtained results
underscore GCNFCM as a potent and versatile approach
for community detection in CNs, offering valuable insights
without relying on explicit information about the ground-
truth communities.

Figure 3 focuses on the performance of GCNFCM in
non-overlapping community detection on eight CNs using
NMI, ARI, and Q metrics alongside a range of commu-
nity sizes (2 to 14). Similar to Fig 2, GCNFCM shines in
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Karate and Dolphins with high performance (Q, NMI, ARI)
at two communities, reflecting the actual structure. It then
adapts to different community sizes in School6, School7,
Football, Polbooks, Cora, and Citesee and achieves optimal
performance across diverse contexts. These findings further
establish GCNFCM as a potent and versatile approach for
community detection, shedding light on networks even with-
out relying on ground-truth community information

3) PERFORMANCE ANALYSIS USING NON-PARAMETRIC
STATISTICAL TESTS
In this section, we employed two non-parametric statis-
tical tests, namely the Friedman and Nemenyi post hoc
tests [52], to compare the performance of the proposed
GCNFCM method with SNMF, NSED, LCEN, UOCS,
Node2Vec, NOCD, OCDG, Spectral, DeepWalk, GVAE,
ADV-GAE,GASN,GAEAS, andCDDLHPmethods. Specif-
ically, we evaluated the ONMI, OMG, NMI, and ARI
performances.

The Friedman test statistic was applied based on the
average ranked performances of overlapping community
detection techniques on each CN, and it was performed at an
α-level of 0.05. The obtained p-values for ONMI and OMG
were 11.095e-6 and 1.332e-6, respectively. For community
detection without overlapping, the p-values for NMI and ARI
were 1.178e-3 and 1.648e-3, respectively.

Consequently, the null hypothesis claiming no difference
between the GCNFCM method and the comparison methods
was rejected. Following the rejection of the null hypothesis,
a post-hoc analysis was conducted using the Nemenyi test,
given the comparison of multiple methods across multiple
datasets.

Figure 4 illustrates the results of the Nemenyi post-hoc
analysis, indicating that GCNFCM ranks among the top four
methods in terms of ONMI, OMG, NMI, and ARI perfor-
mances. Methods that are not significantly different in terms
of these performance metrics from a statistical viewpoint are
connected in Figs. 4(a) to 4(d).

Figure 4(a) reveals that GCNFCM exhibits the best ONMI
performance, while SNMF performs the worst. The ONMI
performance of GCNFCM is found to be significantly dif-
ferent from all comparison methods. Similarly, Figure 4(b)
indicates that the OMG performance of GCNFCM sig-
nificantly differs from all comparison methods. Moreover,
GCNFCM demonstrates significant differences from base-
line methods in terms of NMI and ARI, as shown in
Figures 4(c) and 4(d), respectively.
The superior performance ofGCNFCMcan be attributed to

the use of GCN in generating the node embeddings based on
both node topology and attributes. Additionally, the method
employs a two-step process: first, GCN extracts node embed-
dings, and then a FCM algorithm is applied for overlapping
community detection. Finally, the quality index (Q̃) is utilized
as a metric to guide FCM in identifying the optimal overlap-
ping community structure.

V. CONCLUSION
This paper introduces a robust method to address the chal-
lenges of identifying overlapping communities within CNs,
called GCNFCM. GCNFCM tackles the challenge of iden-
tifying overlapping communities in CNs by leveraging the
strengths of graph auto-encoders and FCM clustering. FCM
is guided by the modularity Q algorithm for accurate over-
lapping community identification. Modularity Q algorithm
enables GCNFCM to eliminate the need for prior knowledge
about the number of communities. Additionally, it utilizes
a dual-decoder architecture for efficient node embedding
extraction, considering both node topology and attributes
within CNs. This dual-decoder incorporates both inner prod-
uct and GCN decoders. Extensive experiments on diverse
real-world CNs validate the effectiveness of GCNFCM.
Experimental results show that GCNFCM can identify over-
lapping communities effectively and efficiently. Additionally,
the results demonstrate that GCNFCM outperforms sev-
eral state-of-the-art methods in terms of producing cohesive
overlapping communities and accurately identifying ground-
truth communities. These findings establish GCNFCM as
a promising solution for accurate overlapping community
detection in CNs.

Although GCNFCM has shown its abilities in identifying
overlapping community detection effectively, GCNFCM is
limited by scalability issues and sensitivity to hyperparameter
selection. Future work will focus on addressing these limita-
tions. Potential extensions include: (1) Developing scalable
algorithms for large-scale CNs, this could involve lever-
aging parallel processing techniques to enhance efficiency.
(2) Implementing hyperparameter auto-tuning, which would
automate hyperparameter selection to improve generaliz-
ability and user-friendliness. (3) Enhancing interpretability,
unveiling the rationale behind community detection will fur-
ther advance the understanding and application of GCNFCM.
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