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ABSTRACT This paper proposes an accurate harmonic identification strategy for microgrids and distributed
power systems. The harmonic identification strategy is one of the complex tasks in microgrids due to
the need of high computational burden in terms of memory and computational time. The complexity of
the considered problem is resulted from solving the transcendental nonlinear equations that characterize
harmonics especially in real time is considered as a highly challenged problem. The proposed identification
strategy aims at detecting individual and total harmonic distortion levels that is generated from several
harmonic sources. In the current paper, the Machine Learning Regression Analysis (MLRA) including
location-specific data and the Artificial Neural Networks (ANNs) are proposed to identify the harmonic
distortion. To enhance the identification and prediction performance, the standard IEEE 34-bus test feeder
with verified harmonic sources power system is emulated for various scenarios using Electric Transient
Analysis Program (ETAP). An extracting procedure for individual and total harmonic components are
employed. The higher reduction level of error with approximately maximum median of 3.7127e—'3%
assures the accurate prediction of harmonic components. In addition, this work investigates the impact of
several practical cases when the voltages of the renewable clean energy source arrays vary (e.g., solar cell,
wind turbine, and EV), and a double-stage topology is needed to have the same amount of voltage at the
input of the inverter before inversion.

INDEX TERMS ANNs, ETAP, harmonic distortion, machine learning, micro-grid.

PREAMBLE

Our research aims to improve the quality of energy in micro-
grids, which achieve abundance in electricity, to meet the
SDG 8 target, which promotes inclusive, and sustainable
economic growth and productivity. We want to ensure the
well-being of citizens when they find decent work, raise their
satisfaction level (CSL), which is tracked via welfare and
satisfaction growth indicator (WSGI) and the GDP/capita.
This will also help to develop investment in the energy sector.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dinesh Kumar.

I. INTRODUCTION

Growing energy consumption and policies aimed at reducing
greenhouse gas emissions. Reduction of the gas emission is
considered as the primary driver of the global trend towards
the use of greener energy systems in the power field. A micro-
grid is a small collection of electrical loads and sources
that are typically linked together and acts as a part of the
larger conventional central electrical grid. The microgrid
functions are independently based on the demands of the
external environment and/or the economy It allows for the
effective integration of various clean power sources, integrat-
ing greener technologies like electric vehicles (EVs), wind
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turbines (WTs), and solar photovoltaics (PVs) into today’s
power grids is one potential solution [1].

The increasing worries about the quality of electricity in
modern electrical systems that have significant Renewable
Energy Sources (RES) penetration are seriously threatened by
harmonics and waveform distortion. In the past few decades,
this topic has received increased attention due to the contin-
uous and high percentage of adding power electronic devices
that emulate nonlinear loads. Several tasks such as harmonic
data clustering, filter-based harmonic elimination, harmonic
data classification, harmonic source contribution estimation,
waveform estimation, or prediction are all related to har-
monics. The technical and financial ramifications of these
harmonics have highlighted the need for efficient methods to
keep harmonic distortions at the lowest levels and guarantee
adherence to standard limits such as IEEE Std. 519 [2].

Energy is the lifeblood of the industry, and laborers are
their muscles. Among the sustainability development goals
(SDG), SDG 8 directs the use of technology to drive indus-
trial transformation and sustainable production initiatives to
support sustainable and responsible practices, including cir-
cular economy models, resource efficiency, and sustainable
production and consumption patterns. Therefore, one aspect
of corruption is using energy from dirty, expensive sources
that increase carbon emissions rather than utilizing untapped,
affordable, renewable, and clean energy. Scholars seek to
recycle unutilized energy, which pushes the industrial com-
munity to present industries that rely on electricity generated
from renewable sources (i.e., eco-friendly) to suppress carbon
emissions and their related costs. However, there is a primary
obstacle, which is Total Harmonic Distortion (THD) under
different operating conditions is not treated, which neglects
variations and uncertainties at the network level. Therefore,
the suggested technique will be called Online harmonic iden-
tification technique (HIT) -in microgrid [3].

This system considers an innovation of circular economy
aspects that interested by reduction of the wasted energy. The
investment in energy will be reflected positively on the citi-
zen satisfaction level because citizen satisfaction level (CSL)
and related gross domestic product (GDP) per capita [4].
Egypt is a developing country that has subpar electricity
sources, and relies on fossil fuels as a primary energy source
which increases its ecological footprint and antagonizes the
environment [4]. Therefore, the microgrid is the key to the
success of this investment, especially if the charge station
is designed to be a microgrid, according to the Online HIT
technique. The proposed Online HIT is essential to meet
power reliability, energy cost savings, environmental sustain-
ability, energy independence, resilience, and electrification of
isolated areas [5].

The article meets this goal by presenting a novel and
accurate harmonic identification strategy for microgrids’
controllers and distributed power systems based on many
renewable energies. This strategy aims to upgrade Egypt to
fore seats in export energy.
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Microgrid controllers are independent energy systems that
provide and track power to charging stations using one
or more distributed energy sources (such as solar panels,
wind turbines, combined heat and power plants, petrol or
diesel generators, fuel cells, etc.). Many of the more recent
microgrids also have energy storage built in, usually in the
form of batteries, and some even have places where electric
vehicles can be charged [6].

The proposed technique’s main job is to maintain local
grid stability (i.e., low levels of harmonic distortion) and save
operating costs by allocating resources as cheaply as possible.
In this work, the proposed technique manages two challenges
and two suggested solutions. The first challenge is to observe
and measure the THD fueled by various sources of microgrids
connected by the main grid by Point of Common Coupling
(PCC) while treating this distortion as accurately as possible
in real-time via training observed data. The second challenge
is its real-time power management system’s capacity to adapt
to any situation and obtain an energy management system’s
predictive approach, which reduces the prediction distortion.

Power continuity, even in a blackout, energy out-
put, load consumption balance, and prompt analysis and
decision-making in emergencies are all requirements for a
microgrid system.

Figure 1 shows the equivalent circuit of the tested
power distribution grid renewable. The time-varying currents
introduced into the power network at the PCC to com-
prise the fundamental and harmonic components of power
electronics-based applications of the main renewable sources
including photovoltaic, wind and electric vehicles. Back-
ground harmonics typically linked to the power grid and orig-
inate from other electrically distant harmonic sources. The
interactions between the state changes at the power network
level and the harmonic sources, the developing harmonic dis-
tortions are computed solely from a harmonic source output
current would not accurately reflect its actual harmonic dis-
tortions. To determine the actual share of each grid-connected
system into harmonic-related concerns, the system operators
monitor each system’s harmonic performance under various
operating conditions. However, obtaining true harmonic dis-
tortions requires a pure-sinusoidal voltage at the PCC [7], [8].

Numerous research studies on the extraction component
for the individual and total of harmonic distortions’ have
been published in the literature such as harmonic impedance
estimation [9], [10], critical impedance measurement [11],
active and reactive power flow of harmonics [12], and the
stochastic approach for harmonic estimation [13], [14], [15],
[16]. The problem of estimating harmonic distortions has also
been attempted to be addressed in several recent publications,
as in [17], [18], [19], and [20]. However, to compute the
harmonic distortions accurately, these methods necessitate
prior knowledge about the network configurations and system
components to develop dependable harmonic models. dealing
with the hardness of transcendental nonlinear equations that
characterize harmonic distortion, which is thought to be a
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FIGURE 1. A diagram of recent electricity distribution networks.

complicated problem to solve, mainly when done in real-time.
Because harmonic identification requires a large amount
of memory and colossal processing time, it is one of the
trickiest tasks in microgrids. Therefore, seeking to develop
quick-analyzer algorithms is the main solution to present
the Online HIT. The authors tackle their strategy using an
Electric Transient Analysis Program (ETAP) simulator that
can find both individual and total harmonic distortion from
many harmonic sources and train the ANNs system and make
its predictions better. The second solution is to develop a sim-
ulator program via Machine Learning Regression Analysis
(MLRA), which is a type of artificial neural network (ANNs)
system. Also, including location-specific data is proposed to
address these complex issues.

The first solution to treating the first challenge relies on
dealing with the hardness of transcendental nonlinear equa-
tions that characterize harmonic distortion, which is thought
to be a complicated problem to solve, mainly when done in
real-time. Because harmonic identification requires a large
amount of memory and colossal processing time, it is one of
the trickiest tasks in microgrids.

Regarding the extensively used of Al in harmonic distor-
tion studies, some of researchers focused on reviewing these
previous studies in [21], [22], [23], [24], and [25]. Moreover,
the applications of ANNs and ANFIS in these tasks have
been addressed. In [21], this study offers a thorough anal-
ysis of four of the most widely used CI-based optimization
methods—fuzzy logic (FL), genetic algorithms (GA), ANNS,
and ANFIS. It also covers each technique’s fundamentals and
its advantages and disadvantages. Swarm intelligence-based
optimization techniques are not included in this study’s
scope or space analysis for the studied topic of study [21].
Also, in [22], a survey is given of the many artificial
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intelligence (AI) methods used in the study of harmonics,
including decision trees, support vector machines (SVM),
FL, and ANNSs. In harmonic analysis, artificial intelligence
systems fared better than conventional methods, especially
when operating conditions varied. Improvements can yet be
made in the areas of ensemble learning, training algorithms,
optimal architectures, and additional comprehension as well
as the application of combination approaches. In addition to
outlining prospects for additional research on an increasingly
significant subject, this review gives scholars knowledge
about research patterns in harmonic evaluation [22]. Both
conventional and contemporary (smart) harmonic estimation
methods are thoroughly reviewed in [23]. New, clever Al
techniques that are quick, precise, and effective have been
examined as alternatives to address the problems with tra-
ditional estimation techniques. Researchers are increasingly
using Al-based techniques because they can learn, forecast,
and determine.

The recent development of Artificial Intelligence (AI)
based systems, like artificial neural networks (ANNs), has
spurred the interest of numerous researchers in the field
of power electronics because of their ease of use, capacity
for learning and generalization, and broad range of applica-
tions across multiple engineering domains. Numerous studies
devoted to the estimation of PE harmonic performance [26]
and active power harmonic filters [27] used ANNs sys-
tems. Additionally, due to the high computational burden
of power networks, to assess the deviations of the funda-
mental and other harmonic content, an ANNs system was
developed [28]. This system requires parallel processing
operation. In [29], an ANNs-based intelligent harmonic esti-
mation technique for power harmonic sources was presented.
For estimating high-order harmonics, this solution produced
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an extremely high error because it only used distorted voltage
and current measurements. Although background harmonics
can have a negative impact on the estimated distortions,
a single harmonic source power system was taken into
consideration.

To validate machine learning based on ANNs and ANFIS,
it is obligatory to train with a massive amount of data to
grantee their high accuracy in tests. A huge amount of data is
produced by energy monitoring, particularly when it comes
to harmonics at various locations over time. which need to
be saved and used again, if possible. Most reviews concen-
trate on conformational measurements obtained at different
sites, from which characteristic parameters are extracted.
According to [30] and [31], For instance, three voltages,
three currents, and ten-minute values of the harmonics 39 and
40 inter harmonics yield about 31X10° data inputs per site
after a year of observation. shows that a 2-year energy qual-
ity measurement campaign in 5 separate locations collected
250X10° byte of data in total. While manual parsing can be
done, it takes an exceedingly long time when dealing with
multiple sites on measurements. Reference [32] states that
patterns of daily variations in harmonic potential are matched
between sites that use visual inspection to assess daily varia-
tions. an examination of how harmonics spread throughout a
network when resonance is present. Reference [33] presents
data on daily harmonic variations from several LV sites. The
data is manually analysed, and patterns are found by visually
examining harmonic currents against time, as described in
paper [34]. An effort analysis was not submitted. The use
of statistical analysis is more prevalent when dealing with
multiple sites. As in [8] the analysis presentation scenario
was repeated harmonics in different loading conditions by
ETAP software program. The findings of the investigation
are explained statistically across the various load conditions,
primarily in the form of density function probabilities of
voltage measurements for each harmonic order.

Three different systems were developed to extract the
actual harmonic distortion of a nonlinear load in [35], [36],
and [37]. Similar techniques were developed in [38], which
used previous knowledge of the nonlinear load specifications
and several ANNs for each harmonic component to fore-
cast distortions in harmonics through equivalent coefficients.
The proposed method used only identified the distortion
limit in voltage and current signals and considered multiple
time-invariant nonlinear loads.

Among many common applications for machine learning
models, particularly in supervised machine learning, is the
solution of regression problems. The relationship between
independent and dependent variables is taught to algorithms
through training. The model can then be used to fill in a
data gap or forecast the result of fresh, unseen input data.
Machine Learning Regression analysis is a method used to
look into the relationship between features or independent
variables and a dependent variable or result. It is a technique
for machine learning predictive modelling, which makes use
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of an algorithm to forecast continuous outcomes [39], [40],
[41], [42].

Regression models predict that the variables that are
not dependent will influence the variables that are depen-
dent [43], [44]. Reference [45] employs a regression approach
to determine the value of the dependent variable, that known
as “y,” based on the range of values associated with the
independent variable, “x.” We address linear regression that
more closely matches the predictive model in this paper [46].
There are three types of regression as stated in [47], Simple
linear regression, multiple regression, and polynomial regres-
sion. A technique based on the Nonlinear Auto-Regressive
Exogenous (NARX) neural network system was developed
to estimate power harmonic distortions [41]. These suggested
approaches, however, may fail to account for variations in
the nonlinear load underestimation, that may result in an
alternative harmonic effectiveness. As a result, the harmonic
distortions may be inaccurately predicted for various operat-
ing conditions during the prediction phase.

On the contrary hand, [48] suggested a method for captur-
ing the effect of time-varying nonlinear loads on harmonic
performance. Numerous nonlinear loads are present in the
work, but since the true harmonic distortions were over-
looked, it is possible to assess the nonlinear loads’ influence
on the PCC harmonic voltage distortions incorrectly. For solar
PV systems, a power harmonic prediction system was cre-
ated in [49]. The system solely forecasts the Total Harmonic
Distortion (THD) under different operating conditions; varia-
tions and uncertainties at the network level were disregarded,
and these should be considered for a precise and trustworthy
estimation of harmonic distortions for a given application.
Table 1 lists the established systems that have been doc-
umented in the literature along with the requirements, the
harmonic distortions estimator’s capabilities and restrictions
that has been proposed.

In [49] and [50], the suggested online harmonic mitigation
technology improves the AC/DC voltage controller. It has
two inputs that help manage well by adding a step-by-step
pictorial sequence for the distortion’s value and the differ-
ence in accuracy between the reference signal and the actual
signal to stop distortion. In [50], the suggested EV charging
technique is integrated with this work to encourage building
considerable investments in the EV industry and push towards
electric public transportation, like the monorail, which is
cheap and eco-friendly.

According to the best of the authors’ expertise here is no
estimator of power harmonic distortions has been developed
that considers changes in power network impedance states,
interactions with additional harmonic sources and system
components and the consequences of different operating con-
ditions due to variations in renewable resources. To close
this gap and predict harmonic distortions under a variety
of operating conditions, this research project improves an
ANNSs-based enhanced harmonic distortions estimator sys-
tem while taking location-specific data into account. The
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TABLE 1. Statistics for the methods for calculating power harmonic distortion.

Features/ limitations
Technique Ref. Applications Required data for training & test Actual DIEFERENT
THD CONDITIONS
FL [21-24] Nonlinear Loads PCC distorted current Yes No
GA, ANNs and ANFIS [21,22]
Machine learning [23] Power electronic converters| Inverter current harmonics between 2-150 kHz Yes Yes
ANNs, ANFIS [29] Power Harmonic Source | PCC Distorted voltage & Current Yes No
[3031] Arc Furnaces The harmonic 39 and 40 inter harmonics have three voltages, No Yes
ANNs ” u three currents, and ten-minute values.
NN [34] Desalination Water Plant| Bus distorted Voltage for harmonics 5,7,11,13,17,19,23 and 25. Yes Yes
e Distorted voltage from PCC. Yes No
MLP-ANNS [35] Nonlinear load PCC distorted voltage with delay.
e Non-linear load Curve
RNN [36] DC Drives e  PCC distorted voltage with delay. Yes No
e Current nonlinear load.
AC Drives e Distorted voltage from PCC. Yes No
ESN [37.38] e Current with nonlinear load
NARX [41] AC Drives e Distorted Yoltage fr01n PCC. Yes No
e Current with nonlinear load
ANNs [48] Nonlinear loads Nonlinear loads that vary over time affecting harmonic No Yes
MLP-ANNs [49] PV Inverters The amount of solar radiation. The inverter current's THD.! Yes Yes
ted Renewable Ener e Wind speed or solar radiation. Yes Yes
MLRA Sauggrf;:h ¢ Ae licztiones gy e Distorted voltage from PCC.
PP pp e Distorted current in the system.

proposed system is expected to precisely determine the
actual grid harmonic distortions that connected to multi-
ple harmonic sources; power converter while accounting for
harmonic emissions variations caused by power factor cor-
rection (PFC) capacitors, interactions with other harmonic
sources, the intermittent nature of renewable resources, and
system impedance changes. Using various harmonic sources
that were taken from a test field and the IEEE 34-bus distri-
bution test feeder, the suggested system will be verified. The
IEEE 34-bus test feeder with confirmed harmonic sources
verified the EATP results.

Il. IMPROVEMENT OF THE HARMONIC ESTIMATING
FRAMEWORK

This article encourages the integration of renewable energy
sources to meet the sustainability of continuous productivity,
which reflects positively on prosperity on distribution net-
work that meets 2030 vision. It pushes us to pay attention
to significant harmonic distortions when embracing today’s
power networks due to the use of power conversion systems,
which are widely recognized as harmonic sources. Therefore,
the users must take adequate measures to mitigate the techni-
cal and financial consequences.

A. AN ENHANCED HARMONIC ESTIMATING SYSTEM'S
DEVELOPMENT

The ANNSs are the popular substitute modelling technique
for power system prediction applications. Multiple Lin-
ear Regression is used in this work to predict the actual
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infected harmonic current of a given harmonic source while
avoiding interference with the grid, linked loads, or power
sources. Figure 2 depicts the grid equivalent circuit with har-
monics sources, PFC capacitors, additional linear/nonlinear
loads, and the ANNs-based distortion caused by harmonics
estimator. As a result, the distorted grid voltage, vpcc(t),
is influenced by the actual and grid deliver harmonic portions
of the PV inverter’s distorted current, ipy(t), as well as the
currents of other nonlinear loads/harmonic resources and
background harmonics. The ANNSs able to forecast the out-
put signal iegimated(t), Which represents the harmonic source
distorted current when it is connected to pure sinusoidal, zero
impedance infinite power source [49].

B. TRAINING ALGORITHM AND ANNs ARCHITECTURE

To enable the system to learn on its own from the major-
ity of high-quality data, an ANNs harmonic identification
algorithm is constructed by piecing together a parameterized
module. To keep the system reliable, the primary task in
this situation estimates the disturbance in supply voltages
and compensate by injecting the voltage difference [50]. The
most prevalent drawback of the classical method its need to
linearization of nonlinear operating conditions that is cause
the shortage in satisfying the target objective function.

The three primary neural electors that make up an ANNs
technique are the input, hidden neurons, and output layer [3].
Inspired by the human brain, the ANN’s components function
in parallel. These layers represent the parallel information
transmission caused by the interconnection of biological
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FIGURE 2. The grid equivalent circuit with harmonics sources and the MLRA-based harmonic distortion estimator.

neurons. Because of this feature, the system operates more
quickly than it would if it used a sequential computation sys-
tem. Furthermore, ANN’s self-learning and adaptive qualities
are employed to optimize the predicted and actual response
error to improve the accurateness of prediction [51], [52].
The application of ANNs is motivated by its broad appli-
cability in solving regression and classification tasks. The
neural network functions as a black box because it does
not need any specific system information. The feed-forward
back-propagation approach is the most appropriate among all
neural network architectures for solving non-linear problems.

It is difficult to predict which version of the training algo-
rithms will run most efficiently for a given problem. This
is due to a variety of features, with the problem level of
difficulty, the large amount of data in the training phase,
the biases and weights numbers in a particular assembly, the
effectiveness of the target error, and the network’s objec-
tive, such as approximation of functions or recognition of
patterns [53]. In the literature, many technically prompted
algorithms have been adjusted to train the ANN, the widely
one that is merited by its low computational effort and high
convergence rate and called as Levenberg- The feed-forward
pack propagation architecture is shown in Fig. 3.

The MSE and RMSE provided in Eqs. (1) and (2), respec-
tively, are used to verify the ANNs model’s performance
measurement. Equation (1), which represents the network’s
output value of 0.0001, shows how the weight and bias are
adjusted for the network mean square error (MSE) value. The
ANN-BP algorithm’s prediction of the target weight value is
based on the smallest mean square error estimation, which
measures its effectiveness [54].

_ Ity
MSE =~ > (Vi =)

i=1

ey
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FIGURE 3. ANN feed-forward back-propagation construction.
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RMSE = | | > (3= 5)°
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@

where,

n: the input data sets signify number
y;  the harmonic distortion response
Y; the forecast harmonic distortion response

Sequential equations with numbers for each equation in a
neural layer, every neuron takes a weighted set of inputs and
produces an output. An Artificial Neuron’s (AN) activation
potential (Ai) can be stated as follows:

N
A,’ = Zwijxj — bOj (3)
j=1
where,
N: the input number vector parameters x;
wy;:  the interconnected weight matrix
byj:  the number of neurons “bias” vector
83745
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By adjusting the bias coefficient, the activation signal is
regulated [55]. The local information that is stored in the neu-
ron and is either internally available or received through the
weighted coefficient determines the output of the neural layer.
To produce the best forecasting ANNs model, the sigmoid
transfer function is used in the training mechanism in this
paper. In mathematics, the sigmoid function is expressed as:

1
] = — 4
W =1 )
where,
¢(x): the sigmoidal activation functions
k: the curve control parameter

The sigmoid function used in the hidden layer and required
for the weight rule updating is given in Eq. (4). Any con-
tinuous function can be approximated with the sigmoidal
activation function ¢(x) to any desired level of accuracy.
The Levenberg-Marquardt optimization technique, which is
characterized by the performance index defined in Eq. (5)
[55], is used to improve the prediction performance through
backpropagation.

p=1 k
F(w) = Z [Z dip — App) ] )
where

w: a combination of the weight vectors

dip:  the expected value of the k™ response and the n
pattern

Ajp:  is the measured value of the kth response and the nth
pattern

p: the number of the patterns and k stands for output
elements

As demonstrated in Eq. (6), the shifting between gauss
newton and error back-propagation is effectively controlled
by the Levenberg Marquardt back-propagation (LMBP)
learning rule with coefficient p.

-1
Aw = (JTJ + ;u) JTe (6)
where,

w:  the algorithm’s scalar controlling parameters
e: the error
J:  The Jacobian matrix with error vector

The value of w rises with each iteration’s increase in error
and falls with each step reduction in error (e). The Jacobian
matrix with error vector [J] is described by Eq. (6). In Eq. (7)
the Jacobian Matrix is explained.

oF (x1,w) oF (x1,w)
V1= : S (7
oF (xy,w) oF (xy,w)
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With the learning rate set to 0.001, this LMBP achieves a
faster conversion rate, allowing the network to reach the target
error of le~!5. When the chosen MSE criterion is satisfied
with increased accuracy, a network is said to have converged.
The fundamental formulas used to calculate the Toal Har-
monic Distortion is outlined in the following equation:

Vi |veus)|?

THD;, = 8)
’Vbus},‘
where,
H: Maximum considered harmonic order;
Vbusz Voltage at bus b for harmonic order #;
THD, THD at bus b.

C. ONLINE HARMONIC IDENTIFICATION MODELLING
BASED ON MACHINE LEARNING REGRESSION

In the following section, a brief discussion about the different
regression models will be illustrated as:

1) SIMPLE LINEAR REGRESSION

A case study with a single independent variable is so-called
a simple linear regression [56]. The variable’s dependence is
defined through simple linear regression.

y=p8+Bix+e¢ ©)

where,

y: the estimated dependent variable score
Bo: aconstant

B1: the regression coefficient

x:  the score on the independent variable

The impact of independent variables is separated from the
interaction of dependent ones through simple regression [57].

2) MULTIVARIATE LINEAR REGRESSION (MLR)

The Multivariate Linear Regression (MLR) is a statistical
method that predicts the output based on several explana-
tory variables. In [57], the aim is identified to find linear
input/output model.

y=PBo+Bixi + ...+ Buxm+¢ (10

where,

the estimated dependent variable score

Bo: a constant term (intercept)

B1, B2.... Bm:  the regression coefficient that determines
the slope of the trend surface.

X1,X2...,Xy: the score on the independent variable

Equation (11) determines the formula matrix [43] as
p=x"x)"'xTy

VOLUME 12, 2024
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Bo 1 x11 X12 ... Xim Y
B1 1 x21 X220 -+ Xom Y>
B = . X=1 . . . . Y= .
/32 I Xp1 Xn2 -+ Xum Y,
(1D

3) POLYNOMIAL REGRESSION

Polynomial regression [58], [59] is a regression analysis
procedure that examines the relationship between input and
output variables using nth degree polynomial modelling.
In polynomial regression, the data polynomial equation
combines with the curvilinear interaction of the depen-
dent/independent variables, a special case of maximum
likelihood regression [60]. The polynomial model [61], [62]
looks like:

y=PBo+ Bix+ Bix* ...+ Bx" +e (12)

where,

r:  An integer numbers that denotes the degree of the
polynomial.

In this research, the suitable regression model for the nature
of the problem is the linear regression (LR). One technique
for using linear regression is called least squares. It assists us
in identifying anomalies in our data and making predictions
about the future based on an existing set of data. Values that
are too good or bad to be true or that indicate exceptional
circumstances are known as anomalies. In the following a
brief overview of least square technique will be demonstrated.

a: LEAST SQUARE TECHNIQUE

Using the Least Squares Method (LSM) [65], [66], it can
determine which curve or line best fits a given collection of
variables by minimizing the offsets squares (residual portion)
of the curve’s points. The linear regression model employs
the LSM to determine the coefficients by and by in order to
minimize the sum of the squared distances between actual
value yi response from the following equation:

y=p0+ Blx; 13)

n
(bo, b1) = arb min > [Bo + pixil’ (14)
(Bo.B1) ol

Indicate that the solutions are by and b;.
Z,r'l:l 0i—y) (xi—x) _ Sﬁ

=% Su
by = b}y —biX =y — bi¥ (16)

by =

(15)

The smallest of all regression coefficients between By
and B;.

The LSM goal is to identify the accuracy of the estimated
parameters by applying the least squares that is the closest
line to all points (x;, y;).
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In this paper, the aim is to minimize the squares of the
standard linear regression technique.

) < 2
%izl [yi—(Bo + Bix)] =0 (17)
- 2
%lﬁl [yi—(Bo + B1x)] =0 (18)

The regression can be used line = By + PB1x;, which
is conventionally indicated, to characterize the relationship
between x and y given that by and b; are the solutions to the
system. Using a centralized linear model makes solving for
bo and by simpler:

yi=PBs+B1(xi—X)+¢ (19)
where fp = B; — B1 (¥) . we need to solve for
2 Z [vi — B5 + B =0 (20)
B0 =
P [yi—(B5 + B1n]” =0 21)

By calculating the partial derivatives concerning B0
and B1.

D i +8@x—-5)]=0 (22)
i=1
D hi—Br+Ax—0)] -5 =0 (23)
i=1
D Vienpo + DB —H) =nfy  (24)
i=1 i=1

Therefore, we have B = %Z?:l yi =y Substituting B;
by y leads to the following equation:

D =G+ i — D) (i —X) =0 (25)

i=1

The LSM’s rationale is to compute estimation of parame-
ters by selecting the row that is ““closest” to each and every
data point (x;, y;) [65]. In regression analysis, residual analy-
sis is essential. For the measurements yi and the fitted values
jz;s, residual linear regression can be found, and residuals
can be displayed. It needs to be Recalling that the regression
model does not contain the ¢; term as a result, no regression
error is found, and remaining regression is identified [66].
The expected value, or the population average, is typically
not observed [67], [68]. The description of a test using a linear
regression model is represented as: -
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b: F-TEST
The F— test is denoted in Eq. (26) [69] as the most more
reliable than the other tests.
A =2
> (i =5)" [ on-1)
F = 3 ~Fm—1,n—m) (26)
> (n=5)" [ on-1)
where the degree of freedom in modifying regression is
denoted by (m-1). > (j), - )'),)2 ;n — m is the residual vari-

ation’s degree of freedom > (y,- - )?[)2.

If FaF (m-1, n-m), then A significant linear relationship
exists between the variables y and x1, x3, ...x,, is less than
the priority rate of «, the regression equation is deemed
significant; conversely, it is not significant.

c: t-TEST
Determine whether the independent variable’s impact on y is
relevant and in line with the test hypothesis. Test variable t in
statistics [70]:
B:
= ——— (27)

— [ > i—9)?
ViV T=m)

where Cjj is the jth component on matrix (x'x)~!

IIl. POWER MODEL INVESTIGATION

Figure 4 depicts three-phase power system in a single-line
diagram. The system consists electrically linked to two PV
systems, WT, a nonlinear load, and capacitors, and an equiv-
alent voltage source after an impedance to simulate a power
grid. The Appendix contains the system specifications.

A. THE MODELLED POWER SYSTEM’S DESCRIPTION

The Electric Transient Analysis Program (ETAP) is used
to simulate the power system in order to investigate the
harmonic accomplishments of power electronics-based appli-
cations and their interactions with other components of the
system under various power events. Since it is assumed that
the three-phase system is balanced and symmetrical, current
and voltage measurements in a single phase are shown along
with the corresponding distortions.

B. HARMONIC PERFORMANCE OF THE MODELLED
SYSTEM
In steady state mode, the solar PV-1 system is being assessed,
the PV-2 and wind turbine during the simulation interval. The
solar PV-1 system uses 1000 W/m? solar radiation at 35°C
ambient temperature while the wind turbine system operates
at 12 m/sec wind speed. The mathematical model includes
multiple states of power network events as well as two solar
radiation profiles in order to examine Effects of network level
changes and solar irradiance fluctuations on photovoltaic
power generation PV-1 systems’ harmonic performance and
PCC voltage.

The grid impedance (Zg) rises up to 25% gradually, the
nonlinear load increases by 60 % step by step and the PFC
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capacitor disconnects at some cases to obtain substantial
number of cases to train the model. Additionally, two dif-
ferent solar irradiance profiles of the solar PV-1 system are
considered. For example:

In Profile 1, the solar irradiance to be 800 W/m? at 1 sec.
and the outside temperature twenty five °C.

In Profile 2, There is a 1000 W/m? solar irradiance and a
twenty five °C outside temperature at one second.

PCC

I

! I

| @——

I |

|

Sinusoidal Power
supply

FIGURE 4. A pure sinusoidal source drives the solar photovoltaic
system.

Moreover, the use of such simulation tools is useful when
sinusoidal voltages are supplied to the PCC. This perfor-
mance will be achieved by blocking other harmonic resources
and reducing the network impedance to close to its lowest
value (Zero). By using the ANNs-based harmonic estimator,
one can compare the harmonic performance of an individ-
ual solar PV-1 system. Figure 4 shows a photovoltaic PV-1
system linked to a pure sinusoidal power source. Different
scenarios will be taken into consideration d in the following
subsections for the simulated system.

Case Study 1 (PCC Voltage Distortion with Profile 1):
To simulate the system, Profile 1’s solar irradiance is used
for PV-1 systems, and power events are considered for all
appliances connected to the grid. The outputs are illustrated
in Figure 5. The module was evaluated at a nominal solar
radiation and an ambient temperature of 800 W/m? and 25 °C,
respectively.

Case Study 2 (PCC Voltage Distortion With Profile 2):
Similar to Case 1, but in this instance, the solar PV-1 sys-
tem uses Profile 2. Figure 6 shows the results in this case.
It was assessed with an ambient temperature and rated solar
radiation of 25 °C and 1000 W/m?.

Case Study 3 (PCC Sinusoidal Voltage With Profile 1):
Connecting a photovoltaic PV-1 system exclusively to an
ideal power source is not feasible in real domain systems.
Instead, solar radiation from Profile 1 is simulated. Figure 7
shows the corresponding simulation results.

Case Study 4 (PCC Sinusoidal Voltage With Profile 2):
Independent connections are made between the PV-1 solar
power systems to ensure the optimal power source; how-
ever, in this instance, Profile 2’s solar irradiance is utilized.
The application of the FFT solution to corresponding rem-
nants with regard to the fundamental frequency during the
simulation period results in this expression for the THD
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FIGURE 6. the results in this instance, a nominal solar irradiance
of 1000 W/m? and an ambient temperature of 25°C.

output current and PCC voltage of the exit PV-1 system. The
simulation results for Cases 1-4 are shown in Figures 5-8,
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FIGURE 7. The module was evaluated at an ambient temperature of 35°C

and

a nominal solar irradiance of 800 W/m2.

respectively. The main observation from these figures can be
expressed as follows:

When compared to Cases 1 and 2 with an ideal power
source, sources of harmonics and power events typi-
cally of a noticeable impact on both the PV-1 inverter
harmonic emissions and the grid voltage and lead to
inaccurate estimation.

It is evident that the solar PV-1 system’s PCC voltage
THD follows an inverse relationship with the profile
of solar irradiance. For instance, Case 1 experiences a
decrease of 2% in the PCC voltage THD as a result of
an increase of 200 W/m?. This highlights how the THD
depends on the operating circumstances, as was covered
in [49].

However, as also mentioned in [7] and [49], the power
events may have little effect on the solar PV output
current THD due to Profile 2’s constant variations in
solar irradiance.

There has been a notable decrease in the voltage distor-
tions at the PCC from 19.1% to 16.4% in Cases 1 and 2,
as a result of the rise in nonlinear loading level.
Additionally, a 20% increase in network impedance
increases the THD of the PCC voltage from 18% to
22.05% and leads to an increased voltage drop for each
harmonic component.

Synchronous circuits and control systems are extremely
sensitive to grid voltage distortions in grid-connected
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FIGURE 8. The results in this instance, a nominal solar irradiance of
1000 W/m2 and an ambient temperature of 35°C.

PE-based applications [7], [71], [72]. Therefore, in case
two, the waveform distortion of the PV system increased
due to the increase in PCC voltage distortion.

o Due to the interaction between the PFC capacitance,
other system components, and the inductive elements of
the network, PFC capacitors typically cause undesirable
amplification effects on harmonic components within
the resonance point. When the PFC capacitor is discon-
nected, the resonance disappears, resulting in a three.
One percent increase in the PCC voltage THD of the PV
system.

« As solar irradiance changes with a pure sinusoidal volt-
age, the actual THD of the current in a solar PV-1 system
is significantly lower than when supplied with a PCC
when supplied distorted voltage.

o It can be observed that the suggested ANNs-based har-
monic estimator is then trained and evaluated using the
outcomes of the simulated system. In other words, the
suggested harmonic distortions estimator will be trained
using Case one second time-varying solar irradiance
over the simulation period, along with the voltage and
current that correspond to it. We then use the simulation
software results for cases 3 and 4 to evaluate the per-
formance of the ANNs-based harmonic estimator over
a range of solar irradiation points. It is worth noting
that the ANNSs system works well with signals rescaled
within =1%. Due to the nature of the neuron’s activation
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function [73], the voltage percentage results shown in
Figures 5-8 were applied without the need for rescaling.
However, the solar radiation is readjusted to the nominal
value of 1000 W/m?.

IV. EVALUATION OF ESTIMATORS’ PERFORMANCE AND
TRAINING

Renewable energy-based power sources, such as solar PV
systems, are associated with inherent uncertainties caused by
partial/complete shading and faulty cells/panels, which must
be addressed for reliable estimation. Furthermore, to ensure
reliable and robust estimating performance, the fault toler-
ance of such an ANNs estimator should be investigated. It is
also worth noting that advances in neural networks, such as
deep neural networks, may be possible for large-scale data-
processing applications. This section aims to evaluate the
estimator via discovering its data relationships significant to
train it as will discuss in section V, subsection A.

A. ANNs TRAINING PHASE

MATLAB (R2022b) is utilized to develop the ANNs sys-
tem depicted in Figure 3 on a computer equipped with
a 64-bit Windows 8 operating system, an Intel Core i5
and RAM of 16 GB. The system is trained using the
Levenberg-Marquardt backpropagation algorithm. Because
of the constant decline in Profile 2’s solar irradiance, The
ANNs system is trained using the voltage, current, and solar
radiation simulation results of case two. In the training stage,
a predetermined range of the system output results are pro-
cessed in order to examine the performance of the suggested
estimator.

The distorted wave’s half cycle is first sampled at 17 sep-
arate points spaced regularly along the time axis and encom-
passing solar irradiances ranging from 800 to 1000 W/m?.
Without performing any pre-processing, the feed-forward
neural network receives these sampled values at each bus
as input signals. The literature suggests that the harmonic
distortion estimate, which is based on an ANNs model, would
be suitable for a multilayer perceptron through eight inputs,
two hidden layers and one output.

For ANNs systems, a low MSE value is typically suffi-
cient in a variety of applications. Nonetheless, in order to
avoid misestimating the actual distortion value when using
the ANNs system, a low degree of accuracy is required in
the harmonic distortion estimator. Despite this, the number
of neurons in the hidden layer is chosen due to his MSE
observations, which results in five times the total number.

There are 170 sets of vectors in the database; 70% of
them are simulation data vectors that obtain a low enough
training error, and 15% of sets of vectors are kept for the
validation stage. and the rest 15% are kept for test step. The
ANN:Ss training parameters are compiled in Table 2.

For ANNs systems, a low MSE value is typically sufficient
in a variety of applications. Nonetheless, in order to avoid
misestimating the real distortion when using the ANNSs sys-
tem, the error of the harmonic distortion estimator must be as

VOLUME 12, 2024



A. M. Abed et al.: Accurate Identification of Harmonic Distortion for Micro-Grids

IEEE Access

TABLE 2. ANNS training parameters numbers.

Inputs No./ bus 20 Outputs No. 1
training samples 170 training parameters. 84
Hidden layers 2 training Epochs 1000

No. of neurons for the 25,14 Target error 1x103

two hidden layers

low as possible. For the lowest MSE of 2.05e-06 as shown in
Fig. 9.

The number of neurons in the hidden layer is dependent on
the network’s ability to generalize the recognition process.
Twenty-five neurons in the first hidden layer and fourteen in
the second hidden layer are the optimal numbers for the net-
work’s harmonic components. However, using fifty neurons
in the first layer and fourteen neurons in the second hidden
layer gives a little bit of error compared to 25, 14 neurons
in the first and second layers hidden, respectively. Fig. 9
shows a comparison between the two models to determine the
optimal number of neurons in the hidden layers. Eventually,
the activation functions for the two hidden layers will be suffi-
ciently strong to saturate. These functions are sigmoidal and
linear for each layer of training algorithms. Table 3 depicts
the ANNSs training progress and different ANNs parameters.

This is primarily due to the large amount of data in the
training set and the prominent level (precision) required for
this type of application, which results in an extremely consid-
erable number of neurons.

The fitting of the ANN’s output signal (shown in blue) to
the solar PV-1 system’s simulated (shown in doted green) in
Case 2.

B. ANNs TEST PHASE

In this section, the performance of the ANNs expert system
is evaluated for different solar radiation values within the
training stage. An expert ANNs system written in MAT-
LAB receives a vectorized signal of solar radiation and a
pure sinusoidal voltage signal with a mathematically gener-
ated percentage amplitude. The separately simulated system
for the same solar radiation and sinusoidal PCC voltage
is contrasted with the expected results, as demonstrated in
Figure 10. ANNs systems process input and output signals as
samples and produce simulation results that are stable over
simulation time. When sunlight is within the training range,
the expert ANNSs has reliable performance. When the expert
ANNS system is given the pure sinusoidal voltage signals in
Figures 11 and 12 for solar sunlight values of 800 W/m?
and 1000 W/m?, respectively, the predictions representing the
estimated actual harmonic distortion of the system the signals
show good agreement. As in Cases 1 and 2, we simulated an
ideal power supply connected system. The FFT solution for
the two signals was completed in MATLAB with a maximum
error of approximately 18%.
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The results highlight the accuracy of the ANNs system
regarding each important harmonic component. The THD of
the predicted signal is another metric used to evaluate how
well the proposed ANNs-based harmonic distortion estimator
performs. The proposed estimator’s performance was trained
and optimized using the results of a simple energy system
simulation as IEEE standard limits.

A second criterion for the THD of the predicted signal is
the proposed harmonic distortion estimator, which is based
on an ANNSs algorithm. The simulation of a simple energy
system was used as ‘reference’ and the IEEE standard limits
to train the proposed estimator, and then to improve upon
it. It is anticipated that the ANNs harmonic distortion esti-
mator will produce harmonic performance results for a solar
system inverter when connected to purely sinusoidal power,
with actual harmonic emissions being more accurate. Table 4
displays the THD deviation for both the actual and predicted
signals. This is calculated using the following formula:

error(%) = THDctuar — THDprediCtea' % 100 (28)
THD gctual

A small variation exists between the simulated and pre-
dicted THD. The explanation for this is the non-zero ANNs
performance error, which arises from the featureless har-
monic components of each predicted signal generated by
the proposed estimator. The expert ANNs’ perform better
when exposed to sunlight in the training area. In Figures 11
and 12, when a pure sinusoidal voltage signal is applied to
the expert ANNSs system, the predicted signals for solar irra-
diance values of 800 W/m?2 and 1000 W/m?2, respectively, are
in good agreement with the simulated signals. The systems in
Case 2 and Case 4 are connected to an ideal power supply, and
the actual harmonic distortion of the system is less than the
estimated value. The ANNs system’s precision regarding the
significant harmonic components was demonstrated through
FFT analysis in MATLAB, with an error limit of approxi-
mately 0.78 %.

The computational cost of an ANNs system with different
numbers of neurons is a crucial factor to consider during the
training and prediction stages. Convergence requires more
computation time when there are more neurons in the hidden
layer for a given data size. But in the proposed algorithm
the training and forecasting processes took about 3 hours
and 11 minutes, respectively, this represents a computational
burden. Computers with high computational capabilities can
further reduce it. More memory and capacity to process sub-
stantial amounts of data.

C. MLRA TRAINING PHASE

MLRA employs the linear regression algorithm to train the
system. Because the solar radiation in profile two is decreas-
ing all the time, the linear regression in CASE 2 is trained
using simulated voltage, current, and solar radiation. During
the training phase, a predefined range of system output results
is processed to evaluate the performance of the proposed
estimator. During the training phase, a pre-defined range
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TABLE 3. ANNSs training progress.

. . . . Validation Training Time
Unit Epoch Elapsed Time Performance Gradient Mutation Checks (hh:mm: ss: )
Initial Value 0 - 7.39 222 0.001 0
Current Value 1000 03:11:54 7.77¢" 2.05¢ le!! 0 03:101:54
Objective Value 1000 - 0 le'® 1e™120 18
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100
TABLE 4. THD error between the actual and predicted signals.
e 9
Solar radiation 1000 W/m? 800 W/m? 8 actual THD (ETAP)=19.1%
£ 7 Predicted THD (ANN)=18.95%
Simulated PCC voltage THD 16.4% 19.1% By
Simulated PCC voltage THD 16.29% 18.95% Ei j
Error 0.67% 0.78% -
1
: nunlln.
5 T 1" 13 7 19 23 25 29 31 35 3FT M 43 47 49

of ETAP outputs are then processed for testing using the
proposed estimator.

The half-cycle of the distorted wave was sampled at
17 discrete points regularly spaced along the time axis and
including solar irradiances ranging from 800 to 1000 W/m?
based on the fundamental frequency, as in the ANNs. The
feed-forward neural network receives these values sampled in
each vector as input signals without preprocessing. The linear
regression machine learning system, as previously discussed
in the literature, produces superior results when using MLRA.
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Frequency(Hz)

FIGURE 11. The performance of proposed approach as in profile 1
(800W/m?2).

In many applications, a minimum RMSE value is sufficient
for MLRA systems. However, to avoid overestimation of the
true deformation when using an MLRA system, the harmonic
deformation estimator should be as accurate as possible.
Figure 13 depicts the selection of several MLRA algorithms
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Predictions: model 2.3 (Robust Linear)
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FIGURE 13. The prediction response for the robust linear regression
model.

for the minimum RMSE value obtained from Linear regres-
sion under MATLAB program. It determines the network’s
ability to generalize the detection process. Table 5 displays
the MLRA training progress among various models.

Among the 26-machine learning linear regression models,
a low RMSE value is sufficient for Machine Robust Linear
Regression model as shown in Table 5, the blue highlighted
row (the fourth row). However, in order to avoid underesti-
mating the true distortion when using the ANNSs system, the
harmonic distortions estimator must have the lowest possible
error. The database contains 170 sets of vectors; 70% of them
are simulation data sets with a low enough training error, and
15% are kept for the validation stage. The remaining 15% is
set aside for the testing phase.
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Table 6 lists the optimal LR training parameters. Also,
Fig. 13 depicts the prediction response for the Robust Linear
Regression model.

D. MLRA TEST PHASE

The performance of optimal Linear Regression model is
evaluated in this section for various solar irradiance points
within the training range. The expert MLRA system created
in MATLAB is fed a vectorized signal of solar irradiance
and a generated pure sinusoidal voltage signal. The expected
results are then compared to the independently simulated
system results for the same solar irradiance and sinusoidal
PCC voltage, as shown in Fig. 4. The MLRA model samples
its input and output signals at a constant rate in relation
to simulation time and generates simulation results. When
the solar irradiance is within the training range, the optimal
MLRA performs well. When an expert MLRA model is given
a pure sinusoidal voltage signal in Figures 11 and 12, for
the two aforementioned profiles (Profile 1 and Profile 2),
respectively, the predicted signals, which represent the true
harmonic distortion of the system under estimation, show
good agreement with that of the simulated system connected
to an ideal power source, as in Cases 1 and 2. In MATLAB,
the FFT solution for the two signals was completed with a
maximum error of about 21%. The results demonstrate the
MLRA model’s high accuracy for each significant harmonic
component. Another metric used to evaluate how well the
proposed MLRA-based harmonic distortions estimator per-
forms is the THD of the predicted signals. The proposed
estimator’s performance was trained and optimized using the
results of the simple power system simulation as a benchmark
and guide.

The THD of the predicted signals is another metric for
assessing the performance of the proposed ANNs-based har-
monic distortions estimator. The results of the simulated
simple power system were used as a benchmark and reference
to train and optimize the proposed estimator’s performance.
The MLRA harmonic distortion estimator is expected to
produce the same results of the PV inverter harmonic per-
formance when connected to a pure sinusoidal power source,
which is the actual harmonic emissions.

Table 7 displays the THD error between the actual and
predicted signals, which is calculated as in Eq. (9).

There is no difference between the simulated and predicted
THD. This is due to the high accuracy of the proposed MLRA
model. When a pure sinusoidal voltage signal is applied to
the expert ANNs system for 800 W/m? and 1000 W/m?
solar irradiance values, respectively, the predicted signals
show excellent agreement with that of the simulated system
connected to an ideal power source, as in Cases 2 and 4,
which reflect the true harmonic distortion of the system under
estimation as demonstrated in Fig. 14 and Fig. 15.

The FFT solution for the two signals was performed in
MATLAB, and the results highlight the accuracy of the
MLRA model in terms of the individual significant harmonic
components with zero error. The Robust MLRA system
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TABLE 5. The progression of MLRA training among various models.

o . rodel Model Status RMSE MSE Rt MAE ';;Z‘:;ﬁ“" Training
0. Type Valid. Valid. Valid. Valid. (obs/sec) Time (sec)
1 0 |1 Tree Trained | 0.2450 0.06003 0.958454 0.144103 3150.151 9.7298466
2 0o |21 Linear Trained | 2.47%-13 | 6.149¢-26 1 451914 | 3233530 4.1706618
Regression
3 0 | 22 IL{:;Z’SSion Trained | 1.612e-11 2.599¢-22 1 2.810e-12 446.6631 5.9433993
4 1 |23 Linear Trained | 1.184e-13 | 1.402e-26 1 2.854e-14 | 1156.495 6.9521883
Regression
5 0 | 25 Tree Trained | 0.245025 0.060037 0.958454 0.144103 2919.600 23538579
6 0 | 26 Tree Trained | 0.366203 0.13410 0.907200 0.245599 3747.910 43014908
7 0 | 27 Tree Trained | 0.810514 0.656933 0.545407 0.684148 3684.769 1.3351303
8 0 | 28 SVM Trained | 0.078400 0.006146 0.995746 0.071569 1780.355 55768334
9 0 | 29 SVM Trained | 0.099290 0.009858 0.993177 0.078498 2882.038 3.8986099
10 0 |21 SVM Trained | 0.165196 0.027290 0.981115 0.106151 2501.233 3.4943604
11 0 | 211 SVM Trained | 0.804567 0.647328 0.552054 0.496137 3126.716 3.004708
12 0 | 212 SVM Trained | 0.317966 0.101102 0.930034 0.179799 2489.124 52340688
13 0 | 213 SVM Trained | 0.196887 0.038764 0.973175 0.13462 1578.430 4.8202256
14 0 | 214 Ensemble Trained | 3.540666 1253631 7.675018 3.53525 9272787 52754198
15 0o | 215 Ensemble Trained | 0.256983 0.066040 0.954300 0.14260 921.015 4.9107442
16 0 | 216 Gaussian Trained | 0.000399 1.594¢-07 0.999999 0.000243 3092.059 6.7028305
17 0 | 217 Gaussian Trained | 0.000399 1.597¢-07 0.999999 0.000243 3752.839 13715976
18 0 | 218 Gaussian Trained | 0.124758 0.015564 0.989229 0.06987 2700.493 2.6984924
19 0 | 219 Gaussian Trained | 0.000399 1.594¢-07 0.999999 0.000243 2986.785 2.9533971
20 0 | 22 NN Trained | 0.224165 0.05024 0.965227 0.047821 2946.438 7.2796473
21 0 | 221 NN Trained | 0.350638 0.122947 0914921 0.118882 2874.024 67967107
2 0 |22 NN Trained | 0.629131 0.39580 0.726105 0.247505 3488.163 10.0920468
23 0 |22 NN Trained | 0.558627 0312064 0.784053 0.100939 3403.039 105300595
24 0 | 224 NN Trained | 0.096965 0.009402 0.993493 0.026461 3532.095 12.3229052
25 0 | 225 Kernel Trained | 0.718825 0516710 0.642441 0.428202 1986.463 12.076443
26 0 | 226 Kernel Trained | 0.753084 0567139 0.607546 0.510134 3088.205 10.299545

TABLE 6. Robust linear regression training parameters.

RMSE (Validation) 1.184¢"3
R-squared (Validation) 1.00
MSE (Validation) 1.402¢6
MAE (Validation) 2.854¢1
Prediction speed 1156.495
Training Time (hh:mm: ss: *°) 00:00:6.95

computational complexity with large numbers of inputs is
a crucial factor that must be considered during the training
and prediction stages. It is well understood that the greater
the number of inputs for a given size of data, the greater
the computational time required for convergence. But in the
proposed algorithm the training and forecasting processes
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TABLE 7. THD error% between the actual and predicted signals.

Solar Irradiance Simulated PCC Simulated PCC %
(W/m?) voltage THD % voltage THD % Error

1000 16.4% 16.4% 0%

800 19.1% 19.1% 0%

took about 6.9 seconds, in the training process which yields in
fast response in online harmonic identification this represents
a computational burden. Moreover, enough samples obtained
a high accuracy and zero prediction error.

1) F-TEST
The standard rule of thumb of regression is thatif F > 2.5, the
null hypothesis can be rejected. We can conclude that at least
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FIGURE 14. The proposed method’s performance at 800 W/m?2.

one parameter value is nonzero. Applying Equation (26) to
calculate the F-test [67, it can be noticed that F = 0 for THD
prediction by Robust MLRA model.

2) T-TEST

A “good” t-statistic or t-value in regression is one that is
significantly higher in absolute value than the critical value
from the t-distribution for a given significance level, which is
typically around two or -2 for a 95% confidence level. This
shows that the coefficient is statistically significant. When
taking samples, there is a good chance that the t-value will be
zero. It makes sense — if the null hypothesis is correct, the
t-value should be zero because there is no signal. However,
the further the t-value is from zero, the less likely we are to
obtain it. By applying Eq. (27) to the study, for THD pre-
diction, t-Test equal zero. Table 8 depicts the Robust MLRA
performance during the Test phase:

V. VALIDATION

In this section, an extensive comparative analysis is included
to validate the use of Al techniques. Two scenarios are used
as follows:

1. IEEE 9-bus, microgrid system applying ANFIS, ANNs,
MLRA.
2. IEEE 34-bus system applying ANNs, MLRA.
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FIGURE 15. The proposed method’s performance at 1000 W/m2.

TABLE 8. Robust linear regression test parameters.

——
RMSE (Validation) 7.2637e-15
R-squared (Validation) 1.00

MSE (Validation) 5.2761e-29
MAE (Validation) 3.7127e-15
F-Test 0
t-Test 0

The results of the two scenarios will be demonstrated as in
the following:

A. SCENARIO 1: IEEE 9-BUS, MICROGRID SYSTEM
APPLYING ANFIS, ANNs, MLRA

The comparison between ANNs, ANFIS and MLRA using
two systems, the first one is IEEE 9-bus microgrid include
training and test phase as shown in Table 9. The results
of applying the three models will be demonstrated. In this
section, the three models; ANNs, ANFIS and MLR were
applied to the IEEE 9-bus microgrid system to validate the
MLRA model. The system was as shown in Fig. 16. The
obtained results of each model based on its algorithm were
compared in the training and test process.

The comparison criteria will depend on the road’s perfor-
mance in predicting the total harmonic distortion coefficient.
In this case, the performance is evaluated according to RMSE,
R2, MSE, and MAE as well as equations (1) and (2), taking
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TABLE 9. Comparison between ANNs, ANFIS and MLR in training phase.

MODEL ANNs ANFIS MLR
RMSE (Validation) 0.97588 5.278 e-05 0.095
R-squared (Validation) 0.99254 0.9857 1.00
MSE (Validation) 0.95234 2.7e-11 0.009035
MAE (Validation) 0.082377 0.048734
Prediction speed Terribly slow slow 2 1100 obs/s
Training Time 02:45:54 00:30:20 00:00:3:58
(hh:mm:ss:*°)
Bus7 RS Bu
o I—b Load € Bus 3

@—|—@ =

Bush

Bus 5

B

us 4
Lt
3 1
Bus1
71

G

tne 45 1 (ines?
line 46 | Line 69

FIGURE 16. IEEE 9-BUS standardtest network.

into account the time consumed in training and testing the
model.

1) TRAINING PHASE
A comparison of the three techniques used to forecast har-
monics in the 9-bus IEEE microgrid system during the
training phase is presented in Table 9 below. Moreover,
Fig. 17 depicts the prediction response of each model in
training phase.

The prediction response of each model in training phase.

From the obtained results in Table 9, and Fig 17, it can
be noticed that there is a small difference between RMSE
value and MSE for ANNs and ANFIS results. However, MLR
has good results among the three models. Moreover, there
is a considerable time consumed with the MLR technique.
It is noticed From Table 9 that:

1. The MLR has reached the global optimal solution in
considerable low time.

2. The MLR achieved higher value squared error (R?).

3. The MLR consumes the lowest training time.

4. As aresult of remark 2, the prediction speed of MLR is
the best one.

2) TEST PHASE
A comparison of the three algorithms used to forecast har-
monics in the microgrid system under study during the test
stage is illustrated in Table 10 below.

Table 10 summarizes the test results for the three applied
techniques that were used to predict the total harmonic
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FIGURE 17. The prediction response of each model in training phase.

TABLE 10. Comparison between ANNs, ANFls and MLR in the test phase.

MODEL ANNs ANFIS MLR
RMSE (Validation) 0.00088 0.26055 0.47696
R-squared (Validation) 0.95455 0.9544 0.98
MSE (Validation) 7.77e-07 0.06788 0.22749
MAE (Validation) 8.916E-07 0.07790 0.19824

distortion online as a first step to mitigate the harmonics in
9-bus IEEE microgrid system. As Table 10 illustrates:
1. The global optimal solution was found by the MLR in a
surprisingly brief time.
2. The MLR had a higher value squared error (R?).
3. The MLR has the shortest training time requirement.
4. MLR has the fastest prediction speed due to remark 2.

B. SCENARIO 2: IEEE 34-BUS SYSTEM APPLYING ANNs,
MLRA

The IEEE 34-bus test feeder with the solar PV-1 sys-
tem and different harmonic sources presented in [74] is
modelled and simulated using Electric Transient Analysis
Programme (ETAP) to validate the proposed ANNs-based
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FIGURE 18. The tested IEEE distributed redial 34-BUS feeder.

harmonic distortions estimator. The feeder loading condi-
tions were maintained in accordance with the IEEE Power
& Energy Society working group specifications [75]. The
Robust MLRA system computational complexity with this
section introduces the IEEE 34-bus test feeder and the factors
that influenced the decision on the simulated system. Also
shown are the simulated harmonic sources. Furthermore, the
results are evaluated and presented. Even though it is one
of the most frequently used feeders for establishing har-
monic prediction and detection solutions, The IEEE 34-bus
system is a more complicated distribution system with an
extremely lengthy feeder that necessitates the use of volt-
age regulators to meet ANSI voltage standards. The IEEE
34-bus is only made up of six medium-voltage three-phase
buses. in the following, the characteristics of the 34 bus
feeders [76]:

1. Various kinds of loads
e All spot loads connected.
e delta and Wye connected.
e A combination of constant current, constant power,
and constant impedance.
2. Line Styles
e Overhead three-phase (a-n, b-n, and c-n).
e Overhead single-phase (a-n, b-n, and c-n).
3. Voltage Regulators - single-phase wye-connected regu-
lators.
4. Shunt Capacitors.
e Balanced three-phase.

TABLE 11. Individual harmonic content of harmonic sources [44].

Salar

£ errndian ce
e
M1 RA proposed
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— * Currentand
““““““““ Woltage Signals
844 Inverfacing
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836 240
858 _|83a se0 | l
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W I BEE 890 838
852111
—— A—I 856
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Because of its length and low loading condition, the IEEE
distributed redial 34-bus test feeder depicted in Fig. 18 was
employed to connect the harmonic sources that will be emu-
lated in this paper. The solar PV-1 system, as well as the
various harmonic sources used, will be connected to the
green-highlighted nodes. For each run, each harmonic source
will be connected to a different bus, while the solar PV-1
system will remain connected to bus-860 [77]. Because the
purpose of this study is to estimate total harmonic distor-
tions in a PE-based application, various harmonic sources
are simulated, including 6 and 12 pulse power rectifiers,
DC motor, thyristor controlled Reactors (TCR), and static fre-
quency converters (SFC). Based on the field measurements
in [46], harmonic current sources are used to model these
harmonic sources.

The outcomes were acquired through a methodical allo-
cation of the different harmonic sources among the eighteen
viable three-phase nodes found in the green-highlighted
buses. The Minitab program Ver-16 will be used in this
section to extract the relation among the solar irradiance and
the other significant factors. Using the two solar irradiance
points (800 and 1000 W/m?) and the five harmonic sources
listed in Table 11, a total of 170 tests were conducted. The
suggested MLRA -based harmonic distortions estimator was
used to process, save the simulated voltage, and current
signals from each run-in order to forecast the harmonic distor-
tions of the solar PV-1 system. The proposed MLRA -based
estimator’s predicted signals are compared to the harmonic
current components listed in Table 11, and as illustrated

Harmonic order 3 5 7 9 11 13 15 17 19 21 23 25
6-pulse 0.015 0.22 0.150 - 0.102 0.084 - 0.043 0.034 - 0.006 -
12-pulse 0.002 0.006 0.003 - 0.062 0.045 - 0.001 0.002 - 0.005 -

SFC - 0.17 0.101 - 0.061 0.044 - 0.038 0.032 - 0.026 0.023
DC motor 0.138 0.051 0.026 0.016 0.011 0.008 0.006 0.004 0.004 0.003 0.003 0.002
TCR 0.012 0.336 0.016 - 0.087 0.012 - 0.045 0.013 - 0.028 -
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FIGURE 20. Pareto chart of the effects solar irradiance.

in Eq. (8), the error of each corresponding component is
computed for every test run. A-phase voltage and current
signals were fed into the suggested estimator to minimize
computational effort.

The variations at the network level were disregarded
because there were no PFC capacitors and the loading con-
ditions stayed constant throughout the simulation. Figure 19
illustrates that solar radiation responds to transformers’
TCR more than SFC. Where the power grid networks pro-
vide electricity as AC (alternating current), however, for
some essential applications, like charging electric vehicles
(EVs) and Egypt’s monorail transport systems, DC (e.g.,
750-1500 volts) is needed for an economical and effective
operation [78], [79].

The power network, on the other hand, provides
much higher-voltage AC with high harmonic distortion.
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FIGURE 23. The contour plot of THD% vs TCR, affect solar irradiance.

Transformers and rectifiers are, hence, essential converters
for network power conversion from AC to DC. For control
circuits, rectifiers are useful, particularly thyristors. Fig. 19
illustrates that harmonic distortion responds to TCR with
time; this converter is compatible with solar cells that are
considered a photovoltaic source (DC current) that operates
continuously when exposed to sunlight.

Therefore, the radiation intensity can be expressed as in
Eq. (29), which directly correlates with the current quantity
generated according to time as:

G
I, = ISCRG—R[l +ar(Tc — Tcr)] (29)

where G is the irradiance value in W/m2 and Igcg is the
short circuit current at the reference solar radiation Gg and
the reference cell temperature Tcr, and a7 is a constant
temperature coefficient (0.0017 A/K in case of silicon solar
cell) of the photo current.

Fig. 20 emphasizes temperature effects on TCR efficiency
when used to rectify the current of solar irradiance. Therefore,
the study includes two levels of temperature [25 — 35 °C] and

VOLUME 12, 2024



A. M. Abed et al.: Accurate Identification of Harmonic Distortion for Micro-Grids

IEEE Access

Optimal S1 S2 S3 S4 S5 S6 S7 S8 59
o High| 95.010 04875 04837 0.4883 04846 55.960 55.930 55.970 55.930
Car ([89.3400][-0.5014][-0.4919][-0.5025][-0.4981][55.9600] [49.430] [49.4100] [55.930]
1.0000 Low | 89.340 -0.5026 -0.4981 -0.5025 -0.4981 49.420 49.430° 49.410 49.420
Composite
Desirability
10000
THD%
Targ:éﬂcég?ﬁ ,_,_—_—i/__x__:__ﬂ_ ]
4= 10000 \

FIGURE 24. The suggested voltage FED to the grid to eliminate the distortion.

TABLE 12. Comparison between ANNs and LRA in training phase.

MODEL ANNs MLRA
RMSE (Validation) 0.97588 0.184e-13
R-squared (Validation) 0.99254 1.00
MSE (Validation) 0.95234 1.402e-26
MAE (Validation) 2.855e-14
Prediction speed Too slow £ 1200 obs/s
Training Time (hh:mm: ss: *°) 03:11:54 00:00:6:9

Figure 21 illustrates that high efficiency can be gained from
25 °C and economically present between 750-1000 kW/m?.

According to Table 12 and Figure 22 in case of economic
gain eight hundred kW/m? prefer to set the temperature at
35, and individual harmonic TCR at 0.012, SFC at 0.0597,
which picked at time 0.015 after 0.1. Figure 23 illustrates that
if we set TCR at 0.012 and the temperature becomes twenty-
five °C, then the SFC values must maintain the distortion at a
low level and be found to be 0.023 Before 0.015 of a second
has passed. This challenge emphasizes that machine learning
that distinguishes with quick response is preferred. To reduce
the total THD % maintain the fueled voltage by the converters
and rectifiers set at minimum values except buses 6, 9, 12,
and 15 as suggested in Figure 24 to gain minimum distortion
-0.0097.

1) TRAINING PHASE

The harmonic contents of current signal that resulted from the
developed harmonic sources were simulated using the base
values listed. Furthermore, as discussed in Section IV, the
sampling settings for the simulated signals were set, and by
using ETAP the total harmonic distortions can be obtained.
A comparison between the two techniques used to forecast
harmonics in the IEEE 34-bus microgrid system during the
training phase is presented in Table 12. Moreover, Fig. 25
depicts the prediction response of each model in the training
phase. Also, there is a small difference between RMSE value
and MSE for ANNs and ANFIS results. However, MLRA has
satisfactory results among the three models. Moreover, there
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TABLE 13. Comparison between ANNs and MLRA in test phase.

MODEL ANNs MLRA
RMSE (Validation) 0.00088 7.2637e-15
R-squared (Validation) 0.95455 1
MSE (Validation) 7.77¢-07 5.276e-29
MAE (Validation) 8.916E-07 3.7127¢-15

is a considerable time consumed with the MLRA technique.
It is noticed from Table 12, the MLRA has reached the
optimal global solution in considerable low time. The MLRA
achieved higher value squared error (R%) and consumed
the lowest training time compared with ANNs and ANFIS
techniques.

2) TEST PHASE

A comparison between the three algorithms applied to fore-
cast harmonics in the microgrid under study during the test
stage is illustrated in Table 13 below. Moreover, Fig. 25
depicts the prediction response of each model in the test
stage. This figure shows the predicted THD values in the
test case for the three applied techniques in this research.
The three methods gave close values in the case of training,
as R?2 = 0.99, 1 in the three methods: ANNs and MLRA,
respectively. However, the time taken for training in the case
of MLRA is much shorter, which gives MLRA priority in the
three methods for predicting the coefficient of the Harmonic
distortion.

Table 13 summarizes the test results for the three applied
techniques that were predicted the total harmonic distortion
as a first step to mitigate the harmonics in 34-bus IEEE
system. As illustrated in Table 13, the global optimal solution
was found by the MLRA in a surprisingly short time. The
MLRA had a higher value squared error (R?). The MLRA has
the shortest training time requirement. MLRA has the fastest
prediction speed. Figure 26 depicts the predicted THD values
in the test phase for the three under study techniques in this
research. It is clear that the MLRA leads to the best accurate
prediction compared with other techniques with the squared
error index of R? = 0.98.
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VI. CONCLUSION

This paper investigates an approach for harmonic detection in
microgrid using artificial intelligent techniques. The multiple
sources of harmonics in the tested microgrid are considered
as the uncertain PV and Wind systems. To capture the accu-
rate levels of harmonic distortions, a linear regression and
location-specific data were developed. The training process

than ANNSs. Four cases are carried out with two profiles of the
harmonic sources.

The future of this study can be considered to model dif-
ferent types of harmonic sources resulted from the inverters
associated with renewable energies. Also, the advanced mod-
els based on signal processing to alleviate the problems of
data uncertainty.

is carried out by machine learning regression to achieve

high performance of the harmonic detection and preserve
the estimation error at the lowest levels. In this study, the
total harmonic distortion of a 34-bus IEEE microgrid was
predicted using two intelligent based methods called machine
linear regression and artificial neural networks. The MLRA
based detection leads to more accurate THD estimation com-
pared with those obtained by ANNs. Furthermore, when it
comes to predicting the THD values of an oriented strand
board, it performs better, faster, and requires less time to train
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FUTURE WORK

The future of this study can be considered to model different
types of harmonic sources resulting from the inverters associ-
ated with renewable energies. Also, advanced models based
on signal processing alleviate the problems of data uncer-
tainty. The research idea is expected to lead to an increase
in the percentage of microgrid systems to 3.87%. This is due
to the fact that the size of the distortion and the resulting
loss to the microgrids won’t affect the main network, which
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will lower the cost of energy use and support the sustainable
expansion of microgrid usage to meet SDG 8 and expect
improving in the GDP per capita [4].
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