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ABSTRACT This paper presents an identity-invariant facial expression recognition framework. It aims to
make a facial expression recognition (FER) model independently understand facial expressions and identity
(ID) attributes such as gender, age, and skin, which are entangled in face images. The learned representations
of the FER model pursue robustness against unseen ID samples with large attribute differences. Specifically,
attribute properties describing (facial) images are retrieved through a powerful pre-trained model, i.e., CLIP.
Then, expression features and ID features are realized through residual module(s). As a result, the features
learn expression-efficient and ID-invariant representations based on mutual information. The proposed
framework is compatible with various backbones, and enables detachment/attachment of ID attributes and
ablative analysis. Extensive experiments for several wild Valence-Arousal domain databsets showed the
performance improvement of maximum 9% compared to the runner up, and also demonstrated the subjective
realism of ID-invariant representation in high-dimensional image space.

INDEX TERMS CLIP, demographics, facial expression, facial identity, mutual information.

I. INTRODUCTION
Facial expression recognition (FER) technology plays
an important role in Human-Computer Interaction (HCI)
because it can instantly recognize a person’s emotional
state with only facial expression. Unlike so-called multi-
modal emotion recognition tasks [1], [2] that perform
emotion recognition through various modalities (e.g., speech
and EEG), facial expression recognition is classified as a
challenging task due to the sole reliance on facial expressions
to recognize emotions that can be subjectively interpreted.
In such challenging conditions, the emotion domain that FER
needs to predict is segmented into discrete and continuous
domains. Specifically, the emotional state can be expressed
by a discrete domain model [3] in which only a finite number
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of emotions are annotated, or a continuous domain model [4]
based on two axes of valence (V) and arousal (A). Here,
V and A indicate the degree of positive/negative emotions
and the intensity of activation, respectively. With the advent
of large-scale VA datasets [5], [6], VA FER methods for
mapping facial images to VA space have already achieved
reliable performance enough to be used in the real world [7],
[8].

On the other hand, in order to get the generalized
performance, it must be robust against unseen identity
(ID) because the expression tendency of model training
is generally different from that of unseen ID. This task,
named as ID-invariant FER (I2FER), has been seldom tackled
due to two challenging points: 1) In face images, not only
ID attributes (e.g., gender, age, skin) but also semantic
factors such as facial expressions are entangled, so different
expressions of the same ID can be clustered into one. 2) Facial
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FIGURE 1. (a) t-SNE [9] visualization from a SOTA FER model [8]. Since
this model interprets features dependent on IDs rather than expressions
themselves, similar emotions of ID#1 and ID#2 may be recognized
differently. (b) Concept of our idea. ID#1 and ID#2 are judged to have the
same emotion thanks to MI.

features should be informative about expressions and robust
to changes in IDs because the same emotions can be often
recognized differently due to ID attributes.

Figure 1(a) shows a typical ID dependency case where
identical IDs are closer to each other than similar expressions.
In general, since facial images include both ID-dependent
and expression-dependent characteristics [10], variations in
ID attributes are accompanied by changes in expression.

A few studies [11] emerged, noting the importance
of observing as many emotions as possible to properly
tackle I2FER. For example, it was shown that grouping
by emotion intensity [12] or learning the expression con-
sistency of different IDs [13] provided an opportunity to
observe various expression tendencies of IDs. Recently,
[8] captured the optimal expression tendency between IDs
through optimal transport theory. Although this study is
encouraging in terms of dealing with ID dependency for the
first time, ID dependency phenomenon is still observed (cf.
Sec. V-B). In other words, [8] does not structurally separate
ID-dependent components, which is an obstacle to I2FER.
More generally, InvarPS [14] and IBN-Net [15] were
developed asserting the necessity of separating unnecessary
features entangled with the target domain in several vision
domains. Their arguments are somewhat consistent with the
fact that the ID-invariant feature issue observed in Fig. 1 is
actually crucial in the face image domain.

Therefore, explicit separation of ID-dependent features
from facial features will be the key to solving I2FER. We pro-
pose a novel EIF framework that learns expression-efficient
representations using Expression feature zexp, ID feature
zid, and Facial feature z, which are independent each other.
Orthogonal to other VA FER methods, the EIF framework
employs demographics representing a specific group of
subjects as self-supervision, along with facial images. Also,
a powerful pre-trained model, i.e., CLIP [16], provides
attribute features zatt suitable for a given facial image with
several demographics as a questionnaire. Then, zid and zexp

are generated from zatt and z, respectively (cf. Sec. IV-B).
Finally, we design a novel mechanism that simultaneously
learns ID attributes and expressions from zid and zexp of

different attributes (see Fig. 1(b)). The proposed method is
based on mutual information (MI) and is realized through an
objective of making z informative with zexp but invariant with
zid through disentanglement of zid and zexp. Thus, the model
trained with this objective is expected to be able to predict
expressions robustly even in the ID attributes of unseen IDs
(cf. Sec. III-B).

Our main contributions are summarized as follows:
• We issue on a challenging ID-invariant FER (I2FER) by

exploring ID attributes that are key to FER. It is the first case
in the FER field that tackles the generalization of FER by
encoding ID attributes into high-dimensional features.

• A novel input combination of facial images and demo-
graphics, which has not been tried before, provides ID (and
expression)-dependent components as features. In particular,
the MI-induced objective disentangles the two features to
enable learning of expression-dependent representations.

• We demonstrate the validity of EIF framework through
extensive simulations on wild VA datasets. Especically, the
feature-extrapolated downstream task qualitatively verifies
the ID-invariant representations of EIF in image space
(cf. Fig. 9).

II. RELATED WORK
A. VA FER AND BEYOND
VA FER, which annotates the intensity and degree of emotion
on the circular space of V and A, ultimately pursues FER in
a wild environment including complex and micro-emotions.
Recently, thanks to large-scale VA databases [5], [6], [17]
and convolutional neural networks (CNNs) [18], [19], facial
expression correlations between facial images and labels have
been successfully formulated. For example, the spectrum
of related research is expanding from a CNN model based
on residual connection [20] to feature learning through
adversarial auto-encoding [21].
Towards I2FER: For the real-world application of FER

technology, the ability to cover unseen IDs is essential.
For example, Ali and Hughes [13] tried I2FER by learning
expression consistency from similar expressions between
different IDs. Also, several studies have been published to
achieve generalization of FER by learning the emotional
diversity [7], [12]. Recently, Kim and Song [8] quantified ID
shifts reflecting the expression tendency of samples through
optimal transport theory, and then learned ID-invariant
representations from ID shifts. However, FER approach so far
has not been able to explicitly separate ID (or expression)-
dependent components from features due to the absence
of a powerful encoder or theoretical objective design. This
problem causes the ID dependency phenomenon in which ID
attributes are involved in expression changes in image space
(cf. Fig. 9).

B. DISENTANGLED REPRESENTATION FROM AN
INFORMATION THEORY PERSPECTIVE
The goal of disentangled representation learning is to define
or generate explanatory factors in a latent space. Feature
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FIGURE 2. Illustration of causal diagram for FER, given four variables, i.e.,
facial image X , identity D, facial feature Z , and emotion label Y . Direct
edge of this causal diagram represents the causality between the two
nodes, i.e., the cause → effect. Here, white and gray represent observed
and latent features, respectively.

disentanglement for this learning scheme is mainly done
inside the model through the parametric module or in the
loss stage. The latter approach figured out many vision tasks
through various metrics (e.g., Wasserstein, mean discrepancy
etc.) [22], [23], [24], [25]. In particular, MI [26] is notable
because it is suitable for handling high-dimensional features
and has already been verified in high-level tasks [27], [28],
[29]. For example, Chen et al. [28] disentangled features with
different properties by maximizing MI between latent fea-
tures and data. Savarese et al. [29] proposed a segmentation
task of in-painted foreground and background through this
MI-based model learning.

Furthermore, representation learning based on the theory
of information bottleneck [30] has recently been attracting
attention [31], [32], [33], [34], [35], [36]. Specifically,
the MI-induced objective is designed so that the learning
scheme is effective for variables useful for the task and
is invariant to obstacle variables. Inspired by the learning
scheme, we define a complementary objective thatmaximizes
MI between facial features and expression features while
minimizing MI between ID features, and learns expression-
efficient representations.

III. PRELIMINARIES
This section explores the I2FER using the causal diagram as
a tool, and designs an ID-invariant objective for disentangle-
ment of ID (and expression)-dependent components.

A. PROBLEM FORMULATION
This paper aims at VA FER, a regression task that estimates
VA label yva(∈ Y ) from (facial) feature z(∈ Z ). In z where ID
(and expression)-dependent components are mixed, features
of the same ID tend to get closer in the feature space [37].
As a result, this causes a bottleneck in FER performance for
the test-set containing many unseen IDs. To observe at which
stage of the (VA) FER ID dependency phenomenon occurs,
we introduce a (structural) causal diagram [38], [39]. Causal
diagram defines cause and effect, that is, causality, with each
variable as a node. Using the causal diagram, we analyze
which variable is an ID-dependent component by regarding
the ID attribute as (initial) cause and the emotion label as
(final) effect, respectively. Especially, since the relationship
between all variables can be examined one by one through
this diagram, it is useful for exploring the FER task in which
various attributes are combined with facial features.

FIGURE 3. An overview of EIF framework. Two features obtained through
backbone (φ) and CLIP are factorized into ID and expression features
respectively via residual module. φ learns an ID-invariant representation
by different types of losses. In other words, zid and zexp only provide θ

with the opportunity to learn ID-invariant features, and have no separate
role in the testing phase. Therefore, inference of emotion is performed
only with z.

As in Fig. 2, there are three causalities associated with the
facial feature Z : X → Z , Z → Y , and D → Z . First, X → Z
and Z → Y are cases where the effect always changes as
the cause changes. From the FER point of view, a change in
facial expression causes a change in emotion label, which is
because facial features must also change. However,D → Z is
not a case in which the effect must always change according
to cause’s change. This is because each subject contains its
own expression. This fact requires the following prerequisite.
Prerequisite 1: Z should be informative to Y and indepen-

dent of D as much as possible.
Using the MI-induced objective in the upcoming section,

we present a clear solution to this prerequisite. The tendency
of D to express emotions transfers to ID-specific facial
expressions in image X (see D → X in Fig. 2). It’s important
to note that this paper focuses solely on variables directly
associated with feature Z .

B. ID-INVARIANT OBJECTIVE
Mutual information has been frequently used to learn
dependencies between task-efficient variables in domain
adaptation or generalization fields [40], [41], [42]. In general,
minimization of MI in the feature space encourages model
learning to be invariant to target variables. With this in mind,
we design the objective so that Z is informative to Y , but is
invariant to D.

max
Z

MI(Z ,Y ) − MI(Z ,D). (1)

where using Z as an anchor, the relationship between
Y and D is simultaneously learned, and this formulation
coincides with the causal diagram of Fig. 2. Specifically, the
maximization of MI(Z ,Y ) and the minimization of MI(Z ,D)
encourage the model to learn expression-efficient and
ID-invariant representations, respectively. Furthermore,
when the parametric model φ encodes X into Z , the above
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FIGURE 4. Pipeline of CLIP encoding with demographic inputs. The
retrieved three vectors twoman, tyellow, and tyoung are used to get an
attribute vector zatt describing an image x.

objective is re-written by

max
φ

MI(φ(X ),Y ) − MI(Y ,D|φ(X )). (2)

Reason for deriving the second term of Eq. 2 is as follows.
Lemma 1: Minimizing MI(Y ,D|φ(X )) is equivalent to

learning φ so that φ(X ) and D disentangle from each other.
Proof: According to the property of conditional

MI, MI(Y ,D|φ(X )) = MI(Y ,D, φ(X )) − MI(Y , φ(X )).
As MI(Y ,D|φ(X )) is minimized, MI(Y ,D, φ(X )) =

MI(Y , φ(X )). Therefore, D is invariant with φ(X ). □

IV. PROPOSED METHOD: EIF
To implement the ID-invariant objective defined in the
previous section, this section focuses on two points: Input
features of the objective and formulation of the objective
in a tractable form. Due to the unique structure of the EIF
framework reviewed in Fig. 3, images and demographics are
input together. Then, let’s take a look at how to manipulate
the inputs.
Visual Input: An image x(∈ X ) is encoded into a facial

feature z(∈ Z ) through the backbone (φ). In parallel, the
ID label yid corresponding to x is given from the ID index
assigned to each image sample (cf. Sec. V for details).
Demographic: To retrieve ID attributes matching x,

we build a demographic set D = {skin, age, gender} using
well-known face-related taxonomy [43] (i.e., skin color, age,
gender). For example, three texts of ‘yellow’, ‘white’, and
‘black’ are provided for the skin attribute label yskini : ∀i ∈

{1, 2, 3}. Then, attribute-specific text inputs
{
p; yskini

}
from

the hand-crafted prompt prefix, i.e., p =‘a photo of a ’ and
yskini are defined. Also, specific text inputs corresponding
to age and gender are provided. The next section describes
the process of encoding zatt from the self-supervision inputs
generated from D.
The Rationale for Replacing Race With Skin Color: The

‘race’ attribute, introduced in Fairface [43], intuitively groups

FIGURE 5. Fidelity of CLIP encoded with demographic set. Red text
indicates incorrect inferring results. In the case of the image in the
second column, it looks as if the age attribute was inferred as ‘old’
because the artifacts act as wrinkles on the face.

subjects. However, since race is an abstract concept that
is difficult to represent only with visual information, even
CLIP [16] is hard to encode this attribute. So, we replace race
with ‘skin color’ which indirectly reflects it.
Details of CLIP Encoding: To get the attribute feature

(zatt), we employ CLIP having powerful zero-shot encoding
capability. The detailed process is shown in figure 4. First,
we feed facial image (x) and demographic set (D =

{skin, age, gender}) to the visual encoder (Ev) and text
encoder (Et ) of CLIP, respectively. Then, visual features (v)
and text features (tDi ) are output, respectively. Next, with v
as a query feature and tDi as key features, text features that is
the key to describe v are retrieved through ‘Top-1’ operation.
In detail, this is implemented by comparing dot products
between the two features and selecting the maximum. When
the similarity between v and tskin2 is the largest, tskin2 is
retrieved as a feature representing the skin property of x
(see the red box in Fig. 4). This process is performed for all
elements ofD. In the end, v and the retrieved text features are
concatenated and used as input to the FC layer.
Fidelity of CLIP Encoding: Since the proposed method

relies on CLIP to generate zatt, it is essential to check the
validity of CLIP for facial images. So, we show that CLIP
is actually effective in the face domain by presenting the
attribute inferring results for some samples. The inferring
results through CLIP (ViT-B/32) is given in Fig.5. In the case
of the gender attribute that distinguishes woman from man,
human-level predictions were shown. However, in the case
of age, some unexpected errors were found (see the second
column in Fig. 5). Fortunately, such results occasionally
occurred when artifacts were mixed in the image. Also, since
the results for other attributes come out as we intended,
these outlier cases are relatively negligible. In the future,
if a face attribute-aware encoding module is developed, more
sophisticated zatt can be generated.

A. ATTRIBUTE INFERRING
Since previous FER models [12], [20] never considered
demographic(s), they could not explicitly use ID attributes for
FER learning. Note that ID attributes provide an opportunity
to focus only on expression-efficient representations while
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keeping z invariant to ID. So, this section presents a novel
attribute inferring that generates zatt suitable for x.

1) FEATURE ENCODING
CLIP [16] has recently been spotlighted as a model that learns
contrastive loss so that two feature spaces are aligned from
a pair of visual and text input. CLIP encoders Ev, Et encode
visual and text inputs into the visual feature v and the text
features tDi , respectively: v = Ev(x) and tDi = Et (

{
p; yDi

}
).

2) ATTRIBUTE INFERRING
Next, to infer tDi that best describes x, we calculate the
prediction probability of v through the cosine similarity (cos)
of v and tDi as follows:

p(yDi |x) =
exp(cos(v, tDi )/τ )∑
i′ exp(cos(v, t

D
i′ )/τ )

,

i∗ := argmax
i

p(yDi |x), (3)

where τ indicates the temperature of the softmax. From the
perspective of skin, age, and gender, tDi∗ s describing x are
retrieved, respectively. In detail, v and tDi∗ are concatenated,
and passes through a single fully-connected (FC) layer, and
is encoded into zatt: zatt := FC([v; tDi∗ ]).

1 Section V-E verifies
the validity of zatt as well as the number of attributes.

B. RESIDUAL MODULE
To learn emotion patterns and ID-invariant representations at
the same time, this section describes how to generate zexps
and zids. Inspired by the fact that face images contain both
expression and attribute features [10], z can be defined by
z = zexp + zatt. Based on this relationship, we propose
a residual module R that encodes ID (and expression)-
dependent components into features as follows:

zexp = R(z− zatt) and zid = R(zatt), (4)

where R is designed as a single FC layer with leaky ReLU.
Weight-shared R has two goals: 1) Generation of zexp from
feature residual components and 2) generation of zid through
the refinement of attributes.

C. OBJECTIVE FORMULATION
From the generated features and Eq. 2, the objective for ID-
invariant expression-efficient representations is formulated
by

MI(Z ,Y ) − λMI(Z ,X )︸ ︷︷ ︸
Expression-efficient term

−βMI(Y ,D|Z )︸ ︷︷ ︸
ID-invariant term

, (5)

where λ, β ∈ R+ indicate balancing factors. Eq. 5 consists
of an expression-efficient term in which Z is informative
to Y and contains minimal information from X [30] and an
ID-invariant term independent of D. However, the variables

1Although the input vectors contain different semantic factors, the FC
layer will output zatt that integrates the properties of the vectors because of
implicit neural representation [44].

of Eq. 5 are intractable because they have different semantic
properties and are composed of high-dimensional vectors.
Each term is transformed into an operable form as follows.

1) IDENTITY-INVARIANT TERM
is expanded by the conditional and joint entropy rules:
MI(Y ,D|Z ) = H(Y |Z ) − H(Y |D,Z ). Here, entropy H is
modeled by [45]

H(Y |Z ) = − sup
g

Ey,z
[
log g(y|z)

]
H(Y |D,Z ) = − sup

h
Ey,z,D

[
log h(y|z,D)

]
. (6)

Thanks to the universal approximation ability of neural
networks [46], g and h are rearranged as target losses
including parametric models:

Lii = Eyva,zexp
[
MSE

(
yva, f va(zexp)

)]
− Eyid,zid

[
CE

(
yid, f id(zid)

)]
, (7)

where VA heads f va and ID head f id are composed of a
single FC layer, and have output dimensions of 2 and 1,
respectively. MSE and CE stand for mean-squared error
and cross-entropy, respectively. zexp and zid use yva(∈ R2)
and yid(∈ R1) as supervision, respectively, and provide the
model with opportunities for expression regression and ID
classification the same time. As a result, Eq. 7 induces to learn
useful representations for yva while z is robust to ID variation.

2) EXPRESSION-EFFICIENT TERM
is rewritten by Lemma 2 based on variational approxima-
tion [47] and variational information bottleneck [33]. This
lemma provides a basis for converting complementary MI
terms into tractable supervision loss with regularization.
Lemma 2: The termMI(Z ,Y )−λMI(Z ,X ) to learn Z that

contains the least information of X while being informative
to Y is derived through the entropy minimized loss and the
KL divergence DKL with Gaussian N with noise ϵ.

Lee = Eyva,x
[
MSE

(
yva, f va(φ(x, ϵ))

)]
+ λEx [DKL[φ(x, ϵ) || N (0, I )]] , (8)

Proof: In general, computation of mutual information
(MI) from high-dimensional vectors is intractable. Fortu-
nately, thanks to the well-established variational information
bottleneck (VIB) theory, we can show the MI-based terms
MI(Z ,Y )− λMI(Z ,X ) has the following lower bound (from
Eq. 16 in [33]).

MI(Z ,Y ) − λMI(Z ,X )

≥ Ey,z[log q(y|z)] − λEx,z

[
log

p(z|x)
r(z)

]
, (9)

where p(z|x) is a parametric encoder and r(z) is the
(variational) approximation of the true marginal. q(y|z) is
considered as supervision loss to predict label y from feature
z. And, it is designed with cross entropy or mean-squared
error. However, optimizing the second term of Eq. 9 is
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still challenging. Therefore, we model p(z|x) as Gaussian
distribution N as follows.

p(z|x; φ) = N (z|φµ(x), φ6(x)), (10)

By attaching a single FC layer to the backbone φ to
output the mean vector µ and the covariance matrix 6 of
the same size as z, respectively, φµ and φ6 are designed
respectively. Then, from the reparameterization trick, this
encoder is reconstructed as follows: p(z|x)dz = p(ϵ)dϵ,
where z = φ(x, ϵ) is the deterministic function of x and
ϵ ∼ N (0, I ). Since this formulation offers an advantage that
the noise term is independent of the model parameters, the
gradient is obtained relatively easily [33]. In the end, Eq. 9
is based on the mean-squared error (MSE)-based supervision
loss and the regularization loss through the KL divergence
DKL.

Ey,z[log q(y|z)] − λEx,z

[
log

p(z|x)
r(z)

]
= Eyva,x

[
MSE

(
yva, f va(φ(x, ϵ))

)]
+ λEx [DKL[φ(x, ϵ) || N (0, I )]] . (11)

□
Note that in the inference phase, noise ϵ is not used: z =

φ(x).

3) FURTHER REGULARIZATION
The dependency of zexp and zid must be minimized for
Eqs. 7 and 8 to take effect. Based on the independence
testing statistics [48], we minimize the dependency between
zexp(∈ Z exp) and zid(∈ Z id) through the following partial
cross-covariance matrix.

6Z exp,Z id =
1

N − 1

N∑
i=1

Z exp
i −

1
N

N∑
j=1

Z exp
j


·

Z id
i −

1
N

N∑
j=1

Z id
j

T
 , (12)

where N denotes the mini-batch size. While the loss in Eq. 7
pursues implicit feature learning based onmodel outputs (i.e.,
predictions), Eq. 12 is explicitly designed using features.
So Eq. 12 can boost the ID-invariant effect of Eq. 7. Inspired
by previous works [48], [49], Lcov for disentanglement
between two feature spaces is defined so that Frobenius norm
∥6Z exp,Z id∥

2
F of this matrix is minimized.

D. TOTAL OBJECTIVE AND TRAINING PROCEDURE
The total objective consists of Eqs. 7, 8, 12, and the
correlation loss Lcorr that is widely used for boosting
correlation-based metrics (cf. Sec. V-A).

Ltotal = Lee + αLcov + βLii + γLcorr, (13)

where α, β, and γ indicate regularization coefficients.
By collecting losses of different attributes, we update
parameters of all neural networks except CLIP. Note that

Algorithm 1 Gradient Flows of EIF Framework

Require: VA head f va, ID head f id, residual module R,
aggregator A, backbone φ (see Fig. 3).

Ensure: Calculate gradients of Lee, Lcov, Lii, and Lcorr.
∇Lee & ∇Lcorr {min f va and φ.}
∇Lcov {minR, A, and φ.}
∇Lii {max f id & min f va,R, A, φ.}
=0

Lee is the main loss for making φ learn expression-efficient
representations from supervision yva. Meanwhile, Lii is a
regularization loss that gives φ an opportunity to learn the
ID-invariant representations with the demographic set D as
a self-supervision. Since Lcov disentangles the spaces of Z id

and Z exp, it boosts the effect of Lii. For details of gradient
flows, see Algorithm 1.

V. EXPERIMENTS
A. SETTINGS
1) CONFIGURATIONS
The proposed model was implemented with PyTorch
library [50], and it was trained at Intel Xeon CPU and
NVIDIA RTX A100 GPU. Every quantitative value is the
average of the results of five experiments. The parameters
of convolutional and FC layers were updated through Adam
optimizer [51] with learning rate (LR) 4× 105. LR decreases
by 0.8 times in the initial 5K iteration, and then decreases
by 0.8 times every 20K iteration. Three backbones (φ) were
selected: AlexNet(AL) [18], ResNet18(R18) [19], and Mlp-
Mixer(MMx) [52]. Here, the parameter-reduced AlexNet-
tuned was employed [8], [12]. Mini-batch sizes (N ) of the
backbones were set to 512, 256, and 128, respectively. τ of
Eq. 3 was 0.5 and λ of Eq. 8 was 103. α, β, and γ of Eq. 13
were set to 103, 105, and 0.5, respectively. The dimensions of
z, v, and tD were all 512.

2) MODEL DETAILS
EIF framework consists of 5 modules: backbone φ, aggrega-
torA, residual moduleR, VA head f va, and ID head f id. First,
as φ, the default version ResNet18 [19], Mlp-Mixer [52],
and parameter reduced AlexNet [18] were adopted. In detail,
AlexNet’s convolution layer is the same as the original, but
utilizes two lightweight FC layers with ReLU activation as
follows: FC(32)− FC(512), where the parenthesis indicates
the size of the output vector. A and R are designed as
FC(512). Finally, f va and f id are designed as FC(2) and
FC(1), respectively.

3) BASELINE
Two open source techniques, i.e., CAF [12] and ELIM [8],
were used as key baselines in the experiments.

4) PUBLIC DATASETS
Aff-wild [6] is a video database containing the reactions of
subjects in TV shows and soap operas. About 1.2M frames
extracted from a total of 298 videos are divided into train-set
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FIGURE 6. Example-based results demonstrating ID-invariant
representation capabilities. (a) and (b) denote Valence and Arousal,
respectively.

FIGURE 7. Visualization of expression features using t-SNE [9].

and validation set [8], [12]. Aff-wild2 [53] is an extended
version of Aff-wild in which spontaneous facial expressions
of subjects and background variations (e.g., illumination) are
additionally considered. About 1.4M frames were extracted
from the videos and divided into train- and validation-sets.
AFEW-VA [5] is a movie database composed of 600 short
video clips, and the cross-validation scheme of 5:1 ratio is
adopted. Note ID is assigned from the

{
folder#

}
per video as

in [8].

5) EVALUATION METRICS
Given the emotion label set Y and the prediction set Ŷ ,
the four metrics used in model inference of EIF and other
techniques are as follows.

▶ Root mean-squared error (RMSE) measures the average
of the squares of the errors, i.e., the straight difference
between predictions and labels.

RMSE(Y , Ŷ ) =

√
E((Y − Ŷ )2).

▶ Pearson correlation coefficient (PCC) measures the
linear correlation between predictions and labels. In words,
the PCC summarizes the characteristics of two different

FIGURE 8. Pipeline of feature-extrapolated image generation task.

FIGURE 9. Generated traversal images. The magenta box contains the
original (i.e., not extrapolated) images.

(data)sets.

PCC(Y , Ŷ ) =
E[(Y − µY )(Ŷ − µŶ )]

σYσŶ
,

where µ and σ indicate the mean and standard deviation of
the test samples, respectively.

▶ Concordance correlation coefficient (CCC) measures
agreement between two sets. That is, the CCC is the addition
of the bias correlation factor to the PCC.

CCC(Y , Ŷ ) =
2σYσŶPCC(Y , Ŷ )

σ 2
Y + σ 2

Ŷ
+ (µY − µŶ )

2
.

▶ Sign agreement (SAGR) determines whether the signs
of predictions and labels match based on the VA axes.

SAGR(Y , Ŷ ) =
1
N te

N te∑
i=1

0(sign(yvai ), sign(ŷvai )),

where yva ∈ Y and ŷva ∈ Ŷ . N te stands for the number of
images in the test set. 0 is a binary function that outputs 1 if
two values have the same sign, and 0 otherwise.

In addition, the correlation loss Lcorr for model training is
defined as follows:

Lcorr = LPCC(Y , Ŷ ) + LCCC(Y , Ŷ )

=

(
1 −

PCCv(Y , Ŷ ) + PCCa(Y , Ŷ )
2

)

+

(
1 −

CCCv(Y , Ŷ ) + CCCa(Y , Ŷ )
2

)
, (14)
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TABLE 1. Realism ratings of 18 trained volunteers. Columns 1-4 show the
number of times that users gave this rating. The column ‘‘real’’ shows the
percentage of users that rated the images with 3 or 4.

where PCC(/CCC)v and PCC(/CCC)a indicate correlation
values on the valence and arousal axes, respectively.

6) SETTING FOR USER STUDY
The goal of user study is to observe the changes in facial
expressions while maintaining ID attributes. Through this
experiment, we can see how well the features learn the
ID-invariant representation ability in high-dimensional image
space. Since separate attribute classifiers are not given,
the realism rating of the generated image was subjectively
evaluated.

B. IDEA VERIFICATION
In order to clearly evaluate the validity of the proposed
method, this section is described in the form of answering the
following key questions. Q1. Is EIF valid for ID dependency
cases? Q2. Do features show ID-invariant ability?

A1. Effectiveness for ID dependency. The goal of
I2FER is to make it robust against the so-called ID shift
phenomenon [8] where face-related attributes are shifted
while following the same label prediction mechanism.
We compared the FER performance of ELIM [8] targeting
I2FER and EIF through several ID dependency cases. First,
to demonstrate ID-invariant representation ability in terms
of valence, we compared the emotional tendencies of two
randomly selected ID samples. ELIM estimated GT values
more elaborately than EIF (see green symbols in Fig. 6(a)),
but showed results that were somewhat more dependent on
ID than similar expressions. On the other hand, EIF was
independent of ID and showed fairly sophisticated estimation
results. The same experimental results were obtained in the
arousal axis. As a result, EIF showed prediction results that
were less dependent on ID changes in the negative region of
the arousal axis, where estimation difficulty was highest (see
Fig. 6(b)).

A2. Verifying ID-invariant ability. The representation
ability of EIF is evaluated by visualizing zexp isolated from
R (of Sec. IV-B). Figure 7 illustrates the correlation between
different facial expressions in the feature level. We can find
that the samples are not clustered depending on IDs but
are distributed depending on the expression changes. For
example, the sample of ID#2 with a smiling expression
is located near the ID#1 sample with a similar expression
(see the blue box), and the samples of ID#2 with a sad
expression are gathered on the bottom (see the red box). This

TABLE 2. Results on the validation set of Aff-wild2. The gray background
represents the results of the proposed method, i.e., EIF. † stands for
in-house implementation.

demonstrates the validity of R separating zexp from z and
shows the regularization effect of Lii.

C. DOWNSTREAM TASK
1) PRACTICAL ASSUMPTION
We were inspired by a well-known study [54] that demon-
strated applications such as (facial) expression transfer by
re-embedding user-specified images into the StyleGAN latent
space. That is, StyleGAN(-V2)’s latent space [55] does not
need to be set to a random vector. After converting z to
extended latent space w+

∈ R18×512, we synthesize traversal
images through feature extrapolation.
z of the model trained with emotional labels assumes that

only the expression attributes change in the manifold. So,
we pay attention to the feature-extrapolated image generation
task where the attributes implied by z can be compared in
high-dimensional image space (∈ R1024×1024). Through this
task, the above assumption and ID-invariant representation
are further verified. The pipeline is shown in Fig. 8. First, a set
of individuals S is built by performing feature extrapolation
toward a specific direction.

S(z) =
{
z′ := z+ t · a | t ∈ [−1, 1]

}
,

where t stands for a scale factor. Here, the attribute vector
a that determines the extrapolation direction is designed
as a simple one vector 1. This assumes that all elements
of a change almost equally. Then, the pre-trained generator
G (e.g., StyleGAN-V2 [55]) generates images with the
extrapolated features z′(∈ S) and z as two inputs. If only the
expression changes smoothly while maintaining the ID, it is
considered as an ID-invariant case. Otherwise, it is regarded
as an ID-dependent case. This decision criterion is formulated
as follows:

ID-shifting(G(z),G(z′)) = 0 → ID invariant,

ID-shifting(G(z),G(z′)) = 1 → ID dependent.

Figure 9 qualitatively compares EIF and prior arts. CAF
and ELIM showed a change in ID rather than a change
in expression due to abrupt changes in gender and skin
color (ID-shifting = 1). On the other hand, in EIF, only the
expression changewasmainly observedwhile the ID attribute
was preserved (ID-shifting = 0).
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FIGURE 10. t-SNE visualization [9] of ID feature zid. We observed a tendency for samples to cluster in a low-dimensional space based on the three
factors that make up the ID attribute.

FIGURE 11. Generated traversal images from ID feature zid. The magenta
box contains the original (i.e., not extrapolated) images. Due to the file
size limitation, the resolution of the generated image is partially reduced.
t(∈ [−1, 1]) stands for scale factor.

Next, the generation results were verified through user
study that rates the realism of each image. This experiment

FIGURE 12. Failure cases that contain factors other than expression.

was designed because ID classifiers for ID-shifting [56], [57]
are not normally available. In Table 1, EIF improved by 77%
and 83% in realism score than ELIM and CAF, respectively.
Refer to the next two paragraphs for the other generation
results with zid and in-depth analysis of ID attributes.

2) VISUALIZATION OF ID FEATURE
We verify the training validity of zid by visualizing ID
features (zid) in a low-dimensional space. Fig. 10 visualizes
zid through t-SNE. First, samples tend to be located depending
on two factors of gender (attribute), i.e., man and woman. The
relative positions of the samples also seem to be determined
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TABLE 3. Experimental results on AFEW-VA. Unlike ‘Temporal’, ‘Static’ trains the model based only on a single image. According to the regime of
parameter size, ‘Heavy’, ‘Middle’, and ‘Light’ are divided: over 20M, more than 10M and less than 20M, and less than 5M.

TABLE 4. Performance comparison on the Aff-wild dataset.

by the factors of age (attribute). However, the influence
was not greater than that of gender. In fact, this result is
closely related to CLIP’s encoding ability. Since gender is a
superficial attribute on faces, its feature encoding is relatively
easy. However, since age is difficult to predict directly from
faces and is an attribute with different tendencies for each
person, its encoding is not easy.

3) TRAVERSAL IMAGES FROM ID FEATURE
Finally, traversal images were generated by inputting ID
features and extrapolated ID features to the pre-trained
generator G. The goal of this downstream task is to
observe whether the transitions of gender, skin, and age
attributes are also represented in high-dimensional image
space. Note that this experiment indirectly confirms the
factorization performance of the residual module R, which
explicitly separates expression-dependent and ID-dependent
components. Examples of traversal images generated by the
pipeline in Fig. 6 of the main body are shown in Fig. 11
here. The results of the third column are images generated
from zid (see the magenta box). And, the images generated
from the ID features extrapolated toward the positive or

TABLE 5. Ablation study on Aff-wild2. Aside from the attributes and
losses, the other configurations remained the same.

negative direction are shown row-by-row in the figure. Age
(see Fig. 11(a)), gender (see Fig. 11(c)), and skin color
(see Fig. 11(e)) were the main components that changed the
appearance of traversal images. Surprisingly, variations in
other attributes (e.g., glasses, head pose, beard etc.) that we
did not encode were also observed as in Figs. 11(a) and (b)).
These examples show that z has many face-related attributes
that we didn’t consider. This generative result, which shows
a much more natural age progression or gender transition
than the latest studies, demonstrates the scalability of EIF,
that is, EIF can be extended in many ways to face-related
generation tasks. In the future, if more sophisticated attribute
encoding or feature manipulation methods are combined with
this downstream task, more natural facial expression changes
can be produced.

In the Aff-wild, which is often used to verify the affect
estimation ability, EIF successfully captured the emotional
change trend. In Table 4, EIF achieved PCC-V, about 5%
better than ELIM in the light model. Also, thanks to the high
capacity of Mlp-Mixer, EIF achieved SOTA performance in
the Arousal axis.

D. COMPARISON WITH PRIOR ARTS
This section evaluates the superiority of EIF in quantitative
aspects. Table 2 compares the proposed method with prior
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arts for the large-scale Aff-wild2. EIF achieved RMSE and
CCC significantly ahead of stochastic process-based AP [7]
and optimal ID matching-based ELIM [8]. For example,
EIF (AL) showed about 0.03 improvement in RMSE-V
than ELIM (AL), and EIF (MMx) showed 5% improvement
in CCC-V than ELIM (MMx). Considering that Aff-wild2
contains even sudden emotional changes, this performance
improvement is quite significant.

Table 3 shows the spontaneous expression estimation per-
formance in terms of learning method, model size, and four
evaluation metrics. ELIM [8] and EIF focusing on I2FER
lead the way. This ranking suggests that the ID-invariant
mechanism is more effective for affect estimation in VA
space than temporal information. Overall, the performance
improved as the model size increased. However, EIF (AL)
showed a 3.3% improvement in CCC-V than EIF (MMx).
This demonstrates the strength of EIF, which can perform
FER well even with a light size model.

In the Aff-wild, which is often used to verify the affect
estimation ability, EIF successfully captured the emotional
change trend. In Table 4, EIF achieved PCC-V, about 5%
better than ELIM in the light model. Also, thanks to the high
capacity of Mlp-Mixer, EIF achieved SOTA performance in
the Arousal axis.

E. ABLATION STUDY
We answer the following questions regarding the composition
of EIF. Q3. Does the number of inferred attributes affect
performance? Q4. Are the losses for regularization effective?
Q5. Are attributes other than facial expressions encoded?

A3. Impact of attributes. The more face-related attributes
are observed, the more accurately the subject ID can be
recognized [59]. In order to observe that this claim works
in EIF, we investigated the change in performance for
each element of D (see Table 5). When gender was added
based on v from Ev (i.e., appearance), a large performance
improvement of 4.6% was observed in CCC-A. On the other
hand, the addition of age showed only 0.3% increase in
CCC-A. This indirectly verifies CLIP’s weak age encoding
ability.

A4. Impact of losses. Due to the nature of EIF, disentan-
glement between two feature spaces is very important. So,
we analyze the influence of Lcov (cf. Eq. 12) performing
the disentanglement learning from a cross-covariance matrix.
As in the 6th row of Table 5, the absence of Lcov showed
a 1.9% CCC-V decrease. In the absence of Lcorr boosting
the learning of emotional tendency, a decrease in CCC-A of
4% was observed. Also, when all of the regularization losses
are removed, a large performance decrease of about 10% in
CCC-V was observed.

A5. Incomplete disentanglement.The powerful encoding
capability of CLIP helps EIF successfully extract the
attributes of subjects. However, since zatt is obtained from
only three factors (i.e., gender, age, skin color), redundant
attribute(s) that are not separated from z can exist. As in
the traversal images of Fig. 12, zexp includes some attributes

TABLE 6. Comparison with 7-classes FER methods.

(i.e., glasses and age) that are not related to expressions.
Age attribute is still observed. Note that [60] has officially
stated that CLIP is relatively weak in age estimation [60].
The first row of Fig. 12 contains the subject’s smooth age
progress as well as the expression change. Our result showing
a much more natural subject growth than recent face aging
works [61], [62] demonstrates the significant potential of EIF,
which can expand into face-related generation tasks.

A6. 7-classes FER results. To validate the superior
performance of our method, we compare its performance
in a 7-classes FER (discrete FER) configuration using the
AffectNet [17] and RAF-DB [68]. For the experiment,
we substitute Lee with cross-entropy and remove Lii due to
the nature of AffectNet and RAF-DB, where multiple images
for a single identity are not available. The experimental
results are given in Table 6. When compared to the state-
of-the-art discrete facial FER technique, Face2Exp [67],
the proposed method demonstrates performance improve-
ments of 0.62% on AffectNet and 0.90% on RAF-DB.
In addition, when compared to IPD-FER, which employs the
same backbone, the proposed method shows a performance
improvement of 2.14% on AffectNet. Note that among the
existing methods, DLN [40] and IPD-FER [65] explicitly
targeted I2FER. Furthermore, even when using a relatively
lightweight backbone, the proposed method outperforms
DLN by 0.67% on RAF-DB. Therefore, experimentally, the
proposed method targeting I2FER has been demonstrated to
achieve superior performance in both continuous (i.e., VA)
FER and discrete FER.

VI. CONCLUSION
Towards ID-invariant representation, we propose a novel FER
framework that uses ID and expression features as inputs
for complementary MI-based terms. ID-invariant ability
was experimentally verified in both low-dimensional space
(through t-SNE) and high-dimensional image space. This
paper will give considerable insight to future FER studies
in that it successfully deals with generalization against ID
dependency, which is the key to VA FER.
Potential Societal Impact: The proposed method to infer

the attributes of images with CLIP may cause privacy
or surveillance-related threats. For example, searching for
attributes of celebrities and analyzing their facial expressions
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can be a social threat in terms of privacy. So it is urgent
to introduce privacy-aware attribute searching or differential
privacy.
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